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Abstract

Financial engineering and financial innovation fisbhed in last decades. We have
developed many new financial products to providelgee instruments for risk

management, and promoted market efficiency and tmieness. The pricing

problems of this financial field will try to builanathematical models and derive
analytic pricing formulas. But most exotic derivag are too complicated to derive
formulas. We must use computers to handle nhumemethods and simulations, so
computer science can give them a favor. This thdisisusses pricing of Parisian
options and includes a lot of subjects: financiadry, probability & statistics,

discrete mathematics, computational complexityjgre& analysis of algorithms, and

parallel processing.

Parisian options are path-dependent options asid ¢losed-form solutions are
not available up to now. We propose two fast finalnglgorithms to solve it. First we
price Parisian options based on a combinatorialragghh in binomial tree by

Costabile in 2002. To refine Costabile’s algorittime complexity O(n3) can be
reduced toO(n?); If ignore binomial coefficients are given, theasp complexity

O(nz) could be reduced t®(n). Second on Monte Carlo simulation, we introduce

the inverse Gaussian distribution and its sampimeghod. To combine simulations
and the inverse Gaussian distribution samplingaft reduce divided time intervals to
save computational time. Because the paths gedebgt®&lonte Carlo simulation are

independent, it is easy to apply parallel processhiowadays multi-core processors
are very popular, it is also a good idea to enhamoceputational efficiency. We give

some descriptions and applications on it.

All financial algorithms in this thesis are implented by the C programming
language. We execute the programs in our high-pegoce computing clustered
platform, and deal with simulation jobs synchrongushen the system can be fully
exploited.

Keywords: Parisian options, barrier options, option priciaggorithm, binomial tree
model, combinatorial method, Monte Carol simulatimverse Gaussian distribution,
parallel processing
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Chapter 1
Introduction

A derivative (or derivative security) is a financiastrument whose value depends on,
or is derived from, the values of other, more hasinderlying assets such as
commodities, equities, bonds, interest rates, exgharates, indexes, or other
derivatives. The main types of derivatives areresyuforwards, options, and swaps.

1.1 Options

There are two basic types of option. A call optigves the holder the right to buy the
underlying asset by a certain date for a certacepA put option gives the holder the
right to sell the underlying asset by a certaicqrilThe date specified in the contract
is known as the expiration date. The price spetiiirethe contract is known as the
strike price. American and European options diffewhen they can be exercised.
American options can be exercised at any time uthéoexpiration date, whereas
European options can be excised only on the exmirdtate [9].

There are two sides to every option contract. @nside is the investor who has
taken the long position. On the other side is tieestor who has taken a short
position. Let K be the strike price ands; the final price of the underlying asset.

There are four types of European option positich their payoff:

1. Long a call, payoffmax( 0,S; —K)
2. Long a put, payoffmax( 0K -S;)
3. Short a call, payoffmin(0,S; —K)

4. Short a put, payoffmin(0,K —S;)

Figure 1.1 shows these payoffs.
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Figure 1.1: Payoff of options.
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1.2 Barrier and Parisian Options

Options whose payoff depends on whether the underlgsset’s price reaches a
certain price H are called barrier options. These barrier opticars be classified as
either knock-out options or knock-in options. A kkeout option is like a standard
European option except that it ceases to exisarifiér H is reached by the price of
its underlying asset. A knock-in option, in contrammes into existence if a certain
barrier H is reached.

Let S be the initial price of the underlying asset. Aokk-out option is
sometimes called a down-and-out optionHf < S,. A knock-out option is sometimes
called an up-and-out option iH > § . A down-and-in option is a knock-in option
that comes into existence only when the barrige&ched andH <§, (see Figure
1.2). An up-and-in option is a knock-in option tlgaimes into existence only when
the barrier is reached antl > §, [12]. Because there are two basic types of options
i.e., calls and puts, there are eight types ofdstahbarrier option:
down-and-out call;
down-and-out put;
up-and-out call;
up-and-out put;
down-and-in call;

a bk NPk



6. down-and-in put;
7. up-and-in call;
8. up-and-in put.

H

Figure 1.2: A sample underlying asset’s price mdth down-and-in option.

Barrier options have many variations. If the barmeust be breached for a
particular length of time, we have a Parisian aptioke common barrier options, it
can be of the form of a down-and-out, up-and-ootyr@tand-in, up-and-in call or put.
An up-and-out (up-and-in) Parisian option is aniaptthat expires (comes into
existence, respectively) if the underlying ass@rge remains continuously at or
above a given barrier over a pre-specified timenirdl, the so-called window period.
Conversely, a down-and-out (down-and-in) Parisigmion expires (is activated,
respectively) if the underlying asset’s price ramasontinuously at or below a lower
barrier over the window period [6].

1.3 Thesis Structure

There are five chapters in this thesis. We intredanew financial products in this

Chapter. Chapter 2 reviews the background knowledgd basic numerical

techniques. Chapter 3 describes the combinatopalroach for pricing Parisian

options by Costabile and how to speed up Costahdligjorithm. Chapter 4 discusses
how to use Monte Carlo simulation with the inve@&aussian distribution for pricing

Parisian options. Chapter 5 concludes.



Chapter 2
Fundamental Concepts

In this chapter, we describe pricing models andhods. It covers the Wiener process,
the Black-Scholes option pricing model, the riskinal valuation, and the binomial
options pricing model.

2.1 Wiener Process

A Wiener process is a particular type of Markovchktstic process. It is sometimes
referred to as normalized Brownian motion. A praces, follows a Wiener process
if it has the following two properties:
1. The changeAz during a small period of timeAt is
Az = 8&,

where ¢ has a standardized normal distribution.
2. The value of Az for any two difference short intervals of timeyt, are

independent.
That is a stochastic process where the changeaniable during each short period of
time of length At has a normal distribution with a mean equal t@ zerd a variance
equal to At.

We assume that our stock price follows the sto@hasbcess:
dS= u Sdt+0 Sdz,
where o is the volatility of the stock price, angk is its expected rate of return.
This equation is the most widely used model oflsfarice behavior and is also called
the geometric Brownian motion [9].

2.2 Black-Scholes Option Pricing Model

In the year 1973, Fisher Black and Myron Scholesliphed the well-known option
pricing model now universally known as the Blacki®es option pricing model [2].
Several assumptions are made in the model as fellow

1. The stock price follows the procestS= 1 Sdt+o0 Sdz with constant z and
O .

The short selling of securities with full use obpeeds is permitted.

There are no transactions costs or taxes.

All securities are perfectly divisible.

There are no dividends during the life of the datie.

There are no riskless arbitrage opportunities.

o gk wnN



7. Security trading is continuous
8. The risk-free rate of interest;, , is constant and the same for all maturities.

Black and Scholes derived the following formula fbe price at time O of a
European call and a European put:
C=§N (dl)— Ke™N (dz)
P=Ke"N(-d,)-SN(-d,)’

where
dl:ln(Sb/K)Jr(rJraz/Z)T
T
_In(Sb/K)Jr(r—az/Z)T B
d, = — =d,-o\T

N (x) = cumulative probability distribution fution for a standardized normal distrilmrt
S = stock price at time zero
K = strike price
r = continuously compounded riskefe interest rate
o = stock price volatility
T =time to maturity of the option

When the stock provides a continuous dividend yaldate g, we obtain the
price of a European call and a European put agectisely,

C=5€eN(d,)-Ke""N(d,)
P=Ke"N(-d,)-Se"N(-d,)’

and the parametersl, and d, are given by

i In(S,/K)+(r-q+0%/2)T

: o
_In(Sb/K)Jr(r—q—az/Z)T_ '
d, = T —d,-oT

These formulas, due to Merton [13], remain valiérevf the dividend yield is not
constant during the life of the option as long @sis replaced by the average

annualized dividend yield during the life of thetiop.

2.3 Risk-Neutral Valuation

Risk-neutral valuation of derivatives assumes niske-neutral world where investors



are assumed to require no extra return on avemageearing risks. It gives the correct

price for a derivative in all worlds, not just irriak-neutral world. This means that for

valuation purposes we can use the following procedu

1. Assume that the expected return from the underlgssget is risk-free interest
rate, r.

2. Calculate the expected payoff from the derivative.

3. Discount the expected payoff at risk-free interags.

Suppose the asset provides a yieldgpf The expected return in the form of capital

gain must ber —q.

In a risk-neutral world, the current price of aidative then is given by

Pricee TE[ f (S, i+ S) ],

where T is the maturity date of derivativef (S,,---,S;) is the derivative’s payoff,

which may be dependent on entire price historyrafenlying asset, andy,,---,S; is
the history of prices for the underlying asset fram0 to T.

2.4 Binomial Option Pricing Model

John Cox, Stephen Ross and Mark Rubinstein dewveltpe original version of the
binomial option pricing model (BOPM) [7]. The BOPM a binomial tree (lattice)
algorithm. The binomial model is a discrete timel discrete variable pricing model.
It suffers from two unrealistic assumptions:

1. The stock price takes on only two values in a tatep.

2. Trading occurs at discrete points in times.

—

—
a

At
Figure 2.1: One time step in binomial tree.

First we assume the stock price follows the procdSs- 1 Sdt+oc Sdz. For
brevity, we useS for the current stock price here. Consider theclstat time



At=T/n, where T is the time to maturity, andh is the number of time steps. It
implies that

E[ S(At)]=se
Var[S(At)]= 8% (¢ ~1) > S%o At

Second we assume that we are working in a riskrakutorld, so gz=r. As in

Figure 2.1, it limits the stock moves from its @nt price S to one of two new
values, Su and &, in each time step. It will increase t8u with probability p
or decrease toSd with probability 1- p. The expected stock price at timg

converges toSe™ . Then we get:
pSu+(1-p)Sd = S
The variance of a variabléX is defined asE(XZ)—[E(X)]2 [28]. The variance
of the stock price at timeAt converges toS’c?At. Then we get:
p(u)’ +(1- p)(Sd)* (™) = St At
or
pu’+(1- p)d*—e”™ = o ?At.

Cox, Ross and Rubinstein (CRR) model imposes

we can get the solution

The option on the stock whose current pricefis When stock price moves up
to Su, the option price isf,; when stock price moves down t&d, the option price
is f,. The risk-neutral valuation gives

f=e™(pf,+(1-p)fy).

Using the two values of the option in the next tistep, we can evaluate the option
price at a given node. This procedure is calleckivacd induction because it works
backward in time.
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O
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Figure 2.2: Binomial tree.

Consider binomial trees with more than one tinep gsee Figure 2.2). Note that
the tree recombines in the sense that an up mdleavéd by a down move leads to
the same asset price as a down move followed lypamove. Note also thati and
d are the same at each node of the tree and thestepe are of the same length, so
the risk-neutral probabilityp is the same at each node.

By risk-neutral valuation principle, the option gwiis equal to its expected
payoff in a risk-neutral world discounted at thekrifree interest rate. The BOPM is a
three-step procedure:

1. Generate the price tree.

2. Calculate the payoffs in terminal nodes.

3. lterating backward induction from the end of a tredts beginning, we are able
to obtain the value of the option at time zero.

In Figure 2.2 there are quadratic, i.@(nz), nodes. So the BOPM must taI@(nz)

steps to apply backward induction by visiting evemgde. We can reuse a
one-dimensional array of size+1 instead of a two-dimensional array of size

(n+1)x(n+1) for storing node values; so the memory requirenienteduced to

O(n).

As the number of time steps increases, the stoick panges over ever-larger
numbers of possible values, and trading takes phaeely continuously. It can be
proved that the price computed by the BOPM conwerge the price from the
Black-Scholes option pricing model as— «.



Chapter 3
Trees with Combinatorial Method In
Pricing

Combinatorial methods use combinatorics to solveblems. It has been widely
applied in many fields [10]. This chapter dealshwitsing combinatorial methods to
price financial options. Under the popular tree slpdombinatorial methods can
often speed up the pricing of European optionsrbgrader of magnitude [12].

3.1 Combinatorial Methods

Once we have the probability distribution of tharimal nodes, these options can be
priced by simply summing the products of the pralidggland the payoff function at
each terminal node to obtain their expected payidfé theoretical price then equals
the discounted expected payoff. We give some exasrimlow.

In the n time step case, the value of a European call is

n

C= e’TZG]p" (1-p)"’ xmax 0§u'd" - K).

i-0

The number of paths fron§, to the terminal priceSu'd™’ is given by the

J
computation andj is the number of up moves of the underlying asg@ite during

binomial coefﬂment[ ] where n is the number of time steps used for price

the option’s lifetime. Each path to the terminalicpr Su'd"’ has the same

n-j

probability p’ (1— p) . To adapt the equation to price European putsplgim

replace the call payoff, max(O,S)ujd”’j—K) , with the put payoff,

max( 0K - Su’d"™!). The resulting formula becomes

n

P= erTZL?]pj (1-p)"' max( 0K - Su'd"’).

j=0

Let a be the minimum number of upward price moves fer ¢hll to finish in

the money, i.e.,a is the smallest nonnegative integer such tgat’d™* > K, or



o In(K/s,d")
| In(ud) |

Hence,

n

C= erTzirj‘]pi (1-p)"’ (su'd" -K).

j=a

Also, let b be the maximum number of upward price moves ferght to finish in
the money, i.e.,b is the largest integer such th&u’d"® <K, or
In(K/S,d")
b=| ———=|.
In(u/d)
Hence,

P=g" [rj‘]p" (1-p)"' (K-gu'd").

b
=0
It implies a linear-time,O(n), and constant-space)(1), algorithm for pricing

standard European options [12].

Consider the down-and-in call with barriet < K. We have to calculate the
number of admissible paths that lead to a partidiglaninal node. Towards that end,
we pick the barrier levelh to be one of then+1 possible terminal underlying
asset’s prices that is closed to, but does notegkckl . We call it the effective barrier.

This condition Su"d™" <H implies
In(H/s,d")
h=| ———|.
In(u/d)
We effectively useSu"d™" notH as the barrier on the binomial model. The option

value equals
2h

erTjZ;a[n—zthr j]pj (1-p)" (Su'd™ -K).

Not all n give acceptable numerical results [4]. For coneaog reasons, the

effective barrier level should be close td, i.e., H~Sd’ :Soe”'“ﬁ/_n for some

integer j. But the effective barrier leve§d’ corresponds to a terminal underlying



asset’s price only whem- j is even. To close this gap, we decrementby one, if
necessary, to make— j an even number. The preferrads are finally

N d, ifd-jiseven | 57T
~|d-1, otherwise '

| n?(/H)

It also implies aO(n)-time, O(1)-space algorithm [11].

3.2 Technique for Handling Large Numbers

When the life of the option is divided into ever nactime steps, the number of
underlying asset’s price paths increases exponignt&o the combinatorial method
rapidly generates large numbers. The primitive dgipees of typical programming
languages cannot store numbers larger than a rcertagnitude. For example, the

largest number the data type double can represeht7976931348623157 1%B.
The problem that occurs when the value to be repted is greater in magnitude is
called overflow. To solve this problem, we will gess data in the log domain. We

calculate In(p,- p,) from Inp, and Inp, as follows:

In(pl' pz):ln p,+In p,.

We calculateln(p,+ p,) from Inp, and Inp, as follows:

In(p,+p,)=In [ pl£1+%in

=|n(pl)+|n£1+%]
=In(p)+In(1+€">"")

When the number in the decimal domain is neededplgi take the exponential
function of the final number for the desired numberthe following algorithms, we
will assume the large numbers technique implicitly.

3.3 Costabile’s Algorithm

To evaluate Parisian options, Costabile proposealgorithm in the CRR model and
applied the combinatorial method [6]. In this sewcti we describe Costabile’s
algorithm for European up-and-out Parisian options.

We consider a particle whose dynamics is desctilyeal random walk in the two



dimensional spacdi, j). From (i, j), it moves to(i+1,j+1) with probability p

if an up move occurs or tt@i +1,] —1) with probability 1- p if a down move takes

place. Without loss of generality we assume that ghrticle starts from the origin

PE(0,0).

The number of paths,N(i,j), from the origin P to (i,j) has the
well-known recursive relation,N(i,j)=N(i-1j-)+N(i-Lj+3. N(i,j) is

given by the binomial coefficien((_ I')/Zj' Suppose the barrier level in the
I+ ]

binomial tree is at leveim. Let g(i, j) denote the number of the paths frofth to

(i,j) so that the paths spend fewer tharconsecutive time steps at or above the

barrier level, | e N, which is an input parameter. Such paths aretedi@ admissible.
Later we will describe how to deriven from the barrierH and | from the
window period w.
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A
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D m<j<l+m
+— barrier level
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Figure 3.1: Partitions of the areas of computatibms figure is due to Prof. Jr-Yan
Wang.

We derive g(i,j) for (i,j) in different regions of the tree (see Figure 3.1).
The first step considers the nod@sj) such thatO<i<I+m called Region A. In
this caseg(i, j)=N(i,j). Indeed, such nodes are characterized by at mosp
moves andi—m<I. In the second step we observe that, for the nc(diejs) such

that | +m<i<n,l+m<j<n (RegionB), g(i,j)=0. Indeed, in such cases, a path

starting form P can reach the level + m< j only if the particle spends at leakt
successive time steps at or above the barrier.l@Ved third step concerns the nodes

(i,j) located below the barrier level (i.el+m<i<n,—n< j<l+m or Region C).

Each path fromP to (i, j) in Region C makes its last move below the bateiee!.



This implies g(i,j)=g(i-Lj-9)+g(i-1j+3.

In the final step we are left to calculatg(i, j) of the nodes(i, j) such that
l+m<i<n,m<j<l+m or Region D. Note that in this case the recursetation

9(i,j)=9(i-Lj-)+g(i-1j+3 is no longer holds. Indeed some of the

g(i-1,j+1) paths fromP to (i-1,j+1) may have spent-1 time steps at or
above the barrier level already, in which caserioee from time stepi—1 to i is

made above the barrier level. Such paths have extladed fromg(i—1,j+1).

Each admissible path fron® to (i,j) in Region D can be divided into two

different parts. The first part is an admissibléhdeom P to a node which is located

at level m-1 and then makes an up move to a ndie2k—(j—m),m) on the

barrier level. The number of the first partial pah given by the quantity

g(i—2k—(j-m)-1,m-1). The second part is a partial path from the finade of

first partial path, (i — 2k —(j—m),m), to the node(i, j) with the number of moves

strictly smaller thanl, and this part should be never cross the bareeell The
parameter k should be a nonnegative integer and the condition

i—(i—2k-(j-m))<l implies:
o<k —U-m
2

The number of the second partial paths can be cteds the difference between the
following two terms:

1. The first is the number of paths from the node 2k—(j—m),m) on the

2k+j—m]

barrier level to (i, j). It is given by( _
K+j—-m

2. The second is the number of paths from the same tmﬂi, j) which cross the



2k+j-m
barrier level. Using the reflection principle, & given by[ " J_ ] with
K+1+j-m

_ a
the conventloan]:O for a<b.

Finally we get the number of admissible paths as

G- g(i—2k—(j—m)—1,m—1)-K2k+j_mj—£Zk”_mﬂ-(l)

o 0m) K+j—-m kK+1+j-m
2

See [6] for additional discussions.

We assume that the underlying asset’s price dycgimidescribed by the CRR
model and also use the notations as before. Ribeallw denotes the window period
measured in years and it must be limitedde w<T . When a Parisian option with
w=0, this is a standard barrier option. When=T, we have either a standard
European option or a option with zero value.

In order to drive the binomial algorithm for evaling Parisian options, we need
to determine the total number of time steps, to be used in the price computations.
As pointed out by Boyle and Lau, at first we buid a binomial tree such that the
barrier is close to but just below a layer of hontal nodes in the tree [4]. Recall that
m is the number of successive up moves for the Uyidgrasset’s price, starting

from §,, must make to touch or cross the barrtér. This condition Su™ > H

implies
| mPe’T
n= In?(H/S) |
and
{In(H/sow
oAt |

The next step is to determine the number of tinepsstl, corresponding to the
window period w. Because, in generaly/At is not an integer, we sdt equal to

[w/At], the integer closest tav/At. The price of the up-and-out Parisian call option

can now be easily derived:

PC = e”TZn: g(n,2j-n)p' (- p)"’ (Sbu"d”’j - K) .

i-a



Recall that g(n,2j—n) iIs the number of paths which spend fewer than
consecutive time steps at or above the barriell kv these paths are made up pf

up moves andn— j down moves.

Together with the initial conditions:

n n
= :1,
ol
Pascal’s triangle gives a method for calculating hinomial coefficients by using the
following well-known identity:
n
k

n+1 n
= +
k k-1
where n and k are positive integers witm>k [17]. The binomial coefficients

can be computed irO(nZ) time. Assume the binomial coefficients have been

computed from now on. See Figure 3.2 for Costabaégorithm.

1: At=T/n;

2: u= exp(ax/ﬁ) ;

3: d=1u;

PR exp((ru—_q()jAt)—d ,
_|In(H/s)

S m_{ oAt W

6:  |:=[w/At];

7. a=[In(K/Sd")/in(wd)];

8: for i:=0 to n do
for j:=1 to —i step -2 do
10:  if i<l+m then{Region A}

g[i][”::[(nlj)/z];

12:  elseif j>I+m then{Region B}

gfi][i]=0;

©

1

.

1

w




14:  elseif j<m then{Region C}
15: if j=-1 then

16: gfi][i]=gli-2][j+1];

17: else
18 ofilli]=oli-gli-g+oli-4i+3;
19: endif

20:  else{Region D}

21: g[i][i]=0;

22:  for k=0 to {w—o.sJ do

23: if 2k+j-m<k+1+)—m then
. ) ) 2k+j-m

24: g[l][]]::g[l—Zk—(]—m)—l][m—]]-[k+jj_m];
25: else

) — . ) 2k+j—m K+ j-m)|
26: g[l][j].:g[l—Zk—(j—m)—l}[m—]]-K k+j—mj_(k+1+j—mﬂ’
27: endif
28: endfor
29: endif
30: endfor
31: endfor
32: C=0;

33: for j==a to n do
34: C::C+g[n][2j—n]-p"(l—p)nf"-(sbu"d””'—K);

35: endfor
36: return C-e"";

Figure 3.2: Costabile’s algorithm for up-and-outi§lan options.

We proceed to count the number of operations meesleompute theg(i, j).

For simplicity, the number of time steps,, is odd for the option evaluation and the

parametersm and | are even. Because thg(i,j) in Region A and Region B



needed no arithmetic operations, Table 3.1 onlyshthe number of mathematical
operations needed to implement Costabile’s algorithRegion C and Region D. See
[6] for more details. Recall that was defined as the integer closed to
w/At =w-n/T. It follows that the computational cost is a cuhiaction of n, or

O(n3). The numbersg(i,j) are stored in a two-dimensional array of size

(n+1)x(2n+1) so the memory requirement '@(nz).

Region C Region D

Additions (n+ m)2+2m+ n+1-(1+ Zm)2

peetest [aecpemp )

Subtractions 0

e

Multiplications 0

e

Table 3.1:Number of operations needed in Region C and Regidor [Costabile’s
algorithm.

3.4 An Improved Algorithm

For nodes(i, j) in Region D, g(i,j) depends on theg(i—2k—(j—m)-1m-1)
located at levelm—1 in Region A and Region C (recall Equation (1)). #® need

not calculate allg(i, j) in Region D. In Region C wherj = m-1, the recursive
relation g(i,j)=g(i-Lj+1)+g(i-1j+ 3 is also dependent on thg(i—1,m)

located at levelm. So we only need to calculate thg(i, j) in Region D which are

1. nodes located at levein, and
2. nodes located at the’th time step.

It is not hard to observe that otheg(i,j) are not needed for calculating

g[n][2j—n] of Line 34 in Figure 3.1.



The memory requirement can be reused if the spaaeused. Specifically,

replace the two-dimensional array[n+1][2n+1] with a one-dimensional array of
size 2n+1. But, we should use another one-dimensional am[awl] to store a

copy of g(i,m-1) located at levelm-1 for calculating g(i, j) in Region D.

These crucial points can be used to improve Cdstabalgorithm, and the
results must be identical to Costabile’s algorititeee Figure 3.3 for the improved
algorithm.

1: At:=T/n;

2: u= exp(ax/ﬁ) ;

3: d=1u;

4 e exp((ru—_q()jAt)—d ,

& m {In(H/&)]
oAt

6: | :=[wAt];

7. a=[In(K/8d")/in(wd)];

8: for i:=0 to n do
9: for j=i to —i step -2 do
10:  if i<l+m then{Region A}

g[”:{(nij)/z];

12:  elseif j>I+m then{Region B}

1

=

13: g[i]=0;

14: elseif j<m then{Region C}
15: if j=—i then

16: gli]=9[i+1];




17: else

18: gli]=9[i-1+9g[i+1];

19: endif

20: elseif j=m or i =n then {Partial Region D}
21: g[i]=0;

22:  for k=0 to {w—o% do

23: if 2k+j-m<k+1+|j—m then
. . . 2k+j—-m
24: =tli—-2k—(j—-m)-1|- X
oi]=t[i-2k-(j-m) J[kﬂ-_m)
25: else
) ) ) 2k+j—m 2k+j—-m
26: =tli—-2k—-(j-m)-1|- - X
ofi]=tli-2k~(i-m) }Kk—l—j—mj (k+1+j—mﬂ
27: endif
28: endfor
29: endif

30: if j=m-1 then
31: t[i]=9[il];

32: endif
33: endfor
34: endfor
35: C=0;
36: for j:=a to n do

37: C:=C+g[2j-n] p'(1-p)" - (Su'd" ' -K);

38: endfor
39: return C-e"";

Figure 3.3: Improved algorithm for up-and-out Ransoptions.

Recall that we assume the parametarss odd, andm and | are even. We

observe that there ar@n+1—(l +m)]/2 nodes at each level in Region D. According

to Equation (1), at levelan and m+1, each g(i,j) is calculated withl/2-1



additions, 1/2 multiplications andl/2 subtractions. At levelsm+2 and m-+3,
each g(i,j) is calculated with|/2—2 additions, I/2—1 multiplications and
|/2—1 subtractions. Continuing in this manner we can mate the total number of
additions needed to computg(i, j) located at levelm and at then’th time step
in Region D as

8 R U S

located at levein located at the 'th time step

The number of multiplications and subtractions reeeid

O TR O

located at levein located at the 'th time step

Table 3.2 shows the number of mathematical opersititeeded to implement the
improved algorithm in Region C and Region D.

The computational cost of the improved algorithmlass than Costabile’s

algorithm, which isO(n®). The reduction of nodes that need to be computed i
Region D leads toO(nZ) computational time. This improved algorithm coudd

also speeded up somewhat, but the total time cottypleemains O(nz). Because

binomial coefficients are given and we only use twee-dimensional arrays for the

improved algorithm, the memory requirementGyn).

Region C Region D
Additions (n+m)°+2m+2n+1-(1+ 2m)° I__lj(zn—zm 2—|j
4 2 4
Subtractions 0 [\ 2n—2m+ 4-1|
D S
Multiplications 0 I_j(Zn— 2m+ 4—Ij
2 4

Table 3.2:Number of operations needed in Region C and ReQidor the improved
algorithm.



3.5 General Case

The g(i,j) of the down-and-out barrier levekm is the same as the(i,—j) of

the up-and-out barrier levelm with an identical window period. To price a
down-and-out Parisian call with a barriét’, it is not necessary to discuss where
Region A, Region B, Region C, and Region D are. 848 reuse the up-and-out
Parisian options pricing algorithm in Figure 3.2laaplace Line 5 with

and replace Line 37 with
C=C+g[-(2j-n)] p'(1-p)" - (Su'd" ' -K);

Then all knock-out Parisian calls could be priced.

The g(i,j) of knock-in options is the same ds(i, j) subtract theg(i, j)

of knock-out options with identical barrier and daw period. For example, to price
an up-and-in Parisian call, replace Line 37 with

C= 0{@—9[21 —n]}- p'(1-p)" - (sud" - K);

Use the BOMP in Section 2.4 or combinatorial methddrmula for the standard
European call in Section 3.1 to subtract the up@mndParisian call, it can also get
equal value. It is just the in-out parity. ThenRdirisian calls could be priced.

To price a Parisian put, refer to Section 3.1 foy the maximum number of
upward price moves for the put to finish in mon&pr example, to price an
up-and-out Parisian put, replace Line 7 with

b:=|In(K/§d")/In(u/d) |
Line 35 as
P:=0;
Line 36 as

for j=0 to b do
and Line 37 as

P=P+ g[2j —n]. p’ (1_ p)n’j -(K —S)Ujdnij);



Then all Parisian options could be priced.

3.6 Numerical Results

Next we will price an up-and-out Parisian call optwith the underlying asset given
by the exchange rate between US dollar (USD) apdnkse yen (JPY). Consider a
spot exchange rateS =1/120.5, time to maturity T =0.5 year, strike rate
K =1/125, and barrierH =1/11C. The US risk-free interest rate is, = 0.056 per

year, the Japan risk-free interest rater js=0.007, and volatility is o =0.13 per

year.

The number of trading days in a year is assumdmetd50. Table 3.3 illustrates
the numerical results for different values of théndew period w provided by
Costabile. Compared with Table 3.4 computed by program and Table 4.1

generated from the fast Monte Carlo simulation ragter 4, Table 3.3 is wrong when
w=5,10,1% days.

w=0days w=5days w=10days w=15days
m n I PC I PC I PC I PC
10| 101| 0]0.000142 4| 0.000202 810.000244| 12| 0.000279
20| 406| 0]0.000140 16| 0.000214 32| 0.000257, 49| 0.000297
32| 1041 0]0.000141 42|0.000214] 83| 0.000254 125|0.000287
40| 1626 0]0.000140f 65|0.000213 130|0.000255 195|0.000284
50| 2541| 0]0.000141 102|0.000215 203|0.000252 305|0.000280

Table 3.3:Numerical results of different window periods bystabile.

w=0days | w=5days w=10days w=15days
m | n | | PC I PC I PC I PC
10 101| 0| 0.000142 41 0.000205 8| 0.000246 12| 0.000282
20 406| 0 | 0.000140, 16| 0.000214 32| 0.000258 49 | 0.000297
32 1041| 0| 0.000141 42| 0.000222 83| 0.000265, 125| 0.000301
40 1626| 0| 0.000140, 65| 0.000224| 130| 0.000267, 195| 0.000304
50| 2541| 0]0.000141 102|0.000225 203|0.000269  305| 0.000305
100| 10166| 0| 0.000141] 407|0.000229] 813|0.000273 1220|0.000308
200| 40664| 0| 0.000141| 1627| 0.000230, 3253| 0.000274, 4880| 0.000310
300| 91495| 0| 0.000141| 3660| 0.000231] 7320| 0.000275 10979| 0.000311
400| 162659| 0 | 0.000141| 6506| 0.000231| 13013| 0.000275| 19519| 0.000311

Table 3.4:Numerical results of different window periods frd@@ostabile’s algorithm



and the improved algorithm.

Avellaneda and Wu priced the same Parisian optipngormulating a partial
differential equation (PDE) which is solved numallig on a trinomial lattice, but
they assumed the number of trading days in a 260 [1]. Table 3.5 compares their
method and ours. The last row illustrates the nigakresults obtained with the
Avellaneda-Wu (AW) model. As the number of timepstancreases, our numerical
results converge to the Avellaneda-Wu model’s.

w=0days w=5days w=10days w=15days
m | n | | PC I PC I PC I PC
10 101| 0| 0.000142 3| 0.000197 6 | 0.000227 8| 0.000246
20 406| 0| 0.000140; 11|0.000201 23| 0.000237 34| 0.000262
32 1041 0| 0.000141) 29|0.000206 58| 0.000240 87| 0.000269
40 1626 0| 0.000140 45| 0.000207, 90| 0.000242 135|0.000271
50| 2541| 0| 0.000141) 71|0.000209 141|0.000244| 212|0.000273
100| 10166/ 0| 0.000141 282|0.000212 565|0.000247| 847|0.000276
200| 40664| 0| 0.000141| 1130| 0.000213 2259| 0.000249 3389| 0.000278
300| 91495| 0| 0.000141 2542| 0.000214| 5083| 0.000249 7625| 0.000278
400| 162659 0| 0.000141| 4518 0.000214 9037| 0.000250, 13555| 0.000278
AW model 0.000141 0.000215 0.000251 0.000279

Table 3.5: Numerical results of different window periods comggzh with the
Avellaneda-Wu model.



Chapter 4
Monte Carlo Simulation

Monte Carlo (MC) simulation is a sampling schembe Tirst application to option

pricing was by Phelim Boyle [3]. Monte Carlo simiida can be a procedure for
randomly sampling changes in market variables deoto value a derivative. It uses
the risk-neural valuation result to approximate theectation of the derivative’s
terminal cash flows with a simple arithmetic averayg the cash flows taken over a
finite number of simulated paths:

1M -
H T — i i
Price~ € (Mizl:f(sb, ,Sr)j
where S,---,S, is the i’th simulated price path of underlying asset over life of

the derivative andf (S{)S'T) is the derivative’s terminal cash flow from thisthp.

For a large sample of simulated price paths, thameaf the sample will closely
approximate the derivative’s true price. The sta@$ error of sample mean of the

price grows as]/N, where M is the number of replications (or independent
trials).

4.1 Crude Monte Carlo Simulation

Suppose that the process followed by the underlgnagket variable in a risk-neutral
world is

dS= 1 Sdt+0 Sdz,
where ;1 is the expected return in a risk-neutral worldd an is the volatility.

From Ito’s lemma process followed bin S is

2

dInS:Lﬁ—%]dtJradz.

Since 4 and o are constant, this equation indicated that follows a Brownian
motion. It has constant drift rat@—oc?/2 and constant variance raie?®. This
equation is used to construct a path r To simulate the path follow bys, we can
divide the life of the derivative intah short intervals of lengthAt . So that

2

InS(t+At)—In S(t)z[[z—%]AtJrasx/E,



or equivalently

2

S(t+At)=S(t) epo[z —%) At+ G&‘\/E}

where S(t) denotes the value of at timet, ¢ is a random sample from a

normal distribution with mean zero and standardiat®n of 1.0 and can be

generated by the Box-Muller algorithm [22]. Thisabtes S(At) to be calculated

from S(0), S(2At) to be calculated fromS(At), and so on [9]. For the pricing of

up-and-in Parisian options which have the paysffS(T)), we may proceed as

Figure 4.1.
1: At=T/n;
2. C:=0; {Accumulated option value.}
3: for i=1to M do
4: S=5;
5: flag :=0;
6: [:=0;
7. for j=1to n do
02
8: St::St-epo[z—7]-At+ag\/E}
9: if S>H then
10: | =1+At;
11: if 1>w then
12: flag :=1;
13: end if
14: else
15: | :=0;
16: endif
17: if flag=1 then
18:  C=C+V(S(T))e";
19:  endif
20: endfor




21: endfor
22: return C/M ;

Figure 4.1: Crude Monte Carlo simulation for up-amdParisian options.

4.2 Inverse Gaussian Distribution
Tweedie introduced the inverse Gaussian distribui®) [19]. The inverse Gaussian
distribution is the distribution ovef0,.0) with the probability density function

(p.d.f.) given by

ﬂv(xf,u)z
ﬂz - 2 2
JIs
27X’ © x>0

f (%)=

where 4 >0 is the mean andl >0 is a scale parameter. A$ tends to infinity,

the inverse Gaussian distribution becomes morealikermal (Gaussian) distribution.
If random variable X has inverse Gaussian distribution with locatiorapseter u

and scale parametet , we write
X ~1G(p,2)

where ~ means equality in distribution.

The inverse Gaussian describes the distributioth@ftime a Brownian motion
with positive drift takes to reach a fixed positiexel. That is the first-passage time
distributions of Brownian motion with positive drif[20]. In particular, the
relationship between the inverse Gaussian distobuand Brownian motion is as

follows: The Brownian motion for a variablé (t) is given by

dX =vdt+odz,
where dz is a normalized Brownian motion with drift and variances?. Refer to

Figure 4.2, consider the first-passage tirRe of X(t) to the fixed levela> x,,

called a barrier. In order foF to be the first-passage time, we require

X(0)=x%
X(t)<a 0<t<F.
X(F)=a

When the drift v>0, we have Prob(F <«)=1 and the first-passage time to the



barrier a> x, is the inverse GaussiahG(x, 1), where

a_
p=2"%
v
and
2
,-(a=%)
- 2
O
X
A
a
X0
> ¢

F
Figure 4.2: First passage time.

The random variableY has a uniform distribution if its probability detys
function is equal to a constant on its supporpdrticular, if the support is the interval

[a.b], then
1
f =—, <x<b.
(x) b a as<x

Moreover, we shall say that is UNIFORM(a,b) [8]. Let ;((21) be a chi-square

distribution with one degree of freedom, i.e.,

X 2
Z(Zl) :[T_luj ZZZ, X ~ N(,LJ,GZ).

;((21) are easily generated as the squares of standanthlso Michaelet al. gave a
method of generating random variates from the swé&aussian distribution using a
transformation [14]. Figure 4.3 shows how to getesthe inverse Gaussian variate

X.

1: sampleV ~ ;((21);



2: xl::u+ﬂ—§\/4ulv +uNV?

24

3 P= H :
HEX

4: sample Y ~ UNIFORM(0,));

5. X=X,
6: if Y>P then
7. X ::u—z;
X
8: endif
9: return X;

Figure 4.3: Michael's sampling method for the ilmeeGaussian distribution.

Whitmore discussed what he terms a defective ievé&saussian distribution
(DIG):

ﬂv(xf,u)z
/1 2,uzx

e
2z X’

f(xuA)=

with x>0, A>0, —o<u<ow, u#0 [21]. The inverse Gaussian distribution
does not allowu <0, but the defective inverse Gaussian distributi@esd With
1 <0, f does not integrate to unity so it is not a den&ityction in the ordinary
sense. It is not hard to verify that

f(xu<0,4)=e"f(x;—u,1)
and
® . _ 2N u
IO f(xu<0,A)dx=e".
Such a definition takes into account the possibilit the drift being negative in a

Brownian motion. Consider the first-passage tiffie of X(t). When drift v <0
and barrier a> x,, we have Prob(F <o )=€"* and the conditional distribution of

F given F<w is IG(-u>0,4), where

and



2
2-37%)
(o}

So the probability of never hitting the barrier Is-€/* as Prob(F =)= 1-e”*.

We can also use Michael's sampling method for gemey the defective inverse
Gaussian variate. We emphasize that the samplingateais also conditional
distribution of ever hitting the barrier again.

Regardless of whether driftt is positive or negative and whether barrir is
large than x, or not, their first-passage time distribution isetsame as the
first-passage time distribution with driftv, barrier 2x,—a and initial position x; .

Consider the first-passage timé of X(t). When drift v and barriera<x,, the

conditional distribution of F given F < is 1G(|x,4), where

u:(2x0—a)—x0
—v

_a-x

BY

and

((2%-3)-%)

_ =

_(a-x%)

=

In summary, the first-passage time distributién of the Brownian motion given

F<ow is IG(|,u|,/'L).

4.3 Simulation with the Inverse Gaussian Distribution

Now we can use IG and DIG to price up-and-in Panigiptions with the initial stock
price S, the strike priceK, the time to expirationT , the volatility of the stock
price o, the risk-free interest rate, the dividend yieldq, the barrier H , and the

window period w.

We now introduce our fast simulation algorithm.sEiruse Michael's sampling

method to get the first-passage tinfe~1G(|1],4) of the underlying asset’s price



process with barrierH . Set the Brownian motion parameteas=InH, x,=InS;,
and v=/1—c?/2 to get the Inverse Gaussian distribution pararsegerand A . If
F+w is less than duratio , it means that the underlying asset’s prige at the
time F is H:

Second, we can use the Monte Carlo method to siedifee following partial
path whether continuously at or above the givemi¢raover the window period from
the time F . If it did, use the Monte Carlo method directly sonulate the final
underlying asset’s price at the tintle and calculate the payoff. Otherwise ki +w
is greater than duratiofi , the path will not be admissible. So this patimas taken
and the payoff is zero.

Finally, if 4 is less thanO, it is a defective inverse Gaussian distributiod a
the sampling variateF is a conditional distribution giverF <o« . We should
multiply e*’* to the price to adjust the first-passage timerihistions. For standard
knock-in barrier options, i.e.w=0, their fast simulation algorithm is similar to
knock-in Parisian options’. See Figure 4.4 for ¢benplete algorithm.

1: At=T/n;
2. [a=r-q;

InH —In
3 pE——— St);

fi-0?/2

InH-InS,)°
4. ;L::—( 5 S) ;

O

5. C:=0; {Accumulated option value.}
6: for i=1to M do

~

sample F ~1G(|4],4);

8: if F<T and w=0 then{Standard knock-in barrier options.}

©

S:=H -exp&ﬁ—%z}a- F)+agﬁ} ;

100 C:=C+V(S(T))-e";

11: elseif F+w<T then
12: S=H;




13: [ :=0;
14:  for jzz(ﬂw to n do
At

2
15: St::St-epoﬁ—%]-dHas\/E}

16: if S>H then

17: | =] +At;
18: if 1>w then
02
19: St::St-epo[z—7]-(n—j)-At+ag (n—j)-At}
20: C:=C+V(S(T))-e";
21: break;
22: endif
23: else
24: | :=0;
25: endif
26: end for
27: endif
28: endfor

29: if u<0 then
30: C:=C-e*;
31: endif

32: return C/M ;

Figure 4.4: Fast simulation algorithm for up-andRiarisian options.

If the payoff is the same as the standard call wdr we also can just use the
Black-Scholes formula rather than the Monte Carkthaod in Line 9, Line 10, Line
19 and Line 20 in Figure 4.4 for variance reducti@aplace Line 9 and Line 10 with

C:=C+BS(H,K,r,T-F,0,q)-e";
The condition of this problem is equivalent to prgc with the current stock price

S’ =H, the strike priceK , the time to expiratioriT —F , the volatility of the stock

price o, the risk-free interest rate, and the dividend yieldg. When using the
Black-Scholes formula, it should discount with™ not €. We can also replace



Line 19 and Line 20 with
C:=C+BS(,K,r,(n-j) At,c,q)-e"™;

See Figure 4.5 for the revised algorithm.

1: At=T/n;

2. pg=r-q;
InH-In§

3 s
,U—G/Z
InH-INS,)*

4. ;L::—( 5 St));

(o2

5. C:=0; {Accumulated option value.}
6: for i=1to M do

7. sample F ~1G(|y.4);
8: if F<T and w=0 then{Standard knock-in barrier options.}
o: C=C+BS(H,K,r,T-F,0,0)-e";

10: elseif F+w<T then
11: S=H;
12: | :=0;

13:  for jzz(ﬂw to n do
At

2
14: St::St-epoﬁ—%]-AHag\/E}

15: if S>H then

16: | :=1+At;

17: if 1>w then

18: C:=C+BS(,K,r,(n-j) At,c,q)-e"™;
19: break;

20: end if

21: else

23: endif

24: end for

25: endif




26: endfor
27: if u<0 then
28: C:=C-e";
29: endif
30: return C/M ;

Figure 4.5: Fast simulation algorithm for up-andfarisian options with the
Black-Scholes formula.

4.4 General Case

To price down-and-in Parisian options, we reuseatgerithm in Figure 4.5 and just
replace Line 15 with

if S<H then
Then all knock-in Parisian options could be pricechm the in-out parity, we knew a
standard European option is equivalent to a paotfol a European knock-out option
and a European knock-in option with an identicatiba To price knock-out options,
we can use the Black-Scholes formula to subtraatk+sin options we simulated.

All above Parisian options that we discussed ams@cutive Parisian options.
There is another kind of Parisian-type options. Gteulative Parisian feature counts
the cumulative time that underlying asset’s pripergls at or above (at or below) the
barrier throughout the whole life of the option.dttrivial to modify our fast Monte
Carlo simulation to evaluate cumulative Parisiaticns. For example, to price an
up-and-in cumulative Parisian option, delete Lideahd Line 22 in Figure 4.5. For
other types of cumulative Parisian option, thest faimulation algorithm could be
discussed similar to consecutive Parisian optiongie previous paragraph.

4.5 Parallel Processing

Multiprocessor systems (also known as tightly cedpbystems) have two or more
processors in close communication, sharing the abenpbus and sometimes the
clock, memory, and peripheral devices. They haxeetimain advantages:

1. Increased throughput.

2. Economy of scale.

3. Increased reliability.

Nowadays the central processing unit (CPU) oftenlioes two or more independent
cores into a single package composed of a sintggrated circuit (IC). A multi-core

CPU functions as a chip-level multiprocessor. Adrden architectural considerations
such as cache, memory, and bus contention, thed#eécone CPUs appear to the



operating system atN standard processors [18].

If we execute a single-thread process, it can atilize one core; as a result, the
multi-core CPU is not fully exploited. Parallel gramming techniques can benefit
from multiple cores directly (see Figure 4.6). Soexesting parallel programming
models such as Message Passing Interface (MPIpbearsed on multi-core systems.
It can also apply to a multiprocessor system orstriduted system (also known as
loosely coupled systems) which is a collection dfygically separate, possibly
heterogeneous computer systems interconnecteatymunication network.

One single-thread process executed:

CRU{ERE CPU{EFZEEERR

Two single-thread processes executed:

CPU{EREE CRU{EFEESERR

Three single-thread processes executed:

CRUERE CRU =50

CPU{ER= CRU {EFR 2508

Figure 4.6: A quad-core processor usage for one, tlwee, and four single-thread
processes simultaneously.

Some computation-intensive tasks can take advarthgarallel processing for



much faster performance [12]. The paths generayetMdnte Carlo simulation are

independent. So it is straightforward to apply pekrgrogramming. We can build a

high-performance computing (HPC) clustered systenadcomplish computational

work and take the core as the unit by MPI platfo@ar HPC system includes three

dual-core PCs, i.e., six cores. The parallel preiogsfor our simulation algorithm is

described as follows:

1. Partition the number of paths into few paths farheeore.

2. Each core computes the simulation job sequentially.

3.  When all cores finish the jobs, we collect the rradga and average them to get
the final result.

Note that once the work has been divided, no conwatian among the jobs is

needed before the collection stage. Good speediaps been obtained. Numerical

results in next section are provided from our Hyp§tesm.

4.6 Numerical Results

According to Section 4.4 to price the same Parisiations in Table 3.4, we can use
the Black-Scholes formula to subtract the up-andtamisian option we simulated.
Table 4.1 is generated from the fast simulatioro@tigm with M =100000C and
n=100000C. The parametercount means the average of the actually divided time
intervals in the fast simulation algorithm. If ugicrude Monte Carlo simulation,
count must be equal tan. So we have saved divided time intervals.

w=0days w=5days w=10days w=15days

count | PC count PC count PC count PC

1.394| 0.000141] 79930.35/ 0.000232 108568.70 0.000275| 121904.71 0.000312

Table 4.1:Numerical results of different window periods fraime fast simulation
algorithm.

Because we use Michael's sampling method, the biefere first-passage time is
only divided one time interval, i.e.F . Consider that the barrieH is equal to the
initial underlying asset’s priceS,, the first-passage timeé is zero. Our fast
simulation algorithm will degenerate to Monte Casimulation. But we also combine
Monte Carlo simulation and the Black-Scholes forartol save the time for simulating
the payoff. The Black-Scholes formula is regardegliat one time interval.



Chapter 5
Conclusions

Trees and Monte Carlo simulation are two main kimdsnumerical method for
valuing derivatives. This thesis proposes two #gbrithms based on them to pricing
Parisian options, respectively.

About trees, we review Costabile's algorithm angl tv refine it. Observe
combinatorial methods deeply and use programmialgniques, not only its running
time but also required space can be saved. Actuallytime complexity and space
complexity are both reduced by an order succegsfull

About simulations, we create processes to simulatgerlying asset’s price
processes. Monte Carlo Simulation is easy to applgn payoffs are path-dependent.
To combine simulations and the inverse Gaussianluisions, we save divided time
intervals. To combine simulations and Black-Schddemula, we reduce the variance
of sample price. Monte Carlo simulation can alssjped up by parallel processing.

Complete algorithms for all types of Parisian optare available. They are easy
to implement in practice. As a result, numericadules are given to suggest the
correctness of these two fast algorithms.
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