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Outline
1. Computational complexity.

2. Derivatives.
When Professors Scholes and Merton and I
The binomial model for derivatives pricing. . .

invested in warrants,
Path-dependent options pricing. Professor Merton lost the most money.
And I lost the least.

Other trees.
— Fischer Black

Monte Carlo pricing.

Interest rate models.

® N o o ke W

Model calibration.
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Computational Complexity

It is unworthy of excellent men

to lose hours like slaves

in the labor of computation.

— Gottfried Wilhelm Leibniz (1646-1716)
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Measures of Complexity: Time

e Tractable: “Solvable” in polynomial time.
— Such as O(n) and O(n?).
— Candidates: Vanilla options.

e Intractable: Otherwise.
— Candidates: Asian options & certain reset options.
— Approaches:
* Analytical approximations.

* Approximation algorithms.
x Monte Carlo simulation, etc.
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Measures of Complexity: Space
e Space is usually not an issue.

e It could be an issue for long-dated fixed-income
securities or path-dependent derivatives.
e Here is the calculation:
— A tree has ~ n?/2 nodes, where n is the number of
periods until maturity (see later).
— A 30-year security has more than 365 x 30 > 10*
days.
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— So a tree for a 30-year security has > 5 x 107 nodes.
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Useful Journals A Very Brief History of Modern Finance

e Journal of Computational Finance. e 1900: Ph.D. thesis Mathematical Theory of Speculation
e Journal of Derivatives. of Bachelier (1870-1946).

o Journal of Financial Economics.

e 1950s: modern portfolio theory (MPT) of Markowitz.
o Journal of Finance.

e 1960s: the Capital Asset Pricing Model (CAPM) of
Treynor, Sharpe, Lintner (1916-1984), and Mossin.

e Journal of Fized Income.

o Journal of Futures Markets.

e 1960s: the efficient markets hypothesis of Samuelson and

e Journal of Financial and Quantitative Analysis.

Fama.
o Journal of Real Estate Finance and Economics.

e 1970s: theory of option pricing of Black (1938-1995) and

e Mathematical Finance.

Scholes.
e Review of Financial Studies.
e Review of Derivatives Research. e 1970s—present: new instruments and pricing methods.
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A Very Brief and Biased History of Modern Computers

e 1930s: theory of Godel (1906-1978), Turing (1912-1954), and
Church (1903-1995).

e 1940s: first computers (Z3, ENIAC, etc.) and birth of
solid-state transistor (Bell Labs).

e 1950s: Texas Instruments patented integrated circuits;

. Backus (IBM) i ted FORTRAN.

Introduction ackus (IBM) invente

e 1960s: Internet (ARPA) and mainframes (IBM).

e 1970s: relational database (Codd) and PCs (Apple).

e 1980s: IBM PC and Lotus 1-2-3.

e 1990s: Windows 3.1 (Microsoft) and World Wide Web
(Berners-Lee).
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What This Course Is About

Financial theories in pricing.
e Mathematical backgrounds.

Derivative securities.

Pricing models.

e Efficient algorithms in pricing financial instruments.
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Computability and Algorithms

e Algorithms are precise procedures that can be turned

into computer programs.

e Uncomputable problems.

— Does this program have infinite loops?

— Is this program bug free?

e Computable problems.

— Intractable problems.

— Tractable problems.
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Complexity

Start with a set of basic operations which will be
assumed to take one unit of time.

The total number of these operations is the total work
done by an algorithm (its computational complexity).

The space complexity is the amount of memory space
used by an algorithm.

Concentrate on the abstract complexity of an algorithm
instead of its detailed implementation.

Complexity is a good guide to an algorithm’s actual

running time.
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Common Complexities
Asymptotics e Let n stand for the “size” of the problem.
e Consider the search algorithm on p. 18. — Number of elements, number of cash flows, etc.
e The worst-case complexity is n comparisons. e Linear time if the complexity is O(n).
e There are operations besides comparison. e Quadratic time if the complexity is O(n?).
e We care only about the asymptotic growth rate not the e Cubic time if the complexity is O(n?).
exact number of operations. e Exponential time if the complexity is 20",
~ So the complexity of maintaining the loop is e Superpolynomial if the complexity is less than
subsumed by the complexity of the body of the loop. exponential but higher than any polynomial,
o The complexity is hence O(n). e It is possible for an exponential-time algorithm to
perform well on “typical” inputs.
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Algorithm for Searching an Element A Common Misconception about Performance
1: for k=1,2,3,... ,ndo e A reduction of the running time from 10s to 5s is not as
2. if z = A[k] then significant as that from 10h to 5h.
3 return k; But this ;
4 end if e But this is wrong.
5. end for — What if you have 1,000 securities to price.
6: return not-found; — What if you must meet a certain deadline.
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Basic Financial Mathematics

Periodic and Continuous Compounding

e If interest is compounded m times per annum,
r nm
FV=PV(1+)" (1)
m
e As m = oo and (14 %)™ —¢" in Eq. (1),
FV =PVe™,
where e = 2.71828. ...

e If the annual interest rate is 71 for n; years and ry for
the following ns years, the FV of $1 will be

el m +rana
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Efficient Algorithms for PV and FV

e The PV of the cash flow Ci,C5,...,C, at times
1,2,...,n is

Ch Cy Cp

+ e
l+y  (1+y)? 14y

e Computed by the algorithm on p. 25 in time O(n).
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The Time Line
| Period 1 | Period 2 | Period 3 | Period 4 |
Time O Time 1 Time 2 Time 3 Time 4
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Algorithm for Evaluating PV

Yields

e The term yield denotes the return of investment.
e Two widely used yields are the bond equivalent yield
(BEY) and the mortgage equivalent yield (MEY).

— BEY corresponds to the r in Eq. (1) on p. 23 that
equates PV with FV when m = 2.

— MEY corresponds to the r in Eq. (1) on p. 23 that
equates PV with FV when m = 12.

1: x:=0;
2: d:=1+4y;
3: fori=nn—1,...,1do
4 z:=(x+ C;)/d;
5: end for
6: return x;
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The Idea Behind p. 25: Horner's Rule

e This idea is

Cn 1 1 1
Cot) 4O o) )y
( (<1+yJr n]>1+yJr n2>1+y+ )1+y

— Due to Horner (1786-1837) in 1819.

e It is the most efficient possible in terms of the absolute
number of arithmetic operations.

Internal Rate of Return (IRR)

e It is the interest rate which equates an investment’s PV
with its price P,
Cr Cy Cs Cn

Pty arr T arer T T ar e

e IRR assumes all cash flows are reinvested at the same
rate as the internal rate of return.

e The above formula is the foundation upon which pricing
methodologies are built.
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Numerical Methods for Yields

e Solve f(y) =0 for y > —1, where

n C,
f(y)EZm—P-

t=1

— P is the market price.

e Hence a unique solution exists.

e The function f(y) is monotonic in y if C; > 0 for all ¢.

J(x)
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dimensions.

the two simultaneous equations,

flz,y) =
g(z,y) =
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The Newton-Raphson Method
e Start with a first approximation zy to a root of
f(@)=o0.
e Then
Tp+1 = Ty f(xk)
+ p— - -
f'(zk)
e When computing yields,
n
tCy
i
T)=— —_—
f'(x) ; (1+ z)t+1
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Solving Systems of Nonlinear Equations

e The Newton-Raphson method can be extended to higher

e Let (zk,yr) be the kth approximation to the solution of

0,
0.
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Solving Systems of Nonlinear Equations (concluded)

e The (k + 1)st approximation (zg41,Yyk+1) satisfies the
following linear equations,

o] , o ,
f(f'g; Yk ) f(fy; Yi) ATy _ F(@r, yr)
o9(zk,yk)  O9(zp,yg) ’

Sz By Ayk-{—l g(mkayk)

where Azgi1 = g1 — 2 and Aygi1 = Yrp+1 — Yk-

e The above has a unique solution for (Azgi1, Ayki1)
when the 2 x 2 matrix is invertible.

o Set (Tr+1,Yk+1) = (T + AZp1, Yk + Aygt1)-

Pricing Formula

c F
D ey (e

n
i=1

1—(1+£)‘"+ F

m

e n: number of cash flows.

e m: number of payments per year.

e C = Fc/m when c is the annual coupon rate.

Price P can be computed in O(1) time.
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e r: annual rate compounded m times per annum.

Level-Coupon Bonds

e Coupon rate.

Par value, paid at maturity.

e F denotes the par value and C' denotes the coupon.

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 35

e Cash flow:
C+F
c c c T
A A 4 N
2 n
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Bond Price Volatility
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The Key Question: Price Volatility Macaulay Duration

e Volatility measures how bond prices respond to interest e The Macaulay duration (MD) is a weighted average of

rate changes. the times to an asset’s cash flows.
e It is key to the risk management of e The weights are the cash flows’ PVs divided by the
interest-rate-sensitive securities. asset’s price,
e Assume level-coupon bonds throughout. MD = l i iCs
TP (14y)
e Define price volatility as the sensitivity of the percentage = (1+y)
price change to changes in interest rates, e The Macaulay duration, in periods, is equal to
aP OP/P
5 MD = —(1+y) 2P1F @)
P 4
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Price Volatility of Bonds MD of Bonds
e The price volatility of a coupon bond is e The MD of a coupon bond is
(Cly)n—(Cly?) (A+y)" = (L+y) —nF v - 1 z”: ic_, nF )
C/y(L+y)tt—(A+y)+Fl+y) P | &= (14t Aty |

where F' is the par value, and C is the coupon payment ) )
e Can be simplified to

c(l1+y)[(1+y)" —1]+ny(y —c)
H table i tant time. MD = ;
[} ence computable 1 constan imme cy [ (1 + y)n _ 1] + y2

per period.

e For bonds without embedded options, where ¢ is the period coupon rate

apP
oy > 0. e The MD of a zero-coupon bond is its term to maturity

p n.
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Finesse

e Equations (2) on p. 39 and (3) on p. 40 hold only if the
coupon C, the par value F', and the maturity n are all
independent of the yield y.

e That is, if the cash flow is independent of yields.
e To see this point, suppose the market yield declines.
e The MD will be lengthened.

e For securities whose maturity actually decreases as a
result, the MD may actually decrease.

Modified Duration

e Modified duration is defined as

. ) OP/P MD
modified duration = — = . 4
Oy (1+y) )

e By Taylor expansion,
percent price change =~ —modified duration x yield change.

e Both MD and modified duration are easy to calculate.
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How Not To Think of MD

e The MD has its origin in measuring the length of time a
bond investment is outstanding.

e But you use it that way at your peril.

e The MD should be seen mainly as measuring price
volatility.

e Many, if not most, duration-related terminology cannot
be comprehended otherwise.

Effective Duration

e A general numerical formula for volatility is the effective
duration,
P_-P,

Po(yy —y-) )

P_ is the price if the yield is decreased by Ay.

P, is the price if the yield is increased by Ay.
— P, is the initial price, y is the initial yield.
— Ay is small.

e One can compute the effective duration of just about

any financial instrument.
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Effective Duration (concluded) Use of Convexity

e It is most useful where yield changes alter the cash flow e The approximation AP/P = — duration X yield change
or securities whose cash flow is so complex that simple works for small yield changes.

formulas are unavailable. e To improve upon it for larger yield changes, use

e An alternative is to use AP OP 1 10%P 1
~ 901 L 1 2
Py— Py P oy PV 3 gz pAY)

PO Ay . . 1 . 2
= —duration x Ay + 3 X convexity x (Ay)=.

e This is more economical but less accurate.
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Convexity Price
. 250+
e Convexity is defined as
o . 0?P 1 200},
convexity (in periods) = —— — (6)

=57 P
150+
e For a bond with positive convexity, the price rises more

for a rate decline than it falls for a rate increase of equal 100}

magnitude.
50F

e Hence, between two bonds with the same duration, the

one with a higher convexity is more valuable. 0. 02 0. 0a 0,06 0. 08
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Yield (%

Term Structure of Interest Rates

P NWDMOTON

Year
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Term Structure of Interest Rates

e How do interest rates change with maturity? Term Structure of Interest Rates (concluded)

e The set of yields to maturity for bonds forms the term e Term structure often refers exclusively to the yields of

zero-coupon bonds.

structure.
— The bonds must be of equal quality. e A yield curve plots yields to maturity against maturity.
— They differ solely in their terms to maturity. e A par yield curve is constructed from bonds trading
e The term structure is fundamental to the valuation of near par.
fixed-income securities.
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Spot Rates

The i-period spot rate S(i) is the yield to maturity of
an ¢-period zero-coupon bond.

e The PV of one dollar 7 periods from now is

[14S()]7"

The one-period spot rate is called the short rate.

A spot rate curve is a plot of spot rates against maturity.

Discount Factors

e In general, any riskless security having a cash flow
C1,Cs,...,C, should have a market price of

P= Xn: Cid(i).

— Above, d(i) = [1+S(i)] 7% i=1,2,... ,n, are called
discount factors.

— d(i) is the PV of one dollar ¢ periods from now.

e The discount factors are often interpolated to form a
continuous function called the discount function.
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Spot Rate Discount Methodology
e A level-coupon bond has the price

- C F
P:;[1+S(i)]i+[1+5(n)]"' @

e This pricing method incorporates information from the
term structure.

e Discount each cash flow at the corresponding spot rate.
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Extracting Spot Rates from Yield Curve
e Start with the short rate S(1).

— Note that short-term Treasuries are zero-coupon

bonds.

e Compute S(2) from the two-period coupon bond price
P by solving

C C + 100
P=1Tsm "irso
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Extracting Spot Rates from Yield Curve (continued)

e Inductively, we are given the market price P of the
n-period coupon bond and S(1),S5(2),...,S5(n—1).

e Then S(n) can be computed from Eq. (7), repeated
below,

R C F
=2 T s@T T FSmIT

i=1

e The total running time is O(n).
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Extracting Spot Rates from Yield Curve (concluded)

: S[1]:=(100/P[1]) — 1;
: p:= P[1]/100;
: fori=2,3,... ,ndo

Solve P[i] = C[i] x p+ (C[i] +100)/(1 + z)* for a;

pi=p+(1+z)%

1

2

3

4

5. S[i] = u;
6

7: end for

8

: return S[ |;
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Static Spread

e Consider a risky bond with the cash flow
C1,C5, ... ,C, and selling for P.

e Since riskiness must be compensated,

[}
—
=
@
w
t+
&
=
o
w
kol
=
el
©
Q.
-
t+
=
@
I
g8
O
e}
B
t+
®
w
c
o
=
t+
=
&
t+

Can be computed by the Newton-Raphson method.
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Fundamental Statistical Concepts
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The Normal Distribution

e A random variable X has the normal distribution with

mean g and variance o? if its probability density
lies, damn lies, and statistics. function is e*(w*u)2/(202)/(g o).

— Benjamin Disraeli (1804-1881)

There are three kinds of lies:

e This is expressed by X ~ N(u,0?).

One death is a tragedy, e The standard normal distribution has zero mean, unit
but a million deaths are a statistic. variance, and the distribution function
— Josef Stalin (1879-1953)

1 z
Prob[ X < z] = N(2) \/2_/ e /2 g
T J—00
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Moments
e The variance of a random variable X is defined as Generation of Univariate Normal Distributions
e Let X be uniformly distributed over (0,1] so that
Var[X]= E[(X — B[X])?]. Y (0,1]

Prob[X <z]=z for 0 <z <1.

e The covariance between random variables X and Y is e Repeatedly draw two samples z; and zg from X until

_ 2 2
Cov[X,Y]= E[(X — ux)(Y — puy)], w= (221 —1)" + (222 — 1)* < L.
Th 2z1 — 1 d c(2z0 — 1 ind dent
where px and py are the means of X and Y, * Then c(2z; ) an. o222 ) are independen
. standard normal variables where
respectively.
e Random variables X and Y are uncorrelated if c=v-2(nw)/w.
Cov[X,Y]=0.
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A Dirty Trick

The Lognormal Distribution
e Let &; are independent and uniformly distributed over

(0,1). e A random variable Y is said to have a lognormal

distribution if InY has a normal distribution.
e A simple method to generate the standard normal

2 — X
variable is to calculate e Let X ~ N(u,0%) and Y =e”.
12 e The mean and variance of Y are
Z 61 - 67 2 2 2
i=1 py = et /2 and ol =e2Hte (e" — 1) , (8
e Always blame your random number generator last; respectively.
instead, check your programs first.
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Generation of Bivariate Normal Distributions
e Pairs of normally distributed variables with correlation
p can be generated.
e Let X; and X3 be independent standard normal
variables.
e Then Option Basics

U = aXy,
V = pU++/1—p2aXs,

are the desired random variables with
Var[U] = Var[V] = a? and Cov[U,V] = pa®.
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Exercise

e When a call is exercised, the holder pays the strike price

) _ in exchange for the stock.
The shift toward options as

the center of gravity of finance |. . .] e When a put is exercised, the holder receives from the
— Merton H. Miller (1923-2000) writer the strike price in exchange for the stock.

e An option can be exercised prior to the expiration date:

early exercise.
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Calls and Puts _
American and European

A call gives its holder the right to buy a number of the
underlying asset by paying a strike price. e American options can be exercised at any time up to the

expiration date.

e A put gives its holder the right to sell a number of the
underlying asset for the strike price. e European options can only be exercised at expiration.

e An embedded option has to be traded along with the * An American option is worth at least as much as an
underlying asset. otherwise identical European option because of the early

exercise feature.

How to price options?
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Convenient Conventions

C': call value.

P: put value.

e X: strike price.

S': stock price.
D: dividend.
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Payoff
e The payoff of a call at expiration is C' = max(0,S5 — X).
e The payoff of a put at expiration is P = max(0, X — 5).

e At any time ¢ before the expiration date, we call
max(0, Sy — X) the intrinsic value of a call.

e At any time t before the expiration date, we call
max(0, X — S;) the intrinsic value of a put.

e Finding an option’s value at any time before expiration
is a major intellectual breakthrough.
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Payof f Payof f
Long a call Short a cal |
40 Price
20 40 60 80
30 -10
20 -20
10 -30
20 70 60 go rice  -a0
Payof f Payof f
Long a put v Short a put
50 Price
20 40 60 80
40 -10
30 -20
20 -30
10 -40
20 40 0 50 Price .50
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Call val ue Put val ue

80 85 90 95 100 105 110 11
Stock price

80 85 90 95 100 105 110 115

Stock price
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Arbitrage
Cash Dividends

e The no-arbitrage principle says there should be no free
e Exchange-traded stock options are not cash lunch.
dividend-protected.

e It supplies the argument for option pricing.
— The option contract is not adjusted for cash

dividends. e A riskless arbitrage opportunity is one that, without any

initial investment, generates nonnegative returns under

* The stock price falls by an amount roughly equal to the all circumstances and positive returns under some.

amount of the cash dividend as it goes ex-dividend.
e In an efficient market, such opportunities do not exist.
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Relative Option Prices

e These relations hold regardless of the probabilistic
model for stock prices.

e Assume, among other things, that there are no
transactions costs or margin requirements, borrowing
and lending are available at the riskless interest rate,

Arbitmge m OptZOTL P?"ZCZ’IZQ interest rates are nonnegative, and there are no

arbitrage opportunities.

e The put-call parity®:
C=P+S-PV(X).

2Castelli (1877).
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Option Pricing Models
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The Setting

e The no-arbitrage principle is insufficient to pin down the
exact option value without further assumptions on the
probabilistic behavior of stock prices.

e One major obstacle is that it seems a risk-adjusted
interest rate is needed to discount the option’s payoff.

e Breakthrough came in 1973 when Black (1938-1995)
and Scholes with help from Merton published their
celebrated option pricing model.

e Known as the Black-Scholes option pricing model.

Terms and Approach

C: call value.

P: put value.

X strike price

S': stock price

e 7 > 0: the continuously compounded riskless rate per
period.

e R =c¢e": gross return.

e Start from the discrete-time binomial model.
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Binomial Option Pricing Model (BOPM)
e Time is discrete and measured in periods.

e If the current stock price is S, it can go to Su with
probability ¢ and Sd with probability 1 — g, where
0<g<1 and d<u.

— In fact, d < R < u must hold to rule out arbitrage.
e Six pieces of information suffice to determine the option

value based on arbitrage considerations: S, u, d, X, 7,
and the number of periods to expiration.
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Su

q
S
g
Sd
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Call on a Non-Dividend-Paying Stock: Single Period
e The expiration date is only one period from now.

e (), is the price at time one if the stock price moves to

Su.
e (; is the price at time one if the stock price moves to
Sd.
o (learly,
C, = max(0,Su— X),
Cy = max(0,5d— X).
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C,= max( 0, Su— X)

q
C
Fq
Cy=max(0, Sd- X)
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Call Pricing in One Period

e Set up a portfolio of h shares of stock and B dollars in
riskless bonds.

— This costs hS + B.
— We call h the hedge ratio or delta.

e The value of this portfolio at time one is either
hSu+ RB or hSd+ RB.

e Choose h and B such that the portfolio replicates the
payoff of the call,
hSu+ RB = C,,
hSd+ RB = C(Cy.
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Call Pricing in One Period (concluded)

e Solve the above equations to obtain

Cy—Cyq

_— >

h Su—Sd_O’ )
uCyq — dC,

B = ——. 1
(u—d)R (10)

e By the no-arbitrage principle, the European call should
cost the same as the equivalent portfolio, C = hS + B.

e As uCy— dC, < 0, the equivalent portfolio is a levered
long position in stocks.
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American Call Pricing in One Period
e Have to consider immediate exercise.

e C =max(hS+ B,S — X).
— When AS + B > S — X, the call should not be
exercised immediately.

— When hS + B < S — X, the option should be

exercised immediately.

e For non-dividend-paying stocks, early exercise is not
optimal, so C = hS + B.

Put Pricing in One Period

Puts can be similarly priced.

P, = max(0,X — Su),
P; = max(0,X — Sd).

_ uPyg—dP,

The European put is worth hS + B.

e The American put is worth max(hS + B, X — 5).

e The delta for the put is (P, — Py)/(Su — Sd) < 0, where

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University
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Pseudo Probability

e After substitution and rearrangement,

Bd) c, + (2=£) ¢
- .

hS+ B = (

e Rewrite Eq. (11) as

hS + B =
+ R ,
where
:R—d
P="_a

e As 0 < p < 1, it may be interpreted as a probability.

(11)
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Risk-Neutral Probability

e The expected rate of return for the stock is equal to the

riskless rate 7 under g =p as pSu -+ (1 — p) Sd = RS. Option on a Non-Dividend-Paying Stock: Multi-Period

. . i 11 with i ini f
e Risk-neutral investors care only about expected returns. o Consider a call with two periods remaining before

expiration.
e The expected rates of return of all securities must be the

riskless rate when investors are risk-neutral e Under the binomial model, the stock can take on three

possible prices at time two: Suu, Sud, and Sdd.

e For this reason, p is called the risk-neutral probability. _ Note that the tree combines

e The value of an option is the expectation of its e At any node, the next two stock prices only depend on
discounted future payoff in a risk-neutral economy. . . L

the current price, not the prices of earlier times.
e So the rate used for discounting the FV is the riskless

rate in a risk-neutral economy.
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Binomial Distribution

Suu
e Denote the binomial distribution with parameters n
and p by Su
ny\ . n! . .
b(j;m, p) = ( ) pPA-p" =5 1-p)" 7.
j t(n—j) s Sud
—nl=nx(n-—1)---2x1 with the convention 0! = 1.
e Suppose you toss a coin n times with p being the Sd
probability of getting heads.
Sdd

e Then b(j;n,p) is the probability of getting j heads.
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Option on a Non-Dividend-Paying Stock: Multi-Period
(continued)

e Let Cy, be the call’s value at time two if the stock price

is Suu.

e Thus,
Cun = max(0, Suu — X).

e (g and Cyy can be calculated analogously,

Cua = max(0,Sud— X),
Cga = max(0,5dd — X).

Option on a Non-Dividend-Paying Stock: Multi-Period
(continued)

e The call values at time one can be obtained by applying

the same logic:

pCuu + (]- - p) Cud

[T ) 12
C R (12)
o pCud + (1 —p) Caq

d 7 )

e Deltas can be derived from Eq. (9) on p. 89.

e For example, the delta at C, is

(Cuu — Cug)/(Suu — Sud).
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Cyp= max( 0, Suu— X)

C Cyd = max( 0, Sud— X)

Cdd = max( 0, Sdd—- X)

Option on a Non-Dividend-Paying Stock: Multi-Period
(concluded)

e We now reach the current period.

e An equivalent portfolio of h shares of stock and $B
riskless bonds can be set up for the call that costs C,
(Cq, resp.) if the stock price goes to Su (Sd, resp.).

e The values of A and B can be derived from
Egs. (9)—(10) on p. 89.
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Early Exercise Backward Induction (continued)

e Since the call will not be exercised at time one even if it e In the n-period case,
1S Amerlcan, Cu Z Su — X and Cd Z Sd - X. o Z;LZO (Z,) pj(l _ p)n_j % max (0’ Sujdn_j _ X)
e Therefore, a R» '
hS+B — pPCu+ (1—p)Ca _ [put (1-p)d]S—X — The value of a call on a non-dividend-paying stock is
x R B R the expected discounted payoff at expiration in a

= S- 7 >S5 - X. risk-neutral economy.

e So the call again will not be exercised at present, and e The value of a European put is
C=hs+p=PClut-P0C P >0 () P'(1 = p)* 7 x max (0, X — Su/d"~7)

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 101 ©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 103

Backward Induction (Zermelo)

The above expression calculates C' from the two

Risk-Neutral Pricing Methodology

successor nodes C, and C; and none beyond.
e Every derivative can be priced as if the economy were

The same computation happens at C,, and Cgy, too, as

demonstrated in Eq. (12) on p. 99. risk-neutral.

e This recursive procedure is called backward induction. * Tor a. Europ(?an—style .derlvatlve with the terminal payoff
function D, its value is
e Now, C equals R
e ""E™[D].
?Cuu +2p(1 — p) Cua + (1 — p)*Cuad] (1/R?
[pQC +2p( 2p) a+ (L=p) Cad(1/F") — E™ means the expectation is taken under the
= [p"- max (0, Su” — X) + 2p(1 — p) - max (0, Sud — X) risk-neutral probability.
+(1 - p)* - max (0,5d* — X)](1/R?).
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The Binomial Option Pricing Formula

e Let a be the minimum number of upward price moves

for the call to finish in the money.

e So a is the smallest nonnegative integer such that
Su*d"~* > X, or

o Fn(X/Sd")" |

In(u/d)
e Hence,
o Si ()P (Swa - X)
©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 105

Numerical Examples
e A non-dividend-paying stock is selling for $160.
e y=1.5 and d=0.5.

r = 18.232% per period.

e Consider a European call on this stock with X = 150
and n = 3.

The call value is $85.069 by backward induction.

Also the PV of the expected payoff at expiration,

390 x 0.343 + 30 x 0.441
(1.2)

= 85.069.

Binomial process for the stock price Binomial process for the call price
(probabilities in parentheses) (hedge ratios in parentheses)
540 390
/(0343) /
360 235
(0.49) / (1.0
240 180 141.458 30
0.7) \ (0.441) (0.90625)\
160 120 85.069 17.5
/ (0.42) (0.82031) / (0.25)
80 60 10.208 0
(0.3) \ (0.189) (0.21875),
\
40 0
(0409)\ (0.0) \
20 0
(0.027)
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Numerical Examples (continued)
e Mispricing leads to arbitrage profits.

Suppose the option is selling for $90 instead.

e Sell the call for $90 and invest $85.069 in the replicating
portfolio with 0.82031 shares of stock required by delta.

Borrow 0.82031 x 160 — 85.069 = 46.1806 dollars.

e The fund that remains, 90 — 85.069 = 4.931 dollars, is
the arbitrage profit as we will see.
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Numerical Examples (continued)
Numerical Examples (continued) Time 3 (the case of rising price):
Time 1: e The stock price moves to $180.

e Suppose the stock price moves to $240. e The call we wrote finishes in the money.
e The new delta is 0.90625. e For a loss of 180 — 150 = 30 dollars, close out the
e Buy 0.90625 — 0.82031 = 0.08594 more shares at the position by either buying back the call or buying a share

cost of 0.08594 x 240 = 20.6256 dollars financed by of stock for delivery.

borrowing. e Financing this loss with borrowing brings the total debt
e Debt now totals 20.6256 + 46.1806 x 1.2 = 76.04232 to 12.5x 1.2+ 30 =45 dollars.

dollars. e It is repaid by selling the 0.25 shares of stock for

0.25 x 180 = 45 dollars.
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Numerical Examples (continued) Numerical Examples (concluded)

Ti 2:
e Time 3 (the case of declining price):

Suppose the stock price plunges to $120.

e The stock price moves to $60.

* The new delta is 0.25. e The call we wrote is worthless.
* Sell 0.90625 —0.25 = 0.65625 shares for an income of e Sell the 0.25 shares of stock for a total of 0.25 x 60 = 15
0.65625 x 120 = 78.75 dollars.
dollars.
e Use this income to reduce the debt to

e Use it to repay the debt of 12.5 x 12 = 15 dollars.
76.04232 x 1.2 — 78.75 = 12.5 dollars.
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Binomial Tree Algorithms for European Options Toward the Black-Scholes Formula

The BOPM implies the binomial tree algorithm that

' e As the number of periods, n, increases, the stock price
applies backward induction.

ranges over ever larger numbers of possible values, and

e The total running time is O(n?). trading takes place nearly continuously.
e The memory requirement is O(n). e A proper calibration of the model parameters makes the
e To price European puts, simply replace the payoff. BOPM converge to the continuous-time model.
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Toward the Black-Scholes Formula (continued)

max(0,Su* — X) ) o .
e Let 7 denote the time to expiration of the option

measured in years.

. e Let r be the continuously compounded annual rate.
max(O,Su‘d - X)

e Pick
Yy Yoy 1 1
u:ea T/n’ d:e—a T/n’ q:§+_ﬁ\/z

max(0,Sud® — X) 20V n
e Other choices are possible (see text).

e The risk-neutral probability may lie outside [0,1].

max(0,Sd’ — X)
e The problems disappear when n > r%7/0?.
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Toward the Black-Scholes Formula (continued)

e As

n — 00,

In S, approaches the normal distribution with mean

put +1nS and variance o?7.

e S, has a lognormal distribution in the limit.

BOPM and Black-Scholes Model

e The Black-Scholes formula needs five parameters: S, X,

o, T,and r.

e Binomial tree algorithms take six inputs: S, X, u, d, 7,

and n.
e The connections are

w=e V" d=e V" i =rr/n.

e The binomial tree algorithms converge reasonably fast.

e Oscillations can be eliminated by the judicious choices of
u and d (see text).
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Toward the Black-Scholes Formula (concluded)
Theorem 1 (The Black-Scholes Formula)
C = SN(z)—Xe ""N(z—o7),
P = Xe ""N(—z+o0T)— SN(—z),
where
In(S/X)+ (r+0%/2) 7
z = .
o\/T
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Implied Volatility
e Volatility is the sole parameter not directly observable.

e The Black-Scholes formula can be used to compute the
market’s opinion of the volatility.

— Solve for ¢ given the option price, S, X, 7, and r
with numerical methods.

— How about American options?
e This volatility is called the implied volatility.

e Implied volatility is often preferred to historical
volatility in practice.

Options on a Stock That Pays Dividends
e Early exercise must be considered.

e Proportional dividend payout model is tractable (see
text).
— The dividend amount is a constant proportion of the
prevailing stock price.

e In general, the corporate dividend policy is a complex

issue.
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Binomial Tree Algorithms for American Puts
e Early exercise has to be considered.

e The binomial tree algorithm starts with the terminal
payoffs max(0, X — Su/d"~7) and applies backward

induction.

e At cach intermediate node, it checks for early exercise
by comparing the payoff if exercised with continuation.
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Continuous Dividend Yields

e Dividends are Paid continuously.

— Approximates a broad-based stock market portfolio.

e The payment of a continuous dividend yield at rate ¢
reduces the growth rate of the stock price by g.
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Continuous Dividend Yields (continued)

e The Black-Scholes formulas hold with S replaced by

Se—a7:2
C=8e UN(z)— Xe ""N(zx —ay/7), (13)
P=Xe ""N(—x+ 0\/T) — Se" " N(—x), ] .
(1)) FEzxtensions of Options Theory
where
In(S/X)+ (r—q+0%/2) 7
T = .
o\T
aMerton (1973).
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Continuous Dividend Yields (concluded) Barrier Options

Thei ff hether th derlyi t’
e To run binomial tree algorithms, pick the risk-neutral eir payoff depends on whether the underlying asset’s

probability as price reaches a certain price level H.
or—a) At _ g e A knock-out option is an ordinary European option
(14) which ceases to exist if the barrier H is reached by the

price of its underlying asset.

u—d

where At =17/n.

e A call knock-out option is sometimes called a

e The u and d remain unchanged. down-and-out option if H < S

e Other than the change in Eq. (14), binomial tree

A put knock-out option is sometimes called an

algorithms stay the same. up-and-out option when H > S.
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Barrier Options (concluded)

A knock-in option comes into existence if a certain

barrier is reached.

A down-and-in option is a call knock-in option that

comes into existence only when the barrier is reached
and H < S.

An up-and-in is a put knock-in option that comes into
existence only when the barrier is reached and H > S.

Formulas exist for all kinds of barrier options.
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Binomial Tree Algorithms

e Barrier options can be priced by binomial tree
algorithms.

e Below is for the down-and-out option.

S=8 X=6 H=4, R=125,u=2, and d = 0.5.
Backward induction: C = (0.5 x C,, + 0.5 x Cyq)/1.25.
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Binomial Tree Algorithms (concluded)

e But convergence is erratic because H is not at a price
level on the tree (see plot on next page).

— Typically, the barrier has to be adjusted to be at a
price level.

e Hence the algorithms are useless in practice.

e Solutions will be presented later.
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Path-Dependent Derivatives

e Let Sg,S1,...,S, denote the prices of the underlying
asset over the life of the option.

e S; is the known price at time zero.
e S, is the price at expiration.

e The standard European call has a terminal value
depending only on the last price, max(S, — X, 0).

e Its value thus depends only on the underlying asset’s
terminal price regardless of how it gets there.
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Path-Dependent Derivatives (continued)

e In contrast, some derivatives are path-dependent in that
their terminal payoffs depend “critically” on the paths.

e The (arithmetic) average-rate call has a terminal value
given by

1 n
max (n—i—l;Si_X’0>'

e The average-rate put’s terminal value is given by

1 n
max (X— n—i—lZSiﬁ)'
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Path-Dependent Derivatives (concluded)
e Average-rate options are also called Asian options.

e They are useful hedging tools for firms that will make a
stream of purchases over a time period.

— The costs are likely to be linked to the average price.

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 136



Average-Rate Options
e Average-rate options are notoriously hard to price.

e The binomial tree for the averages does not combine (see
p. 138).

e A straightforward algorithm is to enumerate the 2"
price paths for an n-period binomial tree and then
average the payoffs.

e But the exponential complexity makes it impractical.

e As a result, the Monte Carlo method and approximation
algorithms are some of the alternatives left.
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C, =maxBS7D +S‘;+S”” —X,OE

s
o= ma LSy g

O 3
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Approximation Algorithm for Asian Options
e Based on the BOPM.

e Consider a node at time j with the underlying asset
price equal to Spu? ~id.

e Name such a node N(j,1).

e The running sum anzo Sm at this node has a

maximum value of

J
So(l+u+u?+ - +ud ol d4 - +ud 7 dY)
1 it 1q
= Sou? *d .
5o 1—wu + oo 1—-d
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Approximation Algorithm for Asian Options
(continued)

Divide this value by j + 1 and call it Amax(J,7)-

e Similarly, the running sum has a minimum value of
J.
So(l+d+d>+ - +d +du+-- +du™
1— dit?t R Yy
=8y —— div ——
So g toedu Ty

Divide this value by 7+ 1 and call it Anyin(4,7).

Apin and Apax are running averages.
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Path with maximum
running average

Path with minimum
running average
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Approximation Algorithm for Asian Options
(continued)

e The possible running averages at N(j,i) are far too
many: (Z)
e But all lie between Apnin(4,7) and Apnax(4, 7).

e Pick k41 equally spaced values in this range and treat
them as the true and only running averages:

k—m

Anm(jii) = (T) Amin(3,8) + () Amax(5:)

for m=0,1,... k.

Approximation Algorithm for Asian Options
(continued)

e Such “bucketing” introduces some errors.

e Backward induction calculates the option values at each
node for these k£ 4+ 1 running averages.

e Suppose the current node is N(j,¢) and the running
average is a.

e Assume the next node is N(j + 1,3), after an up move.

e As the asset price there is Sou?T17!d?, we seek the
option value corresponding to the running average
(j+1)a+ Souw it

A, =
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Approximation Algorithm for Asian Options
(continued)

e But A, is not likely to be one of the k + 1 running
averages at N(j + 1,7)!

e Find the running averages that bracket it, that is,
A[(j + 1,i) <A, < A[+1(j + 1,i).

e Express A, as a linearly interpolated value of the two

running averages,

Ay =z +1,0) + (1 —a) Apr(+ 1,4), 0<z<1.
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Approximation Algorithm for Asian Options
(continued)

e Obtain the approximate option value given the running
average A, via

Co=2Ce(j+1,4) + (1 — ) Coy1(5 + 1,1).

— Cy(t,s) denotes the option value at node N(t,s)
with running average Ay(t,s).

e This interpolation introduces the second source of error.

Approximation Algorithm for Asian Options
(concluded)

e The same steps are repeated for the down node
N(j+1,i+ 1) to obtain another approximate option
value Cy.

e Finally obtain the option value as
(pCu + (1 —p) Ca)e "2
e The running time is O(kn?).

— There are O(n?) nodes.

— Each node has O(k) buckets.
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A Numerical Example

e Counsider a European arithmetic average-rate call with
strike price 50.

e Assume zero interest rate in order to dispense with
discounting.

e The minimum running average at node A in the figure
on p. 149 is 48.925.

e The maximum running average at node A in the same
figure is 51.149.
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o3.447 A Numerical Example (continued)
50.056 | 0.056
51.206 | 1.206 . .
R e Because the stock price at node B is 53.447, the new
98506 3506 running average will be
B
3 % 49.666 + 53.447
50 ~ 50.612.
48.925 | 0.0269 4
49.666 | 0.2956
22-‘1‘22 gz;*lf , e With 50.612 lying between 50.056 and 51.206 at node B,
A 5 46.775 we solve
) 46.827 | 0.000
- 47.903 | 0.000 50.612 = z x 50.056 + (1 — z) x 51.206
g;é-ggg 48,979 | 0.000
—o. 50.056 | 0.056 .
p=0483 c to obtain z =~ 0.517.
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A Numerical Example (continued) A Numerical Example (continued)

e The option value corresponding to running average
51.206 at node B is 1.206.

e Each node picks k£ =3 for 4 equally spaced running

averages.

e The same calculations are done for node A’s successor e The option value corresponding to running average

nodes B and C. 50.056 at node B is 0.056.
e Suppose node A is 2 periods from the root node. e Their contribution to the option value corresponding to
running average 49.666 at node A is weighted linearly as
e Consider the up move from node A with running

average 49.666. x x 0.056 + (1 — ) x 1.206 ~ 0.611.
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A Numerical Example (continued)

e Now consider the down move from node A with running
average 49.666.
e Because the stock price at node C is 46.775, the new
running average will be
3 x 49.666 + 46.775 .
1 ~ 48.944. Hedging

e With 48.944 lying between 47.903 and 48.979 at node C,
we solve

48.944 = x x 47.903 + (1 — z) x 48.979

to obtain = ~ 0.033.
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A Numerical Example (concluded)

e The option values corresponding to running averages

47.903 and 48.979 at node C are both 0.0. Delta Hedge
e Their contribution to the option value corresponding to e The delta (hedge ratio) of a derivative f is defined as
running average 49.666 at node A is 0.0. A =0f/88.
e Finally, the option value corresponding to running e Thus Af~ A x AS for relatively small changes in the
average 49.666 at node A equals stock price, AS.
p x 0.611+ (1 —p) x 0.0 ~ 0.2956, e A delta-neutral portfolio is hedged as it is immunized

where p = 0.483. against small changes in the stock price.

e The remaining three option values at node A can be
computed similarly.
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Delta Hedge (concluded) Implementing Delta Hedge (concluded)

e At next rebalancing point when the delta is A’ buy
N x (A’ — A) shares to maintain N x A’ shares with a
total borrowing of B’ = N x A’ x 8’ — N x f'.

e A trading strategy that dynamically maintains a
delta-neutral portfolio is called delta hedge.

Delta ch ith the stock price.
e Delta changes wi e stock price e Delta hedge is the discrete-time analog of the

e A delta hedge needs to be rebalanced periodically in continuous-time limit.

order to maintain delta neutrality. It will v be self.f )
e It will rarely be self-financing.
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The Setup
A hedger is short 10,000 European calls.

Implementing Delta Hedge

e We want to hedge N short derivatives. o 0. =30%; r = 6%.

This call’s expiration is four weeks away, its strike price
is $50, and each call has a current value of f = 1.76791.

e Assume the stock pays no dividends.

e The delta-neutral portfolio maintains N x A shares of

stock plus B borrowed dollars such that As an option covers 100 shares of stock, N = 1,000,000.

Nxf+NxAxS—B=0. e The trader adjusts the portfolio weekly.

The calls are replicated well if the cumulative cost of
trading stock is close to the call premium’s FV.
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Example Example (continued)

e As A =0.538560, N x A = 538,560 shares are
purchased for a total cost of 538,560 x 50 = 26,928,000
dollars to make the portfolio delta-neutral.

e The magnitude of the tracking error—the variation in
the net portfolio value—can be mitigated if adjustments
are made more frequently.

* The trader finances the purchase by borrowing e In fact, the tracking error is positive about 68% of the

B=NxAxS8—N x f=25,160,090 time even though its expected value is essentially zero.?

dollars net. e It is furthermore proportional to vega.

a
e The portfolio has zero net value now. Boyle and Emanuel (1980).
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Example (continued)

At 3 weeks to expiration, the stock price rises to $51.

Example (continued)
The new call value is f' = 2.10580.

e In practice tracking errors will cease to decrease beyond

So the portfolio is worth a certain rebalancing frequency.

—N x f' + 538,560 x 51 — Be®06/52 = 171 622 e With a higher delta A’ = 0.640355, the trader buys

N x (A" — A) =101,795 shares for $5,191,545.

before rebalancing.
e The number of shares is increased to N x A’ = 640, 355.

Delta hedge does not replicate the calls perfectly; it is

not self-financing as $171,622 can be withdrawn.
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Example (continued)

e The cumulative cost is
26,928,000 x €*0%/52 + 5,191,545 = 32,150,634.
e The net borrowed amount is
B’ =640,355 x 51 — N x f' = 30,552,305.
— Alternatively, the number could be arrived at via
Be®%/5% 1 5191 545 + 171,622 = 30,552,305.

e The portfolio is again delta-neutral with zero value.

Example (concluded)

At expiration, the trader has 1,000,000 shares.

$50,000,000.

e The trader is left with an obligation of
51,524,853 — 50,000,000 = 1,524,853,

which represents the replication cost.

Compared with the FV of the call premium,
1,767,910 x €-0>4/52 — 1 776 088,

the net gain is 1,776,088 — 1,524,853 = 251,235.

They are exercised against by the in-the-money calls for
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Option Change in No. shares Cost of Cumulative
value Delta delta bought shares cost
T S f A N x(5) (1) x(6) FV(8)+(7)
[6)) 2 3) (5) (6) @) (®)
4 50 1.7679 0.53856 — 538,560 26,928,000 26,928,000
3 51 2.1058 0.64036 0.10180 101,795 5,191,545 32,150,634
2 53 3.3509 0.85578 0.21542 215,425 11,417,525 43,605,277
1 52 2.2427 0.83983 —0.01595 —15,955 —829,660 42,825,960
0 54 4.0000 1.00000 0.16017 160,175 8,649,450 51,524,853

The total number of shares is 1,000,000 at expiration
(trading takes place at expiration, too).
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I love a tree more than a man.
— Ludwig van Beethoven (1770-1827)

Pu_» Su
Pm

Sd

At
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Trinomial Tree

e The three stock prices at time At are S, Su, and Sd,
where ud =1 (see next page).

o Let
M — e'r‘At
V o= M2 A1),
e Then
 u(V+M?P—M) - (M—1)
Pu = (w—1) (2 1) ’
_ uR(V4+M?—M) —ud(M—1)
ba = (w—_1) (u2 1)
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Trinomial Tree (concluded)

e Use u= e)‘”m, where A > 1 is a tunable parameter.
e Then
. 1 N (r+0%) VAL
Pu 272 2\o ’
Lo (r —20%) VAt
ba 222 2hc

e A nice choice for A\ is y/7/2.
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Barrier Options Revisited

e BOPM introduces a specification error by replacing the

barrier with a nonidentical effective barrier.

e The trinomial model solves the problem by adjusting A
so that the barrier is hit exactly.?

e It takes

_ In(S/H)
AoV At

consecutive down moves to go from S to H if h is an

h

integer, which is easy to achieve by adjusting A.

aRitchken (1995).
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Barrier Options Revisited (concluded)

e The following probabilities may be used,

Pu = 92t o
1
Pm = ]-_ﬁa
_ 1 pVAt
Pd 22 2o
-y =r—o?/2

Barrier Options Revisited (continued)

e Typically, we find the smallest A > 1 such that A is an
integer, that is,
1 H
= ma In(S/H) )
J=1,2,3,... _]0' V At
— Such a A may not exist for very small n’s.

e This done, one of the layers of the trinomial tree
coincides with the barrier.
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5.64

5.63
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Down-and-in call value

50 100 150
#Per i ods

200
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ARCH? and GARCH Models

e An influential model in this direction is the
autoregressive conditional heteroskedastic (ARCH)
model.

Time Series Analysz's e A very popular extension of the ARCH model is the
generalized autoregressive conditional heteroskedastic
(GARCH) process.

2Engle (1982), co-winner of the 2003 Nobel Prize in Economic Sci-

ences.
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ARCH and GARCH Models (continued)

Conditional Variance Models for Price Volatility e The simplest GARCH(1, 1) process is

e For many models, past information thus has no effect on V2 X 9 V2
the variance of prediction. = a0 +ay(Xeor — p)” +axV .

— The Black-Scholes model is one example. e The volatility at time t as estimated at time ¢t — 1
e To address this drawback, consider models for returns dOpCl:l(.iS on t}'lo squared return and the estimated
consistent with a changing conditional variance have volatility at time ¢ — 1.
been proposed. e The estimate of volatility averages past squared returns

by giving heavier weights to recent squared returns.
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GARCH Option Pricing (continued)

ARCH and GARCH Models (concluded) e Adopt the following risk-neutral process for the price
dynamics (Duan, 1995):
e It is usually assumed that a; +as <1 and ag > 0, in

2
which case the unconditional, long-run variance is given In St41 — h_t + hy€rst (15)
)
by ao/(1 — a1 — ag). St 2
. . h
e A popular special case of GARCH(1,1) is the where
exponentially weighted moving average process, which ht2 1 = Bo+5b hf + B h?(ﬁt 41—0)?, (16)
sets ap to zero and ap to 1-—a. etr1 ~ N(0,1) given information at date ¢,
e This model is used in J.P. Morgan’s RiskMetrics™., r = dai]y riskless return,
c > 0.
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GARCH Option Pricing (concluded)

GARCH Option Pricing e With y; =InS; denoting the logarithmic price, the

e Options can be priced when the underlying asset’s model becomes

2

return follows a GARCH process. h
P Ytt1 =Y +7 — ?t + hi€gqa. (17)
e Let S; denote the asset price at date t.

e The pair , h?) completely describes the current state.
e Let h? be the conditional variance of the return over pair (e, hu) perey

the period [t,t+ 1] given the information at date t. e The conditional mean and variance of y;,1 are
— “One day” is merely a convenient term for any h2
E 21 = -t 1
elapsed time At. [Yer1]ye hi Yok (18)
Var[yt_H | Yt, h?] = hf (19)
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The Ritchken-Trevor (RT) Algorithm® The Ritchken-Trevor Algorithm (continued)

e The GARCH model is a continuous-state model. It remains to pick the jump size and the three branching

probabilities.
e To approximate it, we turn to trees with discrete states.

e Define v = hg (other multiples of hy are possible).
e Path dependence in GARCH makes the tree for asset
. . e Define
prices explode exponentially. N
i . : : : Tn ==
e We need to mitigate this combinatorial explosion Vvn
somewhat. e The jump size will be some integer multiple 1 of .

aRitchken and Trevor (1999).

We call 7 the jump parameter (see p. 188).
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The Ritchken-Trevor Algorithm (continued)
e Partition a day into n periods.

e Three states follow each state (y;,h2) after a period.

e As the trinomial model combines, 2n + 1 states at date
t + 1 follow each state at date ¢ (recall p. 171).

e These 2n + 1 values must approximate the probability
distribution of (yiy1,h? 1).

e So the conditional moments (18)—(19) at date ¢+ 1 on

p- 184 must be matched by the trinomial model to H 1 day >
The seven values on the right approximate the distribution

guarantee convergence to the continuous-state model.
of logarithmic price y;41.
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The Ritchken-Trevor Algorithm (continued)

e The middle branch does not change the underlying
asset’s price.

e The probabilities for the up, middle, and down branches

are
h? r— (h2/2
Du 2t 5 t/ ) , (20)
202y 2yv/n
L (21)
Pm = 5 9
n?y?
h? r—(h2/2
207y 2myvn
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The Ritchken-Trevor Algorithm (continued)

e We can dispense with the intermediate nodes between
dates to create a (2n + 1)-nomial tree (see p. 191).

e The resulting model is multinomial with 2n 41
branches from any state (i, h?).
e There are two reasons behind this manipulation.

— Interdate nodes are created merely to approximate
the continuous-state model after one day.

— Keeping the interdate nodes results in a tree that is
n times as large.
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IUWn

— 1lday——~
This heptanomial tree is the outcome of the trinomial tree
on p. 188 after its intermediate nodes are removed.
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The Ritchken-Trevor Algorithm (continued)

e A node with logarithmic price y; + ¢ny, at date ¢+ 1
follows the current node at date ¢t with price y; for
some —n < {<n.

e The probability that this happens is

n! S
P(l) = Z ﬁpfj‘pinmp,jf,
JusJm,Jd ]u]m]d

with juajmajd Z 07 n= ]u +.7m +jda and £ = ]u _jd-

e They can be computed in O(n?) time.
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The Ritchken-Trevor Algorithm (continued)

e The updating rule (16) on p. 183 must be modified to
account for the adoption of the discrete-state model. The Ritchken-Trevor Algorithm (Continued)

e The logarithmic price y; + €ny, at date t +1 following e Obviously, the magnitude of 7 tends to grow with h;.

state (s, hZ) at date t has a variance equal to ) .
e The plot on p. 196 uses n =1 to illustrate our points

hiy1 = Bo+ Bihi + Bahi (e, — ©)?, (23) for a 3-day model.
— Above, e For example, node (1,1) of date 1 and node (2,3) of
date 2 pick n = 2.
Iy, — (r —h2/2
€, =1 (;;t /2 g0 4142 in,

is a discrete random variable with 2n + 1 values.
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The Ritchken-Trevor Algorithm (continued)

e Different conditional variances h? may require different
7 so that the probabilities calculated by Egs. (20)—(22)
on p. 189 lie between 0 and 1.

e This implies varying jump sizes.

e The necessary requirement p,, > 0 implies 1 > h;/7.

e Hence we try

n= [ht/'7-|’ [ht/?/w +1, [ht/’7—| +2,...

until valid probabilities are obtained or until their

nonexistence is confirmed.
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The Ritchken-Trevor Algorithm (continued)

e The topology of the tree is not a standard combining
multinomial tree.

e For example, a few nodes on p. 196 such as nodes (2,0)
and (2,—1) have multiple jump sizes.
e The reason is the path dependence of the model.

— Two paths can reach node (2,0) from the root node,
each with a different variance for the node.

— One of the variances results in n = 1, whereas the
other results in n = 2.
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The Ritchken-Trevor Algorithm (concluded)

e The possible values of h? at a node are exponential
nature.

e To address this problem, we record only the maximum

and minimum h? at each node.?

e Therefore, each node on the tree contains only two
states (y¢, h2,,.) and (ys h2,.).

max min

e Each of (y;,h2,.) and (y;, h?

ax 2 in) carries its own 7 and

set of 2n + 1 branching probabilities.

aCakici and Topyan (2000).

Negative Aspects of the Ritchken-Trevor Algorithm?®
e A small n may yield inaccurate option prices.

e But the tree will grow exponentially if n is large enough.

— Specifically, n > (1 — 31)/B2 when r = ¢ = 0.

A large n has another serious problem: The tree cannot
grow beyond a certain date.

Thus the choice of n may be limited in practice.

e The RT algorithm can be modified to be free of
exponential complexity and shortened maturity.P

2Lyuu and Wu (2003).
bLyuu and Wu (2003).
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Numerical Examples
e So =100; yo = In So = 4.60517; r = 0; h2 = 0.0001096;
v = ho = 0.010469; n = 1; vy, = v/+/n = 0.010469;
Bo = 0.000006575; B, = 0.9; B2 = 0.04; ¢ = 0.
— A daily variance of 0.0001096 corresponds to an
annual volatility of /365 x 0.0001096 ~ 20%.

e Let h%(i,§) denote the variance at node (3, 7).

e Initially, A%(0,0) = h2 = 0.0001096.

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 198

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 200




Numerical Examples (continued)

e Let A2, (4,7) denote the maximum variance at node A top (bottom) number inside a gray box refers to the
(i, 5). minimum (maximum, respectively) variance hZ. (hZ,.,
Let h2. (i, /) denote the mini . ¢ nod respectively) for the node. Variances are multiplied by

o Let A2, (i enote the minimum variance at node . o
(i.9) min\?:J 100,000 for readability. A top (bottom) number inside a

i,7)- . .
] white box refers to n corresponding to hZ; (h2,.,
e Initially, A2 (0,0) = k2, (0,0) = hZ. respectively).
e The resulting 3-day tree is depicted on p. 202.
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yt - -
sesre2 Numerical Examples (continued)
464705 e Let us see how the numbers are calculated.
463655 \12.2883}2 e Start with the root node, node (0,0).
12.2883| 2
. } } } e Try n =1 in Eqgs. (20)-(22) on p. 189 first to obtain
10.9645] 2 10.5256] 1 101305 = 4974
461564 10.9645] 2 ‘10.5697} 1 ; ; i13,4644 } Pu 0.4974,
0.01047 — 0
{ [109600[ 1 Wl&u&‘ 1 09.7717] | Pm = )
460517 [109600[ 1 |105215[ 1 10,9603 2 106042 |
N - o
109553 1 105173] 1 101231] |
450470 109553 1 [122700] 2 117005 |
oo AN 1%1&5&‘ | e As they are valid probabilities, the three branches from
(tossu] 1 2ze | the root node use single jumps.
457376 =
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Numerical Examples (continued)

Move on to node (1,1).

e It has one predecessor node—node (0,0)—and it takes
an up move to reach the current node.

So apply updating rule (23) on p. 193 with £ =1 and
h? = h%(0,0).

The result is A2%(1,1) = 0.000109645.
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Numerical Examples (continued)

e Carry out similar calculations for node (1,0) with
¢ =0 in updating rule (23) on p. 193.

e Carry out similar calculations for node (1,—1) with
¢ = —1 in updating rule (23).

e Single jump 7 = 1 works in both nodes.
e The resulting variances are

R%(1,0) = 0.000105215,
R%(1,—1) = 0.000109553.

Numerical Examples (continued)

e Because | h(1,1)/y] =2, we try n =2 in
Eqgs. (20)—(22) on p. 189 first to obtain

pe = 0.1237,
pm = 0.7499,
ps = 0.1264.

e As they are valid probabilities, the three branches from
node (1,1) use double jumps.
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Numerical Examples (continued)

e Node (2,0) has 2 predecessor nodes, (1,0) and (1,-1).

e Both have to be considered in deriving the variances.
e Let us start with node (1,0).

e Because it takes a middle move to reach the current

node, we apply updating rule (23) on p. 193 with £ =0

and h? = h?(1,0).
e The result is h7,; = 0.000101269.

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 208



Numerical Examples (continued)

e Now move on to the other predecessor node (1,—1).

Because it takes an up move to reach the current node,
apply updating rule (23) on p. 193 with £ =1 and
h? = h2(1,-1).

The result is h7,; = 0.000109603.

Numerical Examples (continued)

e Now consider state h?

min

(2,0).

e Because | Amin(2,0)/7 | =1, we first try n =1 in
Egs. (20)—(22) on p. 189 to obtain

pu = 0.4596,
pm = 0.0760,
pa = 0.4644.

e As they are valid probabilities, the three branches from
node (2,0) with the minimum variance use single jumps.

e We hence record
hZ..(2,0) = 0.000101269,
R?..(2,0) = 0.000109603.
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Numerical Examples (continued)

e Consider state hfnax

(2,0) first.

e Because | Amax(2,0)/v | =2, we first try =2 in
Egs. (20)—(22) on p. 189 to obtain

pe = 0.1237,
pm = 0.7500,
ps = 0.1263.

e As they are valid probabilities, the three branches from
node (2,0) with the maximum variance use double
jumps.

Numerical Examples (continued)

Node (2,—1) has 3 predecessor nodes.

Start with node (1,1).

Because it takes a down move to reach the current node,

we apply updating rule (23) on p. 193 with £ = —1 and
h? = R%(1,1).

e The result is h7,; = 0.0001227.

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 210

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 212



Numerical Examples (continued)

e Consider state hZ, (2, —1).

Numerical Examples (continued) e Because | hmax(2,—1)/7 | = 2, we first try =2 in

e Now move on to predecessor node (1,0). Egs. (20)-(22) on p. 189 to obtain
e Because it also takes a down move to reach the current p. = 0.1385,
node, we apply updating rule (23) on p. 193 with pm = 0.7201,

¢=—1 and h? = h%(1,0). pg = 0.1414.

e The result is hf, ; = 0.000105609.
e As they are valid probabilities, the three branches from

node (2,—1) with the maximum variance use double
jumps.
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Numerical Examples (continued) Numerical Examples (continued)

. 2 _
e Finally, consider predecessor node (1,—1). ® Next, consider state fi,, (2, —1).
e Because | Amin(2,—1)/7]| =1, we first try n =1 in

Egs. (20)—(22) on p. 189 to obtain

e Because it takes a middle move to reach the current
node, we apply updating rule (23) on p. 193 with £=10

and h? = h2(1,-1). Py = 04773,
e The result is h7 ; = 0.000105173. pm = 0.0404,
e We hence record pqa = 0.4823.
RZ..(2,—1) = 0.000105173, e As they are valid probabilities, the three branches from
R2. (2,—1) = 0.0001227. node (2,—1) with the minimum variance use single
jumps.
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Numerical Examples (concluded)

25000
e Other nodes at dates 2 and 3 can be handled similarly. 20000
e In general, if a node has k predecessor nodes, then 2k 15000
variances will be calculated using the updating rule.
10000
— This is because each predecessor node keeps two
variance numbers. 5000
e But only the maximum and minimum variances will be 25 5<(') 75100 125 150 175 Dat e
kept.

Dotted line: n = 3; dashed line: n = 4; solid line: n = 5.
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Negative Aspects of the RT Algorithm Revisited®

Backward Induction on the RT Tree
e Recall the problems mentioned on p. 199.

e After the RT tree is constructed, it can be used to price
e In our case, combinatorial explosion occurs when

1-— 1-0.9
> b = = 2.5. e Recall that each node keeps two variances h
Ba 0.04 B2

min*

options by backward induction.

2

ax and

n

e Suppose we are willing to accept the exponential
bp & P P e We now increase that number to K equally spaced

and k2. at each node.

min

running time and pick n = 100 to seek accuracy. . 9
variances between hZ ..

e But the problem of shortened maturity forces the tree to

e Besides the minimum and maximum variances, the other
stop at date 9!

K — 2 variances in between are linearly interpolated.

2Lyuu and Wu (2003).
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Backward Induction on the RT Tree (continued)

e For example, if K = 3, then a variance of
10.5436 x 10~% will be added between the maximum
and minimum variances at node (2,0) on p. 202.

e In general, the kth variance at node (Z,j) is

hrznax(iaj) - h12nm(7”-7)
K-1 ’

hilln(laj)+k
k=01,...,K—1.

e Each interpolated variance’s jump parameter and
branching probabilities can be computed as before.

Introduction to Term Structure Modeling
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Backward Induction on the RT Tree (concluded)

e During backward induction, if a variance falls between
two of the K wvariances, linear interpolation of the
option prices corresponding to the two bracketing

e The above ideas are reminiscent of the ones on p. 142,
where we dealt with arithmetic average-rate options.
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variances will be used as the approximate option price.

The fox often ran to the hole

by which they had come in,

to find out if his body was still thin enough
to slip through it.

— Grimm’s Fairy Tales
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Outline
e Use the binomial interest rate tree to model stochastic
term structure.
— Illustrates the basic ideas underlying future models.
— Applications are generic in that pricing and hedging
methodologies can be easily adapted to other models.
e Although the idea is similar to the earlier one used in
option pricing, the current task is more complicated.

— The evolution of an entire term structure, not just a
single stock price, is to be modeled.

— Interest rates of various maturities cannot evolve

arbitrarily or arbitrage profits may occur.

Binomial Interest Rate Tree

e Goal is to construct a no-arbitrage interest rate tree
consistent with the yields and/or yield volatilities of
zero-coupon bonds of all maturities.

— This procedure is called calibration.

e Pick a binomial tree model in which the logarithm of the
future short rate obeys the binomial distribution.
— Exactly like the CRR tree.

e The limiting distribution of the short rate at any future

time is hence lognormal.
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Issues

e A stochastic interest rate model performs two tasks.

— Provides a stochastic process that defines future term
structures without arbitrage profits.

— “Consistent” with the observed term structures.

Binomial Interest Rate Tree (continued)
e A binomial tree of future short rates is constructed.

e Every short rate is followed by two short rates in the
following period (see next page).

e In the figure on p. 229 node A coincides with the start of
period j during which the short rate r is in effect.
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Binomial Interest Rate Tree (continued)

e We shall require that the paths combine as the binomial
process unfolds.

e The short rate r can go to r, and r, with equal
risk-neutral probability 1/2 in a period of length At.

e Hence the volatility of Inr after At time is
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Binomial Interest Rate Tree (continued)

e At the conclusion of period j, a new short rate goes into
effect for period j + 1.

e This may take one of two possible values:
— ry: the “low” short-rate outcome at node B.
— 7: the “high” short-rate outcome at node C.

e Each branch has a fifty percent chance of occurring in a

risk-neutral economy.

1 1 Th
c=-——=1In{—].
2 VAL T
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Binomial Interest Rate Tree (continued)

e Note that
T_h — 620\/E‘
Ty
e Thus greater volatility, hence uncertainty, leads to larger
rn/re and wider ranges of possible short rates.

e The ratio r,/r¢ may depend on time if the volatility is a
function of time.

e Note that r,/7, has nothing to do with the current
short rate r if o is independent of r.
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Binomial Interest Rate Tree (concluded)

e In general there are j possible rates in period j,

ri, iU, 702 Pl T
30 13530 T35 e TV
where
v; = e2oiVAt (24)

is the multiplicative ratio for the rates in period j (see
figure on next page).

e We shall call r; the baseline rates.

e The subscript j in o is meant to emphasize that the
short rate volatility may be time dependent.

Set Things in Motion
e The abstract process is now in place.

e Now need the annualized rates of return associated with
the various riskless bonds that make up the benchmark
yield curve and their volatilities.

— In the U.S., the on-the-run yield curve obtained by
the most recently issued Treasury securities may be
used as the benchmark curve.

e The binomial tree should be consistent with both term
structures.

e Here we focus on the term structure of interest rates.

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 233

Baseline rates
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Model Term Structures
e The model price is computed by backward induction.
e Refer back to the figure on p. 229.

e Given that the values at nodes B and C are Pg and Pc,
respectively, the value at node A is then

Pg + P¢

m + cash flow at node A.

e We compute the values column by column without
explicitly expanding the binomial interest rate tree.

e This takes quadratic time and linear space.
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Cash flows:

Issues in Calibration

e The model prices generated by the binomial interest rate

tree should match the observed market prices.

e Treat the backward induction for the model price of the

m-period zero-coupon bond as computing some function
of the unknown baseline rate r,, called f(r.,,).

e A root-finding method is applied to solve f(r,,) = P for
rm given the zero’s price P and 71,79,...,"m—1-

e This procedure is carried out for m =1,2,... ,n.

e Runs in cubic time, hopelessly slow.
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Sample Term Structure

e We shall construct interest rate trees consistent with the
sample term structure in the following table.

e Assume the short rate volatility is such that
v = rn/r¢ = 1.5, independent of time.

Period 1 2 3

Spot rate (%) 4 4.2 4.3
One-period forward rate (%) 4 4.4 4.5
Discount factor 0.96154 0.92101 0.88135

Binomial Interest Rate Tree Calibration

e (Calibration can be accomplished in quadratic time by
the use of forward induction (Jamshidian, 1991).

e The scheme records how much $1 at a node contributes
to the model price.

e This number is called the state price.
— It stands for the price of a claim that pays $1 at that

particular node (state) and 0 elsewhere.

e The column of state prices will be established by moving
forward from time 1 to time n.
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Binomial Interest Rate Tree Calibration (continued)

e Suppose we are at time j and there are j 4+ 1 nodes.
— The baseline rate for period j is 7 = r;.
— The multiplicative ratio be v = v;.
— P, P, ..., P; are the state prices a period prior,
corresponding to rates 7, rv,...  rvi L
e By definition, Zle P; is the price of the (j — 1)-period
zero-coupon bond.

Binomial Interest Rate Tree Calibration (continued)

e Given a decreasing market discount function, a unique
positive solution for r is guaranteed.

e The state prices at time j can now be calculated (see
figure (a) next page).

e We call a tree with these state prices a binomial state
price tree (see figure (b) next page).

e The calibrated tree is depicted in on p. 245.
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Binomial Interest Rate Tree Calibration (continued)

e One dollar at time j has a known market value of
1/[1+ S(4) )7, where S(j) is the j-period spot rate.
e Alternatively, this dollar has a present value of
Py P, P P;

g(r) = (1+r)+(1+7“v)+(1+rv2)+”'+m'

e So we solve

Mﬂz[ . (25)

1+ 5())

for r.
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0.112832
2895% o
s KP0232197
4.00% O 0480769 0333501
I 0.460505
70480769 0.327842
Implied forward rates: 0.107173
4.0% 4.4% 4.5%
[ >la >ia [ 4]
period 1 period 2 period 3
(a) (b)
©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 244



KD 2895%

@ os14%

A Numerical Example

e One dollar at the end of the second period should have a
present value of 0.92101 by the sample term structure.

e The baseline rate for the second period, ro, satisfies

0.480769 0.480769

= 0.92101.
14 17rs + 1+1.5x%xry

e The result is r» = 3.526%.

e This is used to derive the next column of state prices
shown in figure (b) on p. 244 as 0.232197, 0.460505, and
0.228308.

e Their sum gives the market discount factor 0.92101.

Implied forward rates: 4.0% 4.4% 4.5%
< >ia >ie >
period 1 period 2 period 3
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Binomial Interest Rate Tree Calibration (concluded)

e The Newton-Raphson method can be used to solve for
the r in Eq. (25) on p. 242 as ¢'(r) is easy to evaluate.

e The above idea is straightforward to implement.
e The total running time is O(n?).

e With a good initial guess, the Newton-Raphson method
converges in only a few steps.?

aLyuu (1999).
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A Numerical Example (concluded)

e The baseline rate for the third period, r3, satisfies

0.232197 0.460505 0.228308

+ + = 0.88135.
1+4+7; 14+1.5xrs 1+(1.5)2X7‘3
e The result is 73 = 2.895%.
e Now,
1 1 1 1 1 1 1 1
— X —— x| x ( + )+ x ( + e
4 1.04 1.03526 1.02895 1.04343 1.05289 1.04343 1.06514

which equals 0.88135, an exact match.

e The tree on p. 245 prices without bias the benchmark

securities.

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 246

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 248



Spread of Nonbenchmark Bonds _
XD, 2.895%+s
e Model prices calculated by the calibrated tree as a rule e
do not match market prices of nonbenchmark bonds.
. . Iy 4 .00%+s

e The incremental return over the benchmark bonds is "o,
called spread.

e We look for the spread that, when added uniformly over N c .|4%+s

the short rates in the tree, makes the model price equal

the market price. Implied forward rates: 4.0% 4.4% 4.5%
period 1 period 2 period 3
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Spread of Nonbenchmark Bonds (continued)

e We illustrate the idea with an example.

r f Nonbenchmark Bon ntin
e Start with the tree on p. 251. Spread of Nonbenchma onds (CO t ued)

e We will employ the Newton-Raphson root-finding

e Consider a security with cash flow C; at time ¢ for
Y method to solve p(s) — P =0 for s.

i=1,2,3.
e Its model price is p(s), which is equal to e But a quick look at the equation above reveals that

) evaluating p’(s) directly is infeasible.

1 1 1 C3 C3
X |Cl+ —-—x — x |Cqa + — + +
1.04 + s 1.03526 + s 2 \ 1.02895 + s 1.04343 + s

2

1 1 (c * 1 ( o * = ))]

VL S ! . . . .

2" 1.05289 + s 2T 2 \1.043a3 45 1.06514+ s and p'(s) during backward induction.

e Fortunately, the tree can be used to evaluate both p(s)

e Given a market price of P, the spread is the s that
solves P = p(s).

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 250 ©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 252



Spread of Nonbenchmark Bonds (continued)

e Consider an arbitrary node A in the tree associated with
the short rate 7.

e In the process of computing the model price p(s), a
price pa(s) is computed at A.

e Prices computed at A’s two successor nodes B and C are
discounted by r + s to obtain pa(s) as follows,

pB(8) + pc(s)
2(14+r+s)

)

pa(s) =c+

where ¢ denotes the cash flow at A.
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Spread of Nonbenchmark Bonds (continued)

e To compute p',(s) as well, node A calculates

Ph(s) = pp(s) +pc(s)  pB(s) +pc(s) (26)

2(1+7+s) 2(1+7r+s)?"

e This is easy if pi(s) and pi(s) are also computed at
nodes B and C.

e Apply the above procedure inductively to yield p(s) and
p'(s) at the root (see p. 255).

e This is called the differential tree method.?
2Lyuu (1999).
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e C l/(1+cvz+x)

(a)

N Ps(8)+ pe(s)
pals)=ct 2(1+r+s)
r
p(s) = Pe($)+ pe(s) _ pp(s)+ pe(s)

2(1+r+s)  2(4r+s)
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Spread of Nonbenchmark Bonds (continued)
e The total running time is O(n?).
e The memory requirement is O(n).
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Spread of Nonbenchmark Bonds (continued)

Number of Running Number of Number of Running Number of
partitions n time (s) iterations partitions time (s) iterations
500 7.850 5 10500 3503.410 5
1500 71.650 5 11500 4169.570 5
2500 198.770 5 12500 4912.680 5
3500 387.460 5 13500 5714.440 5
4500 641.400 5 14500 6589.360 5
5500 951.800 5 15500 7548.760 5
6500 1327.900 5 16500 8502.950 5
7500 1761.110 5 17500 9523.900 5
8500 2269.750 5 18500 10617.370 5
9500 2834.170 S5 e e e

75MHz Sun SPARCstation 20.

105

3 395%
... 106.552

#4.026%

105
""4.843%
. -...105.150
S 789%
"..103.436 ) 105
A ""7.014%
.. 103.118
' 105

Cash flows: 5 5 105
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Spread of Nonbenchmark Bonds (concluded)

e Consider a three-year, 5% bond with a market price of
100.569.

e Assume the bond pays annual interest.

e The spread can be shown to be 50 basis points over the
tree (see p. 259).

e Note that the idea of spread does not assume parallel
shifts in the term structure.

Fixed-Income Options

Consider a two-year 99 European call on the three-year,
5% Treasury.

Assume the Treasury pays annual interest.

From p. 261 the three-year Treasury’s price minus the $5
interest could be $102.046, $100.630, or $98.579 two

years from now.

Since these prices do not include the accrued interest,
we should compare the strike price against them.

The call is therefore in the money in the first two
scenarios, with values of $3.046 and $1.630, and out of
the money in the third scenario.
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Q 105 Q 105
. 2:895% . 2:895%
G 102.046 @ 102046
L 3:526% 3046 3:536% 0000
e 102.716 Q 105 G 102.716 Q 105
L400% 2288 4343y La00 000 4
| 101.955 9. 100.630 . 101.955 9. 100.630
1:458 .5:389% 1:630 0:096 .5:389% 0:000
. 99.350 @ s . 99.350 @ s
74 6514% 0:200 . 6:514%
. 98579 . 98.579
0:000 0:421
Q 105 Q 105
(@) (b)
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security.

Fixed-Income Options (concluded)

e The option value is calculated to be $1.458 on p. 261(a).
e European interest rate puts can be valued similarly.

e Consider a two-year 99 European put on the same

e At expiration, the put is in the money only if the
Treasury is worth $98.579 without the accrued interest.

e The option value is computed to be $0.096 on p. 261(b).

Finas
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