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Abstract

This thesis applies two algorithms to the maximum and minimum weighted
bipartite matching problems. In such matching problems, the maximization
and minimization problems are essentially same in that one can be trans-
formed into the other by replacing the weight on each edge with an inverse
of the weight. Depending on the algorithms we used, we will choose the maxi-
mization or minimization problems for illustrations. We apply the ant colony
optimization (ACO) algorithm on a minimum weighted bipartite matching
problem by transforming the problem to a traveling salesman problem (TSP).
It may seem that makes the problem more complicated, but in reality it does
not. We call this algorithm “ant-matching,” which can solve any weighted
bipartite matching problems with or without a perfect matching. Besides, we
also apply the Metropolis algorithm to solve the maximum weighted bipartite
matching problem. To analyze the performance on these two algorithms, we
compare the algorithms with the exact Hungarian algorithm, a well-known
combinatorial optimization method for solving the weighted bipartite match-
ing problem.

Keywords: Metropolis algorithm, Ant colony optimization, Maximum
weighted bipartite matching, Minimum weighted bipartite matching
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Chapter 1

Introduction

The maximum/minimum weighted bipartite matching problem is a combina-
torial optimization problem, and there exist many optimization algorithms
to solve the matching problem. But here we try some heuristic or sam-
pling methods and expect them to generate reasonable sub-optimal solutions
within reasonable time bounds. Specifically we use the ant colony opti-
mization (ACO) and the Metropolis algorithm. In the ACO algorithm, we
transform this matching problem to a traveling salesman problem (TSP)
and use the concepts of ACO algorithm as a basis for a new method to solve
the matching problem. We call the new method “ant-matching.” In the
Metropolis algorithm, we randomly select a matching edge in each iteration
to generate an approximate solution. Then we compare the performances
of these two algorithms with the exact Hungarian algorithm [2], which is a
optimization algorithm used to solve the weighted matching problems.

The structure of this thesis is organized as follows: In Chapter 1 and
Chapter 2, we define the problem of maximum/minimum weighted bipar-
tite matching and introduce the background of the two above-mentioned
algorithms. In Chapter 3, we transform the weighted bipartite matching
problem to a traveling salesman problem (TSP) and apply the concepts of
ant colony optimization (ACO) algorithm as a basis for a new matching al-
gorithm called “ant-matching.” In the latter part of Chapter 3, we apply
the Metropolis algorithm to solve the maximum weighted bipartite matching
problem. Finally, Chapter 4 compares these algorithms with other methods
in solving the weighted matching problems, and we conclude in Chapter 5.



Chapter 2

Preliminaries

2.1 Maximum/Minimum Weighted Bipartite
Matching

2.1.1 Weighted Bipartite Graph

A bipartite graph G = (U,V, E) is a graph whose vertices can be divided
into two disjoint sets U and V' such that each edge (u;,v;) € E connects a
vertex u; € U and one v; € V. If each edge in graph G has an associated
weight w;;, the graph G is called a weighted bipartite graph.

2.1.2 Maximum/Minimum Weighted Bipartite
Matching

In a bipartite graph G = (U, V, E), a matching M of graph G is a subset
of E such that no two edges in M share a common vertex. If the graph
G is a weighted bipartite graph, the maximum/minimum weighted bipartite
matching is a matching whose sum of the weights of the edges is maxi-
mum/minimum. The maximum/minimum weighted bipartite matching can
be formulated as follows:

max / min E Wi;Tij

(ui,vj)EE
U]
> ay=1Y=1,[V|
=1
\4

Y wy=1Vi=1 .U
j=1
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ry; € {0, 1}

where z;; is 1 denotes edge (u;,v;) is an edge in the maximum/minimum
weighted bipartite matching.

2.2 Ant Colony Optimization

In the real world, ants are social insects and communicate with some inter-
esting behavior. Each ant lays down pheromone on the path. When ants
find foods, they will go back to its nest. If some other ants encounter the
path, they will follow it based on the density of pheromone deposited. The
pheromone on the path that ants found initially will be reinforcing. Eventu-
ally, ants will find the foods.

Over time, the pheromone on the path evaporates, thus reducing its at-
tracting strength. The longer path an ant travels down and back, the more
time the pheromone has to evaporate. On a shorter path, an ant travels
down the path and back faster, and the pheromone density remains high
as the pheromone is laid on as fast as it can evaporate. Assume the ant
colony converges to a path. If a shorter path is found by some ants, because
the path is shorter than the original path that the ant colony converged to,
the ants travel down the path and back faster. The density of pheromone
on the shorter path will increase gradually and the density on the original
path will decrease. After a period of time, the ant colony will converge to
the shorter path. It will prevent the ant colony from converging to a local
optimal solution.

The ant colony optimization (ACO) algorithm comes from observing the
behavior of the ants. It simulates the ants and the pheromone evaporation on
the paths. In each iteration, the ants select the paths according to the density
of pheromone deposited. If the path has higher density, it will be selected
with higher probability. After finding a path, the ants lay down pheromone
on the path. In the ACO algorithm, each path represents a solution. Besides,
the pheromone evaporates gradually. The ACO algorithm is illustrated in
Algorithm 1.

Algorithm 1 ACO Algorithm for TSP
while termination condition not met do
generate solutions
pheromone update
end while




The ACO algorithm has been used in solving the traveling salesman prob-
lem (TSP) to find a nearly optimal solution [4]. In the TSP problem, there
are n cities. Each city has to be visited exactly once, and the tour ends
at the starting city. The problem is to find a shortest tour to visit these n
cities. Let d;; be the distance between the city ¢ and the city j and 7;; be
the pheromone on the edge connects 7 and j.

Each of the m ants decides independently on the city to be visited next.
They base their decision on the density of pheromone 7;; and a heuristic
function 7;;. The probability of choosing the next city j from current city ¢
at the tth iteration is

it [73(1)] (n3)” vk
bij = VjeN; (2.1)
T Yienplma ()] (ni)?
where n;; = % is a commonly used heuristic function, a and 3 are two
ij

parameters to determine the relative influences of the pheromone and the
distance, and NF is a list of cities that the kth ant has yet to visit.

After all ants have constructed their complete tours, we update the
pheromone on each edge thus:

m

Tt +1) = (1= p)(t) + > Ark(t) (22)

k=1

where 0 < p < 1 is the pheromone evaporation rate, ATZ-]; (t) is the pheromone
that the kth ant deposited at the tth iteration, which is defined as follows:

k L/LF(t) if(i,5) € Tk(t)
Ary(t) = { 0 i ) & T (2:3)

where L*(t) is the length of the kth ant’s tour at the tth iteration, T*(t) is the
kth ant’s tour at the tth iteration. The shorter the tour the ants found, the
more pheromone is deposited. After a number of iterations, the ant colony
will converge to a nearly shortest tour. Finally, select any starting city and
follow the edge with the highest density of pheromone to visit as the next
city. After completing the tour, the tour is a solution of the TSP problem.

2.3 Metropolis Algorithm

The Metropolis algorithm is an algorithm to generate a sequence of samples
from a probability distribution that is hard to sample directly. It uses the
Markov chain Monte Carlo simulation to approximate the distribution [1].
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The Metropolis algorithm can generate samples from any unknown proba-
bility distribution P(x) and requires only a function proportional to the den-
sity of P(x) that can be calculated at x. The algorithm generates a Markov
chain in which each state z'*! depends only on the previous state x!. Let
Q(z", 2’) denotes the candidate-generating density, where [ Q(z!,z")dz’ = 1.
The algorithm depends on the current state z* to generate a new sample z’
from Q(z!,-)!. The sample 2’ is accepted as the next state '™ if o € U(0, 1)
satisfies Eq. (2.4):

a < (2.4)

If o satisfies Eq. (2.4), /7' = 2/. Otherwise, the current state z' is retained,
i.e., 2/t = 2!, The algorithm is illustrated in Algorithm 2.

Algorithm 2 Metropolis Algorithm
fort=1,2,.... N do
sample 2’ from Q(z',-) and « from U(0,1) {U(0, 1) is the uniform dis-
tribution on(0, 1)}

if o < pEIEL) then

P —
else
P — ot
end if
end for

return {z(M 2@ M)

'Lyuu: but if you do not know what Q is how can you generate x’?7??
Hung-Pin: We don’t know @ at first. But we can observe the possible transitions between
the current state and the next state to find a possible Q. The possible () may be correct
or wrong, but it will describe the transitions. This is reasonable, if we don’t know the
probability distribution P(z), we observe the transitions between the current state and
the next state and infer a possible (). We can use (Q to sample the other next states and
find the unknown probability distribution P(z).



Chapter 3

Maximum /Minimum Weighted
Bipartite Matching Problems

In a weighted bipartite graph G = (U,V,E), we want to find a maxi-
mum /minimum weighted bipartite matching (maximum/minimum-weighted
BM) whose sum of the weights of the edges is maximum/minimum. To solve
this matching problem, we present two methods. For illustrations, we will
introduce each method on a different matching problem. Specifically we ap-
ply the ACO algorithm to solve the minimum-weighted BM problems and
the Metropolis algorithm to solve the maximum-weighted BM problems.

3.1 ACO Algorithm for Minimum-Weighted
Bipartite Matching

In a weighted bipartite graph G = (U,V, E), we want to find a matching
whose sum of the weights of the edges is minimum. Here we apply the
concepts of ACO algorithm as a basis for a new method to solve the matching
problem. First, we transform the matching problem to a TSP problem. It
may seem that makes the matching problem more complicated, but in reality
it does not. Second, we apply the ACO algorithm on the TSP problem
and perform some simplifications to be explained later on solving the TSP
problem. The result is a new method for solving the minimum-weighted
BM problem. In this chapter, the TSP refers to the problem of finding a
minimum weighted complete tour on the complete graph with multiple edges
between vertices, and the number of edges between vertices will change as
the different tour selection.
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Figure 3.1: Transforming a bipartite matching problem to a TSP: (1) The
original bipartite graph G. (2) Add «) and its corresponding edges. (3) The
final graph G'.

3.1.1 Transforming Minimum-Weighted Bipartite
Matching to Traveling Salesman Problem

In a weighted bipartite graph G = (U, V, E), we choose either U or V as the
base vertices and transform the minimum-weighted BM problem to a TSP
problem. We choose the vertices set U as our base vertices for illustrations.
First, for each uw; € U, we create a corresponding virtual vertex u, € U’,
where U’ is the set of vertices correspond to U and |U’| = |U|. Then, for
each (u;,v;) € E where u; € U,v; € V, we create a corresponding back edge
(uj,v;) € E' with an associated weight 0, where E’ contains the edges we
create. Furthermore, we create another back edge (u;, u}) € E’ with a large
associated weight wy,... Here we define this large associated weight wy,.x as
20 * maxX;e|y| jev| Wi;- Finally, for each virtual vertex u; € U’, we create the
edges (u;, ux) € E' to connect each vertex ug € U, uy # u;, with an associated
weight w;, = 0. Thus, we have a new graph G' = (U, V, E,U’, E'). The above
steps are illustrated in Algorithm 3 and Figure 3.1. In Figure 3.1, each back
edge (u},v;) € E' is in green and (u;,u;) € E' is in red. Besides, the edges
(u}, ug) connect each vertex w to all the other vertices in U are in grey.

In the new graph G’ = (U,V, E,U’, E’), on each base vertex u; € U, we
define that if we choose the edge (u;,v;) € E, then we will follow the edge
(vj,u;) € E' back to vertex w) € U’. Thus, for each base vertex u; € U, there
are some paths u; —v; —u} where (u;,v;) € E and (v, ;) € E', and the path
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Algorithm 3 Transform Graph G to G’
Input: Weighted bipartite graph G = (U, V, E)
and each edge (u;,v;) € E has a weight w;;.

E' =10
for u; € U do
create vertex u, € U’
for (u;,v;) € E do
add back edge (u},v;) to E' with weight 0
end for
add back edge (u;, u}) to E' with weight wyyax
for u;, € U do
add edge (ul,ur) to E' with weight 0
end for
end for
return graph G' = {U,V, E,U’, E'}

u; —u; where (u;,u;) € E'. So there exist a edge from wu; to its corresponding
virtual vertex u; € U’. Furthermore, each virtual vertex u} is connected to
all the other base vertices u, € U. Thus, if we start from any base vertex
u; € U on the graph G’, we can visit each base vertex in U exactly once and
end at w; (a Hamiltonian cycle). If we want to find a matching M in the
bipartite graph G, we can find it with a Hamiltonian cycle in the graph G’
as follows.

Let Avail;(V) C V be the vertex set adjacent to the vertex u; € U such
that for each vertex v; € Avail;(V), each edge (u;,v;) € E is not yet an
matching edge in the matching M. On each vertex u; € U, the ant may
select? the edge (u;,v;) € E followed by (v;,u;) € E' where v; € Avail,(V),
or select the edge (u;, u}) € E'. If the ant select the edge (u;, v;) € E followed
by (v;,u}) € E', we add a new matching edge (u;,v;) to M. If the ant select
the edge (u;,u;) € E’, we do not change M. After visiting all the base vertex
u; € U exactly once, we will find the matching M.

Lyuu: what do you mean by select? what if both are possible, which one do you
select?
Hung-Pin: We choose edge based on the pheromone. It will be explained later. Here we
just explain the reduction.

2Lyuu: this is strange. if you are only describing a reduction, why bring up ”select”?
Also if you use "select”, it is better to write ”the ant may select”?
Hung-Pin: I replace reduction with transformation. Moreover, because there are multi-
paths between u; and u}, the different selection has different means in the matching M. I
use the ”select” to explain the differences and the relations between the matching problem
and the TSP problem.

11



Thus, if we find a tour to visit each base vertex u; € U exactly once
and then return to the starting base vertex, and the total weight of this
tour is minimum, we have a minimum weighted bipartite matching M on
the weighted bipartite graph GG. Now, we have successfully transformed the
minimum-weighted BM problem to the TSP problem.

3.1.2 Using ACO Algorithm to Solve Minimum-
Weighted Bipartite Matching

After transforming the weighted bipartite graph G = (U,V, E) to a new
graph G’ = (U,V,E,U’,E'), we can use the ACO algorithm to solve the
TSP problem on G’ and find the solutions of the original matching problem.
But here we can perform some simplifications on solving the TSP problem.
In the graph G’, the algorithm needs to visit all vertices in the set U and
corresponding set U’ of U to do matching. With the simplification, because
we define that if the ant select the base vertex u; € U, then the ant will follow
the paths u; — v; — ] or the path w; — u} back to the vertex u}, we can see
U and U’ same because if the algorithm visits the base vertex u; € U, it will
visit its corresponding virtual vertex u; € U’ next.® Therefore, the algorithm
can just visit each u; € U and select a matching edge (u;,v;) € E. It will
help this method more efficient and applicable for the minimum-weighted
BM problems. We call this new method “ant-matching.”

In the ACO algorithm, the ants choose the next vertex independently
based their decision on the density of pheromone and a heuristic function.
In the ant-matching algorithm, the ants choose the next vertex based on the
same mechanisms. In each iteration ¢, the ants choose the next base vertex
u; € Avail*(U)(t) based on the density of pheromone 7, (t) as Eq. (3.1),
where Avail®(U)(t) is the set of available base vertices that the kth ant has
yet to visit at the tth iteration and wu,;) € U is the predecessor of the vertex
u;. Let NF(t) C V be the set of the kth ant’s available adjacent vertices of
u; at the tth iteration. If |[NF(¢)| > 0, each of the m ants chooses one vertex
v; € NF(t) to do matching based on the density of pheromone 7;;(t) and
a heuristic function 7;;(t) as Eq. (2.1), then adds the weight w;; to LF(t),
where L*(t) is the length of the kth ant’s tour in iteration t. Otherwise, the

3Lyuu: I do not think this is true, as we discussed last Thursday. You want it to be
true, but it may not be true for a general TSP solver. you need to say YOUR TSP solver
will impose this condition
Hung-Pin: I add a sentence before this sentence to explain the condition. Besides, at
the end of the section 3.1, I redefine the TSP problem in the transformation. It is not a
general TSP. It likes a related TSP problem which generalized TSP deals with ”states”.
Thus, I redefine the TSP problem.

12



ant does nothing but adds a large associated weight wya, to LF(t). After
each of m ants visiting all the vertices in the set U, update the pheromone
on each edge and start the next iteration. The pheromone deposited on each
edge (u;,ux) € E' represents an order relation such that if one ant chooses
the vertex u;, it will choose the vertex u; next time. And a large amount of
pheromone on the edge (u;, v;) represents that the edge (u;,v;) is a preferred
matching edge. Thus, we have the order relations to do matching on the
vertex set U and the preferred matching edges on each vertex u; € U. We
can find the solutions of the matching problems according to the density of
pheromone. The algorithm is listed in Algorithm 4, and Algorithm 5 is the
detail.

i [T ()] , o
Prtii = Vi € Avail®(U) (¢ 31
P Y o mon @1 (U)() (3.1)

Algorithm 4 Ant-Matching Algorithm
for t =1 to t,.x do
for k£ =1 to NumberOfAnts do
choose u; € Avail”(U)(t) based on T, ()
choose vertex v; € NF(t) based on 7;;(t) and n;;(t)
end for
update pheromone
end for

3.1.3 The Complexity of Ant-Matching Algorithm

In the ant-matching algorithm, each ant visits each vertex u; in the vertex
set U and searchs each edge adjacent to u; exactly once. Thus, generating
a solution costs O(U + E). Moreover, it costs O(U? + E) to update the
density of pheromone on each edge (u;, uy) where u;, uy € U and on each edge
(ui,v;) € E. If there are m ants and t,ax iterations. The total complexity of
the ant-matching algorithm is O (tyax(m(U + E) + U? + E)).

3.2 Metropolis Algorithm for Maximum-
Weighted Bipartite Matching

In a weighted bipartite graph G = (U, V, E), we can choose the vertex set U or
V arbitrarily to do matching. We choose the vertex set U for illustrations. We

13



Algorithm 5 Ant-Matching Algorithm in Detail

Input: Weighted bipartite graph G = (U, V, E)
and each edge (u;,v;) € E has a weight w;;.
MatchingListp,,, = [|
Weight . = o0
for t =1 to t.x do
{Generate Solution}
for k =1 to NumberOfAnts do
Avail®*(U)(t) = U;
MatchingList, (f) = ]
Weight,(t) =0
while |Avail®(U)(t)| > 0 do
choose available u; € Avail®(U)(t) based on 7;(t)
remove u; in Avail®(U)(t)
if u; has available adjacent vertices NF(t) C V then
choose v; € NF(t) based on 7;;(t) and n;;
add (u;,v;) into MatchingList, (¢)
Weight,(t) = Weight, (t) + w;;
else
add (u;, ¢) into MatchingList,(t)
Weight, (t) = Weight, (t) + Wmax
end if
end while
if Weight, (¢) < Weight . (f) then
Matchinglisty,, = MatchingList,(¢)
end if
end for
{Update pheromone}
for k =1 to NumberOfAnts do
for [ =1 to |MatchingList, ()| and (x;,y;) € Matchinglist,(¢) do
ATime (t) = 1/Weight, ()
if v, # ¢ then
ATy (t) = 1/Weight, (t)
else
ATy (1) = 1/Weight, (t)
end if
end for
end for
for (u;,v;) € E do
Tii(t+1) = (1= p)7(t) + 201, AT (2)
end for
for u;,u; € U,u; # uj do
7ij(t+1) = (1= p)r(t) + 324, ATf(t)
end for
t=t+1;
end for

14



apply the Metropolis algorithm on the maximum weighted bipartite matching
(maximum-weighted BM) problem. Let x be the current search state. x €
{0, 1}/l describes the set of matchings (u;,v;), where z;; = 1 denotes a
matching edge, x;; = 0 denotes not.

In each iteration, choose (u;,v;) € E at random and flip z;;. Thus, in
the current state x, choose a new search state «’ = {zgq, ..., ¥y, } where
z; =1 — x5, and xyy, = x4, if the edges (ug, va) # (ui, v)).

After choosing a new state z’, using a fitness function f to decide if we
choose the new search state ' as the next state. If f(z') > f(z), select 2’. If

f(2") < f(x), select 2’ with the probability et )I;fm, where K is a constant,
otherwise, select . The algorithm is illustrated in Algorithm 6.

Algorithm 6 Apply Metropolis Algorithm to Maximum-Weighted BM
Input: Weighted bipartite graph G = (U, V, E)
and each edge (u;,v;) € E has a weight w;;.

loop
choose (u;,v;) € E at random and flip x;;
sample a from U(0, 1)
if f(z') > f(x) then
select
else ,
if a< ef(x — then
select x’
end if
end if
end loop

Here we choose 0™ as the starting state x for the maximization prob-
lems and choose a fitness function f, where f(x) = 0 for the state x
which there exist two edges in the matching sharing a common vertex, and
flz) = ZuieUﬂ]jev x;;w;; for the state z, not which has two edges that share
the same vertex. This fitness function f will guarantee the matching is rea-
sonable in each iteration.

3.2.1 The Complexity of Metropolis Algorithm

In the Metropolis algorithm, generating a new search state costs a little. To
generate a new search state we choose a edge (u;,v;) € E at random and flip
x;;. It will cost O(1) to generate a new search state. Then, it costs O(1) to
calculate the weight of the new search state and costs O(1) to verify if the

15



new state is reasonable. If the new search state is better than the best state,
record the new search state as the best state and it will cost O(U). Thus, if
there are c iterations, the complexity of the Metropolis algorithm is O(cU).

16



Chapter 4

Experimental Results

After introducing the two methods on solving the weighted bipartite match-
ing problems, we write them in programs to do some experiments and com-
pare them with the Hungarian algorithm, a well-known algorithm for solving
the weighted bipartite matching problems. In a weighted bipartite graph
G = (U,V,E) and each edge (uz,v]) E E has an associated Weight W
We replace each edge weight w;;
bipartite matching problem to a minimum welghted bipartite matching prob-
lem. Thus, we can use these algorithms to solve the maximum or minimum
weighted bipartite matching problem.

4.1 Comparison of Complexity

Before the experiments, we compare the complexity first. The complexity of
each algorithm is listed as follows:

Table 4.1: Comparison of complexity

Algorithm Complexity

Ant-Matching O(tmax(m(U + E) + U + F))
Metropolis Algorithm | O(cU)

Hungarian Algorithm | O(V?)

In Table 4.1, we can easily find that the complexity of the Metropolis
Algorithm is the smallest. But we can’t easily compare the complexity of the
ant-matching algorithm with the Hungarian algorithm. To verify that if the
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ant-matching algorithm is faster than the Hungarian algorithm or not, we
will do some experiments. Moreover, we also test if the Metropolis algorithm
and the ant-matching algorithm can generate a reasonable solution for the
weighted bipartite matching problem within a smaller time and discuss their
usability.

4.2 Graph Sampling Algorithm

Before the experiments, we build some graph generating algorithms to gen-
erate the weighted bipartite graphs. There are two graph generating algo-
rithms:

e Generating algorithm of complete bipartite graphs.

The generating algorithm is used to generate the complete weighted
bipartite graph, which Vu, € U,Vv; € V, 3(u;,v;) € E.

e Generating algorithm of sparse bipartite graphs.

The graph generating algorithm generate a weighted bipartite graph
G = (U,V, E) randomly and each vertex u; € U has at most a specified
number of adjacent vertices. It does not ensure that the generated
graphs has a perfect matching.

We will use these algorithms to generate the graph samples to do the
experiments.

4.3 Results

In the experiments, we configure some variables at first. In the ant-matching
algorithm, there are 200 iterations and 20 ants in each iteration and we make
a = 2 and § = 1 to make the relative influence of the pheromone doubles
that of the distance. In the Metropolis algorithm, we initialize 1, 000, 000, 000
cycles to generate the new search states. After configuring the variables, we
start the experiments, and the results are listed as follows. We will analyze
the results in different aspects:

e Time
The cost of time in solving the weighted bipartite matching problems.

o Weight
The maximum weight found by each algorithm. We solve the maximum
weighted bipartite matching problems in our experiments.
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Size Ant-Matching Metropolis | Size Ant-Matching Metropolis
100x100 95.13% 60.87% 1100x1100 | 91.20% 52.07%
200x200 94.21% 56.73% 1200x1200 | 91.10% 52.29%
300x300 92.94% 55.75% 1300x1300 | 91.52% 51.98%
400x400 92.93% 54.93% 1400x1400 | 90.96% 51.59%
500x500 92.94% 53.81% 1500x1500 | 90.93% 51.64%
600x600 92.67% 54.49% 1600x1600 | 90.95% 51.72%
700x700 92.36% 52.79% 1700x1700 | 90.95% 50.92%
800x800 91.66% 52.40% 1800x1800 | 90.75% 51.25%
900x900 92.16% 52.84% 1900x1900 | 90.58% 51.59%
1000x1000 | 91.73% 52.54% 2000x2000 | 90.62% 51.71%

Table 4.2: The weights as proportions to the weights of the optimal solution
on the complete bipartite graph.

4.3.1 Results on Complete Bipartite Graphs

We use the ant-matching algorithm, the Metropolis algorithm, and the Hun-
garian algorithm to solve the maximum weighted bipartite matching prob-
lems on each complete bipartite graph with different problem size. Table 4.5
is the numeral result in solving the matching problems. In Table 4.5, the re-
sult found by the Hungarian algorithm is optimal. Table 4.2 lists the weights
found by the ant-matching algorithm and the Metropolis algorithm as pro-
portions to the weights of the optimal solution. In Table 4.5, we can see that
the weights found by the ant-matching algorithm are close to the weights of
the optimal solution. In Figure 4.1, the running time of the ant-matching
algorithm increases gradually depending on the sizes of matching problems.
Even the running time of the ant-matching algorithm is larger than the run-
ning time of the Hungarian algorithm, but the growth rate of running time of
the ant-matching algorithm is smaller than the Hungarian algorithm. Thus,
if the problem size is very large, the ant-matching algorithm will be faster
than the Hungarian algorithm.

The weights found by the Metropolis algorithm are close to the half of
the weights of the optimal solution. But the running time of the Metropolis
algorithm is very small. In practice, we can find the result with less number
of cycles in the Metropolis algorithm. The initialized 1,000, 000, 000 cycles is
used to raise the running time, it will help to draw the transitions on different
problem sizes in Figure 4.1.
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Figure 4.1: The running time of each algorithm on the complete bipartite
graph.

4.3.2 Results on Sparse Bipartite Graphs

In the sparse bipartite graph G = (U, V, E') which each vertex u; € U has at
most 2% * |V| edges, the numeral result of this matching problem is listed
in Table 4.10. Table 4.3 is the result of weights found by the ant-matching
algorithm and the Metropolis algorithm as proportions to the weights of
the optimal solution. In Table 4.3, the weights found by the ant-matching
algorithm are close to the weights of the optimal solution. And in Figure 4.2,
the running time of the ant-matching algorithm is much less than that of the
Hungarian algorithm as the problem size increases. Thus, in a large scale
bipartite matching problem, we can use the ant-matching algorithm to find
a solution in a smaller time, and the result is close to the optimal solution.
In Table 4.3, we can see the weights found by the Metropolis algorithm
are close to half of the weights of the optimal solution. In Figure 4.2, even
we initializes 1,000, 000,000 cycles in the Metropolis algorithm, the running
time is still small. Thus, if we want to find a matching in a rapid time and
don’t care the weight, we can use the Metropolis algorithm to find a solution.
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Figure 4.2: The running time of each algorithm on the bipartite graph where
each vertex u; € U has at most 2% * |V/| edges.

Size Ant-Matching Metropolis | Size Ant-Matching Metropolis
100x100 96.81% 72.27% 100x100 95.57% 47.06%
200x200 98.42% 56.44% 200x200 95.18% 47.56%
300x300 98.35% 53.23% 300x300 95.53% 46.97%
400x400 97.37% 50.95% 400x400 94.82% 47.81%
500x500 97.31% 48.83% 500x500 95.28% 47.09%
600x600 97.11% 48.83% 600x600 95.03% 47.43%
700x700 96.64% 47.78% 700x700 94.58% 47.00%
800x800 96.86% 48.52% 800x800 94.59% 47.25%
900x900 96.09% 48.37% 900x900 94.56% 46.99%
1000x1000 | 95.80% 48.16% 1000x1000 | 94.28% 47.30%

Table 4.3: The weights as proportions to the weights of the optimal solution
on the bipartite graph where each vertex u; € U has at most 2% * |V| edges.
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Figure 4.3: The running time of each algorithm on the bipartite graph where
each vertex u; € U has at most 5 edges.

Here is another sparse bipartite graph G = (U, V, E) where each vertex
u; € U has at most 5 edges, and the numeral result of this matching problem
is listed in Table 4.11. Figure 4.3 is the graphic illustration of the time costs
by each algorithm. We can see that the running times of the ant-matching
algorithm and the Metropolis algorithm are still much less than the running
times of the Hungarian algorithm. In Table 4.4, the weights found by the
ant-matching algorithm are close to the optimal solutions. Thus, in a large
scale and very sparse graph, we can use the ant-matching algorithm to find
a matching in a smaller time and the weight of the matching is close to the
weight of the optimal solution.
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Size Ant-Matching Metropolis | Size Ant-Matching Metropolis
100x100 98.23% 66.07% 1100x1100 | 97.53% 50.51%
200x200 97.75% 59.71% 1200x1200 | 97.17% 51.07%
300x300 96.00% 56.68% 1300x1300 | 97.61% 51.01%
400x400 96.57% 56.24% 1400x1400 | 97.33% 49.85%
500x500 97.93% 54.29% 1500x1500 | 97.06% 49.63%
600x600 96.74% 52.85% 1600x1600 | 97.38% 49.12%
700x700 97.27% 52.71% 1700x1700 | 97.01% 49.21%
800x800 97.35% 51.83% 1800x1800 | 97.22% 49.01%
900x900 97.42% 51.61% 1900x1900 | 96.99% 48.63%
1000x1000 | 96.80% 51.61% 2000x2000 | 97.06% 48.65%

Table 4.4: The weights as proportions to the weight of the optimal solution
on the bipartite graph where each vertex u; € U has at most 5 edges.

4.3.3 Results on Ant-Matching Algorithm

In addition to the above-mentioned bipartite matching problems, we also
solve the matching problems on different bipartite graphs in our experiments.
The numeral results are listed in Tables 4.5-4.13. We will analyze the results
and indicate the features of each algorithm.

In the ant-matching algorithm, Figure 4.4 is the graphic illustration for
the running times on each different bipartite matching problem. In Figure
4.4, we can easily see that the running time of the ant-matching algorithm
depends on number of edges. The less the number of edges in the bipartite
graph, the less time the ant-matching algorithm costs on solving the matching
problem.

Figure 4.5 illustrates the transitions of the weights on each different graph
on different problem sizes. In Figure 4.5, as the problem size increases, the
weights found by the ant-matching algorithm on each different graph as pro-
portions to the weights of the optimal solution decrease slowly. Besides, the
weights as proportions to the optimal solution are greater than 90%. With
the advantages of the smaller running time, we can use the ant-matching
algorithm to find a matching in a smaller time, which the weight is close to
the optimal solution.
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Figure 4.4: The running times of the ant-matching algorithm on each differ-
ent bipartite graph.
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Figure 4.5: The weights found by the ant-matching algorithm as proportions
to the weights of the optimal solution on each different bipartite graph.
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Figure 4.6: The weight found by the Metropolis algorithm as proportions to
the weights of the optimal solution on each different bipartite graph.

4.3.4 Results on Metropolis Algorithm

The running time of the Metropolis algorithm is much smaller than the other
two algorithms. Even the cost times have slight change on different prob-
lem sizes, but they are still smaller than the other two algorithms. But the
weights found by the Metropolis algorithm are not as impressive. In Figure
4.6, as the problem size increases, we can see that the weights found by the
Metropolis algorithm as proportions to the optimal solution lie in between
45% and 55%. Thus, if we don’t care the weights found by the Metropolis al-
gorithm, we can use the Metropolis algorithm to solve the bipartite matching
problem within a small time.
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Chapter 5

Conclusions

This thesis presents two methods for the maximum and minimum weighted
bipartite matching problems. In the ant-matching algorithm, we can find a
matching which the weight is close to the optimal solution. And if in a large
scale weighted bipartite matching problem, using the ant-matching algorithm
to find a matching will be faster than using the Hungarian algorithm. In the
Metropolis algorithm, we can use the algorithm to find a matching in a very
short time, but the weight of the matching as proportions to the optimal
solution is not good. If we want to find a matching in a large weighted
bipartite graph within a rapid time, the Metropolis algorithm is the best
choice.

Besides, with the property of the ant colony optimization algorithm which
the pheromone on the path changes gradually, the ant-matching algorithm
will be useful in solving the dynamic weighted bipartite matching problems
where the vertices and edges in the bipartite graph change with the time. In
the Metropolis algorithm, in each iteration the algorithm randomly chooses
an edge as a matching edge or not. It will not be influenced by the change of
the bipartite graph. Thus, it is applicable on solving the dynamic weighted
matching problems.
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