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Abstract 
We revisit the models developed in Das and Sundaram (2004) and Bandreddi, et al. 
(2007). Bandreddi, et al. (2007) use a simplified version of the model developed by 
Das and Sundaram for correlated default simulation. We find that in their setting, 
problematic probabilities may arise which may cause biased results for the purpose of 
default simulation and the pricing of derivative products. We suggest an alternative 
model — the D-CEV model, as an alternative to address this problem. The new model 
is an extension of a popular binomial model and is easy to implement. We further 
explore the natural characteristics of our alternative method with several numerical 
experiments. Our proposed model is found to resolve the unpleasant flaws in the 
model of Bandreddi, et al. (2007) while preserving its desirable properties. We also 
show how this framework accounts for several empirical features. 
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I. Introduction 
 
The market in credit derivative products has experienced a tremendous growth in the 
past years and plays an important role in today’s financial market by facilitating the 
transfer and trading of credit risk. The International Swaps and Derivatives 
Association (ISDA) reported in April 2007 that the total notional amount on 
outstanding credit derivatives was $35.1 trillion with a gross market value of $948 
billion. Portfolio credit derivatives such as collateralized debt obligations (CDOs) and 
basket default swaps account for a significant portion of the market, which have 
drawn much attention in recent years.1  A CDO is an asset-backed securitized 
structure that distributes credit risk to investors by creating “tranches.” Tranches are 
each responsible, in a sequential order, for credit losses in the reference portfolio 
backing the CDO. Thus its valuation highly depends on the correlated default 
behavior of the underlying assets. 
    Two main quantitative approaches for valuing credit risk and default correlation 
are the structural-form credit models and the reduced-form credit models. 
Structural-form models are based on the original framework developed by Merton 
(1974) and its extension by Black and Cox (1976), using the principles of option 
pricing. In this model a default occurs if the value of a company falls below a default 
barrier before the maturity of its debt liabilities. Zhou (2001b), Hull and White (2001), 
and Hull, Predescu, and White (2005) propose structural-form models for multi-issuer 
cases. Their models are dynamic in the sense that the credit qualities of companies 
evolve through time. Structural-form models possess economic rationale in which 
they provide a link between the credit quality of a firm and the firm’s financial 
situation. Still, due to the assumption of complete information about the firm’s assets 
and liabilities, the default event is not a total surprise. This is often referred to as the 
“predictability” of structural-form models (see Giesecke (2004) and Jarrow and 
Protter (2004)). Since default can be anticipated, the model price of a credit sensitive 
security converges continuously to its recovery value, in conflict with empirical 
observation where prices abruptly drop to its recovery value upon default. Moreover, 
the model implied credit spread for the firm’s debt tends to zero for short 
time-to-maturity, at odds with positive short-term spreads seen in practice (see 

                                                 
1 According to the Securities Industry and Financial Markets Association, aggregate global CDO 

issuance totaled US$ 157 billion in 2004, US$ 272 billion in 2005, US$ 552 billion in 2006 and US$ 

486 billion in 2007. Research firm Celent estimates the size of the CDO global market to close to $2 

trillion by the end of 2006. 
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Giesecke (2004)). Hence, such predictability of default times in this type of models is 
regarded as a major drawback. This consideration brings us to reduced-form models. 
 Reduced-form models, first studied by Jarrow and Turnbull (1995) and Duffie 
and Singleton (1999), overcome this deficiency of predictability by assuming that 
default occurs without warning at an exogenous default rate (or intensity), 
characterized by jump processes. The intensity is extracted from the market prices of 
a firm’s defaultable instruments such as corporate bonds or credit default swaps, 
which contain a default risk premium demanded from investors of uncertainty about 
default events. The main shortcoming with reduced-form models is that the arrival of 
default is not based on any characteristic of the firm’s underlying credit quality, but on 
market prospects. Nevertheless, they are more commonly used by practitioners for 
pricing, hedging, and trading purposes (see Jarrow and Protter (2004)). Among 
reduced-form approaches for multi-issuer cases, copula methods have become popular 
for pricing correlated default. These types of models were first introduced by Li (2000) 
and later extended by Gregory and Laurent (2005), which has become the standard 
market model for portfolio credit derivatives. However, common copula models are 
static models; they assume constant hazard rates through the whole term of a contract. 
But a changing default environment is more realistic. 
    Nowadays, researchers and practitioners seek to find innovative methods for the 
valuation of credit portfolio defaults. For example, Longstaff and Rajan (2006) 
develop a so called top-down approach to model credit portfolio losses using a direct 
method that does not require modeling individual correlations, whereas 
Carayannopoulos and Kalimipalli (2003), and Das and Sundaram (2004) suggest 
another method where equity correlations may be used to drive intensity correlations. 
    Das and Sundaram (2004) introduce a simple model for pricing securities with 
equity, interest-rate, and default risk. Their model is a reduced-form model. Default 
probabilities in their framework are derived endogenously on a binomial lattice 
calibrated to credit default swap markets. It is claimed that the model captures default 
information from both equity- and debt-market information rather than just from 
equity-market information (as in structural-form credit models) or just from 
debt-market information (as in reduced-form credit models). Bandreddi et al. (2007) 
use a simplified version of their model to simulate correlated defaults for credit 
portfolios. We will call it the defaultable CRR model (D-CRR for short). Their 
framework contains three main components. First, one develops for all reference 
issuers in a credit portfolio their equity binomial lattices with default risk considered. 
Second, one calibrates the lattices to the credit default swap market. Third, one 
simulates default with the correlated lattices to examine default risk distributions and 
default correlations. 
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    Unfortunately, the model developed in Bandreddi et al. (2007) gives rise to 
problematic probabilities on the lattices. In particular, probabilities outside the range 
of 0 to 1 can arise, leading to biased results when applied to default modeling. 
Furthermore, our numerical analyses show other deficiencies of their model in 
practice, such as its conflict with traditional structural-form models in the relationship 
between credit risk and equity volatility. To remedy them, we suggest an alternative 
method to build the lattice. Our method is a generalized extension of the well-known 
CEV model that takes into account the “leverage effect” and is easy to implement. We 
call it the defaultable-CEV model (D-CEV for short). The D-CEV model is a simpler 
version of the model first seen in Das and Sundaram (2007), which was used for the 
pricing of convertible bonds with equity, interest rate, and credit risk. This thesis will 
analyze how our proposed model addresses the drawbacks of the D-CRR model 
without sacrificing their desirable properties. We compare the D-CEV model with the 
D-CRR model in the pricing of credit derivative products, and find that our model 
produces higher mean levels of default, which was neglected by the previous D-CRR 
approach. An examination on how different input parameters affect the results for 
default simulation in our framework is also performed. 
 In summary, the framework discussed in this thesis is a new approach that is easy 
to understand, in which observable equity prices are used along with an intensity-base 
model to simulate default in an arbitrage-free setting. The model is dynamic in that 
hazard rates evolve through time, which is an appealing feature for the hedging of 
credit positions and the valuation of new-generation credit products. The flexibility of 
the model enables accommodation of several known empirical phenomena. First, 
empirical research has shown evidence of the joint movements between credit spreads 
and stock option implied volatilities (see Hull, Nelken and White (2004) and Carr and 
Wu (2006)). The D-CEV model proposed in our thesis can be simultaneously 
calibrated to both the term structure of credit default swap spreads and the equity 
options market. We will also show how in the D-CRR model one may encounter 
undesirable outcomes when we calibrate to equity volatility. Second, there is evidence 
indicating that corporate defaults “cluster” in time (see Das, Duffie, Kapadia, and 
Saita (2005)). The framework discussed in this thesis allows for the accommodation 
of this fact. We can switch between the assumption of independence of default events, 
where we consider only intensity correlations, and the assumption of dependence of 
default events conditioned on intensities, where the default clustering effect is 
matched.  
 The remainder of this thesis is organized as follows. In Chapter II we review the 
previous framework for default modeling. Chapter III points out their disadvantages 
and describes our improved model. In Chapter IV we perform numerical experiments 
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to explore the characteristics of our model. Chapter V makes a comparison between 
the D-CRR model and D-CEV model in the valuation of portfolio credit derivatives. 
Chapter VI concludes the thesis. 
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II. Literature Review 
 
The equity binomial lattice introduced in Das and Sundaram (2004) extends the Cox, 
Ross, Rubinstein (CRR) model by including a jump-to-default branch for each node. 
Bandreddi et al. (2007) apply this model to simulate correlated default. Their 
framework is summarized in this Chapter. 
 
2.1 The Defaultable CRR Model 
 
In a discrete-time setting with time intervals of length h , the evolution of the equity 
price tS  to a stochastic value t hS +  is assumed to be of the following pattern: 

     (up move)      w/prob  (1 )
     (down move) w/prob  (1 )(1 )

0        (default)         w/prob   

t t

t h t t

t

uS q
S dS q

π
π

π
+

−⎧
⎪= − −⎨
⎪
⎩

               (1) 

The respective “up-move” and “down-move” parameters u  and d  are based on 

CRR’s settings, where e hu σ=  and 1/d u= . Intuitively, equity is a security that is 
assumed to receive zero recovery upon the occurrence of a credit event, thus a third 
branch to 0 is incorporated. Given the risk-neutral default intensity from time t  to 
t h+  as  tξ , the default arrival follows a Poisson process, where the default 
probability tπ  over the period t  to t h+  should be 

1 e t h
t

ξπ −= − . 

In a risk-neutral world, the equity price should fulfill the martingale condition 

[ ]rh
t t hS e E S−

+= . 

Hence, 

(1 ) (1 ) (1 ) 0rh
t t t t t te S uS q dS qπ π π= × × − + × − × − + × , 

leading to the risk-neutral probability 
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( )r he dq
u d

ξ+ −
=

− .                               (2) 

Notice that the probability of an up-move becomes higher compared to that of CRR’s 
since the jump to zero of the stock price must be compensated. 
 The most critical step for building the lattice in this model is to give a 
characterization of the default intensity. The intensity is endogenously determined 
with the following equation: 

exp( )
t

t

t
S β

α γξ +
= ,                               (3) 

where ,  ,  α β γ  are entitled the intensity-function parameters. The idea of this 
function comes from the fact that equity prices tend to reflect the credit risk of a firm. 
It is easy to see that in this inverse relationship, as stock prices tend to be low, the 
default intensity moves higher. We can visualize how such a feature is analogous to 
structural-form models, where lower equity value leads to lower firm value and higher 
tendency of hitting the default barrier. The zero equity value upon default is used as a 
response to the barrier condition. When a firm’s value is below its liabilities, equity 
holders get nothing. This link to equity values is economically attractive since stock 
prices in this model are observable whereas firm values in traditional structural 
models are unobservable. In the D-CRR model, the actual default event is not 
determined by the absolute equity value, however, but by the intensity in a Poisson 
arrival, as in reduced-form models. Therefore this model differs from typical 
structural-form models in the degree of predictability of default. The intensity in this 
model is an endogenous process characterized by the parameters ,  ,α β  and  γ . We 
will show in chapter IV that the three intensity function parameters ,  ,  α β γ  capture 
the level, slope, and curvature of the term structure of credit default swap spreads, 
respectively. 
 
2.2 Calibrating Parameters 
 
The parameters ,  ,  α β γ  are calibrated to the credit default swap market. A credit 
default swap is an insurance-like instrument to transfer the credit risk of fixed-income 
products. It is a contract between two counterparties in which a protection buyer pays 
a fixed fee periodically to a protection seller that guarantees a contingent payment 
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Figure 1 

Illustration of the Pricing of Credit Default Swaps 
 

(1) (2) 

 
 
upon a credit event (such as default or failure to pay) happening in the reference entity 
agreed upon in the contract. The market of credit default swaps represents one of the 
fastest-growing derivatives markets.2 Its high liquidity provides efficient default 
information, where the availability of term structures of credit default swap spreads 
allows one to fit the intensity-function parameters mentioned above. 
 Credit default swaps are quoted as the spread payment per annum made by the 
protection buyer. How they are priced is much discussed in the literature (for example, 
see Duffie (1999) or Hull and White (2000) for their no-arbitrage approaches). The 
main concept behind pricing a credit default swap is that the periodic payment should 
be the spread that equates the present value of payments made by the protection buyer 
with the expected loss on default over the life of the default swap contract. This is 
easy to implement on the lattice since the probabilities of moving on to all states and 
defaulted nodes are already determined when the lattice is built. As shown in Figure 1, 
one may begin by putting a spread payment  s h×  on each non-defaulted node. Then, 
by calculating the expected present value of these payments through backward 
recursion, one may get 1 s h PV× × , where 1PV  is the present value of $1 paid at all 
non-defaulted nodes. Second, by putting a loss-given-default of 1 RR−  per dollar on 
each defaulted node, where RR  is the recovery rate, and zero elsewhere, one can 
                                                 
2 The Bank for International Settlements reported the notional amount on outstanding OTC credit 
default swaps to be $42.6 trillion in June 2007, up from $28.9 trillion in December 2006 ($13.9 trillion 
in December 2005). 

 s h×  

 s h×

 s h×

 s h×

 s h×

 s h×

 s h×

 s h×

 s h×

1 RR−

1 RR−

1 RR−1 RR−

1 RR−

1 RR−



 11

compute the present value of expected losses  LPV . Finally, equate 1 s h PV× ×  
with  LPV , and the annual spread payment made from the protection buyer should be: 

1

10000 (in bps)LPVs
PV h

= ×                            (4) 

The illustration in Figure 1 is a general treatment that does not specify the timing of 
defaults and the notional value of the credit default swap. There is much flexibility in 
considering these details. For example, the notional value of the default swap can be 
assumed to be a fixed amount for convenience. In our thesis we will assume that (a) in 
any period in which default occurs, recovery payoffs are realized at the end of the 
period, (b) default is based on the default intensity at the beginning of the period. In 
addition, we will adopt the recovery of market value (RMV) condition in our research. 
Basically, the RMV condition stipulates that at default of one counterparty, the other 
counterparty’s claim is a fraction, 1 RR− , of the market value of a non-defaulted, but 
otherwise equivalent, security (if the value of this security is positive). This condition 
is briefly described in Appendix A and can be seen in detail in Schönbucher (2003). 
 As mentioned before, the main purpose of this pricing procedure is to calibrate 
the parameters  ,  ,  α β γ . This can be done by extracting different credit default swap 
spreads of the reference entity from its term structure of credit default swap spreads, 
and then fitting the parameters to this market data. The three parameters can be solved 
directly given three market spreads, or a sum-of-least-squares fit can be used for more 
data provided. 
 
2.3 Simulating Correlated Default 
 
Now, to simulate correlated default, one starts by building the above binomial lattices 
for all reference entities in a credit portfolio. Assuming N  entities (issuers) in a 
portfolio, one may get N  sets of parameters by calibrating to market data, leading to 
N  intensity functions of the form 

exp( ) ,     1,...,
i

i i
it

it

t i N
S β

α γξ +
= =

. 

This equation implies that if one simulates a path of stock prices itS for an issuer  i , it 
is equivalent to simulating a path of default intensities itξ  for the issuer. Therefore, 
with the given equity correlation, one can simulate a joint process of stock prices for 
all reference issuers in the portfolio, which at the same time produces the joint process 
of  itξ , i.e., correlated intensity paths. This is how equity correlations drive intensity 
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correlations. 
 The simulation starts from the root node of each issuer. At the root nodes, the 
initial stock prices 0 ,iS 1,..., ,i N=  are known, which implies realizing the initial 
values of the intensities 0iξ  for all firms. The simulation then proceeds in two steps: 
 
1. One first checks if any of the reference entities has defaulted or not. When the 

intensity  itξ  at a time t is realized, the default probability itπ  at that time is also 
determined — which is  1 exp( )it ithπ ξ= − − . Then, draw a set of uniform random 
numbers between 0 and 1, denoted by 1 2{ , , , }Nu u u u= " . If  i itu π≤ , then issuer i  
defaults at time  t . The random numbers u can be independent uniform random 
numbers between 0 and 1 drawn with correlation using copula methods (or other 
techniques). 

 
2. For the firms that have not defaulted in the first step, one further determines 

whether the stock prices move up or down on the binomial lattices for all the 
non-defaulted issuers. The probabilities of an up move itq  and a down move 
1 itq−  are known at each time period. Given the correlation matrix Σ  of stock 
returns, one can decompose Σ  using a Cholesky factorization and sample a set 
of correlated standard normal random variables 1 2x { , , , }Nx x x= " . Given ( )Φ ⋅  
the standard normal cumulative distribution function, if ( )i itx qΦ ≤ , then the 
stock price goes up for issuer i . On the other hand, if ( )i itx qΦ > , the stock price 
goes down for i . 

 
By repeating these two steps, starting from the root node until maturity, N  

sample paths of stock movements (equivalently, intensity movements) are obtained. 
The timing and number of defaults can also be found as a result. Therefore, we are 
able to model correlated defaults to evaluate portfolio credit derivatives. 
 Drawing independent random numbers in the first step assumes independence of 
default events, where we consider only intensity correlations. This way a 
“doubly-stochastic assumption” is invoked, similar to most intensity-based models. 
The doubly-stochastic assumption means that, conditional on the path of the 
underlying state process determining default intensities, the respective default times 
are the first event times of independent Poisson arrivals. Comparatively, drawing 
random numbers with correlation assumes “conditional dependence,” where 
additional correlation between default events is injected besides intensity correlation. 
We present a brief introduction of the one-factor Gaussian copula model in Appendix 
B, which is the method we use to draw correlated random variables in our thesis. 
These assumptions will be investigated in Chapter V to understand their relative 
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strengths. 
 In addition to the original framework, we further suggest a more particular 
criterion in step 2 to grasp a general concept. Since stock values reduce to zero and 
remain there after default events, there should actually be no equity correlation 
between the defaulted firms and those that have survived. Therefore, given the 
outcomes after the first step in each time period, the portion of those firms that have 
defaulted should be excluded from the equity correlation matrix. In this way we are 
ensuring that the random variable draws are not interfered with by irrelevant draws in 
the simulation algorithm. 
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III. An Alternative Model: the Defaultable CEV Model 
 
3.1 Problems with the D-CRR Model 
 
The D-CRR model gives rise to problems of negative probabilities. Recall in the 
model for stock price movements discussed in the previous chapter, the probability of 
an up move is given by Eq. (2), which is a modification of the transition probabilities 
in the original CRR model. Furthermore, the stock-intensity relationship is given by 
Eq. (3). We now examine a set of base parameters as selected in Bandreddi et al. 
(2007): 

50S = , 0.3σ = , 0.5α = − , 1β = , 0.1γ = , 0.03fr = , 

and a term of 5 years with monthly time intervals 1/12h = . When implementing this 
model, we encounter problematic probabilities in the lower part of the lattice. For 
example, when the stock price follows the lowest nodes for 47 time steps, it will 

become 47 0.3 1/12 4750*( ) 0.854Sd e−= = . The intensity is then computed as 

( 0.5 0.1*47 /12)e / 0.854 1.05tξ
− += = , and the probability of an up move will be 

( ) ( )(0.03 1.05) /12 0.3 1/12 0.3 1/12 0.3 1/12/ 1.022q e e e e+ − −= − − = , a dubious number. In fact, the 

probabilities on the nodes with stock price lower than 0.854 are all out of their valid 
range in this example. Figure 2 shows that part of the lattice. 
 One can easily examine how this happens for different parameter values. This is 
due to the intensity-function setting of Eq. (3) where the relationship between stock 
and intensity is actually a convex function. When stock prices are low, a slight 
decrease in stock price will lead to an immense increase in default intensity. In this 
case where intensity is not bounded, probabilities move out of their valid range. 
Although in practice this can be relieved for some cases by choosing an appropriate 
time interval h, how large the number of time steps should be chosen varies widely for 
different cases. Therefore, implementation of the model is unstable and 
computationally inefficient for simulation purposes when a large number of time steps 
is needed. 
 The existence of these probabilities also affects the results when we simulate 
correlated defaults. Recall the simulation method described in section 2.3. The stock 
price movements are determined by comparing the risk-neutral probability, q, with the 
cumulative distribution function values of the sample draws. Since the cumulative 
distribution function values are always in the range of 0 to 1, the stock price will 
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Figure 2 

 

always move up according to the algorithm when 1q > . This implies that the stock 
price can never reach below the stock price that starts yielding invalid probabilities 
(0.854 in the above example). This portion of the lattice, which contains higher 
default intensities (and higher default probabilities) than any other parts of the lattice, 
will never be reached inside during the simulation process. It is hence unused, despite 
its significant contribution to the calibration of the intensity-function parameters. 
Moreover, pricing other derivatives on the lattice through backward induction seems 
unreasonable with these dubious probabilities. 
 One main motivation of our thesis is to address this issue. What we need is an 
alternative model that mitigates the problem and still preserves the desirable 
properties of the D-CRR model. We come up with the defaultable CEV model 
(D-CEV for short) in the next section. 
 
3.2 The Defautable CEV Model 
 
A similar version of this model was first seen in Das and Sundaram (2007) to price 
convertible bonds with default risk. In their paper, stochastic interest rates are also 
considered, yet it is switched off here in our work for credit modeling objectives.  
Prior to introducing our model, we first take a glance of what the “leverage effect” is 
and how taking account of it benefits the solution of the probability issue. 
 The “leverage effect” is a phenomenon suggesting that stock price and the 
volatility of its return are negatively correlated. Previous research shows that the 

q=1.21 

Time   …    46h     47h   48h       …  …    52h   … 

q=0.97 

q=1.02 

q=1.08 

q=1.14 

q=1.28

q=0.93 

q=0.98 

q=1.03 

q=1.08 

q=1.15 

q=1.21

q=0.99 

q=1.04 

q=1.37
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log-normality of stock prices assumed in the Black-Scholes framework does not hold 
empirically due to the leverage effect in actual stock price behavior. Therefore, to 
account for this evidence, different diffusion processes are studied in the literature. 
Cox (1975) and Cox and Ross (1976) focused on a general class of stochastic 
processes known as the constant elasticity of variance (CEV) diffusion class: 

cdS Sdt S dZμ σ= +  , 0 1c< ≤ . 

Here the instantaneous variance of /dS S (percentage price change) is equal to 
2 2 2/ cSσ −  and hence an inverse function of the stock price. When the stock price is 

high, volatility is smaller than when the stock price is low. This matches the leverage 
effect qualitatively. In Eq. (2), the denominator u d−  will become larger with higher 
volatility when stock prices are low, in accordance with the leverage effect, forming a 
force to pull back the probabilities to their appropriate range. Therefore, the 
probability issue can be mitigated with this alternative setting. Actually, taking 
account of both the leverage effect and the inverse relationship between stock prices 
and default intensities describes empirical phenomena more faithfully. It is a fact that 
a firm usually becomes more volatile when its default intensity is high, connecting 
both our intensity-function setting and the leverage effect in the equity prices. 
 Nelson and Ramaswamy (1990) developed a recombining binomial lattice that 
converges weakly to the CEV process, which proves to be computationally simple. 
We apply their method for our lattice construction, summarized as follows: 
 
1. First, since the instantaneous volatility of the stock price is stochastic in the 

CEV process, building a discrete model for the stock process will result in a 
non-recombining lattice. Therefore, we need to make a transformation from the 
process of S into another process X, that produces constant instantaneous 
volatility. Nelson and Ramaswamy (1990) show that the transformation can be 
computed as 

1
1( )

(1 )

cS c SX S Z dZ
c

σ
σ

−
− −= =

−∫ . 

The function X(S) is the said mapping from S to X. Notice that the inverse 
function of the X(S) is 

[ ]1/(1 )( ) (1 ) cS X c Xσ −= − .                   (5)
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 Figure 3 

The X-Lattice in the Nelson and Ramaswamy (1990) Framework 

 
After building a lattice for the process with constant volatility, X, we are able to 
transform from X back to S using this function. Nelson and Ramaswamy (1990) 
show that the process of S(X) is monotonically increasing in X; therefore a 
lattice built for S with this transformation inherits the computational simplicity 
that the lattice built for X demonstrates. 
 

2. The next step is to form the X-lattice correspondent to the stock price, defined 
as 

    (up move)      w/prob  (1 )

   (down move) w/prob  (1 )(1 )
0               (default)         w/prob   

t t

t h t t

t

X h q

X X h q

π

π
π

+

⎧ + −
⎪⎪= − − −⎨
⎪
⎪⎩

, 

with the initial condition 0 0( )X X S= . Hence by applying the relationship 
shown in Eq. (5), this lattice can be mapped to the stock price process 

X h+

2X h+

X h−

X  
X  

2X h−

X n h+

( 2)X n h+ −  

. 

. 

. 

. 

. 

. 

. 

( 2)X n h− −

X n h−  

Time   0  h  2h  …  …  nh=T 
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( ) ( )    (up move)      w/prob  (1 )

( ) ( )    (down move) w/prob  (1 )(1 )
0                                    (default)         w/prob   

t t t t

t h t t t t

t

S X S X h q

S S X S X h q

π

π
π

+

−
+

⎧ = + −
⎪⎪= = − − −⎨
⎪
⎪⎩

 

 
with the same set of probabilities. Here, the probability of an up-move is 

( ) ( )( ) ( ) ( )
( ) ( ) ( ) ( )

r h r he S X S X e d Xq
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by risk-neutral arguments, where 

( ) ( ) / ( )u X S X S X+=  and ( ) ( ) / ( )d X S X S X−= . 

 
3. Finally, to build a D-CEV lattice that effectively alleviates the probability issue 

described in Section 3.1, we need to select an appropriate choice for the CEV 
leverage coefficient, c , in the CEV diffusion process. We have seen that the 
instantaneous variance of /dS S  is equal to 2 2 2/ cSσ −  from the CEV diffusion 
process. Thus when 1c =  the instantaneous variance is simply 2σ , which 
corresponds to the constant volatility assumption in the Black-Scholes 
framework. As c  is varied from 1 to 0, the negative effect of the stock price on 
the instantaneous variance becomes more profound, where 0c =  yields an 
inverse relationship with quadratic order, 2 2/ Sσ . Consequently, c  is the 
parameter that determines the degree of the leverage effect, and can be chosen to 
build a D-CEV lattice with appropriate leverage effect that relieves the 
probability issue. 

  To choose the appropriate c  the following inequality should hold: 

( ) ( ) ( )0 1
( ) ( )

r he S X S Xq
S X S X

ξ+ −

+ −

−
≤ = ≤

−
,                    (6) 

 This does not need to be checked for all probabilities q on the lattice. Since we 
claimed that problematic probabilities happen in the lower part of the lattice due 
to the convex relationship between the stock price and the intensity in Eq. (3), all 
we need to do is to assure c  is chosen such that the risk-neutral probability for 
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the lowest node satisfies the inequality, for example, the node with value 
X n h−  in Figure 3. As long as the node with the lowest equity value, and 
hence highest intensity, is free of the probability issue, then all the other 
risk-neutral probabilities are likely as well. This provides a criterion to choose 
the leverage coefficient. Still, note that as long as the leverage effect is 
considered in the D-CEV lattice, the probability issue can always be eased, as 
part (or even all) of the problematic probabilities found in the equivalent D-CRR 
lattice can fall within their appropriate range. 

 
 Das and Sundaram (2007) show that a change in the CEV leverage coefficient, 
c , in the CEV diffusion process has small quantitative effect on the prices of credit 
default swap spreads derived from the D-CEV lattice. In the remainder of our thesis 
we set a moderate 0.5c =  in the given examples and computations to considerably 
account for some of the leverage effect. We will see that this is an appropriate choice 
for our examples to ease the probability issue. 
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IV. Numerical Evaluations 
 
We now examine how the models perform for default modeling purposes. The 
numerical experiments allow us to investigate several characteristics and compare 
across the models. Recall that our experiments are carried out through the following 
three steps: 
 
1. Build the correlated equity binomial lattices for all reference issuers in the credit 

portfolio for the D-CRR model and the D-CEV model. 
2. Calibrate the lattices to the credit default swap market. 
3. Simulate default with the correlated lattices and extract the numbers of default as 

well as their respective default times. 
 
4.1 Base Case Data 
 
Now, consider a credit portfolio of 10 identical reference entities with the following 
base level parameters: 

50S = , 0.3σ = , 0.5α = − , 1β = , 0.1γ = , 0.03fr = , 0.5RR = , and 0.5ρ =  

The term horizon is 5 years with monthly time steps 1/12h =  (year). This is the 
same data in Bandreddi et al. (2007) used for the D-CRR model. It should be noted 
that the calibrated values of  ,  ,  α β γ  will actually be different between the D-CRR 
and D-CEV model even though a same term structure of credit default swap spreads is 
given. Hence we first assign these values to the D-CRR model and then compute the 
credit spreads implied from these parameters. The resulting spreads are treated as 
hypothesized market spreads, which are then used to calibrate our D-CEV model. 
This is to ensure we are applying the same set of data to the D-CEV model for our 
comparison. The fitted parameters are shown in Table 1. We can see that the D-CEV 
model fits well the hypothesized spreads. 
 Then we vary different parameters and simulate 10000 paths for each case and 
each model. In this chapter we will assume that only default intensities are correlated, 
whereas default events are not. Therefore, we draw independent random numbers 
from a uniform distribution between 0 and 1 to determine default along the simulated 
paths. The total numbers of defaults and their respective time of default are derived to 
form default frequency distributions. We further calculate the moments of the 
distributions for our investigation. The methodology we use is similar to that in 
Bandreddi et al. (2007), but instead of adding up all intensities in a simulated path and 
then drawing only one random number for each path to determine default events, such 
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as in their work, we make default draws period by period as an extension to their 
approach. In this way we assure that the findings from our investigation can apply to 
pricing products that are dependent on the timing of defaults, such as CDOs. 
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Table 1 

Parameters for Different Models and Their Fitted Spreads 
 

Parameters Fitted spreads (bps) 
Model 

α  β  γ  1yr 2yr 3yr 4yr 5yr

D-CRR 0.50− 1.00 0.10 60.39 68.09 74.84 81.68 88.87

D-CEV 0.76− 0.93 0.18 60.46 68.08 74.77 81.63 88.93
 
The base parameters  0.5α = − ,  1β = , 0.1γ =  are first given to the D-CRR model, 
implying market spreads of 1yr=60.39 (bps), 2yr=68.09 (bps), 3yr=74.84 (bps), 
4yr=81.68 (bps), and 5yr=88.87 (bps), i.e., assuming these were the spreads 
observed in the market, we get from the D-CRR model the 
parameters  0.5α = − ,  1β = ,  0.1γ = . We calibrate the D-CEV model to this data 
and obtain its intensity function parameters. 
 
 
4.2 The Impact of Equity Correlation 
 
First, we vary equity correlation. The moments of the default-frequency distributions 
for different models are shown in Table 2. We find that in both models, the mean and 
variance of the number of defaults does not vary much under different correlations. 
This is consistent with most intensity-based models in which loss distributions are 
less sensitive to intensity correlations when default events are assumed to be 
independent than when they are assumed to be correlated, conditional on the 
correlation between intensities. We will show in Chapter V how imposing conditional 
correlation of default events besides intensity correlation can make default frequency 
distributions much more sensitive to correlation assumptions. 
 A critical finding here is that, the D-CEV has slightly higher mean numbers of 
defaults than the D-CRR model. This is interesting since we claimed that there exists 
an unused area where the stock price cannot reach on the D-CRR lattice. The area is 
associated with lower stock prices and hence higher default probabilities. Therefore, 
avoiding this area will underestimate the number of defaults during the simulation. 
Nevertheless, the D-CEV model is mostly free of the issue, and its resulting higher 
mean numbers of defaults proves that the probability problem indeed causes 
significant influence on the simulation results. 

Above, the original base case was considered. We will show later how the 
resulting difference of the two models widens with higher credit levels and different 
volatility assumptions. 
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Table 2 

Moments of Loss Distributions when Correlation is Varied 
This table presents the moments of the number of defaults under different models 
when equity correlation is varied. Assuming 10 identical firms with the base level 
parameters: 50S = , 0.3σ = , and 0.5RR = . The term structure of credit default 
swap spreads is 1yr=60.39 (bps), 2yr=68.09 (bps), 3yr=74.84 (bps), 4yr=81.68 
(bps), and 5yr=88.87 (bps), as from Table 1’s D-CRR row. The risk free rate is 0.03. 
The term horizon is 5 years with monthly time steps 1/12h =  (year). We simulated 
10000 sample paths and computed the moments with various equity correlation 
assumptions for the D-CRR model and the D-CEV model. 
 

   D-CRR    

 Correlation Mean Variance Skewness Kurtosis  

 0 0.80 0.74 0.64 2.11  

 0.1 0.80 0.75 0.64 2.06  

 0.4 0.79 0.75 0.66 2.17  

 0.8 0.80 0.75 0.68 2.31  

 1 0.79 0.74 0.72 2.38  

 

   D-CEV    

 Correlation Mean Variance Skewness Kurtosis  

 0 0.82 0.75 0.61 2.05  

 0.1 0.81 0.75 0.64 2.12  

 0.4 0.82 0.76 0.68 2.28  

 0.8 0.80 0.75 0.68 2.32  

 1 0.81 0.74 0.61 1.98   
 
 
4.3 The Impact of Equity Volatility 
 
Second, we fix the equity correlation 0.5ρ = , same as in Section 4.1, and vary the 
equity volatility. This test was done also in Bandreddi, et al. (2007), where they claim 
that their outcomes are consistent with structural-form models in which the mean 
number of defaults in a portfolio increases with higher volatility. Nevertheless, they 
use a wrong methodology to yield this expected result. Indeed, in their work they 
neglect the true effect of volatility since they vary volatility without simultaneously 
re-adjusting the intensity-function parameters. But since volatility is determined at the 
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beginning of the contract and held constant throughout the term in the model, the 
calibrated values of intensity-function parameters should be affected not only by the 
term structure of credit default swap spreads, but also by different volatility 
assumptions. 

To rectify their sensitivity analysis, we simultaneously recalibrate the parameters 
every time the volatility is varied. In this recalibration methodology we generate 
results that concur with the empirical evidence on the joint movements between credit 
spreads and stock option implied volatilities. This has been discussed extensively in 
the literature (for example, Hull, Nelken and White (2004), Carr and Wu (2006)). It is 
pointed out that the credit default swap market and the stock options market contain 
overlapping information on the market and credit risk of the company, and moreover 
suggested that credit spreads are positively correlated with stock options’ implied 
volatilities. Our goal is to see if the D-CRR model and the D-CEV model capture this 
empirical fact. 
 Table 3 shows our results. We stated that the analysis for equity volatility in 
Bandreddi, et al. (2007) is flawed. Indeed, following our method, D-CRR no longer 
yields the relationship whereby the mean number of defaults increases with volatility. 
Instead, the mean number of defaults drops as volatility increases, contrary to the 
claim of consistency with structural-form models in Bandreddi, et al. (2007). Even 
more, when volatility becomes higher, the difference in mean grows larger between 
that produced by the D-CRR model and by the D-CEV model. We believe this is 
caused by the rising numbers of problematic probabilities while volatility increases. 
We can see that the difference in moments and calibrated parameters between the two 
models is smaller with lower volatility. It is likely because there are fewer problematic 
probabilities found in the D-CRR model when volatility is low. 
 From the results for the D-CEV model, we observe that the fitted parameters and 
the resulting mean numbers of defaults are almost the same for different volatility 
assumptions. However, to match the claim of consistency to structural-form models 
the mean numbers of defaults should rise with volatility. So does the D-CEV fail to 
corroborate the evidence of higher default numbers given increased volatility as in 
structural-form models? The reason the simulation results are not sensitive to 
volatility is that the term structure of credit defaults swap spreads is held constant in 
our example. In the real world, however, higher equity volatility often comes with 
higher credit spreads for a firm, and hence higher probability of default. We can check 
in Table 4 the effect from different term structure of credit default swap spreads on 
simulation results as we vary the base case term structure of credit default swap 
spreads given in Section 4.1. It is clear from the table that increased spreads lead to 
increased mean numbers of defaults. Hence, combining both results from Table 3 and
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Table 3 

Moments of Loss Distributions when Volatility Is Varied 
This table shows the moments of the number of defaults under different models when 
equity volatility is varied. Assuming 10 identical firms with the base level parameters: 

50S = , 0.5ρ = , and  0.5RR = . The term structure of credit default swap spreads is 
1yr=60.39 (bps), 2yr=68.09 (bps), 3yr=74.84 (bps), 4yr=81.68 (bps), and 5yr=88.87 
(bps), as given in Table 1. Intensity function parameters α , β , and γ  are 
recalibrated to both the credit default swap term structure and equity volatility. The 
risk free rate is 0.03. The term horizon is 5 years with monthly time steps 1/12h =
(year). We simulated 10000 sample paths and computed the moments with various 
volatility assumptions for the D-CRR model and the D-CEV model. 
 

   D-CRR   

       

Moments Calibrated Parameters 
Volatility 

Mean Variance α  β  γ  

Number of 

Problematic 

Probabilities 

0.1 0.82 0.76 0.79− 0.92 0.17 0 

0.2 0.81 0.76 0.67− 0.96 0.15 1 

0.3 0.78 0.77 0.50− 1.00 0.10 60 

0.4 0.75 0.76 0.45− 1.01 0.03 107 

0.5 0.72 0.78 0.41− 1.03 –0.06 110 

 

   D-CEV   

       

Moments Calibrated Parameters 
Volatility 

Mean Variance α  β  γ  

Number of 

Problematic 

Probabilities 

0.1 0.83 0.78 0.76− 0.93  0.18 0 

0.2 0.82 0.78 0.76− 0.93  0.18 0 

0.3 0.82 0.76 0.76− 0.93  0.18 0 

0.4 0.82 0.76 0.76− 0.93  0.18 0 

0.5 0.82 0.76 0.76− 0.93  0.18 0 
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Table 4 

Moments of Loss Distributions When The Term Structure of Credit Default 
Swap Spreads Is Varied 

This table shows the moments of the number of defaults under different models when 
the term structure of credit default swap spreads is varied. Assuming 10 identical 
firms with the base level parameters: 50S = , 0.3σ = , 0.5ρ = , and  0.5RR = . The 
base case term structure of credit default swap spreads is 1yr=61.09 (bps), 2yr=68.73 
(bps), 3yr=75.42 (bps), 4yr=82.26 (bps), and 5yr=89.52 (bps), as given in Table 1. 
The base case is then varied by -20 (bps), -10 (bps), +10 (bps), and +20 (bps). 
Intensity function parameters α , β , and γ  are always  recalibrated to both the 
credit default swap term structure and equity volatility for each case. The risk free rate 
is 0.03. The term horizon is 5 years with monthly time steps 1/12h =  (year). We 
simulated 10000 sample paths and computed the moments with various term structure 
of credit default swap spread assumptions for the D-CEV model. 
 

D-CEV 
 Term Structure of Credit Default Swap Spreads (bps) Moments 

 1yr 2yr 3yr 4yr 5yr Mean Variance 

+20 (bps) 81.09 88.73 95.42 102.26 109.52 0.98 1.10 

+10 (bps) 71.09 78.73 85.42 92.26 99.52 0.88 1.01 

Base Case 61.09 68.73 75.42 82.26 89.52 0.80 0.94 

-10 (bps) 51.09 58.73 65.42 72.26 79.52 0.73 0.85 

-20 (bps) 41.09 48.73 55.42 62.26 69.52 0.65 0.79 
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Table 4, we know that in our D-CEV model (1) higher credit spreads will lead to 
higher mean numbers of defaults and (2) higher volatility will not have any significant 
influence on the mean number of defaults. It is thus evident that as both credit spreads 
and equity volatility jointly increase in line with empirical facts, the mean number of 
defaults will increase in the D-CEV model. For the D-CRR model this will not always 
hold. Indeed, in our example the positive effect from higher term structure of credit 
default swap spreads on the mean numbers of defaults can be offset by a negative 
effect from higher volatility. Hence, we conclude that, when applied in practice with 
empirical data, the D-CEV model resembles structural-form models in their 
relationship between the equity volatility and the mean number of defaults in a better 
way than the D-CRR model. That is, for the D-CEV model the mean number of 
defaults can increase with higher volatility as in structural-form models given the 
condition that credit spreads increase with volatility. 
 One last thing to mention in Table 3 is that, the number of problematic 
probabilities is reduced to zero in our example. This is because the leverage 
coefficient c we chose satisfies the inequality given in Eq. (6). It should be noted that 
the D-CEV model may not completely eliminate the problem for some cases where 
the inequality condition does not hold. Still, whether this condition is imposed or not, 
by accounting for stochastic volatility with the leverage effect and adjusting part of 
the probabilities, the D-CEV model has this problem to a less extent. 
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4.4 The Impact of Intensity Function Parameters 
 
We now return to the intensity function parameters and reveal their effect on the term 
structure of credit default swap spreads. These parameters contain important 
information about the term structure of credit default swap spreads. 
 We plot the term structure of credit default swaps spreads for different parameter 
cases, in Figure 4, Figure 5, and Figure 6. Here we present the results for the D-CEV 
model. A base case is considered where 0.76α = − , 0.93β = , and 0.18γ =  within 
the D-CEV model. These are the parameters from the D-CEV row in Table 1. In 
Figure 4 we vary α , in Figure 5 we vary β , and in Figure 6 we vary γ . The 
parameters are individually varied by 0.5− , 0.3− , 0.1− , 0.1+ , 0.3+ , 0.5+ . 
 We can clearly see in Figure 4 that α  primarily captures parallel movements of 
the curve, where higher values of α  lead to higher levels of credit spreads. It is thus 
regarded as a “level” modulator. Figure 5 shows that β  is responsible for part of the 
level and slope, but holds an inverse relationship with the spreads. Since β  lies on 
the denominator of the intensity function described in Eq. (3), a high value of β  
leads to lower intensity, as well as lower levels and slopes of the term structure of 
credit default swap spreads. As for γ , we can see in Figure 6 that the slope and 
convexity of the curve increases with γ , thus the shape is also captured. 
Consequently, with these parameters we have sufficient degrees of freedom to 
describe the level, slope, and shape of the term structures of credit default swap 
spreads. This serves a direct link to credit markets and a convenient way to measure 
how valuation of credit products is affected by changes in overall credit market 
conditions such as those reflected in the term structure of credit default swaps spreads. 
 To have a better understanding of the effects of different intensity-function 
parameters on simulation, Table 5 shows what happens to the moments of the default 
frequency distributions when the intensity-function parameters are changed. The 
results are intuitive now that we have looked into the implications of the parameters. 
We see that with higher  α  and γ  the level of credit spreads increases, indicating 
lower credit quality and higher mean numbers of defaults. On the other hand, lower 
mean numbers of defaults come with higher β ’s. 
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Figure 4 

Term Structure of Credit Default Swap Spreads When Alpha Is Varied 
This figure shows the impact of the intensity function parameter  α . The D-CEV 
model is applied for this examination. We consider a base case where 0.76α = − , 

0.93β = , and 0.18γ = . The parameter α  is varied by 0.5− , 0.3− , 0.1− , 0.1+ , 
0.3+ , 0.5+ . We plot the respective spread quotes for the credit default swaps of 

maturities one year to five years, i.e., the term structure of credit default swap spreads.
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Figure 5 

Term Structure of Credit Default Swap Spreads When Beta Is Varied 
This figure shows the impact of the intensity function parameter  β . The D-CEV 
model is applied for this examination. We consider a base case where 0.76α = − , 

0.93β = , and 0.18γ = . The parameter β  is varied by 0.5− , 0.3− , 0.1− , 0.1+ , 
0.3+ , 0.5+ . We plot the respective spread quotes for the credit default swaps of 

maturities one year to five years, i.e., the term structure of credit default swap spreads.
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Figure 6 

Term Structure of Credit Default Swap Spreads When Gamma Is Varied 
This figure shows the impact of the intensity function parameter  γ . The D-CEV 
model is applied for this examination. We consider a base case where 0.76α = − , 

0.93β = , and 0.18γ = . The parameter γ  is varied by 0.5− , 0.3− , 0.1− , 0.1+ , 
0.3+ , 0.5+ . We plot the respective spread quotes for the credit default swaps of 

maturities one year to five years, i.e., the term structure of credit default swap spreads.
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Table 5 

Moments of Loss Distributions When Intensity Function Parameters Are 
Varied 

This table presents the moments of the number of defaults under the D-CEV model 
varying intensity function parameters. Assuming 10 identical firms with the same 
parameter values: 50S = , 0.4ρ = , and 0.5RR = . The base case for intensity 
function parameters is set as: 0.5α = − , 1β = , and 0.1γ = . The risk free rate is 
0.03. The term horizon is 5 years with monthly time steps 1/12h =  (year). We 
simulated 10000 sample paths and computed the moments for various parameter 
assumptions. 
 

   D-CEV    

 Alpha Mean Variance Skewness Kurtosis  

 0.5−  0.66 0.62 0.55 1.56  

  0 1.03 0.93 0.78 3.17  

  0.5  1.61 1.34 0.87 5.40  

 
   D-CEV    

 Beta Mean Variance Skewness Kurtosis  

 0 9.85 0.14 –0.13 0.18  

 0.5 3.72 2.35 0.64 15.51  

 1 0.65 0.61 0.55 1.58  

 2 0.01 0.01 0.01 0.02  

 
   D-CEV    

 Gamma Mean Variance Skewness Kurtosis  

 0.1−  0.41 0.39 0.35 0.70  

  0  0.51 0.48 0.43 1.09  

  0.1  0.66 0.60 0.48 1.35  

  1 7.09 2.11 –0.95 12.82   



 33

V. Further Research and Applications 
 
We mentioned in the previous chapter that loss frequency distributions are less 
sensitive to intensity correlations when default events are assumed to be independent 
after conditioning on intensity correlation. Therefore, intensity correlations are 
insufficient to fully describe the joint movements in credit portfolios. In this chapter, 
we will first discuss about basket default swaps. Then we will look into different 
kinds of correlations that should be taken with care, specifically the correlation 
between intensities and the conditional correlation between default events. We further 
present some results for the valuation of nth-to-default contracts and CDOs. 
 
5.1 Basket Default Swaps 
 
A basket default swap is similar to a single entity credit default swap except that the 
underlying is a portfolio of entities rather than one single entity. One popular type of 
basket default swaps is an nth-to-default swap. For an nth-to-default swap whenever 
the nth default occurs in the reference portfolio, the buyer stops paying the periodic 
swap premium and receives the loss-given-default amount, 1 RR− . The premium 
does not stop until the nth default, even if there are already defaults in the portfolio. 
 The cost of protection for a basket default swap depends on its probability of 
being triggered within a specific time, i.e., the probability that the seller has to payout 
the loss-given-default amount. Correlation assumptions between the reference entities 
are key elements to the evaluation of such probabilities. They determine how credit 
risk in the reference portfolio is distributed among different types of default swaps. 
 In the following section, we will explore the correlation between intensities and 
the correlation between actual default events.  
 
 
5.2 Intensity Correlation vs. Conditional Correlation 
 
As we have introduced in Chapter I, Das, Duffie, Kapadia, and Saita (2005) show 
empirical evidence that corporate defaults cluster in time and that the 
doubly-stochastic assumption is rejected. The doubly-stochastic assumption says that, 
conditional on the path of the underlying state process determining default intensities, 
the respective default times are the first event times of independent Poisson arrivals. 
The assumption rules out the presence of contagion or frailty (incompletely observed 
default covariates not captured by the correlation in intensity processes across firms). 
We will test how our model accommodates the default contagion effect observed in 
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empirical research and thus goes beyond the doubly-stochastic assumption. 
 We first describe what the conditional dependence and the conditional 
independence between default events are and how they are applied, as described 
below: 
 
1. Conditional independence: After making intensities correlated, no further 

correlation is injected. Draw independent uniform random numbers for each 
issuer at each time-period in the simulation path and then compare these with the 
default probabilities to determine default occurrence. 

 
2. Conditional dependence: Intensities are correlated, as well as default events, 

where the additional correlation between default events is called “conditional 
correlation.” Draw correlated random numbers with normal distribution (or other 
distributions) and then compare the cumulative distribution functions of these 
numbers with the default probabilities to determine default occurrence. As we 
have mentioned in section 2.3, we will draw correlated random variables with the 
one-factor Gaussian copula model discussed in Appendix B. 

 
To investigate which type of correlation matters more, we examine a simple portfolio 
with two reference entities where the parameters are set to be the same as in Section 
4.1. Two experiments are conducted to test the effects on the default frequency 
distribution from conditional independence and conditional dependence for the 
D-CEV model. First, we impose correlation between intensities and assume 
independence between default events. Second, we impose both intensity correlation 
and conditional correlation. Note that in our D-CEV model, both intensity correlation 
and conditional correlation use the equity correlations between the reference entities 
as proxies. Then, by extracting the proportions of triggering both first-to-default and 
second-to-default contracts out of 10000 simulated paths, we are able to calculate the 
statistical probability of triggering each nth-to-default contract.3 
 Figure 7 exhibits our results. In the first case where intensity correlation is 
imposed without conditional correlation (which is equivalent to the doubly stochastic 
assumption), we see that both the probabilities of hitting the first-to-default and 
second-to-default contracts are not sensitive to correlation variations. It is obvious we 
cannot price correlation-dependent products under this assumption as the probabilities 
of default are similar across different correlation assumptions. We therefore move to 
the second case where intensity correlation and conditional correlation are both 

                                                 
3 The statistical probability (or relative frequency probability) is the interpretation of probability that 
defines an event’s probability as the limit of its relative frequency in a large number of trials. 
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imposed. We see that as the correlation value for both types of correlations increases, 
the probability of hitting the first-to-default contract decreases and the probability of 
default for the second contract increases. Indeed, when the default events of the two 
reference entities are assumed to be uncorrelated, all first defaults are absorbed by the 
first-to-default contract, and there is a lower chance to have two defaults at a time 
since defaults are independent. This leads to higher default probabilities for the first 
contract compared to that of the second contract. On the other hand, when the two 
entities are perfectly positively correlated, then this is the situation where either both 
default or none defaults. The probability of two firms defaulting is the same as the 
probability of just one firm defaulting. In such a case the probability of no firms 
defaulting should be the least among all correlation assumptions. We can see in Figure 
7 that when the correlation coefficient is one, both contracts have the same probability 
of being triggered, which is approximately 0.08. 
 In the following sections, we will impose both the intensity correlation and the 
conditional correlation in the models to perform numerical experiments for the 
valuation of nth-to-default contracts and CDOs. 
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Figure 7 

Intensity Correlation vs. Conditional Correlation 
This numerical experiment was carried out with the D-CEV model. Assuming two 
identical firms with the base level parameters: 50S = , 0.3σ = , 0.5α = − , 1β = , 

0.1γ = , and  0.5RR = .The risk free rate is 0.03. The term horizon is 5 years with 
monthly time steps 1/12h =  (year). We simulated 10000 sample paths and 
extracted the probability of triggering first-to-default and second-to default contracts 
out of the total number of simulated paths. 
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5.3 Results for nth-to-Default Contracts 
 
In this section, we present some numerical results to examine how correlation 
assumptions affect loss frequency distributions and the probability of triggering 
nth-to-default credit default swaps. We then make a comparison across the models 
discussed in this thesis to see how they perform. Consider a 5-year nth-to-default 
credit default swap on a basket of 10 reference entities. The initial data are assumed to 
be the same across all entities, where the initial stock price 50S = , volatility  0.3σ = , 
and recovery rate 0.5RR = . The risk-free interest rate is constant at 0.03, and the term 
structures of credit default swap spreads across all entities are also the same, given by: 
1yr=258.02 (bps), 2yr=287.88 (bps), 3yr=311.53 (bps), 4yr=333.04 (bps), and 
5yr=352.69 (bps). We obtained all results by simulating 10000 paths for each case. 
 We start by investigating the frequency distribution of the number of defaults and 
the probability of triggering nth-to-default swaps for the D-CEV model to understand 
the basic pattern for these figures. The results are exhibited in Figure 8. 
 Panel A in Figure 8 shows the impact of changing correlation assumptions 
toward loss frequency distributions, where we plotted the distributions for 0ρ = , 

0.4ρ = , and 0.8ρ = . To analyze this figure we look into the skewness of the 
distributions. We can observe from this panel that the higher the correlation, the more 
positively skewed the loss distribution. This implies that when the reference entities 
are highly correlated, lower numbers of defaults appear more frequently than when 
correlation is low. In other words, when correlation is low, there is higher probability 
that more defaults will happen. This is the basic structure for the frequency of the 
number of defaults in a portfolio, but what we are interested in is how the default risk 
in a portfolio is distributed among nth-to-default swaps for the pricing of such 
contracts. 
 For Panel B in Figure 8, the statistical probability of triggering nth-to-default 
contracts for different n is depicted for 0ρ = , 0.4ρ = , 0.8ρ = , and 1ρ = . We can 
see that increasing the correlations between all entities lowers the probability of 
triggering an nth-to-default contract if n is small and increases the probability if n is 
large. To understand this, consider how correlations move from the two limiting cases, 
zero to one. When correlation is zero, the probability of being triggered is a 
decreasing function of n. That is, the higher n is, the lower the probability of 
triggering an nth-to-default contract. On the other hand, in a perfectly correlated 
environment all entities default at the same time, which infers the same probabilities 
of being triggered for all n. Clearly seen from the figure, we are progressing from a 
negatively sloped function to a flat curve as correlation increases, and the probability 
decreases for low n and increases for high n. 
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Figure 8 

This figure shows the loss frequency distribution and probability of triggering 
nth-to-default contracts on a basket of 10 reference entities. The initial data are 
assumed to be the same across all entities, where the initial stock price  50S = , 
volatility  0.3σ = , and recovery rate 0.5RR = . The term is five years. The risk-free 
interest rate is constant at 0.03, and the term structures of credit default swap 
spreads across all entities are also the same, given by: 1yr=258.02 (bps), 2yr=287.88 
(bps), 3yr=311.53 (bps), 4yr=333.04 (bps), and 5yr=352.69 (bps). 
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 We now make a comparison across the D-CRR model and the D-CEV model. We 
present the statistical probability of triggering various nth-to-default contracts out of 
the 10000 trials in Figure 9 and Figure 10. The data used for Figure 9 are the same 
with those used in Figure 8. We varied correlation assumptions as different scenarios, 
showing their respective results in different panels of the figure. As for Figure 10, we 
changed to a downward-sloping term structure of credit default swap spreads, where 
the quoted spreads are 1yr=352.69 (bps), 2yr=333.04 (bps), 3yr=311.53 (bps), 
4yr=287.88 (bps), and 5yr=258.02 (bps). We consider this downward-sloping term 
structure of credit default swap spreads just to ensure the shape of this curve is not a 
main determinant of our experiments. 
 From Figure 9 and Figure 10 we find that the statistical probabilities (i.e., 
frequencies) are always lower for all nth-to-default contracts within the D-CRR model 
than the D-CEV model, and the difference between the two models is quite marked. 
This holds for all correlation assumptions and different shapes of the term structure of 
credit default swap spreads. We claim that the D-CRR model undervalues these 
statistical probabilities which lead to undervalued contracts. This is due to the 
problematic probabilities for stock movements on the lattices mentioned in previous 
chapters. In the next section we will see how the actual prices for CDOs yield similar 
conclusions. 
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Figure 9 
Statistical Probability of Triggering nth-to-Default Contracts With Different 
Correlation Values and An Upward-Sloping Term Structure of Credit Default 
Swap Spreads 
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Figure 10 
Statistical Probability of Triggering nth-to-Default Contracts With Different 
Correlation Values and A Downward-Sloping Term Structure of Credit Default 
Swap Spreads 
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5.4 The Valuation of CDO Tranches 
 
A CDO structure distributes credit risk to investors by creating different tranches. A 
CDO tranche is a fixed-income security defined with reference to a portfolio of credit 
exposures and specified with a particular range in which it is responsible for within 
the total notional of the portfolio. This range is defined by an attachment point and a 
detachment point. For example, the successive tranches can be responsible for 0% to 
3%, 3% to 7%, 7% to 10%, and so on of the total notional. When the percentage of 
total cumulative losses in the reference portfolio reaches the attachment point for a 
specific tranche, it starts to absorb the subsequent default losses until its detachment 
point is reached. 
 To illustrate how a CDO tranche is priced, suppose there are N  entities in the 
portfolio backing a CDO each with the same notional principal L , and the same 
recovery rate  RR . The attachment point and detachment point for each tranche can be 
mapped into the number of losses. A tranche with attachment point La  and 
detachment point Ha  is responsible for the Ln -th to Hn -th loss where 

/(1 )L Ln a N RR= −  and /(1 )H Hn a N RR= − . For example, if 100N = ,  40%RR = , 
5%La =  and 15%Ha = , then 8.33Ln =  and 25Hn = . In this case the initial 

notional for the tranche is (0.15 0.05) N L− × × . This is the remaining notional as long 
as there have been 8 or fewer defaults. This tranche bears 66.67% of the cost of the 
9th default, and all costs from the 10th to 25th default. 

 To generalize this, let ( ), ,L HP j a a  be the remaining notional of a tranche with 

attachment point La  and detachment point Ha  after j  defaults in a portfolio. A 
general expression for the outstanding tranche notional is 

( )
( )

( )
( )

( ) ( )
( )

, , 1
0

H L L

L H H L H

H

a a NL j m n
P j a a a NL j RR L m n j m n

j m n

− <⎧
⎪= − − ≤ <⎨
⎪ ≥⎩

, 

where ( )m x  is the smallest integer greater than x . 
 The investor of a tranche is often referred to as the “protection seller.” If defaults 
occur over the lifetime of the contract, the protection seller is required to make 
payments to its counterparty, the protection buyer, for cumulative losses on the 
reference portfolio that are in the range between the attachment and detachment points. 
In exchange for such coverage of cumulative default losses, the protection buyer of a 
tranche is required to make periodic spread payments on its remaining tranche 



 43

notional to the protection seller. 
 A CDO is quoted as the spread paid by the protection buyer, which equates the 
expected present value of default costs to be borne by the protection seller 
(“protection leg”) to the expected present value of investing in the tranche (“premium 
leg”). The value of the premium leg is the present value of the spread payments the 
protection seller receives from the protection buyer. Assuming M  payment days, 

1 2,  ,  ,  Mt t t t= … , on which the buyer of protection makes payments to the seller. Note 
that payments are only made as long as the (uncertain) effective notional of the 
tranche at time it , denoted by ( )iP t , is positive. Assume also that investors discount 
expected future income streams using the discount factors (0, )iD t . Given the tranche 
premium S , the expected present value of the premium leg is: 

1
(0, ) ( )M

prem i ii
V S E D t P t

=
⎡ ⎤= × ×⎣ ⎦∑  

The expected tranche sizes depend on the number and timing of any future defaults 
and the expected costs of these future defaults. The present value of the premium leg 
is lower if (1) the premium is low, (2) the recovery rate is low, and (3) default losses 
are incurred early. The expected present value of the protection leg is: 

( )11
(0, ) ( ) ( )M

prot i i ii
V E D t P t P t −=

⎡ ⎤= × −⎣ ⎦∑  

The present value of the protection leg is lower if (1) the tranche size does not change, 
(2) the recovery rate is high, and (3)_defaults occur late during the contract period. 

The tranche premium is found by solving prem protV V=  for S : 

( )11

1

(0, ) ( ) ( )

(0, ) ( )

M
i i ii

M
i ii

E D t P t P t
S

E D t P t

−=

=

⎡ ⎤× −⎣ ⎦=
⎡ ⎤×⎣ ⎦

∑
∑

                (7) 
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5.5 Results for CDO Tranches 
 
We consider a CDO with a reference portfolio of 100 entities. We assume that the 
entities have the same set of parameter values, where initial stock price  50S = , 
volatility  0.5σ = , recovery rate 0.4RR = , and the principal of each entity 100L = . 
The contract term is set as five years and the time interval between nodes is 1/12h =  
(year). We also assume that the risk-free interest rate is constant at 0.03, and the term 
structure of credit default swap spreads for all entities are the same, given by 
1yr=60.39 (bps), 2yr=68.09 (bps), 3yr=74.84 (bps), 4yr=81.68 (bps), and 5yr=88.87 
(bps). This is the set of parameters we investigated in Table 3 of Chapter IV. We 
investigate five tranches, each responsible for the range 0% to 3%, 3% to 7%, 7% to 
10%, 10% to 15%, and 15% to 30% of the notional principle, respectively. In practice, 
tranches are often defined by different “classes.” For example, the 0% to 3% tranche, 
which absorbs the first portion of losses, is usually referred to as the “equity tranche.” 
The 3% to 7%, 7% to 10%, and 10% to 15% tranches are called “mezzanine 
tranches.” As for tranches with the highest attachment point, in this case the 15% to 
30% tranche, we usually call it a “senior tranche.” 
 To attain the spread for each tranche, we apply the pricing methodology 
discussed previously with both the D-CRR model and the D-CEV model. The 
expectations in Eq. (7) are calculated by simulating 10000 trials, extracting the timing 
and numbers of defaults, and computing the statistical mean. We varied correlation 
assumptions from 0.1, 0.2, …, to 1 to investigate its impact toward different tranche 
spreads. The results are exhibited in Figure 11. 
 From Figure 11 we first observe that the D-CEV model produces higher spread 
quotes than the D-CRR model for all tranches, which again points out the significant 
difference in the simulation results for the two models. Moreover, we see that the 
difference in spreads is larger when correlation is low for tranches that absorb earlier 
losses, and when correlation is high for tranches that absorb later losses. 
 We then look into the implications of this sensitivity analysis for each individual 
tranche. We can see that for the equity tranche, the tranche spread decreases as 
correlation increases. This relationship is similar to that of nth-to-default contracts 
with low n. The reason is that higher default correlation increases the chance that no 
defaults will occur, and the influence to spreads is especially notable for tranches that 
absorb earlier losses. Therefore, with this relationship between equity tranche spreads 
and correlation, we often say that investors (or speculators) in equity tranches are 
taking a “long credit” and “long correlation” position. We can think of this with an 
example by assuming that an equity tranche investor is receiving a spread of 100 (bps). 
If correlation increases through time, the probability that the tranche absorbs defaults 
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will decrease and the spread that a same tranche in the market is paying also decreases, 
for instance, to 50 (bps). The equity tranche investor now only needs to bear lower 
risk that is worth periodic payments of 50 (bps) while still receiving 100 (bps). . 
Therefore, if the investor chooses to unwind the credit position when correlation 
increases, he will realize a gain due to a lower new breakeven spread that he should 
pay by taking a short position of the same equity tranche to unwind his position. 
 By contrast, the results for the senior tranche reflect its greater exposure to the 
risk of losses when defaults are more clustered. We can see this apparently from the 
15% to 30% tranche, where the spread increases monotonously with correlation. Thus, 
the investors in senior tranches are taking a “long credit” and “short correlation” 
position. The lower the correlation moves, the higher their realized gains. 
 Finally, unlike the equity and senior tranches, the prices of mezzanine tranches 
are generally not a monotonic function of default correlation. In the 7% to 10% 
tranche in our example, we can obviously see that with both high and low correlations, 
there is higher probability that this tranche will survive intact, which is reflected by its 
spread value. However, for medium levels of correlation, there is higher risk that the 
tranche will suffer substantial losses. 
 We should understand that the spread vs. correlation pattern for all tranches will 
vary with different assumptions, such as different credit default swap information, 
different set attachment and detachment points, and different recovery rates, etc. To 
truly understand how the tranches of a particular CDO is affected from different 
parameter values, it is crucial to perform a price sensitivity analysis as we have done 
for correlation. 
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Figure 11 
Price Sensitivity of CDO Tranches to Correlation Values 

The CDO has a reference portfolio of 100 entities, each with the same parameter 
values where  50S = ,  0.5σ = ,  0.4RR = , and the principal of each entity 100L = . 
The term is five years, with time intervals 1/12h =  (year). The risk-free rate is 0.03, 
and the term structure of credit default swap spreads for all entities are given by 
1yr=60.39 (bps), 2yr=68.09 (bps), 3yr=74.84 (bps), 4yr=81.68 (bps), and 5yr=88.87 
(bps). 
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VI. Conclusions 
 
In our thesis, we explored the D-CRR model and the simulation method developed in 
Das and Sundaram (2004) and Bandreddi, et al. (2007). Their model is a new method 
applied for the pricing of portfolio credit derivatives that combines stylized 
characteristics of both structural-form models and reduced-form models, where 
observable equity prices are used along with an intensity-base model to simulate 
default. 
 We introduced an alternative model, the D-CEV model, where the “leverage 
effect” is accounted for. We find that our suggested model addresses many 
undesirable properties found in the D-CRR model. First, taking account of the 
leverage effect, we are able to ease the issue of problematic probabilities in the 
D-CRR model. Second, we find unsustainable simulation results in the D-CRR model 
where higher volatility values lead to lower mean numbers of defaults simulated. Our 
proposed D-CEV model, in contrast, can avoid this shortcoming and produce more 
reasonable results, though not completely eliminating the problem for all cases. Thus 
compared with the D-CRR model, the D-CEV model attains better resemblance to 
structural-form models in the relationship between the equity volatility and the 
number of simulated defaults. Third, we find that simulating defaults with our model 
attains higher mean numbers of defaults, which lead to higher credit derivatives prices 
compared with those produced by the D-CRR model. Numerical results confirm our 
arguments. 
 We also investigated how our framework accommodates several empirical 
features, such as the joint movements between credit spreads and equity volatilities, 
and the default contagion effect. 
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Appendix A 
 
The Recovery of Market Value Condition (RMV) 
 
The RMV condition is inspired by the recovery rules of OTC derivatives (see 
Schönbucher (2003)). The ISDA master agreement for swap contracts specifies that at 
default of one counterparty, the other counterparty’s claim is the market value of a 
non-defaulted, but otherwise equivalent, security (if the value of this security is 
positive). He is paid a fraction 1 RR−  of this claim. 
 Now in order to price a credit default swap, we need to follow some procedure. 
First, we assume that defaultable zero-coupon bonds are the underlying for default 
swaps. Define the price of a defaultable zero-coupon bond at time t as  ( )Z t . Thus in 
mathematical terms, the pricing recursion under the RMV condition is: 

{ }( )( ) ( ) (1 ( )) ( ) 1 ( ) ( )( )
( ) 1

rhe q t Z t h q t Z t h t t RRZ t
Z T

π π− + −+ + − + − +=
=

 

Here, ( )q t  is the probability of an up-move conditioned on no default occurring, 
( )Z t h+ +  and ( )Z t h− +  are the two states that the bond price evolves to in the next 

period, ( )tπ  is the probability of default, and RR is the recovery rate. Notice that the 
recovery value is a fraction of the value of the bond, if and when default occurs. Next, 
we compute the default leg of the default swap contract with the following recursive 
equation: 

{ }[ ]( ) ( ) ( ) (1 ( )) ( ) 1 ( ) ( )(1 ) ( )
( ) 0

rh
L L L

L

PV t e q t PV t h q t PV t h t Z t RR t
PV T

π π− + −+ + − + − + −=
=

 

The first part above is the present value of future possible losses on the default swap, 
given that default has not occurred at time t. The second part is the expected value of 
the loss-given-default. As for the fixed spread leg of the contract, the expected present 
value of a $1 payment at each node is calculated, defined below: 

{ }[ ]1 1 1

1

( ) ( ) ( ) (1 ( )) ( ) 1 1 ( )
( ) 0

rhPV t e q t PV t h q t PV t h t
PV T

π− + −+ + − + + −=
=
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Finally, the spread is calculated with Eq. (4) in Chapter II. 
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Appendix B 
 
One-Factor Gaussian Copula 
 
Copulas are functions that express dependence among random variables. The 
one-factor Gaussian copula is constructed by the standard multivariate normal 
distribution with correlation ρ . The method is summarized below: 
 
1.  Let 1 2 ,  ,  ..., NX X X  be N  independent random variables, each distributed 

as (0,1)N . 
2.  Define random variables 1 2 ,  ,  ..., NY Y Y  as 

2= 1i i i iY a M a X+ − , 1,  2,  ...,i N=  

where ~ (0,1)M N , independent of all iX . In Gaussian copula models, it is 
often assumed that the variables have the same pair-wise correlation ρ , such 

that  i ja a ρ= = . 

3.  Given the default probability p  at a specific time t , firm i  defaults if 
 ( )iY pΦ ≤ . 

 
The systematic risk factor M  can be viewed as an indicator of the state of the 
business cycle. The idiosyncratic factor iX  is a firm-specific factor, which is used to 
describe the quality of the management, or the financial situation of the firm, etc. The 
relative sizes of the systematic and idiosyncratic components are controlled by the 
correlation coefficient  ρ . If 0ρ = , then the market condition has no direct influence 
on the firms. While if 1ρ = , then M  is the only driver of defaults, and the 
individual firm has no control. 
 Note here that we are assuming ρ  is positive so that the coefficient of M  for 
the iY ’s is a real number. Effectively, we assume that all firms in the same economy 
are positively related to the macroeconomic factor M , since there are nearly few 
industries that do not comply with the business cycle. When the market is good, there 
should be lower chance of default, and vice versa. The correlation between two firms 
is actually attributed to the systematic factor, and has nothing to do with their 
idiosyncratic counterparts in this model. Still, there exist realistic cases where the 
default behavior of two firms may be negatively related. An example is the existence 
of the “competition effect” (see Jorion and Zhang (2007)), which refers to the 
situation where a firm benefits from the demise of its rival. However, one-factor 
Gaussian copulas cannot directly capture this effect. The idiosyncratic components for 
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each firm are assumed to be independent in the one-factor Gaussian copula model. 


