
國立臺灣大學電機資訊學院資訊工程學系

碩士論文

Department of Computer Science and Information Engineering

College of Electrical Engineering & Computer Science

National Taiwan University

Master Thesis

評價巴黎選擇權之財務演算法：

組合學、模擬法與平行處理

Pricing Parisian Options:

Combinatorics, Simulation, and Parallel Processing

吳承瑋

Cheng-Wei Wu

指導教授：呂育道 博士

Advisor: Yuh-Dauh Lyuu, Ph.D.

中華民國 97年 6月

June, 2008

摘要摘要摘要摘要
財務工程與金融創新在過去數十年蓬勃發展，設計出許多新金融商品，提供了風

險管理所需的避險工具並促進市場效率與完整性。此財務領域的定價問題會嘗試

建構數學模型推導公式解，但是由於大部分新奇衍生性金融商品契約複雜無公式

能套用，必須借重電腦運算處理數值方法及模擬價格，因此計算機科學在此有其

可施展之處。本篇論文探討巴黎選擇權評價方法即包含財務理論、機率統計、離

散數學、計算複雜度、演算法設計與分析以及平行處理等議題。

巴黎選擇權為路徑相關選擇權，迄今尚無封閉公式解存在，為此我們提出兩

種快速財務演算法。首先以 Costabile 於 2002年建立在離散結構二項樹狀模型下

的組合方法為基礎去評價巴黎選擇權，再將此方法稍加修改可把原本的時間複雜

度由 ()3O n 成功推進至 ()2O n ；若是組合數已給定的情況下，空間複雜度亦由

()2O n 減少到 ()O n 。另外，在蒙地卡羅模擬法方面，我們引進逆高斯機率分配

並結合其抽樣，可減少時間切割的期數而縮短計算時間。因為蒙地卡羅法的路徑

模擬有各自獨立的特性，很容易使用平行運算處理。今日多核心處理器大行其道

這不失為提高效率的方法，對此我們也做了相關的說明並加以應用。

 我們以 C 語言實作論文中的財務演算法，執行於自行建構的高效能叢集運

算平台。同步處理模擬之計算量，俾能有效使用系統效能。

關鍵字關鍵字關鍵字關鍵字：：：：巴黎選擇權, 障礙選擇權, 選擇權評價, 演算法, 二項樹模型, 組合方法,

蒙地卡羅模擬法, 逆高斯機率分配, 平行處理

Abstract
Financial engineering and financial innovation flourished in last decades. We have

developed many new financial products to provide hedge instruments for risk

management, and promoted market efficiency and completeness. The pricing

problems of this financial field will try to build mathematical models and derive

analytic pricing formulas. But most exotic derivatives are too complicated to derive

formulas. We must use computers to handle numerical methods and simulations, so

computer science can give them a favor. This thesis discusses pricing of Parisian

options and includes a lot of subjects: financial theory, probability & statistics,

discrete mathematics, computational complexity, design & analysis of algorithms, and

parallel processing.

 Parisian options are path-dependent options and their closed-form solutions are

not available up to now. We propose two fast financial algorithms to solve it. First we

price Parisian options based on a combinatorial approach in binomial tree by

Costabile in 2002. To refine Costabile’s algorithm, time complexity ()3O n can be

reduced to ()2O n ; If ignore binomial coefficients are given, the space complexity

()2O n could be reduced to ()O n . Second on Monte Carlo simulation, we introduce

the inverse Gaussian distribution and its sampling method. To combine simulations

and the inverse Gaussian distribution sampling, it can reduce divided time intervals to

save computational time. Because the paths generated by Monte Carlo simulation are

independent, it is easy to apply parallel processing. Nowadays multi-core processors

are very popular, it is also a good idea to enhance computational efficiency. We give

some descriptions and applications on it.

 All financial algorithms in this thesis are implemented by the C programming

language. We execute the programs in our high-performance computing clustered

platform, and deal with simulation jobs synchronously. Then the system can be fully

exploited.

Keywords: Parisian options, barrier options, option pricing, algorithm, binomial tree

model, combinatorial method, Monte Carol simulation, inverse Gaussian distribution,

parallel processing

Contents
1. Introduction

1.1 Options
1.2 Barrier and Parisian Options
1.3 Thesis Structure

2. Fundamental Concepts

2.1 Wiener Process
2.2 Black-Scholes Option Pricing Model
2.3 Risk-Neutral Valuation
2.4 Binomial Option Pricing Model

3. Trees with Combinatorial Method in Pricing

3.1 Combinatorial Methods
3.2 Technique for Handling Large Numbers
3.3 Costabile’s Algorithm
3.4 An Improved Algorithm
3.5 General Case
3.6 Numerical Results

4. Monte Carlo Simulation

4.1 Crude Monte Carlo Simulation
4.2 Inverse Gaussian Distribution
4.3 Simulation with the Inverse Gaussian Distribution
4.4 General Case
4.5 Parallel Processing
4.6 Numerical Results

5. Conclusions

Bibliography

List of Figures
1.1 Payoff of options

1.2 A sample underlying asset’s price path of a down-and-in option

2.1 One time step in binomial tree

2.2 Binomial tree

3.1 Partitions of the areas of computation

3.2 Costabile’s algorithm for up-and out Parisian options

3.3 Improved algorithm for up-and out Parisian options

4.1 Crude Monte Carlo simulation for up-and-in Parisian options

4.2 First passage time

4.3 Michael’s sampling method for the inverse Gaussian distribution

4.4 Fast simulation algorithm for up-and-in Parisian options

4.5 Fast simulation algorithm for up-and-in Parisian options with the Black-Scholes

formula

4.6 A quad-core processor usage for one, two, three, and four single-thread processes

simultaneously

List of Tables
3.1 Number of operations needed in Region C and Region D for Costabile’s

algorithm

3.2 Number of operations needed in Region C and Region D for the improved

algorithm

3.3 Numerical results of different window periods by Costabile

3.4 Numerical results of different window periods from Costabile’s algorithm and

the improved algorithm

3.5 Numerical results of different window periods compared with the Avellaneda-Wu

model

4.1 Numerical results of different window periods from the fast simulation algorithm

Chapter 1

Introduction
A derivative (or derivative security) is a financial instrument whose value depends on,

or is derived from, the values of other, more basic, underlying assets such as

commodities, equities, bonds, interest rates, exchange rates, indexes, or other

derivatives. The main types of derivatives are futures, forwards, options, and swaps.

1.1 Options

There are two basic types of option. A call option gives the holder the right to buy the

underlying asset by a certain date for a certain price. A put option gives the holder the

right to sell the underlying asset by a certain price. The date specified in the contract

is known as the expiration date. The price specified in the contract is known as the

strike price. American and European options differ in when they can be exercised.

American options can be exercised at any time up to the expiration date, whereas

European options can be excised only on the expiration date [9].

 There are two sides to every option contract. On one side is the investor who has

taken the long position. On the other side is the investor who has taken a short

position. Let K be the strike price and TS the final price of the underlying asset.

There are four types of European option position and their payoff:

1. Long a call, payoff= ()max 0, TS K−

2. Long a put, payoff= ()max 0, TK S−

3. Short a call, payoff= ()min 0, TS K−

4. Short a put, payoff= ()min 0, TK S−

Figure 1.1 shows these payoffs.

Price

Long a call

Price

Long a put

Price

Short a call

Price

Short a put

K

K

K

K

Figure 1.1: Payoff of options.

1.2 Barrier and Parisian Options

Options whose payoff depends on whether the underlying asset’s price reaches a

certain price H are called barrier options. These barrier options can be classified as

either knock-out options or knock-in options. A knock-out option is like a standard

European option except that it ceases to exist if barrier H is reached by the price of

its underlying asset. A knock-in option, in contract, comes into existence if a certain

barrier H is reached.

 Let 0S be the initial price of the underlying asset. A knock-out option is

sometimes called a down-and-out option if 0H S< . A knock-out option is sometimes

called an up-and-out option if 0H S> . A down-and-in option is a knock-in option

that comes into existence only when the barrier is reached and 0H S< (see Figure

1.2). An up-and-in option is a knock-in option that comes into existence only when

the barrier is reached and 0H S> [12]. Because there are two basic types of options,

i.e., calls and puts, there are eight types of standard barrier option:

1. down-and-out call;

2. down-and-out put;

3. up-and-out call;

4. up-and-out put;

5. down-and-in call;

6. down-and-in put;

7. up-and-in call;

8. up-and-in put.

0S

K

H

Figure 1.2: A sample underlying asset’s price path of a down-and-in option.

Barrier options have many variations. If the barrier must be breached for a

particular length of time, we have a Parisian option. Like common barrier options, it

can be of the form of a down-and-out, up-and-out, down-and-in, up-and-in call or put.

An up-and-out (up-and-in) Parisian option is an option that expires (comes into

existence, respectively) if the underlying asset’s price remains continuously at or

above a given barrier over a pre-specified time interval, the so-called window period.

Conversely, a down-and-out (down-and-in) Parisian option expires (is activated,

respectively) if the underlying asset’s price remains continuously at or below a lower

barrier over the window period [6].

1.3 Thesis Structure

There are five chapters in this thesis. We introduce new financial products in this

Chapter. Chapter 2 reviews the background knowledge and basic numerical

techniques. Chapter 3 describes the combinatorial approach for pricing Parisian

options by Costabile and how to speed up Costabile’s algorithm. Chapter 4 discusses

how to use Monte Carlo simulation with the inverse Gaussian distribution for pricing

Parisian options. Chapter 5 concludes.

Chapter 2

Fundamental Concepts
In this chapter, we describe pricing models and methods. It covers the Wiener process,

the Black-Scholes option pricing model, the risk-neutral valuation, and the binomial

options pricing model.

2.1 Wiener Process

A Wiener process is a particular type of Markov stochastic process. It is sometimes

referred to as normalized Brownian motion. A process, z , follows a Wiener process

if it has the following two properties:

1. The change z∆ during a small period of time t∆ is

z tε∆ = ∆ ,

where ε has a standardized normal distribution.

2. The value of z∆ for any two difference short intervals of time, t∆ , are

independent.

That is a stochastic process where the change in a variable during each short period of

time of length t∆ has a normal distribution with a mean equal to zero and a variance

equal to t∆ .

We assume that our stock price follows the stochastic process:

dS S dt S dzµ σ= + ,

where σ is the volatility of the stock price, and µ is its expected rate of return.

This equation is the most widely used model of stock price behavior and is also called

the geometric Brownian motion [9].

2.2 Black-Scholes Option Pricing Model

In the year 1973, Fisher Black and Myron Scholes published the well-known option

pricing model now universally known as the Black-Scholes option pricing model [2].

Several assumptions are made in the model as follows:

1. The stock price follows the process dS S dt S dzµ σ= + with constant µ and

σ .

2. The short selling of securities with full use of proceeds is permitted.

3. There are no transactions costs or taxes.

4. All securities are perfectly divisible.

5. There are no dividends during the life of the derivative.

6. There are no riskless arbitrage opportunities.

7. Security trading is continuous

8. The risk-free rate of interest, r , is constant and the same for all maturities.

Black and Scholes derived the following formula for the price at time 0 of a

European call and a European put:

() ()
() ()

0 1 2

2 0 1

rT

rT

C S N d Ke N d

P Ke N d S N d

−

−

= −

= − − −
,

where

() ()
() ()

()

2
0

1

2
0

2 1

0

ln 2

ln 2

cumulative probability distribution function for a standardized normal distribution

stock price at time zero

strike price

continuously compounded risk-fr

S K r T
d

T

S K r T
d d T

T

N x

S

K

r

σ

σ

σ
σ

σ

+ +
=

+ −
= = −

=

=

=

= ee interest rate

stock price volatility

time to maturity of the optionT

σ =

=

When the stock provides a continuous dividend yield at rate q , we obtain the

price of a European call and a European put as, respectively,

() ()
() ()

0 1 2

2 0 1

qT rT

rT qT

C S e N d Ke N d

P Ke N d S e N d

− −

− −

= −

= − − −
,

and the parameters 1d and 2d are given by

() ()
() ()

2
0

1

2
0

2 1

ln 2

ln 2

S K r q T
d

T

S K r q T
d d T

T

σ

σ

σ
σ

σ

+ − +
=

+ − −
= = −

.

These formulas, due to Merton [13], remain valid even if the dividend yield is not

constant during the life of the option as long as q is replaced by the average

annualized dividend yield during the life of the option.

2.3 Risk-Neutral Valuation

Risk-neutral valuation of derivatives assumes in a risk-neutral world where investors

are assumed to require no extra return on average for bearing risks. It gives the correct

price for a derivative in all worlds, not just in a risk-neutral world. This means that for

valuation purposes we can use the following procedure:

1. Assume that the expected return from the underlying asset is risk-free interest

rate, r .

2. Calculate the expected payoff from the derivative.

3. Discount the expected payoff at risk-free interest rate.

Suppose the asset provides a yield of q . The expected return in the form of capital

gain must be r q− .

In a risk-neutral world, the current price of a derivative then is given by

()0Price= , ,rT
Te E f S S−   � ,

where T is the maturity date of derivative, ()0, , Tf S S� is the derivative’s payoff,

which may be dependent on entire price history of underlying asset, and 0, , TS S� is

the history of prices for the underlying asset from 0t = to T .

2.4 Binomial Option Pricing Model

John Cox, Stephen Ross and Mark Rubinstein developed the original version of the

binomial option pricing model (BOPM) [7]. The BOPM is a binomial tree (lattice)

algorithm. The binomial model is a discrete time and discrete variable pricing model.

It suffers from two unrealistic assumptions:

1. The stock price takes on only two values in a time step.

2. Trading occurs at discrete points in times.

f

uf

df

S

Su

Sd

p

1 p−

t∆
Figure 2.1: One time step in binomial tree.

First we assume the stock price follows the process dS S dt S dzµ σ= + . For

brevity, we use S for the current stock price here. Consider the stock at time

t T n∆ ≡ , where T is the time to maturity, and n is the number of time steps. It

implies that

()
() ()22 2 2 21

t

t t

E S t Se

Var S t S e e S t

µ

µ σ σ

∆

∆ ∆

 ∆ = 
 ∆ = − → ∆ 

.

Second we assume that we are working in a risk-neutral world, so rµ = . As in

Figure 2.1, it limits the stock moves from its current price S to one of two new

values, Su and Sd , in each time step. It will increase to Su with probability p

or decrease to Sd with probability 1 p− . The expected stock price at time t∆

converges to r tSe ∆ . Then we get:

()1 r tpSu p Sd Se ∆+ − = .

The variance of a variable X is defined as () () 22E X E X −   [28]. The variance

of the stock price at time t∆ converges to 2 2S tσ ∆ . Then we get:

() () () ()22 2 2 21 r tp Su p Sd Se S tσ∆+ − − = ∆

or

()2 2 2 21 r tpu p d e tσ∆+ − − = ∆ .

Cox, Ross and Rubinstein (CRR) model imposes

1
u

d
= ,

we can get the solution

t

t

r t

u e

d e

e d
p

u d

σ

σ

∆

− ∆

∆

=

=

−
=

−

.

 The option on the stock whose current price is f . When stock price moves up

to Su , the option price is uf ; when stock price moves down to Sd , the option price

is df . The risk-neutral valuation gives

()()1r t
u df e pf p f− ∆= + − .

Using the two values of the option in the next time step, we can evaluate the option

price at a given node. This procedure is called backward induction because it works

backward in time.

0S

t∆

T

Figure 2.2: Binomial tree.

 Consider binomial trees with more than one time step (see Figure 2.2). Note that

the tree recombines in the sense that an up move followed by a down move leads to

the same asset price as a down move followed by an up move. Note also that u and

d are the same at each node of the tree and the time steps are of the same length, so

the risk-neutral probability p is the same at each node.

By risk-neutral valuation principle, the option price is equal to its expected

payoff in a risk-neutral world discounted at the risk-free interest rate. The BOPM is a

three-step procedure:

1. Generate the price tree.

2. Calculate the payoffs in terminal nodes.

3. Iterating backward induction from the end of a tree to its beginning, we are able

to obtain the value of the option at time zero.

In Figure 2.2 there are quadratic, i.e., ()2O n , nodes. So the BOPM must take ()2O n

steps to apply backward induction by visiting every node. We can reuse a

one-dimensional array of size 1n+ instead of a two-dimensional array of size

() ()1 1n n+ × + for storing node values; so the memory requirement is reduced to

()O n .

As the number of time steps increases, the stock price ranges over ever-larger

numbers of possible values, and trading takes place nearly continuously. It can be

proved that the price computed by the BOPM converges to the price from the

Black-Scholes option pricing model as n →∞ .

Chapter 3

Trees with Combinatorial Method in

Pricing
Combinatorial methods use combinatorics to solve problems. It has been widely

applied in many fields [10]. This chapter deals with using combinatorial methods to

price financial options. Under the popular tree model, combinatorial methods can

often speed up the pricing of European options by an order of magnitude [12].

3.1 Combinatorial Methods

Once we have the probability distribution of the terminal nodes, these options can be

priced by simply summing the products of the probability and the payoff function at

each terminal node to obtain their expected payoff. The theoretical price then equals

the discounted expected payoff. We give some examples below.

In the n time step case, the value of a European call is

() ()0
0

1 max 0,
n

n jrT j j n j

j

n
C e p p S u d K

j

−− −

=

 = − × −  ∑ .

The number of paths from 0S to the terminal price 0
j n jS u d − is given by the

binomial coefficient
n

j

    , where n is the number of time steps used for price

computation and j is the number of up moves of the underlying asset’s price during

the option’s lifetime. Each path to the terminal price 0
j n jS u d − has the same

probability ()1
n jjp p
−

− . To adapt the equation to price European puts, simply

replace the call payoff, ()0max 0, j n jS u d K−

− , with the put payoff,

()0max 0, j n jK S u d −

− . The resulting formula becomes

() ()0
0

1 max 0,
n

n jrT j j n j

j

n
P e p p K S u d

j

−− −

=

 = − × −  ∑ .

Let a be the minimum number of upward price moves for the call to finish in

the money, i.e., a is the smallest nonnegative integer such that 0
a n aS u d K− ≥ , or

()
()

0ln

ln

nK S d
a

u d

  =   
.

Hence,

() ()01
n

n jrT j j n j

j a

n
C e p p S u d K

j

−− −

=

 = − −  ∑ .

Also, let b be the maximum number of upward price moves for the put to finish in

the money, i.e., b is the largest integer such that 0
b n bS u d K− ≤ , or

()
()

0ln

ln

nK S d
b

u d

  =   
.

Hence,

() ()0
0

1
b

n jrT j j n j

j

n
P e p p K S u d

j

−− −

=

 = − −  ∑ .

It implies a linear-time, ()O n , and constant-space, ()1O , algorithm for pricing

standard European options [12].

Consider the down-and-in call with barrier H K< . We have to calculate the

number of admissible paths that lead to a particular terminal node. Towards that end,

we pick the barrier level, h to be one of the 1n + possible terminal underlying

asset’s prices that is closed to, but does not exceed, H . We call it the effective barrier.

This condition 0
h n hS u d H− ≤ implies

()
()

0ln

ln

nH S d
h

u d

  =   
.

We effectively use 0
h n hS u d − not H as the barrier on the binomial model. The option

value equals

() ()2

01
2

h
n jrT j j n j

j a

n
e p p S u d K

n h j

−− −

=

  − − − + ∑ .

Not all n give acceptable numerical results [4]. For convergence reasons, the

effective barrier level should be close to H , i.e., 0 0
j T njH S d S e σ−

≈ = for some

integer j . But the effective barrier level 0
jS d corresponds to a terminal underlying

asset’s price only when n j− is even. To close this gap, we decrement n by one, if

necessary, to make n j− an even number. The preferred n ’s are finally

()
2 2

2
0

, if is even
,

1, otherwise ln

d d j j T
n d

d S H

σ −= ≡   −    
.

It also implies a ()O n -time, ()1O -space algorithm [11].

3.2 Technique for Handling Large Numbers

When the life of the option is divided into ever more time steps, the number of

underlying asset’s price paths increases exponentially. So the combinatorial method

rapidly generates large numbers. The primitive data types of typical programming

languages cannot store numbers larger than a certain magnitude. For example, the

largest number the data type double can represent is 3081.7976931348623157 10× .

The problem that occurs when the value to be represented is greater in magnitude is

called overflow. To solve this problem, we will process data in the log domain. We

calculate ()1 2ln p p⋅ from 1ln p and 2ln p as follows:

()1 2 1 2ln ln lnp p p p⋅ = + .

We calculate ()1 2ln p p+ from 1ln p and 2ln p as follows:

()

()
() ()2 1

2
1 2 1

1

2
1

1

ln ln
1

ln ln 1

ln ln 1

ln ln 1 p p

p
p p p

p

p
p

p

p e −

  + = +     
 = + +  

= + +

.

When the number in the decimal domain is needed, simply take the exponential

function of the final number for the desired number. In the following algorithms, we

will assume the large numbers technique implicitly.

3.3 Costabile’s Algorithm

To evaluate Parisian options, Costabile proposed an algorithm in the CRR model and

applied the combinatorial method [6]. In this section, we describe Costabile’s

algorithm for European up-and-out Parisian options.

We consider a particle whose dynamics is described by a random walk in the two

dimensional space (),i j . From (),i j , it moves to ()1, 1i j+ + with probability p

if an up move occurs or to ()1, 1i j+ − with probability 1 p− if a down move takes

place. Without loss of generality we assume that the particle starts from the origin

()0,0P ≡ .

The number of paths, (),N i j , from the origin P to (),i j has the

well-known recursive relation, () () (), 1, 1 1, 1N i j N i j N i j= − − + − + . (),N i j is

given by the binomial coefficient
() 2

i

i j

  +  . Suppose the barrier level in the

binomial tree is at level m . Let (),g i j denote the number of the paths from P to

(),i j so that the paths spend fewer than l consecutive time steps at or above the

barrier level, l∈� , which is an input parameter. Such paths are said to be admissible.

Later we will describe how to derive m from the barrier H and l from the

window period w .

l m j n+ ≤ ≤

m j l m≤ < +

n j m− ≤ <

0 i l m≤ < + l m i n+ ≤ ≤

m

(,)n n−

(,)n n

(0,0)P

D

B

A C

Figure 3.1: Partitions of the areas of computation. This figure is due to Prof. Jr-Yan

Wang.

We derive (),g i j for (),i j in different regions of the tree (see Figure 3.1).

The first step considers the nodes (),i j such that 0 i l m≤ < + called Region A. In

this case () (), ,g i j N i j= . Indeed, such nodes are characterized by at most i up

moves and i m l− < . In the second step we observe that, for the nodes (),i j such

that ,l m i n l m j n+ ≤ ≤ + ≤ ≤ (Region B), (), 0g i j = . Indeed, in such cases, a path

starting form P can reach the level l m j+ ≤ only if the particle spends at least l

successive time steps at or above the barrier level. The third step concerns the nodes

(),i j located below the barrier level (i.e., ,l m i n n j l m+ ≤ ≤ − ≤ < + or Region C).

Each path from P to (),i j in Region C makes its last move below the barrier level.

This implies () () (), 1, 1 1, 1g i j g i j g i j= − − + − + .

 In the final step we are left to calculate (),g i j of the nodes (),i j such that

,l m i n m j l m+ ≤ ≤ ≤ ≤ + or Region D. Note that in this case the recursive relation

() () (), 1, 1 1, 1g i j g i j g i j= − − + − + is no longer holds. Indeed some of the

()1, 1g i j− + paths from P to ()1, 1i j− + may have spent 1l − time steps at or

above the barrier level already, in which case the move from time step 1i − to i is

made above the barrier level. Such paths have to be excluded from ()1, 1g i j− + .

 Each admissible path from P to (),i j in Region D can be divided into two

different parts. The first part is an admissible path from P to a node which is located

at level 1m− and then makes an up move to a node ()()2 ,i k j m m− − − on the

barrier level. The number of the first partial path is given by the quantity

()()2 1, 1g i k j m m− − − − − . The second part is a partial path from the final node of

first partial path, ()()2 ,i k j m m− − − , to the node (),i j with the number of moves

strictly smaller than l , and this part should be never cross the barrier level. The

parameter k should be a nonnegative integer and the condition

()()2i i k j m l− − − − < implies:

()
0

2

l j m
k

− −
≤ < .

The number of the second partial paths can be computed as the difference between the

following two terms:

1. The first is the number of paths from the node ()()2 ,i k j m m− − − on the

barrier level to (),i j . It is given by
2k j m

k j m

+ −  + −  .

2. The second is the number of paths from the same node to (),i j which cross the

barrier level. Using the reflection principle, it is given by
2

1

k j m

k j m

+ −  + + −  with

the convention 0
a

b

  =   for a b< .

Finally we get the number of admissible paths as

()()
()

0
2

2 2
(,) 2 1, 1

1l j m
k

k j m k j m
g i j g i k j m m

k j m k j m− −
≤ <

 + − + −   = − − − − − ⋅ −    + − + + −    ∑ . (1)

See [6] for additional discussions.

 We assume that the underlying asset’s price dynamics is described by the CRR

model and also use the notations as before. Recall that w denotes the window period

measured in years and it must be limited to 0 w T≤ ≤ . When a Parisian option with

0w = , this is a standard barrier option. When w T= , we have either a standard

European option or a option with zero value.

In order to drive the binomial algorithm for evaluating Parisian options, we need

to determine the total number of time steps, n , to be used in the price computations.

As pointed out by Boyle and Lau, at first we build up a binomial tree such that the

barrier is close to but just below a layer of horizontal nodes in the tree [4]. Recall that

m is the number of successive up moves for the underlying asset’s price, starting

from 0S , must make to touch or cross the barrier H . This condition 0
mS u H≥

implies

()
2 2

2
0ln

m T
n

H S

σ =    
,

and

()0ln H S
m

tσ

 =  ∆ 
.

The next step is to determine the number of time steps, l , corresponding to the

window period w . Because, in general, w t∆ is not an integer, we set l equal to

[]w t∆ , the integer closest to w t∆ . The price of the up-and-out Parisian call option

can now be easily derived:

() () ()0, 2 1
n

n jrT j j n j

j a

PC e g n j n p p S u d K
−− −

=

= − − −∑ .

Recall that (), 2g n j n− is the number of paths which spend fewer than l

consecutive time steps at or above the barrier level and these paths are made up of j

up moves and n j− down moves.

Together with the initial conditions:

1
0 1

n n   = =       ,

Pascal’s triangle gives a method for calculating the binomial coefficients by using the

following well-known identity:

1

1

n n n

k k k

+     = +     −     

where n and k are positive integers with n k≥ [17]. The binomial coefficients

can be computed in ()2O n time. Assume the binomial coefficients have been

computed from now on. See Figure 3.2 for Costabile’s algorithm.

1: :t T n∆ = ;

2: (): expu tσ= ∆ ;

3: : 1d u= ;

4:
()()exp

:
r q t d

p
u d

− ∆ −
=

−
;

5:
()0ln

:
H S

m
tσ

 =  ∆ 
;

6: []:l w t= ∆ ;

7: () ()0: ln lnna K S d u d =   ;

8: for : 0i = to n do

9: for :j i= to i− step 2− do

10: if i l m< + then {Region A}

11: [][] :
() 2

i
g i j

i j

 =  +  ;

12: else if j l m≥ + then {Region B}

13: [][] : 0g i j = ;

14: else if j m< then {Region C}

15: if j i= − then

16: [][] [][]: 1 1g i j g i j= − + ;

17: else

18: [][] [][] [][]: 1 1 1 1g i j g i j g i j= − − + − + ;

19: end if

20: else {Region D}

21: [][] : 0g i j = ;

22: for : 0k = to
()

0.5
2

l j m − − −  
 do

23: if 2 1k j m k j m+ − < + + − then

24: [][] () [] 2
: 2 1 1

k j m
g i j g i k j m m

k j m

+ −  = − − − − − ⋅    + −  ;

25: else

26: [][] () [] 2 2
: 2 1 1

1

k j m k j m
g i j g i k j m m

k j m k j m

 + − + −    = − − − − − ⋅ −      + − + + −    
;

27: end if

28: end for

29: end if

30: end for

31: end for

32: : 0C = ;

33: for :j a= to n do

34: [][] () ()0: 2 1
n jj j n jC C g n j n p p S u d K
− −= + − ⋅ − ⋅ − ;

35: end for

36: return rTC e−

⋅ ;

Figure 3.2: Costabile’s algorithm for up-and-out Parisian options.

 We proceed to count the number of operations needed to compute the (),g i j .

For simplicity, the number of time steps, n , is odd for the option evaluation and the

parameters m and l are even. Because the (),g i j in Region A and Region B

needed no arithmetic operations, Table 3.1 only shows the number of mathematical

operations needed to implement Costabile’s algorithm in Region C and Region D. See

[6] for more details. Recall that l was defined as the integer closed to

w t w n T∆ = ⋅ . It follows that the computational cost is a cubic function of n , or

()3O n . The numbers (),g i j are stored in a two-dimensional array of size

() ()1 2 1n n+ × + so the memory requirement is ()2O n .

 Region C Region D

Additions () ()2 2
2 2 1 2

4

n m m n l m+ + + + − +
 ()1

1
2 2 2

n l m l l + − +   −       

Subtractions 0 ()1
1

2 2 2

n l m l l + − +   +       

Multiplications 0 ()1
1

2 2 2

n l m l l + − +   +       

Table 3.1: Number of operations needed in Region C and Region D for Costabile’s

algorithm.

3.4 An Improved Algorithm

For nodes (),i j in Region D, (),g i j depends on the ()()2 1, 1g i k j m m− − − − −

located at level 1m− in Region A and Region C (recall Equation (1)). So we need

not calculate all (),g i j in Region D. In Region C when 1j m= − , the recursive

relation () () (), 1, 1 1, 1g i j g i j g i j= − + + − + is also dependent on the ()1,g i m−

located at level m . So we only need to calculate the (),g i j in Region D which are

1. nodes located at level m , and

2. nodes located at the n ’th time step.

It is not hard to observe that other (),g i j are not needed for calculating

[][]2g n j n− of Line 34 in Figure 3.1.

The memory requirement can be reused if the space is reused. Specifically,

replace the two-dimensional array [][]1 2 1g n n+ + with a one-dimensional array of

size 2 1n + . But, we should use another one-dimensional array []1t n + to store a

copy of (), 1g i m − located at level 1m − for calculating (),g i j in Region D.

These crucial points can be used to improve Costabile’s algorithm, and the

results must be identical to Costabile’s algorithm. See Figure 3.3 for the improved

algorithm.

1: :t T n∆ = ;

2: (): expu tσ= ∆ ;

3: : 1d u= ;

4:
()()exp

:
r q t d

p
u d

− ∆ −
=

−
;

5:
()0ln

:
H S

m
tσ

 =  ∆ 
;

6: []:l w t= ∆ ;

7: () ()0: ln lnna K S d u d =   ;

8: for : 0i = to n do

9: for :j i= to i− step 2− do

10: if i l m< + then {Region A}

11: [] :
() 2

i
g j

i j

 =  +  ;

12: else if j l m≥ + then {Region B}

13: [] : 0g j = ;

14: else if j m< then {Region C}

15: if j i= − then

16: [] []: 1g j g j= + ;

17: else

18: [] [] []: 1 1g j g j g j= − + + ;

19: end if
20: else if j m= or i n= then {Partial Region D}

21: [] : 0g j = ;

22: for : 0k = to
()

0.5
2

l j m − − −  
 do

23: if 2 1k j m k j m+ − < + + − then

24: [] () 2
: 2 1

k j m
g j t i k j m

k j m

+ −  = − − − − ⋅   + −  ;

25: else

26: [] () 2 2
: 2 1

1

k j m k j m
g j t i k j m

k j m k j m

 + − + −    = − − − − ⋅ −      + − + + −    
;

27: end if

28: end for

29: end if
30: if 1j m= − then

31: [] []:t i g j= ;

32: end if

33: end for

34: end for

35: : 0C = ;

36: for :j a= to n do

37: [] () ()0: 2 1
n jj j n jC C g j n p p S u d K
− −= + − ⋅ − ⋅ − ;

38: end for

39: return rTC e−

⋅ ;

Figure 3.3: Improved algorithm for up-and-out Parisian options.

Recall that we assume the parameters n is odd, and m and l are even. We

observe that there are ()1 2n l m + − +  nodes at each level in Region D. According

to Equation (1), at levels m and 1m + , each (),g i j is calculated with 2 1l −

additions, 2l multiplications and 2l subtractions. At levels 2m + and 3m + ,

each (),g i j is calculated with 2 2l − additions, 2 1l − multiplications and

2 1l − subtractions. Continuing in this manner we can compute the total number of

additions needed to compute (),g i j located at level m and at the n ’th time step

in Region D as

()
�

2 1

1

located at the 'th time steplocated at level

1 2 2 2
1 1

2 2 2 4

l

j

nm

n l ml l n m l
j

−

=

 + − + − + −    − + = −           ∑
�����������

.

The number of multiplications and subtractions needed is

()
�

2

1

located at the 'th time steplocated at level

1 2 2 4

2 2 2 4

l

j

nm

n l ml l n m l
j

=

 + − + − + −    + =           ∑
���������

.

Table 3.2 shows the number of mathematical operations needed to implement the

improved algorithm in Region C and Region D.

The computational cost of the improved algorithm is less than Costabile’s

algorithm, which is ()3O n . The reduction of nodes that need to be computed in

Region D leads to ()2O n computational time. This improved algorithm could be

also speeded up somewhat, but the total time complexity remains ()2O n . Because

binomial coefficients are given and we only use two one-dimensional arrays for the

improved algorithm, the memory requirement is ()O n .

 Region C Region D

Additions () ()2 2
2 2 1 2

4

n m m n l m+ + + + − +

2 2 2
1

2 4

l n m l− + −  −    

Subtractions 0 2 2 4

2 4

l n m l− + −         

Multiplications 0 2 2 4

2 4

l n m l− + −         

Table 3.2: Number of operations needed in Region C and Region D for the improved

algorithm.

3.5 General Case

The (),g i j of the down-and-out barrier level, m− is the same as the (),g i j− of

the up-and-out barrier level, m with an identical window period. To price a

down-and-out Parisian call with a barrier H ′ , it is not necessary to discuss where

Region A, Region B, Region C, and Region D are. We can reuse the up-and-out

Parisian options pricing algorithm in Figure 3.3 and replace Line 5 with

()0ln
:

H S
m

tσ

′ = −  ∆ 
;

and replace Line 37 with

() () ()0: 2 1
n jj j n jC C g j n p p S u d K
− − = + − − ⋅ − ⋅ −  ;

Then all knock-out Parisian calls could be priced.

The (),g i j of knock-in options is the same as (),N i j subtract the (),g i j

of knock-out options with identical barrier and window period. For example, to price

an up-and-in Parisian call, replace Line 37 with

[] () ()0: 2 1
n jj j n jn

C C g j n p p S u d K
j

− −
  = + − − ⋅ − ⋅ −    

;

Use the BOMP in Section 2.4 or combinatorial method’s formula for the standard

European call in Section 3.1 to subtract the up-and-out Parisian call, it can also get

equal value. It is just the in-out parity. Then all Parisian calls could be priced.

To price a Parisian put, refer to Section 3.1 for b , the maximum number of

upward price moves for the put to finish in money. For example, to price an

up-and-out Parisian put, replace Line 7 with

() ()0: ln lnnb K S d u d =   ;

Line 35 as

: 0P = ;

Line 36 as

for : 0j = to b do

and Line 37 as

[] () ()0: 2 1
n jj j n jP P g j n p p K S u d
− −= + − ⋅ − ⋅ − ;

Then all Parisian options could be priced.

3.6 Numerical Results

Next we will price an up-and-out Parisian call option with the underlying asset given

by the exchange rate between US dollar (USD) and Japanese yen (JPY). Consider a

spot exchange rate 0 1 120.5S = , time to maturity 0.5T = year, strike rate

1 125K = , and barrier 1 110H = . The US risk-free interest rate is 0.056usr = per

year, the Japan risk-free interest rate is 0.007jpr = , and volatility is 0.13σ = per

year.

The number of trading days in a year is assumed to be 250. Table 3.3 illustrates

the numerical results for different values of the window period w provided by

Costabile. Compared with Table 3.4 computed by our program and Table 4.1

generated from the fast Monte Carlo simulation in Chapter 4, Table 3.3 is wrong when

5,10,15w = days.

 0w = days 5w = days 10w = days 15w = days

m n l PC l PC l PC l PC

10 101 0 0.000142 4 0.000202 8 0.000244 12 0.000279

20 406 0 0.000140 16 0.000214 32 0.000257 49 0.000297

32 1041 0 0.000141 42 0.000214 83 0.000254 125 0.000287

40 1626 0 0.000140 65 0.000213 130 0.000255 195 0.000284

50 2541 0 0.000141 102 0.000215 203 0.000252 305 0.000280

Table 3.3: Numerical results of different window periods by Costabile.

 0w = days 5w = days 10w = days 15w = days

m n l PC l PC l PC l PC

10 101 0 0.000142 4 0.000205 8 0.000246 12 0.000282

20 406 0 0.000140 16 0.000214 32 0.000258 49 0.000297

32 1041 0 0.000141 42 0.000222 83 0.000265 125 0.000301

40 1626 0 0.000140 65 0.000224 130 0.000267 195 0.000304

50 2541 0 0.000141 102 0.000225 203 0.000269 305 0.000305

100 10166 0 0.000141 407 0.000229 813 0.000273 1220 0.000308

200 40664 0 0.000141 1627 0.000230 3253 0.000274 4880 0.000310

300 91495 0 0.000141 3660 0.000231 7320 0.000275 10979 0.000311

400 162659 0 0.000141 6506 0.000231 13013 0.000275 19519 0.000311

Table 3.4: Numerical results of different window periods from Costabile’s algorithm

and the improved algorithm.

 Avellaneda and Wu priced the same Parisian options by formulating a partial

differential equation (PDE) which is solved numerically on a trinomial lattice, but

they assumed the number of trading days in a year is 360 [1]. Table 3.5 compares their

method and ours. The last row illustrates the numerical results obtained with the

Avellaneda-Wu (AW) model. As the number of time steps increases, our numerical

results converge to the Avellaneda-Wu model’s.

 0w = days 5w = days 10w = days 15w = days

m n l PC l PC l PC l PC

10 101 0 0.000142 3 0.000197 6 0.000227 8 0.000246

20 406 0 0.000140 11 0.000201 23 0.000237 34 0.000262

32 1041 0 0.000141 29 0.000206 58 0.000240 87 0.000269

40 1626 0 0.000140 45 0.000207 90 0.000242 135 0.000271

50 2541 0 0.000141 71 0.000209 141 0.000244 212 0.000273

100 10166 0 0.000141 282 0.000212 565 0.000247 847 0.000276

200 40664 0 0.000141 1130 0.000213 2259 0.000249 3389 0.000278

300 91495 0 0.000141 2542 0.000214 5083 0.000249 7625 0.000278

400 162659 0 0.000141 4518 0.000214 9037 0.000250 13555 0.000278

AW model 0.000141 0.000215 0.000251 0.000279

Table 3.5: Numerical results of different window periods compared with the

Avellaneda-Wu model.

Chapter 4

Monte Carlo Simulation
Monte Carlo (MC) simulation is a sampling scheme. The first application to option

pricing was by Phelim Boyle [3]. Monte Carlo simulation can be a procedure for

randomly sampling changes in market variables in order to value a derivative. It uses

the risk-neural valuation result to approximate the expectation of the derivative’s

terminal cash flows with a simple arithmetic average of the cash flows taken over a

finite number of simulated paths:

()0
1

1
Price , ,

M
rT i i

T
i

e f S S
M

−

=

 ≈   ∑ � ,

where 0, ,i i
TS S� is the i ’th simulated price path of underlying asset over the life of

the derivative and ()0, ,i i
Tf S S� is the derivative’s terminal cash flow from this path.

For a large sample of simulated price paths, the mean of the sample will closely

approximate the derivative’s true price. The statistical error of sample mean of the

price grows as 1 M , where M is the number of replications (or independent

trials).

4.1 Crude Monte Carlo Simulation

Suppose that the process followed by the underlying market variable in a risk-neutral

world is
ˆdS S dt S dzµ σ= + ,

where µ̂ is the expected return in a risk-neutral world, and σ is the volatility.

From Ito’s lemma process followed by ln S is

2

ˆln
2

d S dt dz
σµ σ

 = − +  
.

Since µ̂ and σ are constant, this equation indicated that ln S follows a Brownian

motion. It has constant drift rate 2ˆ 2µ σ− and constant variance rate 2σ . This

equation is used to construct a path for S . To simulate the path follow by S , we can

divide the life of the derivative into n short intervals of length t∆ . So that

() () 2

ˆln ln
2

S t t S t t t
σµ σε

 + ∆ − = − ∆ + ∆  
,

or equivalently

() () 2

ˆexp
2

S t t S t t t
σµ σε

  + ∆ = − ∆ + ∆    

where ()S t denotes the value of S at time t , ε is a random sample from a

normal distribution with mean zero and standard deviation of 1.0 and can be

generated by the Box-Muller algorithm [22]. This enables ()S t∆ to be calculated

from ()0S , ()2S t∆ to be calculated from ()S t∆ , and so on [9]. For the pricing of

up-and-in Parisian options which have the payoff ()()V S T , we may proceed as

Figure 4.1.

1: :t T n∆ = ;

2: : 0C = ; {Accumulated option value.}

3: for : 1i = to M do

4: 0:St S= ;

5: : 0flag = ;

6: : 0l = ;

7: for : 1j = to n do

8:
2

ˆ: exp
2

St St t t
σµ σε

  = ⋅ − ⋅∆ + ∆    
;

9: if St H≥ then

10: :l l t= + ∆ ;

11: if l w≥ then

12: : 1flag = ;

13: end if

14: else

15: : 0l = ;

16: end if
17: if 1flag = then

18: ()(): rTC C V S T e−= + ⋅ ;

19: end if

20: end for

21: end for

22: return C M ;

Figure 4.1: Crude Monte Carlo simulation for up-and-in Parisian options.

4.2 Inverse Gaussian Distribution

Tweedie introduced the inverse Gaussian distribution (IG) [19]. The inverse Gaussian

distribution is the distribution over [)0,∞ with the probability density function

(p.d.f.) given by

()
()2

22
3; , e , 0

2

x

xf x x
x

λ µ
µλµ λ π
−

−

= >

where 0µ > is the mean and 0λ > is a scale parameter. As λ tends to infinity,

the inverse Gaussian distribution becomes more like a normal (Gaussian) distribution.

If random variable X has inverse Gaussian distribution with location parameter µ

and scale parameter λ , we write

()~ ,X IG µ λ

where ~ means equality in distribution.

The inverse Gaussian describes the distribution of the time a Brownian motion

with positive drift takes to reach a fixed positive level. That is the first-passage time

distributions of Brownian motion with positive drift [20]. In particular, the

relationship between the inverse Gaussian distribution and Brownian motion is as

follows: The Brownian motion for a variable ()X t is given by

dX dt dzν σ= + ,

where dz is a normalized Brownian motion with drift ν and variance 2σ . Refer to

Figure 4.2, consider the first-passage time F of ()X t to the fixed level 0a x> ,

called a barrier. In order for F to be the first-passage time, we require

()
()
()

00

, 0

X x

X t a t F

X F a

=

< < <

=

.

When the drift 0ν > , we have ()Prob 1F < ∞ = and the first-passage time to the

barrier 0a x> is the inverse Gaussian (),IG µ λ , where

0a x

v
µ −
=

and

()2

0

2

a xλ
σ
−

= .

0x

t

X

a

F

Figure 4.2: First passage time.

The random variable Y has a uniform distribution if its probability density

function is equal to a constant on its support. In particular, if the support is the interval

[],a b , then

() 1
,f x a x b

b a
= ≤ ≤

−
.

Moreover, we shall say that Y is ()UNIFORM ,a b [8]. Let ()
2
1χ be a chi-square

distribution with one degree of freedom, i.e.,

() ()2
2 2 2
1 , ~ ,

X
Z X N

µχ µ σ
σ
− = =   .

()
2
1χ are easily generated as the squares of standard normals. Michael et al. gave a

method of generating random variates from the inverse Gaussian distribution using a

transformation [14]. Figure 4.3 shows how to generate the inverse Gaussian variate

X .

1: sample ()
2
1~V χ ;

2:
2

2 2
1 : 4

2 2

V
x V V

µ µµ µλ µλ λ= + − + ;

3:
1

:P
x

µ
µ
=
+

;

4: sample ()~ UNIFORM 0,1Y ;

5: 1:X x= ;

6: if Y P> then

7:
2

1

:X
x

µ
= ;

8: end if

9: return X ;

Figure 4.3: Michael’s sampling method for the inverse Gaussian distribution.

Whitmore discussed what he terms a defective inverse Gaussian distribution

(DIG):

()
()2

22
3; , e

2

x

xf x
x

λ µ
µλµ λ π
−

−

=

with 0x > , 0λ > , µ−∞ < < ∞ , 0µ ≠ [21]. The inverse Gaussian distribution

does not allow 0µ < , but the defective inverse Gaussian distribution does. With

0µ < , f does not integrate to unity so it is not a density function in the ordinary

sense. It is not hard to verify that

() ()2; 0, ; ,f x e f xλ µµ λ µ λ< = −

and

() 2

0
; 0,f x dx e λ µµ λ∞

< =∫ .

Such a definition takes into account the possibility of the drift being negative in a

Brownian motion. Consider the first-passage time F of ()X t . When drift 0ν <

and barrier 0a x> , we have () 2Prob F e λ µ< ∞ = and the conditional distribution of

F given F < ∞ is ()0,IG µ λ− > , where

0a x

v
µ −
=

and

()2

0

2

a xλ
σ
−

= .

So the probability of never hitting the barrier is 21 e λ µ
− as () 2Prob 1F e λ µ= ∞ = − .

We can also use Michael’s sampling method for generating the defective inverse

Gaussian variate. We emphasize that the sampling variate is also conditional

distribution of ever hitting the barrier again.

Regardless of whether drift ν is positive or negative and whether barrier a is

large than 0x or not, their first-passage time distribution is the same as the

first-passage time distribution with drift ν− , barrier 02x a− and initial position 0x .

Consider the first-passage time F of ()X t . When drift v and barrier 0a x< , the

conditional distribution of F given F < ∞ is (),IG µ λ , where

()0 0

0

2x a x

v
a x

v

µ
− −

=
−

−
=

and

()()
()

2

0 0

2

2

0
2

2x a x

a x

λ
σ

σ

− −
=

−
=

.

In summary, the first-passage time distribution F of the Brownian motion given

F < ∞ is (),IG µ λ .

4.3 Simulation with the Inverse Gaussian Distribution

Now we can use IG and DIG to price up-and-in Parisian options with the initial stock

price 0S , the strike price K , the time to expiration T , the volatility of the stock

price σ , the risk-free interest rate r , the dividend yield q , the barrier H , and the

window period w .

We now introduce our fast simulation algorithm. First, use Michael’s sampling

method to get the first-passage time ()~ ,F IG µ λ of the underlying asset’s price

process with barrier H . Set the Brownian motion parameters lna H= , 0 0lnx S= ,

and 2ˆ 2ν µ σ= − to get the Inverse Gaussian distribution parameters µ and λ . If

F w+ is less than duration T , it means that the underlying asset’s price S at the

time F is H :

() ,S F H F T= ≤ .

Second, we can use the Monte Carlo method to simulate the following partial

path whether continuously at or above the given barrier over the window period from

the time F . If it did, use the Monte Carlo method directly to simulate the final

underlying asset’s price at the time T and calculate the payoff. Otherwise if F w+

is greater than duration T , the path will not be admissible. So this path is not taken

and the payoff is zero.

Finally, if µ is less than 0 , it is a defective inverse Gaussian distribution and

the sampling variate F is a conditional distribution given F < ∞ . We should

multiply 2e λ µ to the price to adjust the first-passage time distributions. For standard

knock-in barrier options, i.e., 0w = , their fast simulation algorithm is similar to

knock-in Parisian options’. See Figure 4.4 for the complete algorithm.

1: :t T n∆ = ;

2: ˆ : r qµ = − ;

3: 0
2

ln ln
:

ˆ 2

H Sµ
µ σ

−
=

−
;

4:
()2

0

2

ln ln
:

H Sλ
σ
−

= ;

5: : 0C = ; {Accumulated option value.}

6: for : 1i = to M do

7: sample ()~ ,F IG µ λ ;

8: if F T≤ and 0w = then {Standard knock-in barrier options.}

9: ()2

ˆ: exp
2

St H T F T F
σµ σε

  = ⋅ − ⋅ − + −    
;

10: ()(): rTC C V S T e−= + ⋅ ;

11: else if F w T+ ≤ then

12: :St H= ;

13: : 0l = ;

14: for :
igT

j
t

 =  ∆  to n do

15:
2

ˆ: exp
2

St St dt t
σµ σε

  = ⋅ − ⋅ + ∆    
;

16: if St H≥ then

17: :l l t= + ∆ ;

18: if wl ≥ then

19: () ()2

ˆ: exp
2

St St n j t n j t
σµ σε

  = ⋅ − ⋅ − ⋅∆ + − ⋅∆    
;

20: ()(): rTC C V S T e−= + ⋅ ;

21: break;

22: end if

23: else

24: : 0l = ;

25: end if

26: end for

27: end if

28: end for

29: if 0µ < then

30: 2:C C e λ µ
= ⋅ ;

31: end if
32: return C M ;

Figure 4.4: Fast simulation algorithm for up-and-in Parisian options.

If the payoff is the same as the standard call or put, we also can just use the

Black-Scholes formula rather than the Monte Carlo method in Line 9, Line 10, Line

19 and Line 20 in Figure 4.4 for variance reduction. Replace Line 9 and Line 10 with

(): , , , , , rFC C BS H K r T F q eσ −= + − ⋅ ;

The condition of this problem is equivalent to pricing with the current stock price

0S H′ = , the strike price K , the time to expiration T F− , the volatility of the stock

price σ , the risk-free interest rate r , and the dividend yield q . When using the

Black-Scholes formula, it should discount with rFe− not rTe− . We can also replace

Line 19 and Line 20 with

()(): , , , , , r j tC C BS St K r n j t q eσ − ⋅ ⋅∆= + − ⋅∆ ⋅ ;

See Figure 4.5 for the revised algorithm.

1: :t T n∆ = ;

2: ˆ : r qµ = − ;

3: 0
2

ln ln
:

ˆ 2

H Sµ
µ σ

−
=

−
;

4:
()2

0

2

ln ln
:

H Sλ
σ
−

= ;

5: : 0C = ; {Accumulated option value.}

6: for : 1i = to M do

7: sample ()~ ,F IG µ λ ;

8: if F T≤ and 0w = then {Standard knock-in barrier options.}

9: (): , , , , , rFC C BS H K r T F q eσ −= + − ⋅ ;

10: else if F w T+ ≤ then

11: :St H= ;

12: : 0l = ;

13: for :
igT

j
t

 =  ∆  to n do

14:
2

ˆ: exp
2

St St t t
σµ σε

  = ⋅ − ⋅∆ + ∆    
;

15: if St H≥ then

16: :l l t= + ∆ ;

17: if wl ≥ then

18: ()(): , , , , , r j tC C BS St K r n j t q eσ − ⋅ ⋅∆= + − ⋅∆ ⋅ ;

19: break;

20: end if

21: else

22: : 0l = ;

23: end if

24: end for

25: end if

26: end for

27: if 0µ < then

28: 2:C C e λ µ
= ⋅ ;

29: end if
30: return C M ;

Figure 4.5: Fast simulation algorithm for up-and-in Parisian options with the

Black-Scholes formula.

4.4 General Case

To price down-and-in Parisian options, we reuse the algorithm in Figure 4.5 and just

replace Line 15 with

if St H≤ then

Then all knock-in Parisian options could be priced. From the in-out parity, we knew a

standard European option is equivalent to a portfolio of a European knock-out option

and a European knock-in option with an identical barrier. To price knock-out options,

we can use the Black-Scholes formula to subtract knock-in options we simulated.

All above Parisian options that we discussed are consecutive Parisian options.

There is another kind of Parisian-type options. The cumulative Parisian feature counts

the cumulative time that underlying asset’s price spends at or above (at or below) the

barrier throughout the whole life of the option. It is trivial to modify our fast Monte

Carlo simulation to evaluate cumulative Parisian options. For example, to price an

up-and-in cumulative Parisian option, delete Line 21 and Line 22 in Figure 4.5. For

other types of cumulative Parisian option, their fast simulation algorithm could be

discussed similar to consecutive Parisian options’ in the previous paragraph.

4.5 Parallel Processing

Multiprocessor systems (also known as tightly coupled systems) have two or more

processors in close communication, sharing the computer bus and sometimes the

clock, memory, and peripheral devices. They have three main advantages:

1. Increased throughput.

2. Economy of scale.

3. Increased reliability.

Nowadays the central processing unit (CPU) often combines two or more independent

cores into a single package composed of a single integrated circuit (IC). A multi-core

CPU functions as a chip-level multiprocessor. Aside from architectural considerations

such as cache, memory, and bus contention, these multi-core CPUs appear to the

operating system as N standard processors [18].

If we execute a single-thread process, it can only utilize one core; as a result, the

multi-core CPU is not fully exploited. Parallel programming techniques can benefit

from multiple cores directly (see Figure 4.6). Some existing parallel programming

models such as Message Passing Interface (MPI) can be used on multi-core systems.

It can also apply to a multiprocessor system or a distributed system (also known as

loosely coupled systems) which is a collection of physically separate, possibly

heterogeneous computer systems interconnected by a communication network.

One single-thread process executed:

Two single-thread processes executed:

Three single-thread processes executed:

Four single-thread processes executed:

Figure 4.6: A quad-core processor usage for one, two, three, and four single-thread

processes simultaneously.

Some computation-intensive tasks can take advantage of parallel processing for

much faster performance [12]. The paths generated by Monte Carlo simulation are

independent. So it is straightforward to apply parallel programming. We can build a

high-performance computing (HPC) clustered system to accomplish computational

work and take the core as the unit by MPI platform. Our HPC system includes three

dual-core PCs, i.e., six cores. The parallel processing for our simulation algorithm is

described as follows:

1. Partition the number of paths into few paths for each core.

2. Each core computes the simulation job sequentially.

3. When all cores finish the jobs, we collect the meta-data and average them to get

the final result.

Note that once the work has been divided, no communication among the jobs is

needed before the collection stage. Good speed-ups have been obtained. Numerical

results in next section are provided from our HPC system.

4.6 Numerical Results

According to Section 4.4 to price the same Parisian options in Table 3.4, we can use

the Black-Scholes formula to subtract the up-and-in Parisian option we simulated.

Table 4.1 is generated from the fast simulation algorithm with 1000000M = and

1000000n = . The parameter count means the average of the actually divided time

intervals in the fast simulation algorithm. If using crude Monte Carlo simulation,

count must be equal to n . So we have saved divided time intervals.

0w = days 5w = days 10w = days 15w = days

count PC count PC count PC count PC

1.394 0.000141 79930.35 0.000232 108568.70 0.000275 121904.71 0.000312

Table 4.1: Numerical results of different window periods from the fast simulation

algorithm.

 Because we use Michael’s sampling method, the time before first-passage time is

only divided one time interval, i.e., F . Consider that the barrier H is equal to the

initial underlying asset’s price 0S , the first-passage time F is zero. Our fast

simulation algorithm will degenerate to Monte Carlo simulation. But we also combine

Monte Carlo simulation and the Black-Scholes formula to save the time for simulating

the payoff. The Black-Scholes formula is regarded as just one time interval.

Chapter 5

Conclusions
Trees and Monte Carlo simulation are two main kinds of numerical method for

valuing derivatives. This thesis proposes two fast algorithms based on them to pricing

Parisian options, respectively.

About trees, we review Costabile's algorithm and try to refine it. Observe

combinatorial methods deeply and use programming techniques, not only its running

time but also required space can be saved. Actually, the time complexity and space

complexity are both reduced by an order successfully.

About simulations, we create processes to simulate underlying asset’s price

processes. Monte Carlo Simulation is easy to apply when payoffs are path-dependent.

To combine simulations and the inverse Gaussian distributions, we save divided time

intervals. To combine simulations and Black-Scholes formula, we reduce the variance

of sample price. Monte Carlo simulation can also be sped up by parallel processing.

Complete algorithms for all types of Parisian option are available. They are easy

to implement in practice. As a result, numerical results are given to suggest the

correctness of these two fast algorithms.

Bibliography
[1] Avellaneda, M., and Wu, L., 1999, Pricing Parisian-style options with a lattice

method, International Journal of Theoretical and Applied Finance, 2, 1–16.

[2] Black, F., and Scholes, M., 1973, The pricing of options and corporate liabilities,

Journal of Political Economy, 81, 637–659.

[3] Boyle, P.P., 1977, Option: a Monte Carlo approach, Journal of Financial

Economics, 4, 323–338.

[4] Boyle, P.P., and Lau, S.H., 1994, Bumping up against the barrier with the

binomial method, The Journal of Derivatives, 1(4), 6–14.

[5] Cormen, T.H., Leiserson, C.E., Rivest, R.L., and Stein, C., 2001, Introduction to

Algorithms, 2nd edition. Cambridge, MA: The MIT Press.

[6] Costabile, M., 2002, A combinatorial approach for pricing Parisian options,

Decisions in Economics and Finance, 25(2), 111–125.

[7] Cox, J.C., Ross, S.A., and Rubinstein, M., 1979, Option pricing: a simplified

approach, Journal of Financial Economics, 7, 229–263.

[8] Hogg, R.V., and Tanis, E.A., 2001, Probability and Statistical Inference, 6th

edition. Upper Saddle River, NJ: Prentice-Hall.

[9] Hull, J.C., 2006, Options, Futures, and Other Derivatives, 6th edition. Upper

Saddle River, NJ: Prentice-Hall.

[10] Lint, J.H. Van, and Wilson, R.M., 2001, A Course in Combinatorics, 2nd edition.

New York, NY: Cambridge University Press.

[11] Lyuu, Y.-D., 1998, Very fast algorithms for barrier options pricing and ballot

problem, The Journal of Derivatives, 5(3), 68–79.

[12] Lyuu, Y.-D., 2002, Financial Engineering and Computation: Principles,

Mathematics, Algorithms. New York, NY: Cambridge University Press.

[13] Merton, R.C., 1973, Theory of Rational Option Pricing, Bell Journal of

Economics and Management Science, 4, 141–83.

[14] Michael, J.R., Schucany, W.R., and Haas, R.W., 1976, Generating random

variates using transformations with multiple roots, American Statistician, 30,

88–90.

[15] Papadimitriou, C.H., 1995, Computational Complexity. Reading, MA:

Addison-Wesley.

[16] Patterson, D.A., and Hennessy, J.L., 2005, Computer Organization and Design:

The Hardware/Software Interface, 3rd edition. San Francisco, CA: Morgan

Kaufmann.

[17] Rosen, K.H., 2003, Discrete Mathematics and Its Applications, 5th edition. New

York, NY: McGraw-Hill.

[18] Silberschatz, A., Galvin, P.B., and Gagne, G., 2006, Operating System Principles,

7th edition. Hoboken, NJ: John Wiley & Sons.

[19] Tweedie, M.C.K., 1947, Functions of a statistical variate with given means, with

special reference to Laplacian distributions, Proceedings of the Cambridge

Philosophical Society, 43, 41–49.

[20] Wasan, M.T., 1969, First passage time distribution of Brownian motion with

positive drift (Inverse Gaussian Distribution), Queen’s Papers in Pure and

Applied Mathematics, No.19, Queen’s University, Kingston, Ontario.

[21] Whitmore, G..A., 1979, An inverse Gaussian model for labour turnover, Journal

of the Royal Statistical Society, A142, 468–478.

[22] William, H.P., Brain, P.F., Saul, A.T., and William T.V., 1992, Numerical Recipes

in C: The Art of Scientific Computing, 2nd edition. New York, NY: Cambridge

University Press.

[23] 冼鏡光，2002，名題精選百則：使用 C 語言─技巧篇，第二版，臺北市：

儒林。

[24] 陳威光，2001，選擇權：理論、實務與應用，臺北市：智勝文化。

[25] 陳威光，2001，衍生性金融商品：選擇權、期貨與交換，臺北市：智勝文化。

[26] 黃達業，2004，選擇權、期貨與其他衍生性商品，臺北縣：普林斯頓國際。

[27] 鄭守成，2002，C 語言 MPI 平行計算程式設計，新竹市：國家高速網路與計

算中心。

[28] 顏月珠，2004，應用統計學—最新課程含 Microsoft Excel、SAS 範例，修訂

版，臺北市：臺大法律學院圖書文具部。

