Two Algorithms for Maximum
and Minimum Weighted
Bipartite Matching

Advisor: Prof. Yuh-Dauh Lyuu
Hung-Pin Shih

Department of Computer Science and Information Engineering
National Taiwan University

Abstract

This thesis applies two algorithms to the maximum and minimum weighted
bipartite matching problems. In such matching problems, the maximization
and minimization problems are essentially same in that one can be trans-
formed into the other by replacing the weight on each edge with an inverse
of the weight. Depending on the algorithms we used, we will choose the maxi-
mization or minimization problems for illustrations. We apply the ant colony
optimization (ACO) algorithm on a minimum weighted bipartite matching
problem by transforming the problem to a traveling salesman problem (TSP).
It may seem that makes the problem more complicated, but in reality it does
not. We call this algorithm “ant-matching,” which can solve any weighted
bipartite matching problems with or without a perfect matching. Besides, we
also apply the Metropolis algorithm to solve the maximum weighted bipartite
matching problem. To analyze the performance on these two algorithms, we
compare the algorithms with the exact Hungarian algorithm, a well-known
combinatorial optimization method for solving the weighted bipartite match-
ing problem.

Keywords: Metropolis algorithm, Ant colony optimization, Maximum
weighted bipartite matching, Minimum weighted bipartite matching

Contents

1 Introduction

2 Preliminaries
2.1 Maximum/Minimum Weighted Bipartite Matching
2.1.1 Weighted Bipartite Graph
2.1.2 Maximum/Minimum Weighted Bipartite Matching
2.2 Ant Colony Optimization
2.3 Metropolis Algorithm

3 Maximum/Minimum Weighted Bipartite Matching Prob-
lems
3.1 ACO Algorithm for Minimum-Weighted Bipartite Matching .
3.1.1 Transforming Minimum-Weighted Bipartite Matching
to Traveling Salesman Problem
3.1.2 Using ACO Algorithm to Solve Minimum-Weighted Bi-
partite Matching
3.1.3 The Complexity of Ant-Matching Algorithm
3.2 Metropolis Algorithm for Maximum-Weighted Bipartite
Matching
3.2.1 The Complexity of Metropolis Algorithm

4 Experimental Results
4.1 Comparison of Complexity
4.2 Graph Sampling Algorithm
4.3 Results.
4.3.1 Results on Complete Bipartite Graphs
4.3.2 Results on Sparse Bipartite Graphs
4.3.3 Results on Ant-Matching Algorithm
4.3.4 Results on Metropolis Algorithm

5 Conclusions

List of Figures

3.1

4.1

4.2

4.3

4.4

4.5

4.6

Transforming a bipartite matching problem to a TSP: (1) The
original bipartite graph G. (2) Add u} and its corresponding
edges. (3) The final graph G’.

The running time of each algorithm on the complete bipartite
graph. L
The running time of each algorithm on the bipartite graph
where each vertex w; € U has at most 2% * |V| edges.
The running time of each algorithm on the bipartite graph
where each vertex u; € U has at most 5 edges.
The running times of the ant-matching algorithm on each dif-
ferent bipartite graph.o
The weights found by the ant-matching algorithm as propor-
tions to the weights of the optimal solution on each different
bipartite graph.
The weight found by the Metropolis algorithm as proportions
to the weights of the optimal solution on each different bipar-
tite graph. L Lo

24

List of Tables

4.1
4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13

Comparison of complexity
The weights as proportions to the weights of the optimal so-
lution on the complete bipartite graph.
The weights as proportions to the weights of the optimal so-
lution on the bipartite graph where each vertex u; € U has at
most 2% x |V] edges. L
The weights as proportions to the weight of the optimal solu-
tion on the bipartite graph where each vertex u; € U has at
most bedges.
Results on each algorithm for complete bipartite graphs.
Results on each algorithm for the bipartite graphs where each
vertex has at most 50% * |V edges.
Results on each algorithm for the bipartite graphs where each
vertex has at most 25% * |V| edges.
Results on each algorithm for the bipartite graphs where each
vertex has at most 10% * |V] edges.
Results on each algorithm for the bipartite graphs where each
vertex has at most 5% * |V] edges..
Results on each algorithm for the bipartite graphs where each
vertex has at most 2% * |V] edges..
Results on each algorithm for the bipartite graphs where each
vertex has at most S5 edges.
Results on each algorithm for the bipartite graphs where each
vertex has at most 10 edges.
Results on each algorithm for the bipartite graphs where each
vertex has at most 20 edges.

19

Chapter 1

Introduction

The maximum/minimum weighted bipartite matching problem is a combina-
torial optimization problem, and there exist many optimization algorithms
to solve the matching problem. But here we try some heuristic or sam-
pling methods and expect them to generate reasonable sub-optimal solutions
within reasonable time bounds. Specifically we use the ant colony opti-
mization (ACO) and the Metropolis algorithm. In the ACO algorithm, we
transform this matching problem to a traveling salesman problem (TSP)
and use the concepts of ACO algorithm as a basis for a new method to solve
the matching problem. We call the new method “ant-matching.” In the
Metropolis algorithm, we randomly select a matching edge in each iteration
to generate an approximate solution. Then we compare the performances
of these two algorithms with the exact Hungarian algorithm [2], which is a
optimization algorithm used to solve the weighted matching problems.

The structure of this thesis is organized as follows: In Chapter 1 and
Chapter 2, we define the problem of maximum/minimum weighted bipar-
tite matching and introduce the background of the two above-mentioned
algorithms. In Chapter 3, we transform the weighted bipartite matching
problem to a traveling salesman problem (TSP) and apply the concepts of
ant colony optimization (ACO) algorithm as a basis for a new matching al-
gorithm called “ant-matching.” In the latter part of Chapter 3, we apply
the Metropolis algorithm to solve the maximum weighted bipartite matching
problem. Finally, Chapter 4 compares these algorithms with other methods
in solving the weighted matching problems, and we conclude in Chapter 5.

Chapter 2

Preliminaries

2.1 Maximum/Minimum Weighted Bipartite
Matching

2.1.1 Weighted Bipartite Graph

A bipartite graph G = (U,V, E) is a graph whose vertices can be divided
into two disjoint sets U and V' such that each edge (u;,v;) € E connects a
vertex u; € U and one v; € V. If each edge in graph G has an associated
weight w;;, the graph G is called a weighted bipartite graph.

2.1.2 Maximum/Minimum Weighted Bipartite
Matching

In a bipartite graph G = (U, V, E), a matching M of graph G is a subset
of E such that no two edges in M share a common vertex. If the graph
G is a weighted bipartite graph, the maximum/minimum weighted bipartite
matching is a matching whose sum of the weights of the edges is maxi-
mum/minimum. The maximum/minimum weighted bipartite matching can
be formulated as follows:

max / min E Wi;Tij

(ui,vj)EE
U]
> ay=1Y=1,[V|
=1
\4

Y wy=1Vi=1 .U
j=1

5

ry; € {0, 1}

where z;; is 1 denotes edge (u;,v;) is an edge in the maximum/minimum
weighted bipartite matching.

2.2 Ant Colony Optimization

In the real world, ants are social insects and communicate with some inter-
esting behavior. Each ant lays down pheromone on the path. When ants
find foods, they will go back to its nest. If some other ants encounter the
path, they will follow it based on the density of pheromone deposited. The
pheromone on the path that ants found initially will be reinforcing. Eventu-
ally, ants will find the foods.

Over time, the pheromone on the path evaporates, thus reducing its at-
tracting strength. The longer path an ant travels down and back, the more
time the pheromone has to evaporate. On a shorter path, an ant travels
down the path and back faster, and the pheromone density remains high
as the pheromone is laid on as fast as it can evaporate. Assume the ant
colony converges to a path. If a shorter path is found by some ants, because
the path is shorter than the original path that the ant colony converged to,
the ants travel down the path and back faster. The density of pheromone
on the shorter path will increase gradually and the density on the original
path will decrease. After a period of time, the ant colony will converge to
the shorter path. It will prevent the ant colony from converging to a local
optimal solution.

The ant colony optimization (ACO) algorithm comes from observing the
behavior of the ants. It simulates the ants and the pheromone evaporation on
the paths. In each iteration, the ants select the paths according to the density
of pheromone deposited. If the path has higher density, it will be selected
with higher probability. After finding a path, the ants lay down pheromone
on the path. In the ACO algorithm, each path represents a solution. Besides,
the pheromone evaporates gradually. The ACO algorithm is illustrated in
Algorithm 1.

Algorithm 1 ACO Algorithm for TSP
while termination condition not met do
generate solutions
pheromone update
end while

The ACO algorithm has been used in solving the traveling salesman prob-
lem (TSP) to find a nearly optimal solution [4]. In the TSP problem, there
are n cities. Each city has to be visited exactly once, and the tour ends
at the starting city. The problem is to find a shortest tour to visit these n
cities. Let d;; be the distance between the city ¢ and the city j and 7;; be
the pheromone on the edge connects 7 and j.

Each of the m ants decides independently on the city to be visited next.
They base their decision on the density of pheromone 7;; and a heuristic
function 7;;. The probability of choosing the next city j from current city ¢
at the tth iteration is

it [73(1)] (n3)” vk
bij = VjeN; (2.1)
T Yienplma ()] (ni)?
where n;; = % is a commonly used heuristic function, a and 3 are two
ij

parameters to determine the relative influences of the pheromone and the
distance, and NF is a list of cities that the kth ant has yet to visit.

After all ants have constructed their complete tours, we update the
pheromone on each edge thus:

m

Tt +1) = (1= p)(t) + > Ark(t) (22)

k=1

where 0 < p < 1 is the pheromone evaporation rate, ATZ-]; (t) is the pheromone
that the kth ant deposited at the tth iteration, which is defined as follows:

k L/LF(t) if(i,5) € Tk(t)
Ary(t) = { 0 i) & T (2:3)

where L*(t) is the length of the kth ant’s tour at the tth iteration, T*(t) is the
kth ant’s tour at the tth iteration. The shorter the tour the ants found, the
more pheromone is deposited. After a number of iterations, the ant colony
will converge to a nearly shortest tour. Finally, select any starting city and
follow the edge with the highest density of pheromone to visit as the next
city. After completing the tour, the tour is a solution of the TSP problem.

2.3 Metropolis Algorithm

The Metropolis algorithm is an algorithm to generate a sequence of samples
from a probability distribution that is hard to sample directly. It uses the
Markov chain Monte Carlo simulation to approximate the distribution [1].

7

The Metropolis algorithm can generate samples from any unknown proba-
bility distribution P(x) and requires only a function proportional to the den-
sity of P(x) that can be calculated at x. The algorithm generates a Markov
chain in which each state z'*! depends only on the previous state x!. Let
Q(z", 2’) denotes the candidate-generating density, where [Q(z!,z")dz’ = 1.
The algorithm depends on the current state z* to generate a new sample z’
from Q(z!,-)!. The sample 2’ is accepted as the next state '™ if o € U(0, 1)
satisfies Eq. (2.4):

a < (2.4)

If o satisfies Eq. (2.4), /7' = 2/. Otherwise, the current state z' is retained,
i.e., 2/t = 2!, The algorithm is illustrated in Algorithm 2.

Algorithm 2 Metropolis Algorithm
fort=1,2,.... N do
sample 2’ from Q(z',-) and « from U(0,1) {U(0, 1) is the uniform dis-
tribution on(0, 1)}

if o < pEIEL) then

P —
else
P — ot
end if
end for

return {z(M 2@ M)

'Lyuu: but if you do not know what Q is how can you generate x’?7??
Hung-Pin: We don’t know @ at first. But we can observe the possible transitions between
the current state and the next state to find a possible Q. The possible () may be correct
or wrong, but it will describe the transitions. This is reasonable, if we don’t know the
probability distribution P(z), we observe the transitions between the current state and
the next state and infer a possible (). We can use (Q to sample the other next states and
find the unknown probability distribution P(z).

Chapter 3

Maximum /Minimum Weighted
Bipartite Matching Problems

In a weighted bipartite graph G = (U,V,E), we want to find a maxi-
mum /minimum weighted bipartite matching (maximum/minimum-weighted
BM) whose sum of the weights of the edges is maximum/minimum. To solve
this matching problem, we present two methods. For illustrations, we will
introduce each method on a different matching problem. Specifically we ap-
ply the ACO algorithm to solve the minimum-weighted BM problems and
the Metropolis algorithm to solve the maximum-weighted BM problems.

3.1 ACO Algorithm for Minimum-Weighted
Bipartite Matching

In a weighted bipartite graph G = (U,V, E), we want to find a matching
whose sum of the weights of the edges is minimum. Here we apply the
concepts of ACO algorithm as a basis for a new method to solve the matching
problem. First, we transform the matching problem to a TSP problem. It
may seem that makes the matching problem more complicated, but in reality
it does not. Second, we apply the ACO algorithm on the TSP problem
and perform some simplifications to be explained later on solving the TSP
problem. The result is a new method for solving the minimum-weighted
BM problem. In this chapter, the TSP refers to the problem of finding a
minimum weighted complete tour on the complete graph with multiple edges
between vertices, and the number of edges between vertices will change as
the different tour selection.

iy vy

w4

Ul Vg =l U3 Vo —

Uz Vs
iy Ua

Figure 3.1: Transforming a bipartite matching problem to a TSP: (1) The
original bipartite graph G. (2) Add «) and its corresponding edges. (3) The
final graph G'.

3.1.1 Transforming Minimum-Weighted Bipartite
Matching to Traveling Salesman Problem

In a weighted bipartite graph G = (U, V, E), we choose either U or V as the
base vertices and transform the minimum-weighted BM problem to a TSP
problem. We choose the vertices set U as our base vertices for illustrations.
First, for each uw; € U, we create a corresponding virtual vertex u, € U’,
where U’ is the set of vertices correspond to U and |U’| = |U|. Then, for
each (u;,v;) € E where u; € U,v; € V, we create a corresponding back edge
(uj,v;) € E' with an associated weight 0, where E’ contains the edges we
create. Furthermore, we create another back edge (u;, u}) € E’ with a large
associated weight wy,... Here we define this large associated weight wy,.x as
20 * maxX;e|y| jev| Wi;- Finally, for each virtual vertex u; € U’, we create the
edges (u;, ux) € E' to connect each vertex ug € U, uy # u;, with an associated
weight w;, = 0. Thus, we have a new graph G' = (U, V, E,U’, E'). The above
steps are illustrated in Algorithm 3 and Figure 3.1. In Figure 3.1, each back
edge (u},v;) € E' is in green and (u;,u;) € E' is in red. Besides, the edges
(u}, ug) connect each vertex w to all the other vertices in U are in grey.

In the new graph G’ = (U,V, E,U’, E’), on each base vertex u; € U, we
define that if we choose the edge (u;,v;) € E, then we will follow the edge
(vj,u;) € E' back to vertex w) € U’. Thus, for each base vertex u; € U, there
are some paths u; —v; —u} where (u;,v;) € E and (v, ;) € E', and the path

10

Algorithm 3 Transform Graph G to G’
Input: Weighted bipartite graph G = (U, V, E)
and each edge (u;,v;) € E has a weight w;;.

E' =10
for u; € U do
create vertex u, € U’
for (u;,v;) € E do
add back edge (u},v;) to E' with weight 0
end for
add back edge (u;, u}) to E' with weight wyyax
for u;, € U do
add edge (ul,ur) to E' with weight 0
end for
end for
return graph G' = {U,V, E,U’, E'}

u; —u; where (u;,u;) € E'. So there exist a edge from wu; to its corresponding
virtual vertex u; € U’. Furthermore, each virtual vertex u} is connected to
all the other base vertices u, € U. Thus, if we start from any base vertex
u; € U on the graph G’, we can visit each base vertex in U exactly once and
end at w; (a Hamiltonian cycle). If we want to find a matching M in the
bipartite graph G, we can find it with a Hamiltonian cycle in the graph G’
as follows.

Let Avail;(V) C V be the vertex set adjacent to the vertex u; € U such
that for each vertex v; € Avail;(V), each edge (u;,v;) € E is not yet an
matching edge in the matching M. On each vertex u; € U, the ant may
select? the edge (u;,v;) € E followed by (v;,u;) € E' where v; € Avail,(V),
or select the edge (u;, u}) € E'. If the ant select the edge (u;, v;) € E followed
by (v;,u}) € E', we add a new matching edge (u;,v;) to M. If the ant select
the edge (u;,u;) € E’, we do not change M. After visiting all the base vertex
u; € U exactly once, we will find the matching M.

Lyuu: what do you mean by select? what if both are possible, which one do you
select?
Hung-Pin: We choose edge based on the pheromone. It will be explained later. Here we
just explain the reduction.

2Lyuu: this is strange. if you are only describing a reduction, why bring up ”select”?
Also if you use "select”, it is better to write ”the ant may select”?
Hung-Pin: I replace reduction with transformation. Moreover, because there are multi-
paths between u; and u}, the different selection has different means in the matching M. I
use the ”select” to explain the differences and the relations between the matching problem
and the TSP problem.

11

Thus, if we find a tour to visit each base vertex u; € U exactly once
and then return to the starting base vertex, and the total weight of this
tour is minimum, we have a minimum weighted bipartite matching M on
the weighted bipartite graph GG. Now, we have successfully transformed the
minimum-weighted BM problem to the TSP problem.

3.1.2 Using ACO Algorithm to Solve Minimum-
Weighted Bipartite Matching

After transforming the weighted bipartite graph G = (U,V, E) to a new
graph G’ = (U,V,E,U’,E'), we can use the ACO algorithm to solve the
TSP problem on G’ and find the solutions of the original matching problem.
But here we can perform some simplifications on solving the TSP problem.
In the graph G’, the algorithm needs to visit all vertices in the set U and
corresponding set U’ of U to do matching. With the simplification, because
we define that if the ant select the base vertex u; € U, then the ant will follow
the paths u; — v; —] or the path w; — u} back to the vertex u}, we can see
U and U’ same because if the algorithm visits the base vertex u; € U, it will
visit its corresponding virtual vertex u; € U’ next.® Therefore, the algorithm
can just visit each u; € U and select a matching edge (u;,v;) € E. It will
help this method more efficient and applicable for the minimum-weighted
BM problems. We call this new method “ant-matching.”

In the ACO algorithm, the ants choose the next vertex independently
based their decision on the density of pheromone and a heuristic function.
In the ant-matching algorithm, the ants choose the next vertex based on the
same mechanisms. In each iteration ¢, the ants choose the next base vertex
u; € Avail*(U)(t) based on the density of pheromone 7, (t) as Eq. (3.1),
where Avail®(U)(t) is the set of available base vertices that the kth ant has
yet to visit at the tth iteration and wu,;) € U is the predecessor of the vertex
u;. Let NF(t) C V be the set of the kth ant’s available adjacent vertices of
u; at the tth iteration. If |[NF(¢)| > 0, each of the m ants chooses one vertex
v; € NF(t) to do matching based on the density of pheromone 7;;(t) and
a heuristic function 7;;(t) as Eq. (2.1), then adds the weight w;; to LF(t),
where L*(t) is the length of the kth ant’s tour in iteration t. Otherwise, the

3Lyuu: I do not think this is true, as we discussed last Thursday. You want it to be
true, but it may not be true for a general TSP solver. you need to say YOUR TSP solver
will impose this condition
Hung-Pin: I add a sentence before this sentence to explain the condition. Besides, at
the end of the section 3.1, I redefine the TSP problem in the transformation. It is not a
general TSP. It likes a related TSP problem which generalized TSP deals with ”states”.
Thus, I redefine the TSP problem.

12

ant does nothing but adds a large associated weight wya, to LF(t). After
each of m ants visiting all the vertices in the set U, update the pheromone
on each edge and start the next iteration. The pheromone deposited on each
edge (u;,ux) € E' represents an order relation such that if one ant chooses
the vertex u;, it will choose the vertex u; next time. And a large amount of
pheromone on the edge (u;, v;) represents that the edge (u;,v;) is a preferred
matching edge. Thus, we have the order relations to do matching on the
vertex set U and the preferred matching edges on each vertex u; € U. We
can find the solutions of the matching problems according to the density of
pheromone. The algorithm is listed in Algorithm 4, and Algorithm 5 is the
detail.

i [T ()] , o
Prtii = Vi € Avail®(U) (¢ 31
P Y o mon @1 (U)() (3.1)

Algorithm 4 Ant-Matching Algorithm
for t =1 to t,.x do
for k£ =1 to NumberOfAnts do
choose u; € Avail”(U)(t) based on T, ()
choose vertex v; € NF(t) based on 7;;(t) and n;;(t)
end for
update pheromone
end for

3.1.3 The Complexity of Ant-Matching Algorithm

In the ant-matching algorithm, each ant visits each vertex u; in the vertex
set U and searchs each edge adjacent to u; exactly once. Thus, generating
a solution costs O(U + E). Moreover, it costs O(U? + E) to update the
density of pheromone on each edge (u;, uy) where u;, uy € U and on each edge
(ui,v;) € E. If there are m ants and t,ax iterations. The total complexity of
the ant-matching algorithm is O (tyax(m(U + E) + U? + E)).

3.2 Metropolis Algorithm for Maximum-
Weighted Bipartite Matching

In a weighted bipartite graph G = (U, V, E), we can choose the vertex set U or
V arbitrarily to do matching. We choose the vertex set U for illustrations. We

13

Algorithm 5 Ant-Matching Algorithm in Detail

Input: Weighted bipartite graph G = (U, V, E)
and each edge (u;,v;) € E has a weight w;;.
MatchingListp,,, = [|
Weight . = o0
for t =1 to t.x do
{Generate Solution}
for k =1 to NumberOfAnts do
Avail®*(U)(t) = U;
MatchingList, (f) =]
Weight,(t) =0
while |Avail®(U)(t)| > 0 do
choose available u; € Avail®(U)(t) based on 7;(t)
remove u; in Avail®(U)(t)
if u; has available adjacent vertices NF(t) C V then
choose v; € NF(t) based on 7;;(t) and n;;
add (u;,v;) into MatchingList, (¢)
Weight,(t) = Weight, (t) + w;;
else
add (u;, ¢) into MatchingList,(t)
Weight, (t) = Weight, (t) + Wmax
end if
end while
if Weight, (¢) < Weight . (f) then
Matchinglisty,, = MatchingList,(¢)
end if
end for
{Update pheromone}
for k =1 to NumberOfAnts do
for [=1 to |MatchingList, ()| and (x;,y;) € Matchinglist,(¢) do
ATime (t) = 1/Weight, ()
if v, # ¢ then
ATy (t) = 1/Weight, (t)
else
ATy (1) = 1/Weight, (t)
end if
end for
end for
for (u;,v;) € E do
Tii(t+1) = (1= p)7(t) + 201, AT (2)
end for
for u;,u; € U,u; # uj do
7ij(t+1) = (1= p)r(t) + 324, ATf(t)
end for
t=t+1;
end for

14

apply the Metropolis algorithm on the maximum weighted bipartite matching
(maximum-weighted BM) problem. Let x be the current search state. x €
{0, 1}/l describes the set of matchings (u;,v;), where z;; = 1 denotes a
matching edge, x;; = 0 denotes not.

In each iteration, choose (u;,v;) € E at random and flip z;;. Thus, in
the current state x, choose a new search state «’ = {zgq, ..., ¥y, } where
z; =1 — x5, and xyy, = x4, if the edges (ug, va) # (ui, v)).

After choosing a new state z’, using a fitness function f to decide if we
choose the new search state ' as the next state. If f(z') > f(z), select 2’. If

f(2") < f(x), select 2’ with the probability et)I;fm, where K is a constant,
otherwise, select . The algorithm is illustrated in Algorithm 6.

Algorithm 6 Apply Metropolis Algorithm to Maximum-Weighted BM
Input: Weighted bipartite graph G = (U, V, E)
and each edge (u;,v;) € E has a weight w;;.

loop
choose (u;,v;) € E at random and flip x;;
sample a from U(0, 1)
if f(z') > f(x) then
select
else ,
if a< ef(x — then
select x’
end if
end if
end loop

Here we choose 0™ as the starting state x for the maximization prob-
lems and choose a fitness function f, where f(x) = 0 for the state x
which there exist two edges in the matching sharing a common vertex, and
flz) = ZuieUﬂ]jev x;;w;; for the state z, not which has two edges that share
the same vertex. This fitness function f will guarantee the matching is rea-
sonable in each iteration.

3.2.1 The Complexity of Metropolis Algorithm

In the Metropolis algorithm, generating a new search state costs a little. To
generate a new search state we choose a edge (u;,v;) € E at random and flip
x;;. It will cost O(1) to generate a new search state. Then, it costs O(1) to
calculate the weight of the new search state and costs O(1) to verify if the

15

new state is reasonable. If the new search state is better than the best state,
record the new search state as the best state and it will cost O(U). Thus, if
there are c iterations, the complexity of the Metropolis algorithm is O(cU).

16

Chapter 4

Experimental Results

After introducing the two methods on solving the weighted bipartite match-
ing problems, we write them in programs to do some experiments and com-
pare them with the Hungarian algorithm, a well-known algorithm for solving
the weighted bipartite matching problems. In a weighted bipartite graph
G = (U,V,E) and each edge (uz,v]) E E has an associated Weight W
We replace each edge weight w;;
bipartite matching problem to a minimum welghted bipartite matching prob-
lem. Thus, we can use these algorithms to solve the maximum or minimum
weighted bipartite matching problem.

4.1 Comparison of Complexity

Before the experiments, we compare the complexity first. The complexity of
each algorithm is listed as follows:

Table 4.1: Comparison of complexity

Algorithm Complexity

Ant-Matching O(tmax(m(U + E) + U + F))
Metropolis Algorithm | O(cU)

Hungarian Algorithm | O(V?)

In Table 4.1, we can easily find that the complexity of the Metropolis
Algorithm is the smallest. But we can’t easily compare the complexity of the
ant-matching algorithm with the Hungarian algorithm. To verify that if the

17

ant-matching algorithm is faster than the Hungarian algorithm or not, we
will do some experiments. Moreover, we also test if the Metropolis algorithm
and the ant-matching algorithm can generate a reasonable solution for the
weighted bipartite matching problem within a smaller time and discuss their
usability.

4.2 Graph Sampling Algorithm

Before the experiments, we build some graph generating algorithms to gen-
erate the weighted bipartite graphs. There are two graph generating algo-
rithms:

e Generating algorithm of complete bipartite graphs.

The generating algorithm is used to generate the complete weighted
bipartite graph, which Vu, € U,Vv; € V, 3(u;,v;) € E.

e Generating algorithm of sparse bipartite graphs.

The graph generating algorithm generate a weighted bipartite graph
G = (U,V, E) randomly and each vertex u; € U has at most a specified
number of adjacent vertices. It does not ensure that the generated
graphs has a perfect matching.

We will use these algorithms to generate the graph samples to do the
experiments.

4.3 Results

In the experiments, we configure some variables at first. In the ant-matching
algorithm, there are 200 iterations and 20 ants in each iteration and we make
a = 2 and § = 1 to make the relative influence of the pheromone doubles
that of the distance. In the Metropolis algorithm, we initialize 1, 000, 000, 000
cycles to generate the new search states. After configuring the variables, we
start the experiments, and the results are listed as follows. We will analyze
the results in different aspects:

e Time
The cost of time in solving the weighted bipartite matching problems.

o Weight
The maximum weight found by each algorithm. We solve the maximum
weighted bipartite matching problems in our experiments.

18

Size Ant-Matching Metropolis | Size Ant-Matching Metropolis
100x100 95.13% 60.87% 1100x1100 | 91.20% 52.07%
200x200 94.21% 56.73% 1200x1200 | 91.10% 52.29%
300x300 92.94% 55.75% 1300x1300 | 91.52% 51.98%
400x400 92.93% 54.93% 1400x1400 | 90.96% 51.59%
500x500 92.94% 53.81% 1500x1500 | 90.93% 51.64%
600x600 92.67% 54.49% 1600x1600 | 90.95% 51.72%
700x700 92.36% 52.79% 1700x1700 | 90.95% 50.92%
800x800 91.66% 52.40% 1800x1800 | 90.75% 51.25%
900x900 92.16% 52.84% 1900x1900 | 90.58% 51.59%
1000x1000 | 91.73% 52.54% 2000x2000 | 90.62% 51.71%

Table 4.2: The weights as proportions to the weights of the optimal solution
on the complete bipartite graph.

4.3.1 Results on Complete Bipartite Graphs

We use the ant-matching algorithm, the Metropolis algorithm, and the Hun-
garian algorithm to solve the maximum weighted bipartite matching prob-
lems on each complete bipartite graph with different problem size. Table 4.5
is the numeral result in solving the matching problems. In Table 4.5, the re-
sult found by the Hungarian algorithm is optimal. Table 4.2 lists the weights
found by the ant-matching algorithm and the Metropolis algorithm as pro-
portions to the weights of the optimal solution. In Table 4.5, we can see that
the weights found by the ant-matching algorithm are close to the weights of
the optimal solution. In Figure 4.1, the running time of the ant-matching
algorithm increases gradually depending on the sizes of matching problems.
Even the running time of the ant-matching algorithm is larger than the run-
ning time of the Hungarian algorithm, but the growth rate of running time of
the ant-matching algorithm is smaller than the Hungarian algorithm. Thus,
if the problem size is very large, the ant-matching algorithm will be faster
than the Hungarian algorithm.

The weights found by the Metropolis algorithm are close to the half of
the weights of the optimal solution. But the running time of the Metropolis
algorithm is very small. In practice, we can find the result with less number
of cycles in the Metropolis algorithm. The initialized 1,000, 000, 000 cycles is
used to raise the running time, it will help to draw the transitions on different
problem sizes in Figure 4.1.

19

3000000

2500000 ; -
> 00000 — Ant-Matching
£ 2000000 13
= — Metropolis
= 1500000 1
5 1500000 — Hungarian

Figure 4.1: The running time of each algorithm on the complete bipartite
graph.

4.3.2 Results on Sparse Bipartite Graphs

In the sparse bipartite graph G = (U, V, E') which each vertex u; € U has at
most 2% * |V| edges, the numeral result of this matching problem is listed
in Table 4.10. Table 4.3 is the result of weights found by the ant-matching
algorithm and the Metropolis algorithm as proportions to the weights of
the optimal solution. In Table 4.3, the weights found by the ant-matching
algorithm are close to the weights of the optimal solution. And in Figure 4.2,
the running time of the ant-matching algorithm is much less than that of the
Hungarian algorithm as the problem size increases. Thus, in a large scale
bipartite matching problem, we can use the ant-matching algorithm to find
a solution in a smaller time, and the result is close to the optimal solution.
In Table 4.3, we can see the weights found by the Metropolis algorithm
are close to half of the weights of the optimal solution. In Figure 4.2, even
we initializes 1,000, 000,000 cycles in the Metropolis algorithm, the running
time is still small. Thus, if we want to find a matching in a rapid time and
don’t care the weight, we can use the Metropolis algorithm to find a solution.

20

nnnnnnn

2000000 Ant-Matching

HHHHHH — Metropolis

Time (ms)

—— Hungarian

Figure 4.2: The running time of each algorithm on the bipartite graph where
each vertex u; € U has at most 2% * |V/| edges.

Size Ant-Matching Metropolis | Size Ant-Matching Metropolis
100x100 96.81% 72.27% 100x100 95.57% 47.06%
200x200 98.42% 56.44% 200x200 95.18% 47.56%
300x300 98.35% 53.23% 300x300 95.53% 46.97%
400x400 97.37% 50.95% 400x400 94.82% 47.81%
500x500 97.31% 48.83% 500x500 95.28% 47.09%
600x600 97.11% 48.83% 600x600 95.03% 47.43%
700x700 96.64% 47.78% 700x700 94.58% 47.00%
800x800 96.86% 48.52% 800x800 94.59% 47.25%
900x900 96.09% 48.37% 900x900 94.56% 46.99%
1000x1000 | 95.80% 48.16% 1000x1000 | 94.28% 47.30%

Table 4.3: The weights as proportions to the weights of the optimal solution
on the bipartite graph where each vertex u; € U has at most 2% * |V| edges.

21

3000000
2500000
Z 2000000 Ant-Matching
1500000 —— Metropolis
H —— Hungarian
= 1000000 =
500000
~ ‘_'_l_'_'_'_'_'_'_'_
U —'—!—'_'_'_'_'_ﬂl_'_ 1 1 1 1 1 1 1 1 1 1 1
S P SRS P S
& & & F & @ @ e
S S SIS
N NTOONTONY N
Problem size

Figure 4.3: The running time of each algorithm on the bipartite graph where
each vertex u; € U has at most 5 edges.

Here is another sparse bipartite graph G = (U, V, E) where each vertex
u; € U has at most 5 edges, and the numeral result of this matching problem
is listed in Table 4.11. Figure 4.3 is the graphic illustration of the time costs
by each algorithm. We can see that the running times of the ant-matching
algorithm and the Metropolis algorithm are still much less than the running
times of the Hungarian algorithm. In Table 4.4, the weights found by the
ant-matching algorithm are close to the optimal solutions. Thus, in a large
scale and very sparse graph, we can use the ant-matching algorithm to find
a matching in a smaller time and the weight of the matching is close to the
weight of the optimal solution.

22

Size Ant-Matching Metropolis | Size Ant-Matching Metropolis
100x100 98.23% 66.07% 1100x1100 | 97.53% 50.51%
200x200 97.75% 59.71% 1200x1200 | 97.17% 51.07%
300x300 96.00% 56.68% 1300x1300 | 97.61% 51.01%
400x400 96.57% 56.24% 1400x1400 | 97.33% 49.85%
500x500 97.93% 54.29% 1500x1500 | 97.06% 49.63%
600x600 96.74% 52.85% 1600x1600 | 97.38% 49.12%
700x700 97.27% 52.71% 1700x1700 | 97.01% 49.21%
800x800 97.35% 51.83% 1800x1800 | 97.22% 49.01%
900x900 97.42% 51.61% 1900x1900 | 96.99% 48.63%
1000x1000 | 96.80% 51.61% 2000x2000 | 97.06% 48.65%

Table 4.4: The weights as proportions to the weight of the optimal solution
on the bipartite graph where each vertex u; € U has at most 5 edges.

4.3.3 Results on Ant-Matching Algorithm

In addition to the above-mentioned bipartite matching problems, we also
solve the matching problems on different bipartite graphs in our experiments.
The numeral results are listed in Tables 4.5-4.13. We will analyze the results
and indicate the features of each algorithm.

In the ant-matching algorithm, Figure 4.4 is the graphic illustration for
the running times on each different bipartite matching problem. In Figure
4.4, we can easily see that the running time of the ant-matching algorithm
depends on number of edges. The less the number of edges in the bipartite
graph, the less time the ant-matching algorithm costs on solving the matching
problem.

Figure 4.5 illustrates the transitions of the weights on each different graph
on different problem sizes. In Figure 4.5, as the problem size increases, the
weights found by the ant-matching algorithm on each different graph as pro-
portions to the weights of the optimal solution decrease slowly. Besides, the
weights as proportions to the optimal solution are greater than 90%. With
the advantages of the smaller running time, we can use the ant-matching
algorithm to find a matching in a smaller time, which the weight is close to
the optimal solution.

23

3500000 _
3000000 — 2%
2500000 — %
2000000 10%
1500000 25%
1000000 — 0%
500000 — complete
0 —| — branch 5
N — branch 10
\'\;‘W s branch 20

Figure 4.4: The running times of the ant-matching algorithm on each differ-
ent bipartite graph.

105.00%
100.00% —
9,_ OOE_ — i 270
2. U .
a7 Lo — — 5%
90.00% _
85.00% 10%
80.00% 25%
75.00% — 0%
70.00%
70.00% complete
5.00% <
gé'ggf\f’ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ﬁlﬂmCh ::I
N oo o oo — branch 10
) $."ggb ."g‘?' ."S‘}Q‘ ,\5&:‘ \{Q\” O -\‘:ﬁ» {J\Q\& @Q\N branch 20
N L N LN N LN - BTN g =
NEEN RN N N RN NS
’ N NG NN

Figure 4.5: The weights found by the ant-matching algorithm as proportions
to the weights of the optimal solution on each different bipartite graph.

24

75.00%

70.00% “\ —
65.00% I -
60.00%

55.00% \\\“
50.00%
45.00%

_].O.OOC-{’ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
SIS PN %‘5 ﬁ@v @"5 ,«@ q@

complete
branch 5

pranch 10
branch 20

o
NP &S S S

Figure 4.6: The weight found by the Metropolis algorithm as proportions to
the weights of the optimal solution on each different bipartite graph.

4.3.4 Results on Metropolis Algorithm

The running time of the Metropolis algorithm is much smaller than the other
two algorithms. Even the cost times have slight change on different prob-
lem sizes, but they are still smaller than the other two algorithms. But the
weights found by the Metropolis algorithm are not as impressive. In Figure
4.6, as the problem size increases, we can see that the weights found by the
Metropolis algorithm as proportions to the optimal solution lie in between
45% and 55%. Thus, if we don’t care the weights found by the Metropolis al-
gorithm, we can use the Metropolis algorithm to solve the bipartite matching
problem within a small time.

25

eVITeE 8661 69ccoe €0l SPLOS 0T8T €48¢99¢ 8¢89¢y G8VEL6TC | 000CX000¢
8EVCLEBOST TVPCICY 646 88048V GILT 666011¢ @8¥8cy €0LT169C | 006TX006T
€CCLE86LT 9G90STI9TC6 T¥S0¥6 1E9T eV8G8LI GLE6OY CLTIEIVC | O08TX008T
6ELOLEBEIT 6SVELLE VI8 9ECCLLTIAT Levvevt eav6ry ¢c6041¢ | 00LTX00LT
GGCLIE86ST VSP8Y9'9¢8 TC1699° €SPV 1€0860T ¢L966€ PETL68T | 009TX0091
6IVITY 86VT 9690L6L ELL VTCESSGT CIET GLELO6 ¢L956€ GCI899T | 00STX00ST
VGC0LEBOET VPLII6ETCL VLVI00 CLTT 06880.L ereooy 90¥8¥¥T | 00FTIX00VT
VE6LYEBOCT LECSE68FLI I8CIVE 88T GE0LES I8LG8C 609€ScT | 00ETX00ET
G089GE86TT €09899479¢9 LGTIELT60T Gc196¢ L€SLTY 6098901 | 00CTX00CT
GP8EE860T T800968°TLS TOST69 TO0T 1€000€ [RES(RS 0¥9206 | 00TTX00TT
9LLECCY 866 SVIPVIGTCS SI88098°GI6 000¥0¢ 8¢89.LE GLECY.L | 000TX000T
1EVOVLEBES 9CC8CLI VLY COCESYG LCY jJuesig! 60TT.LE 69¥209 | 006X006
VG0vceE86L V480LOE 8TV GITICLLTEL €g690T 6ebsre cLIYLY | 008X008
8€0999¢'869 8LEV684'89C T60CET6 V9 18L79 GLILEE 000€9¢ | 00LX00L
199662865 ¢90€00'9¢E 95685TT ¥49S v8yve a4 res 18¢89¢ | 009%009
G760cce€ 867 CILTILGT8IC GLVPIST €9F 61¢0¢ GeI18C 168981 | 009%00S
8G9TCSE86E TGTVO08'8IC SCEEVOT 0LE 8EVOT GCI861 GL86IT | 00¥X00¥
6V6LIVERGC LG609€E99T TVOTLEC LLT acty CLTVVI 696.9 | 00€X00€
6S89VEC 86T 60STIGY CIT €TLECGL™O8T 7601 0v19¢t 8¢€E8C | 00¢X00¢
8ETL8CIG 86 GLOLETO6°6S V8LETCIL E6 8L vSyLel ¢evel | 001X00T
uerresuny stodorjey juy | uerreguny sodorjoly uy 9ZIg
JSTOM (sur)ouut,

syders 991y
-rediq o3o[duIod 10J WYILIOS R DR UO SHNSOY :G'F O[qR],

26

GL9€9L79661 GGYSEI8COT TLLBT'CIRI 786¢67¢ Lyarcy - 0926961 | 000¢X0006
LCOVTL968T VOCOELT VL6 TLE9GGTCLT G86€90¢ 168707 €SP99.LT | 006TX006T
8LOTVL96LT ¥GEILCT LT6 SGITETT 0E9T L89T1691 OT9ETy T6€98GT | O08TX00ST
66CVLLI69T €V669ESE€I8 PATTG9 GPaT L6CSIET Pp80TY 000%I¥T | O0LTX00LT
TC06TL96ST TLV6ESY LIS 9E€T196°CGT 99LECTT 910c6E LVOPScI | 009TX009T
VIE8TL96VT T6€9990°6LL <CIGVLO™LICT 486006 90¥€6€ IP9TOTT | 00STX00ST
G8GEIL96ET 9V6566°0CL FVLVIGCLCT GLTLOL 99.68¢€ 04¢196 | 007 TX00¥ T
¢94C6L796CT 9Gc0¥8G899 LOGGG6 TSTT €4v694 GL808E Gg99¢8 | 00€TX00ET
9PEL96TT €LOSTEETTI 95065 860T rasiiy GCY68¢ 6SE€T0L | 00GTX00CT
68€0¥9°960T GEI6801°99¢ 98T¥0°CO0T P)RE(ARS TeveLe 04288¢ | 00TTX00TT
€8L4T6'966 V461080°¢cS 9LOT6TOET6 €ar661 09€19¢€ G8La8Y | 000TX000T
6688997968 C0SSGT8C LIV G6T.L8CY 8IS I796€T 0v94ve ¢L906¢ | 006X006
GC96GEL'96L 8OGTEVC LTV G888CITTEL 61¢C6 €0c8I1e 66680€ | 008%008
PC69€08°969 €L969€T1°99€ L6VE88E 19 17994 €6016¢ 0099€¢ | 00LX00L
L66C189°965 8V08I6CCIE 890GLEG 614 60TvE LE6LSC GCIv.LT | 009%009
8G6TVL 96V TGLGCVITIC GT8GEIR 9SG ¢L10¢ GLEc0¢ 000T¢T | 009X00¢
T€089€L°96E GTE60V'9TC 68V.L1C0°99€ €188 L6CCVT 90v.LL | 007X00¥
V8¥8C8G'96¢ 6EOTCTIV EIT GCLITEE 9LT €q6¢ 88TEET a8¥Ey | 00€X00€
G69cG98°961 LISPEOE€TT LISOTGT LRI Ly0T1 OTTIET 8¢eO6T | 00¢X00¢
V0CSLC98°96 G8E6ITIE09 LCI08LCLTO V6 1eslel 6cbV | 00TX00T
uerresuny srodorjepy juy | uerresuny — sodorjoiy ay 971G
JSTOM (sur)owut,

"S98Pa | A| * %G 1SOW Je SR XolIoA [Des oIy Mm sydels
99131edIq O} I0] WILIOS R [DOes U0 SINSAY :9'F S[qR],

27

GCCACae661 €E8LBG600T GGG96L°CE8T 9T.LECIC 168¥8¢€ I¥90LET | 0002X0008
G06LEGE68T IVLEVIOTI6 F8866T LCLT €8E1461T €189LE 0T99€CT | 006TX006T
8GPYEE6LT 9LTBEIEET6 L6C0CT 19T 880LGLT 70L99€ GLETTIT | O08TX00ST
G607G €691 8ITLYFI9°GI98 8CITP8ECLGT 9€e8GET earest 690666 | 00LTX00LT
9¥LE€6GT 699TEE6°608 <0009V 65V T GEOVLIT €9409¢ TLTSL8 | 009TX009T
VGITCS e€6VT 6V0LTE'G9L PGLGLL GICT 1€0€68 6096€€ Ly¥0cLL | 00GTX004T
T0CSTECOET 8YIT668'9TL 9CLELY F8CT 6EVITL ¢950¢€e L6¢069 | 00V TX00¥1
GCECEae6cT LYPLSY0'699 ETSTIT'SSTT G79.L94 IvIvee 042084 | 00€TX00ET
T9E6TECOTT 6VE0LESTT9 G0LOVLCO0T 96¢901 69¥90€ TLTS6Y | 00CTX00¢T
GOEVLECO0T PCLEVY 099 T68LEICOOT ¢006V¢ 00088¢ LSTITV | O0TTX00TT
GGy0Ty9°€66 GGSLTIL60G L6VV8EC VIO G6L9LT 00ST.LC varvye | 000TX000T
6ESIVCT €68 9LYVEOC TIV VITOELE VTS 8919¢1 €gq67ve 9066.¢ | 006X006
6L0CTIVS€6L TILESGO TTV €¥8T900°9CL 9466 GelLIc €46Tcc | 008X008
LO8T669°€69 €660VTITIE CEV6956 079 r86¥ LyGGLT OTTOLT | 00L%00.L
8IVECLI €69 GITT60LCIE 6CTT8IV CVS €09.L¢ 8TCEVT ve€eact | 009%009
168070 €6V ¥8LI6C9°94C 60CSSYIVay eLavl 949¢¢€T 8L4L8 | 009%004
€09LELGE6E TIELSYVIC EVREETE 65€E €4¥9 VELOET ¢909¢ | 007X00¥
CILVIBEE6C CI6LLIT6ST CEBETTCL LLT v6¥¢ GL8GCT T€4TE | 00€X00€
CSTVPII €61 ¢E€69SCr 80T L099¢PS GR8T 079 90vectT GLEET | 00¢X00¢
TLPS6LYTE6 9LLILTTIGE €TO0LLSO'T6 €9 LY0TCT 684 | 00TX00T
uerresuny srodorjepy juy | uerresuny — sodorjoiy ay 971G
JSTOM (sur)owut,

"S98Pa | A| * %G ISOW Je SR X0lIoA (Do oIy m sydels
99131edIq O} I0] WILIOS R [DOes U0 SINSAY :L'F ORI,

28

€CYeec86T GEELGLGERG G9E0COLTIRT 90¥609¢ 0T9¢TE GLEL60T | 000CX000¢
9TEYET ¢88T CI9TCCE¢E6 SGCV88T TCLT L8160¢¢ CLIYEE 696686 | 006TX006T
GELIOC CBLT 98GTERI'L8S 90GTG8'8CIT 90€cELT 0TTOCE 765688 | 008TX008T
8CGG9GCRIT 86IVGT6VES TII6TSGCAGT VeroTv Vyea8e ¥81796L | 00LTX00LT
TV8YcEC8GT LCG9EER68L TS8OT8 OV I LYGEBTTT 601¢6¢ 609LTL | 009TX009T
LCT60V°¢8VT €9GFT0T'8EL 860019°94€T GVS888 L6¢8S¢ 906.¢9 | 00STX00ST
PGESTIC8ET 9C69888°069 €V6CST €9CT 6.¥569 GLTIVC 6488¢S | 00V TX00¥ T
¢0TC0c'¢8CT 8EVS0C0'Cr9 19897 '8ITT 8C844Y 6L0LCC G1€997 | 00ETX00ET
L9L669°¢8TT L68GCESGCOS €TST068L0T 68068¢ 168€0¢ ¢EST0Y | 00GTX00TT
8LIRIECROT LITLOEI LVS 9TC8OL TOOT 160T0€ 6C6e81 06.9€€ | 00TTX00TT
GGT9Y08°¢86 G9¢cTSe¥67 8199901 868 9¥6E-8T 000651 L¥06.L¢ | 000TX000T
6EVES68°C88 L88LGI9 4T GEITTCO €IS €eeort q4aangt GL8V¢c | 006X006
9€EY8CGC8L GP0GLELG6E TL8YTETVEL 0€948 I79LET 8LGLLT | 008X008
6L900¥8°¢89 619696 7¥e 6991804 8Y9 9410G 7605€ET I799€T | 00LX00L
TTESE0LC8SG VCLLYGY G6C LI18C €4S 79€6¢ 8L0c€T L6L00T | 009%009

8EVGCTE8Y T09468°6VC 8E0I8YI 64T 80TET VELVET OTTOL | 009%004
L60LTEEERE F099VC6°86T F68TEO¥'89€ [@REY Ly08¢CT 8L0G¥ | 007X00¥
I8LC¥VV0¥8C C06SEET ¢ST 89¢CT0°0L¢ 604¢ 1€4.LCT €0csc | 00€x00€
TO0C8LT V8T ¢98¢IV €01 TTTEERG LLT Gq9 0429¢T T€S0T | 00¢X00¢
€G0CTS68 P8 €L98C€VL TS 880LOTS6'TS 8L €569¢1 6487 | 00TX00T

uerresuny srodorjepy juy | uerresuny — sodorjoiy ay 971G

JSTOM (sur)owut,

"S98Pa | A| * %OT ISOW e SR X0lIoA [oes oIy m syders
99131edIq O} I0] WILIOS R [Des U0 SINSAY :8'F ORI,

29

¢088G0°L96T TVEVSLISTVG6 L66GSC O8LIT 6€40T4¢ 6T.L9TC IVTLY0T | 0002X0006
6TICTR LIST 8CLGGLE'BO6 8IB66LOTLT GL8440¢ 699900 €94676 | 006TX006T
LE9G6ELILT T88PIBE'GER 86VRGR0CIT G8¥¥.LAT Grog6T 00G.78 | 008TX008T
€68L0¥°L99T T9EVG649'808 96L¢C LaoST 8E688CT 992681 ¥60L9.L | 00LTX00LT
809LCC'89GT 8C900649°0LL LVICLE OV T 0SCeV 1T CLTIV6T L¥G9.9 | 009TX009T
8E0LSLIVT TC96690°TTL TG90LTEVET €0L.LC6 629881 €4668¢ | 009TX00ST
GIPECT 69T 89¥C86°099 €aL8 1vcl 91060.L LOVIST L6L0€S | 00V TX00¥T
G09ST8°LI9CT STLECOLTCHY 8S8IBEO6TT €v8aTd VELLLT GLICYY | 00€TX00ET
€99¢0G"L9TT L8CSTOC L9S ¢cE86C S0TT 9v06<y 0GLT91 G8CI8E | 00GTX00TT
61799178901 €01c6VE 614 TF6ITLE CI6 GLIILT 6TLE9T €6S1cE | 00TTX00TT
GLTCL8I L96 TCT16908°69Y CLVI6C V16 00470¢ €69841 G€.L99¢ | 000TX000T
GEOTTCE 698 ¢V0SER Ty 8F00016°0C8 TE08ET 786L9T GTogTC | 006X006
19890L8°L9L LOOTBLEELE C690469 LCL L6CV6 LySrat 9990LT | 008%008
6¢¢S096°L99 ¢E0cVIV'8CE ¢P61E€9E8EI €g619 0GL7ST LYOTET | 00LX00L
9L9TLG0°699 €6€L9L0°LLE GGTCCI8 VS 89¥1¢€ 910€ST 89196 | 009%009
GLLEB68' 89V 9I8LOTT'TEC 9LVOTVI IGY V64.LT 764caT PreL9 | 009%00¢
GVTLYSG89C 8CLOTIC 8T €617998°€SE V16 L6LCST €0cey | 007X00¥
69LYSY'89¢ 98TILO6ET GOTPCOE 19¢ 99.¢ adiiag! ereye | 00€x00€
8T9¢CT TLT LVLSGTO696 €CL68GS 99T €46 GLSLGT 91401 | 00¢X00¢
8E6COVSETYL GCTERYIC ST 8EIEI6LSTL €9 PyeES9T 99,y | 00TX00T
uerresuny srodorjepy juy | uerresuny — sodorjoiy ay 971G
JSTOM (sur)owut,

"$98Pa | A| * %G 10w Je SR X0lI9A [oes oIy Mm sydels
99131edIq O} I0] WILIOS R [Des U0 SINSAY 6T ORI,

30

L8EG9'6T6T LIC6TTO8O6 LEBLOG GOBT 760891¢ ¢lealLl 61,956 | 000¢X0006
CILTI6°6T8T CIBEE6T 448 9¢0CH6 0CLT 910L40¢ L¥008T ereLay | 006TX006T
6SVYIV 0CLT T¥99176°CI8 ¥0E0CT LEIT 76070LT 88TILT LE6CLL | 008TX008T
868€SY 09T ¢LSEGGS TIL 6E809SCEST 8LGC8YT PyeSLT eI€T169 | 00LTX00LT
GGTES6°0CST TP8I0SE TCL GLYSEC GV T LYOOVTT 609TLT 609019 | 009TX009T
90¥€LO'6GTVT 6VIVIVE 899 998990°C4ET VELLTO 8TLE9T ¢90LES | 00STX00ST
8EOTCSTCET G8TISYTEY 6LLLCOCSCT 88T€0L GCITLT GeT.L9Y | 00V TX00VT
GOBLIE ¢TI T99T6ET VLS TP699°LITT 486614 78¥0LT 78¥c0¥ | 00ETX00ET
10694¢°€CIT ¢498994C1ES 798076901 L8968¢ 8691 9T0SYE | 00GTX00TT

94496¢°0c0T G6€6¥V1°08Y ¥¥0C080°GL6 V¥8¢8¢ GLI8I9T L8T06¢ | 00TTX00TT
Lyc019L°Cc6 CELLYIE VYT 8CVC096 €88 90¥¢ET 168991 v€c0¥¢ | 000TX000T
6C9EIVTE€C8 999¢L9¢'86E TC6ITSC T6L 6979¢€1 GLECIT 7€¢961 | 006X006
G98¢0€0°¥CL €90ce 19 ¢T1000TE T0L GLET6 L6CT9T GLIVST | 008X008
VPP8ILER™GCY ¢I80T66'86¢ VICGLIS T09 earss V60191 GCO8TT | 00LX00L
6E€99TO8 VS €0€EVE9SC 99T8TEI 604 v€L9€ 69V 191 1€5L8 | 009%009
8TI86C0° 9y VITLICO8OC GEBGLEG VIV 8E68T 9¥<091 00019 | 009%004
99999¥1°6CC TPS86LIS'LIT 9ELV08L 0CE 7878 TLT29T 99¢6¢ | 007X00¥
8€0T86L LCC VLESICTCT 9LV¥620 VT €0cy 000991 6e¥ee | 00€X00€
8GCITE6OVT ¢PISECYS 6L CCCTOTL 8ET €46 LYOTLIT 1796 | 00¢X00¢
66189000°LG 6T9LICOT TV ¢ISETO8TCS €9 068LLT 004% | 00TX00T

uerresuny srodorjepy juy | uerresuny — sodorjoiy ay 971G
JSTOM (sur)owut,

"$98Pa | A| * % ISOW Je SR XolIoA [oes oIy Mm sydels
99131edIq o1} 10] WHLIOZ[R [ord U0 SHNSOY :(0T'F ORI,

31

T0LEVO'LGYT CVOSSET60L SCOEL VIV 8C8ELLC 8E6VET 1€4€E88 | 000¢X000¢
€CI86I8ET C9PGGe0'cL9 90ETSE OVET V€CL6CT 609¥4T 09€€08 | 006TX006T
99€VF6°90€T 98898EC'OF9 CEBLLE0LLT 9GTPS8T LOVEST 1€499¢L | 008TX008T
L969L9°8¢cT GETGS8G V09 TCLST6T6TT 99¢184T Pa6sat 61¢€59 | 00LTX00LT
616C6L°LGTT L96169°89S TOVIGY LCIT 9G998T11 99.LcGT 8896.LG | 0091X0091
98TTC9°060T LEITTCE TIPS FOGETS8GOT G18G16 e0LTST 0T9L0G | 00STX00ST
¢9696'8T0T €V0TC6°L0S GC0L60L 166 I8LVIL 9T0€ST L6L0VY | 00V TIX00¥T
999C.L8TCV6 9084419087 16LGERI 616 LyS184 Ly4est OTT6LE | 00ETX00ET
V8T66CC 198 TETGLER6EY TPECRIRTIER 69689¥ 8LGOST 89VICE | 00CTX00CT
1690669°¢08 8GLSTCY Q0¥ €VSLOSS C8L 8814cE 648EGT 8¢€0Le | O0TTX00TT
168619G°8CL TE8YIT0°9LE FEI0EST G0L 000L¢c PPeost €9461¢ | 000TX000T
G80S0TT6599 8CGILLTOVE €669680°CH9 8CEYaT GroTST €G69LT | 006X006
6L66¢1°¢8S 96TTCEL TOE L9L60L799G 8C866 896671 GILTVT | 008X008
9068LE4°G0G €9TE€6LY99C €LLSTIL 16V 78¥€9 LE6GGT 0%¢60T | 00LX00L
GG6649€CcEy GEP8E0S8CC T00SCYE 81V GecIe el LG908 | 009%009
806L609°09¢ TLCISGL'G6T 9080SST €SE 06881 8¢8GT1 ¢8LEG | 009%004
86LE60LF8C ¢V66V¢T 09T €695T196°V.LT CLT16 earart 60T9¢ | 00¥X00%
[ETOGST'8TC LE690V9CCT 8OVEEET 608 Ge9e 696CT1 61L0¢ | 00€X00€
6V86679°LVT VI19091°88 LIOVI9CE TV 8L0T Va6.LY1 LyS6 | 00¢X00¢
9GCE8L6CCL GLIVELIL LY VO8CEITO TL 8L Geiyvl 0T9¢ | 00TX00T
uerresuny stodorjey juy | uerreguny sodorjoly uy 9ZIg
JSTOM (sur)ouut,

"S98pa G SO Je SRI| X91I9A [oed aloym sydeld
99131edIq o1} 10] WHLIOZ[R [oro UO SHNSSY [T ORI,

32

CO6STY L8IT TOVETIL96L 6E6ERT 8CIT 60TI8EC 99¢9¢4T G¢T66L | 000¢X000¢
STETIVE'G09T 69€G8YT09L €CICLS CGST G¢1000¢ Ly0GST 0GLTEL | 006TX006T
€I89GG8IGT 6996¢¢h 8TL 90¥668 89V 99¢8891 LY0191 1€499¢L | 008TX008T
8¢V999°0€VT T¥8800T'6L9 TC88TT08€ET 009€8ET Ge9csl V8¥8Y9 | 00LTX00LT
€Gee08’0sET 8O8ETLLTTY 88EE80ET 8969401 L6LEVT G8L9LG | 0091X009T
LIY890°69¢T FCI8EOTI9 9E8E0LTECT L¥0098 8¢8CV1 GL80TS | 00STX00ST
696880°G8TT LGRGLRG LIS TLOO6S'SVIT OV1.LS9 e0cart y8avy | 00V IX00¥1T
6¢4G€6°00TT 69618¢°¢ES T¥P6L6°L90T 88TELY 9991V1 [€0¥8E | 00ETX00ET
GLYS00°STOT S8EC6TTO'88Y €E€T866¢ 786 61¢84E Ge60vT 6660€E | 0061X00CT
CSGECR'CE6 COOLYYS8YY TE€LE6OEC G006 GG66.LC 6IVIVI G9¢LLe | O0TTX00TT
98009€°048 8OVFE6'0TY L868CI6 T8 €94C061 9066¢€T 09€9¢¢ | 000TX000T
694€4969°99L G¢GLO0ET8E TEVLIIC G L Ly46¢1 LyS6€eT ¢90€8T | 006X006
806CT48L9 T960L6G°LEEC TS8OCOT 199 91506 69E6¢CT 0GLSVT | 008X008
99GCLT16°C6S LOVIS09°G6C ¢65C€T10C ELS earas 0v96€T LEVCIT | 00LX00L
8L98606°80% 665€9¢595C T9GEITIR 86V 1€0€e cLISET GELTS | 009%009
PP908€S ey 9VLETVC8IC T9901€CTY 6¢E8T 1€GLET 91484 | 009%004
G98LL69°0VE LEIELLSOST €6ILTCISTEE 0006 GL8GET 04¢se | 00¥X00%
86TCT190°GSC CL8YEY8'9ET 6VETCER 6T 06€¢€ 6eevel L061¢ | 00€X00€
V8GILCI'8IT ¥66T9696' 76 G006080°991 1€0T1 8C88ET OTTOT | 00¢X00¢
cG0CTS68 Y8~ €LISEVLCS TESTVIVY €S 8L €0c9el 906¢ | 00TX00T
uerresuny stodorjey juy | uerreguny sodorjoly uy 9ZIg
JSTOM (sur)ouut,

"S98po ()] ISOW Je SBY X0LIDA [ord 1o Mm sydeld

99131edIq o1} 10] WHLIOZ[R [ord UO SHNSSY :GT'F ORI,

33

LYE9CL 9e8T CET9E0° 198 GLIVGETELT 8L0S€EEC cLIEVT 6,0806 | 000¢X000¢
[9ESTOSVLT 6C89880°F18 T800T9TI 99.410¢ e0LTVT 94TCE8 | 006TX006T
CLICVLVEI9T T66VE06°C8L TPSTTL GRGT 9996441 G8CIVL 8¢E0VL | 008TX008T
160G79°09ST GCOSLY8™9EL 688ES6 VOV 8C88YET vr80¥1 61¢¢99 | 00LTX00LT
SCLYVL6IVT ¥9¢8¥V89689 8LEGET LOVI PP8I0TT 70L6ET GLE6SS | 0091X009T
€66C8G8LET 80EVCE €S9 CTEIVT Vel GELILS LS9¢v1 ¥8¥0cS | 00GTX00ST
P8Y08L'G8CT €0L0CV6°ET9 G6E61ECECT 1€4¢99 7866€T ¢e0¥Sy | 00V TX00V T
68C9CY L6TT 9LVBIST LLS BGEIVEGVIT 786144 €906¢T 0TTZ6E | 00ETX00ET
L8IV6IVOTT 9CLCLTO'GES CILGGG GSO0T 609.L6¢ 8EV6ET G9¢vee | 00¢1X00CT
¥L6666°€TOT 9€TOV09°88Y C6IL60V VL6 05¢68¢ 96L9¢1 8¢€I8¢ | 00TTX00TT
GYc6cel 816 LVOTI6VY TIT 60TESESY 48¥€0¢ 96csel 1L9T€¢ | 000TX000T
96T68CELT8 9896LYVL GOV €CVESTL 96L 00S67T GL8EET €0c68T | 006X006
€IL69G8FEL 66E69V6°TIC VILECES €0L 0TTC6 €9seel T€0TST | 008X008
G99668¢°Cr9 LTEVELO6TIE GEVSIET LTI LE664 8¢8CET 8LOLTT | 00LX00L
986S€0V 1SS 69LC80S9LE CELLIVI 8CS veLcE 8L09¢ET 48698 | 009%009
60C0S€E 65T Ce0SE8GTET 81G8GI9 CVY 01961 L6LEET 0SLT9 | 009%00S
68VT98E8IE GIVLY6096T QTIPS LGE V786 6TLOCT 90v0v | 00¥X00%
8€66086°GLC L8OOTVT'LYT SPGLCYI 89T €0.Le 94T16CT earee | 00€x00€
T00G8LT V8T ¢98CIV'€0T 90LOTOS LLT Gelt reavel 8LOTT | 00¢X00¢
G90LTELYT6 99096417°CS SPPOTV66°8S c6 e0Lcel vPee | 00TX00T
uerresuny stodorjey juy | uerreguny sodorjoly uy 9ZIg
JSTOM (sur)ouut,

"S93Pa ()g 1SOW Je SBY X01I9A R 1ot m sydeld

99131edIq o1} 10] WHLIOZ[R [ord UO SHNSOY :ET°F ORI,

34

Chapter 5

Conclusions

This thesis presents two methods for the maximum and minimum weighted
bipartite matching problems. In the ant-matching algorithm, we can find a
matching which the weight is close to the optimal solution. And if in a large
scale weighted bipartite matching problem, using the ant-matching algorithm
to find a matching will be faster than using the Hungarian algorithm. In the
Metropolis algorithm, we can use the algorithm to find a matching in a very
short time, but the weight of the matching as proportions to the optimal
solution is not good. If we want to find a matching in a large weighted
bipartite graph within a rapid time, the Metropolis algorithm is the best
choice.

Besides, with the property of the ant colony optimization algorithm which
the pheromone on the path changes gradually, the ant-matching algorithm
will be useful in solving the dynamic weighted bipartite matching problems
where the vertices and edges in the bipartite graph change with the time. In
the Metropolis algorithm, in each iteration the algorithm randomly chooses
an edge as a matching edge or not. It will not be influenced by the change of
the bipartite graph. Thus, it is applicable on solving the dynamic weighted
matching problems.

35

Bibliography

1]

S. CHIB AND E. GREENBERG. (1995) Understanding the Metropolis-
Hasting Algorithm. The American Statistician, Vol. 49, No. 4 (Novem-
ber 1995), pp. 327-335.

J. MUNKRES. (1957) Algorithms for the Assignment and Transporta-
tion Problems. Journal of the Society of Industrial and Applied Math-
ematics, Vol. 5, No. 1 (March 1957), pp. 32-38.

Y. NAkAMICHI AND T. ARITA. (2001) Diversity Control in Ant

Colony Optimization. Proceedings of the Inaugural Workshop on Arti-
ficial Life (AL°01), pp. 70-78, Adelaide, Australia, December 2001.

T. StUTZLE, M. DORIGO. (1999) ACO Algorithms for the Travel-
ing Salesman Problem. In K. Miettinen, M. Makela, P. Neittaanmaki,
and J. Periaux, editors, Fvolutionary Algorithms in Engineering and
Computer Science. Wiley, 1999.

I, WEGENER. (2005) Simulated Annealing Beats Metropolis in Com-
binatorial Optimization. ICALP 2005. LNCS 3580, pp. 589-601.

36

