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摘要 

本文旨在提供擔保債權憑證評價模型的比較分析。所比較的評價模型都建構

在單因子關聯結構的架構下，並利用 Hull and White (2004)所提出之機率杓斗法則

(probability bucketing method)建構標的資產之違約損失分配，進而求算分券之信用

價差。所考慮的模型有 NIG copula，隨機相關模型(stochastic correlation model)，局

部相關模型(local correlation model)。此分析會對各個模型的市場配適度進行比

較。有鑑於次級房貸風暴對於信用衍生性商品市場造成巨大的衝擊，該風暴對模

型配適度的影響也會在本文中討論。最後，本文也會對各模型參數的穩定性進行

比較。 

關鍵字：合成型擔保債券憑證(synthetic CDO)、相關性微笑曲線(correlation smile)、

機率杓斗法則(probability bucketing)、因子關聯結構(factor copula) 
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Abstract 

In this work, we present a comparative analysis of correlation skew models for 

pricing of CDOs. All of these models are based on the factor copula pricing framework 

and can generate correlation skews. The models compared are normal inverse Gaussian 

copula, stochastic correlation model and local correlation model. By using Gaussian 

copula as benchmark, the fitness of these models to market data will be tested. Because 

the subprime mortgage crisis causes structural changes on the credit derivatives market, 

the fitness before the crisis and after the crisis is compared. Finally, the stability of 

parameter values over time will be given. 

Keywords: synthetic CDO, correlation smile, probability bucketing, NIG copula, 

stochastic correlation, local correlation
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Chapter 1  
Introduction 

Since the first time credit default swaps (CDS) were introduced in the 1990s, there 

have been rapid developments in credit derivatives markets. As the market has grown, 

basket credit derivatives such as first-to-default CDS as well as synthetic CDOs 

emerged. In 2004, CDS indices iBoxx and Trac-X merged into iTraxx, and standardized 

tranches linked to these indices began to be actively quoted. Since then, the credit 

products depending on default correlations have become even more popular. However, 

in the late 2007, the subprime mortgage crisis in US hit the credit derivatives market 

and triggered a global financial crisis. The inevitable credit crunch made things even 

worse. Though the causes of the crisis are complicated, these events obviously raise 

doubts about current approaches to credit risk modeling and pricing, especially for 

CDOs. 

The standard approach to pricing basket credit derivatives is one-factor Gaussian 

copula. The use of copula functions to describe the dependence structure among default 

times is pioneered by Li (2000). This approach allows independent specification of the 

dependence structure among defaults and the single-name credit curves. It is 

advantageous since the traditional reduced-form model can calibrate single-name credit 

curves accurately. When coupled with the factor approach, a semi-analytical formula for 

pricing CDOs can be obtained. If the large homogenous pool (LHP) assumption 

proposed by Vasicek (1987) is adopted, a closed-form solution can be achieved under 

Gaussian copula setting. When standardized index tranches market emerged, it becomes 

possible to calibrate the correlation parameter used in one-factor Gaussian copula model 

from market quotes by assuming identical correlation among all reference entities. Since 

the default processes of reference entities do not depend on any specific tranche 

characteristics, the correlation parameter should be the same across tranches. However, 

in reality, different correlation parameters are needed to match market quotes of 

different tranches exactly. Often, the correlation implied by the senior tranche and the 

equity tranche is higher than the correlation implied by the mezzanine tranche. This 

phenomenon is well known by market participants and is called correlation smile or 
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correlation skew. It shows that the distribution of portfolio loss implied by Gaussian 

copula is inconsistent with the market implied loss distribution and further challenges 

the standard approach adopted by the industry. To address this issue, base correlation is 

proposed by McGinty, Beinstein, Ahluwalia, and Watts (2004) from JPMorgan. 

Nonetheless, this ad hoc method does not resolve the fundamental inconsistency 

exhibited by the Gaussian copula approach and cannot price all tranches using a single 

parameter set. Therefore, there continue to be works on correlation skew modeling, and 

this field is still being actively researched. 

The aim of this thesis is to provide a comparison of some correlation skew models 

that have been proved accurate and to examine their effectiveness after the subprime 

mortgage crisis. Only the factor copula approach is considered since it provides a 

semi-analytical framework for pricing CDOs and facilitates the comparisons among 

models. The models under study are (1) normal inverse Gaussian copula (Kalemanova, 

Schmid and Werner, 2007), (2) stochastic correlation model (Burtschell et al., 2005), 

and (3) local correlation model (Andersen and Sidenius, 2004). By using one-factor 

Gaussian copula as benchmark, we will test the fitness of each model by comparing 

their absolute pricing errors and the sum of error squared across tranches. The change of 

market fitness due to the subprime mortgage crisis will be closely examined. Finally, 

the stability of the calibrated parameter values of each model will be investigated. 

The thesis is organized as follows. Chapter 2 reviews basic knowledge about 

pricing CDOs and reviews how to value CDOs under the factor copula framework. 

Chapter 3 describes the standard market model and correlation skew. Chapter 4 details 

the models under comparisons. Chapter 5 shows the numerical results. Chapter 6 

concludes. 
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Chapter 2  
Valuation of CDOs 

2.1   CDS, CDOs, and Index Tranches 

Since credit default swap is the basic building block for synthetic CDOs as well as 

one of the most used instruments in the credit derivatives market, a description about 

credit default swap is given first. A credit default swap (CDS) is a credit derivative used 

to transfer the credit risk of a reference entity from one party to another. In a standard 

CDS contract, one party (the protection buyer) purchases credit protection from the 

other party (the protection seller) to cover the loss of the face value of an asset 

following a credit event. A credit event is usually either a default of the reference entity 

or other specified events defined in the ISDA agreements. This protection lasts until the 

maturity date specified in the contract. For this protection, the protection buyer 

periodically pays CDS spread based on the notional of the contract to the protection 

seller until a credit event or maturity, whichever occurs first. If a credit event occurs 

before the maturity date of the contract, the protection seller pays the difference 

between par and the post-default price of the assets of the reference entity based on the 

notional of the contract, and receives the accrued spread up to the event time. The above 

loss compensation and the accrued spread are assumed to be settled at the time the 

credit event occurs. The loss payment can be made by physical settlement or cash 

settlement.  

CDS contracts are often traded in unfunded format. Namely, no exchange of 

notional is made at the initiation date and the maturity date. Only when a credit event 

occurs are loss payments required to be made by the protection seller to the protection 

buyer. Thus CDS contracts have counterparty risks. The payments involved during the 

life of a CDS contract is illustrated in Figure 2.1. Notice that the periodic spread 

payments to the protection seller are often called the “premium leg,” and the contingent 

loss payments to the protection buyer are often called the “protection leg.” The same 

terminologies are also used in the payment structure of synthetic CDOs. 
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Figure 2.1: The structure of a CDS contract. 

 
A collateralized debt obligation (CDO) is a securitization of a portfolio of 

defaultable instruments such as loans, bonds, etc. CDO investors will bear the losses 

resulting from the defaults of the instruments in the underlying portfolio in return for 

periodic payments. The underlying portfolio is transferred from the originator to a 

special purpose vehicle (SPV) that issues securities on the portfolio in several tranches 

with different seniorities. The cash flows generated from the underlying portfolio are 

arranged such that the most senior tranche is paid before mezzanine tranches are paid 

and with any residual cash flow to the equity tranche. When credit events occur, losses 

of the portfolio are absorbed first by the equity tranche and then by the next tranche, and 

so on before they reach the most senior tranche. The structure of CDOs is illustrated in 

Figure 2.2. Consider the example illustrated in Figure 2.2. Each tranche is defined by an 

attachment point and a detachment point. The investors of a specific tranche will bear 

all losses in the portfolio in excess of the attachment point and up to the detachment 

point in percentage of the total principal of the portfolio. For example, the equity 

tranche in Figure 2.2 has 10% of the total principal and covers all losses from the 

portfolio during the life of the CDO until they have reached 10% of the total principal. 

The mezzanine tranche has 20% of the total principal and absorbs all losses in excess of 

10% of the principal up to a maximum of 30% of the principal. The senior tranche has 

70% of the principal and bears all losses in excess of 30% of the principal. Notice that 

the interest rates paid to tranche investors are based on the balance of the principal 

remaining in the tranche after losses have been paid. Take the equity tranche for 

example. At the outset, the 30% interest rate is paid on the total amount invested by the 

equity tranche investor. If 5% losses of the total portfolio have been experienced, the 

equity tranche investors have lost 50% of their initial investment and the interest rate is 

paid on only 50% of the original amount invested. 

 
Protection  

buyer  
Protection  

seller 

CDS spread 
(premium leg) 

Loss payment  
if a credit event occurs 

(protection leg) 
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Figure 2.2: The structure of cash CDOs. 
 

In recent years, synthetic CDOs emerge as a flexible and low-cost tool for 

transferring credit risk off balance sheets. The difference between cash CDOs 

mentioned above and synthetic CDOs relies on the ownership of underlying portfolios. 

While in the former a portfolio of bonds or loans are securitized and the ownership is 

transferred from the originator to an SPV, in the latter the exposure is obtained 

synthetically through credit default swaps or other credit derivatives and the underlying 

portfolio remains on the originator’s balance sheet. This is illustrated in Figure 2.3.  

 

Figure 2.3: The structure of synthetic CDOs. 
 

 

   
 

 
Originator 

Special 
purpose vehicle

(SPV) 

Senior tranche 

Mezzanine 
tranche 

Equity tranche 

Reference 
portfolio 

CDS 
spreads 

Loss 
payments

Interest 
rates 

Credit default swaps 

Loss 
payments 

 

 

  
 

 
Originator 

Special 
purpose vehicle

(SPV) 

Senior tranche 
0%-10% of loss 

Interest rate = 30% 

Mezzanine 
tranche 

10%-30% of loss 
Interest rate = 15% 

Equity tranche 
30%-100% of loss 
Interest rate = 5% 

Reference 
portfolio 

Proceeds Proceeds 

Interest 
rates

Sales of 
portfolio 



 6

Synthetic CDOs may be either funded or unfunded. When issued in a funded 

format, the proceeds provided by investors at the time of investment are often invested 

in high-quality, liquid assets until a credit event occurs. The returns from these 

investments plus the premium from the CDS counterparty provide the cash flows to pay 

interests to the investors. When a credit event occurs and a payout to the CDS 

counterparty is required, the required payment is made from the reserve account that 

holds the liquid investments. In contrast, when issued in an unfunded format, the 

investors receive periodic payments but do not place any capital in the CDO when 

entering into the investment. Instead, the investors retain funding exposures and may 

have to make a payment to the CDO in the event the losses of the portfolio reach the 

attachment point of the tranche. In the rest of this thesis, synthetic CDOs are implicitly 

assumed to be unfunded. 

The indices have been developed to track CDS spreads. The iTraxx is the family of 

CDS index products owned, managed, compiled and published by International Index 

Company (IIC). Nowadays, they form a large share of the overall credit derivative 

market. The indices are constructed on a set of rules according to the liquidity of the 

underlying CDS. The iTraxx are rebalanced every six months known as “rolling” the 

index. The index after rebalancing is called a new series. The composition of a new 

series of iTraxx is determined as follows. Index composition is initially set to be the 

same as the previous series. Ineligible entities (defaulted or merged) are excluded. Any 

entities with the highest CDS trading volume over the previous 6 months and not 

already in the index are added until the CDS’ remain in the final composition of the 

index have highest liquidity. The roll dates are March 20th and September 20th each 

year. These indices are tradable instruments in their own right with pre-determined 

fixed rates. The iTraxx Europe is one of the most popular CDS indices representing an 

equally-weighted portfolio of the most liquid 125 credit default swaps on 

investment-grade European companies. The iTraxx Europe is traded at 3, 5, 7 and 

10-year maturities. The iTraxx Europe is also split into traded sector indices (autos, 

consumer, energy, industrial, non-financials, TMT, financial senior and financial sub) 

and a HiVol index composed of companies from iTraxx Europe with the top 30 highest 

CDS spreads. A Crossover index comprising the 50 most liquid sub-investment grade 

European companies is also traded. The iTraxx product family is illustrated in Figure 

2.4. 
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Figure 2.4: The iTraxx product family. 
 

The iTraxx Europe index is also used to define standardized index tranches similar 

to the tranches of a CDO. In Figure 2.4, the tranched iTraxx investors who are 

essentially the protection seller are responsible for all losses on an underlying index 

portfolio of CDS in excess of a respective tranche attachment point up to the 

detachment point. Thus, an index tranche is economically equivalent to a synthetic 

CDO tranche. In return for covering the losses, the investors receive a running spread 

quarterly. Once default occurs, the notional amount upon which the running spread is 

charged is reduced with losses, dollar for dollar. All tranches except the equity tranche 

have a predetermined running spread; the equity tranche (0-3%) has an upfront fee. 

Unlike other tranches, the equity tranche has a contractually set running spread of 500 

basis points per annum and the upfront fee is negotiated in the market. Market quotes of 

iTraxx Europe 5 year index and its tranches on April 7, 2008 is presented in Table 2.1. 

In Table 2.1, all tranche spreads are quoted in basis points per annum except the 0-3% 

tranche, which is quoted as an upfront payment in percentage of the tranche notional. 
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iTraxx Europe 5 Year, Series 9 on 7 April 2008                Source: Bloomberg

Tranche 0-3% 3-6% 6-9% 9-12% 12-22% Index 

Spread/Upfront fee  30% 335 bp 190 bp 135 bp 62 bp 85 bp 

Table 2.1: Market quotes of iTraxx Europe 5 year on April 7, 2008. 
 
2.2   General Pricing Formula for CDOs 

In this section, general formulae for determining the market value and the fair 

spread of a CDO tranche will be derived. These formulae are model-independent and 

thus are general. The fair spread of a CDO tranche is the spread such that the 

marked-to-market value of the contract is zero. Namely, the present value of the 

premium payments is equal to the present value of the contingent loss payments. The 

premium payments are called the “premium leg” and refer to spreads received by the 

protection seller or the tranche investor. The contingent loss payments are called the 

“protection leg” and refer to cash flows that cover losses affecting the specific tranche 

and are paid by the protection seller. Here, only unfunded CDO is considered. However, 

the same concept can be extended to fully funded CDO.  

In this thesis, we assume that there exists a risk-neutral probability measure Q such 

that all discounted price processes are martingales under this measure. All expectations 

in the following formulae are taken with respect to this measure. In addition, the total 

notional of CDO is assumed to be one unit of currency. 

For convenience, the notations used in this section are listed below. 

 ap: The attachment point of the CDO tranche as a percentage of total notional. 

 dp: The detachment point of the CDO tranche as a percentage of total notional. 

 ii ,1−Δ : The year fraction between two payment dates 1it −  and it . 

 (0, )iB t : The discount factor at time 0 for cash flow occurring at it . 

 T: The time to maturity of CDO as a fraction of year. 
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 ( )L t : The aggregate portfolio loss as a percentage of total notional at time t . 

 ( )trL t : The tranche loss as a percentage of total notional at time t . 

 MTM: The market value of a CDO tranche at time 0. 

 S: The fair spread of the CDO tranche. 

A tranche suffers a loss only if the total portfolio loss in percentage of total 

notional exceeds the attachment point of this tranche and the maximum loss of a tranche 

is the trance’s size. The tranche loss in percentage of total notional at time t  can be 

expressed as follows. 

}0},,)(max{min{)( apdpaptLtLtr −−=  

Then the present value of a protection leg in percentage of total notional can be 

calculated by taking the expectation with respect to the risk-neutral probability measure 

Q. It is expressed as follows: 

0

0
PV(Protection Leg) ( )

t
s

T r dsQ trE dL te− ∫⎡ ⎤= ⎢ ⎥⎣ ⎦∫  

On the other hand, given the payment dates 0 1 10 n nt t t t T−= < < < < =… , the 

present value of premium leg in percentage of total notional depends on the remaining 

tranche notional at time t  and can be written as follows: 

( )0
1,

1
PV(Premium Leg) ( )

ti
s

n
r dsQ tr

i i i
i

E S dp ap L te− ∫
−

=

⎡ ⎤= Δ − −⎢ ⎥
⎣ ⎦
∑  

Therefore, the marked-to-market value of a CDO tranche from protection sellers’ 

view can be expressed below: 

( )0 0
1, 0

1
MTM ( ) ( )

t ti
s s

n Tr ds r dsQ tr Q tr
i i i

i
E S dp ap L t E dL te e− −∫ ∫

−
=

⎡ ⎤ ⎡ ⎤= Δ − − −⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦
∑ ∫  
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The fair spread can be obtained by choosing a spread such that the above formula 

is equal to zero. It is expressed below: 

( )⎥
⎦

⎤
⎢
⎣

⎡ −−Δ

⎥⎦
⎤

⎢⎣
⎡

=

∑

∫

=

∫−
−

∫−

n

i
i

trdsr
ii

Q

T trdsrQ

tLapdpE

tdLE
S

e

e
it

s

t
s

1
,1

0

)(

)(

0

0

 

For ease of implementation, it is furthermore assumed that the interest rate is 

stochastically independent of the occurrences of credit events in the reference portfolio. 

The integral appearing in the protection leg is discretized by assuming the credit events 

can only occur at the payment dates. Then the marked-to-market value of a CDO 

tranche and its fair spread can be rewritten as follows: 

( )

( )
1,

1

1
1

MTM (0, ) ( )

(0, ) ( ) ( )

n
Q tr

i i i i
i
n

Q tr Q tr
i i i

i

S B t dp ap E L t

B t E L t E L t

−
=

−
=

⎡ ⎤= Δ − − ⎣ ⎦

⎡ ⎤ ⎡ ⎤− −⎣ ⎦ ⎣ ⎦

∑

∑
      (2.1) 

[ ] [ ]( )

[ ]( )∑

∑

=
−

=
−

−−Δ

−
= n

i
i

trQ
iii

n

i
i

trQ
i

trQ
i

tLEapdptB

tLEtLEtB
S

1
,1

1
1

)(),0(

)()(),0(
       (2.2) 

2.3   Review of Copula 

In order to obtain the fair spread of a CDO tranche, it is essential to determine the 

aggregate portfolio’s loss distribution. The factor copula approach has proved to be 

powerful since it provides a semi-analytical framework for pricing CDOs. In this 

section, some basic concepts about copula will be reviewed and then the details about 

the factor copula approach will be given in the next section. 

For ease of exposition, only bivariate copula is introduced. However, the same 

concepts can be extended to the multivariate case. To start with, the notions of 

groundedness and the 2-increasing property should be given first, which allow copulas 

to respect the properties of the distribution function.  
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Consider two non-empty subsets 1A  and 2A  of ℜ  and a function 

ℜ→× 21: AAG . Denote with ia  the least element of , 1, 2iA i = . The function G  is 

said to be grounded if for every ( , )v z  of 21 AA × , 0),(),( 21 == avGzaG .  

The function G  is called 2-increasing if the following condition holds for every 

rectangle 1 2 1 2[ , ] [ , ]v v z z×  whose vertices lie in 1 2A A× : 

2 2 2 1 1 2 1 1 1 2 1 2( , ) ( , ) ( , ) ( , ) 0, ,G v z G v z G v z G v z v v z z− − + ≥ ∀ ≤ ≤ . 

Note that the left hand side measures the mass of the rectangle ],[],[ 2121 zzvv ×  

according to the function G . In other words, the 2-increasing property requires that the 

functions assign non-negative mass to every rectangle in their domain.  

A bivariate subcopula is a real function : [0,1]C A B× → , where A  and B  are 

non-empty subsets of [0,1]I =  containing both 0 and 1 such that (1) it is grounded, (2) 

2-increasing, and (3) for every ( , )v z  of BA× , ( ,1)C v v= , (1, )C z z= . A bivariate 

copula C  is a bivariate subcopula with [0,1]A B= = . Notice that, from the definition, 

copulas are joint distribution functions of standard uniform random variables. Suppose 

that the distribution functions associated with random variable X  and Y  are 1( )F x  

and 2 ( )F y , respectively. Through the inverse probability integral transforms, a copula 

computed at 1( )F x  and 2 ( )F y  gives a joint distribution function at ( , )x y  thus, 

 
1 2 1 1 2 2

1 1
1 1 2 2

( ( ), ( )) { ( ), ( )}
{ ( ) , ( ) }
{ , } ( , )

C F x F y P U F x U F y
P F U x F U y
P X x Y y F x y

− −

= ≤ ≤
= ≤ ≤
= ≤ ≤ =

 

The link between distribution functions and copulas allows us to consider a copula 

a dependence function. This relationship is essentially the spirit of Sklar’s theorem, 

which says that not only do copulas evaluated at 1( )F x  and 2 ( )F y  give joint 

distribution functions at ( , )x y  but the converse also holds true. To wit, joint 

distribution functions can be represented by the marginal distributions and a unique 
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subcopula, which in turn can be extended (not unique, in general) to a copula. Sklar’s 

theorem is stated formally below. 

Let 1( )F x  and 2 ( )F y  be two marginal distribution functions. Then for 

every 2),( ℜ∈yx , 

(i) If C  is any subcopula whose domain contains 1 2Range( ) Range( )F F× , then 

))(),(( 21 yFxFC  is a joint distribution function with marginal distributions 

1( )F x  and 2 ( )F y . 

(ii) If ( , )F x y  is a joint distribution with marginal distribution 1( )F x , 2 ( )F y , 

then there exists a unique subcopula 1 2: Range( ) Range( ) [0,1]C F F× →  such 

that ))(),((),( 21 yFxFCyxF = . If 1( )F x , 2 ( )F y  are continuous, the 

subcopula is a copula. If not, there exists a copula C  such that 

),(),( zvCzvC = , for every 1 2( , ) Range( ) Range( )v z F F∈ × . 

By splitting the joint distribution into the marginal distributions and a copula, 

marginal behavior as represented by marginal distributions can be separated from the 

association as represented by a copula. That is why copulas can be thought of as 

dependence functions. The use of copulas gives great flexibility when modeling joint 

default processes in the reference portfolio of a CDO. Since there has been accurate 

ways to model single-name credit, it suggests that we can price CDOs by modeling 

single-name credits using existing techniques and then choosing an appropriate copula 

to model the dependence structure among credits. 

Before closing this section, a useful corollary is stated below. This corollary allows 

us to construct a copula from the marginal distributions and the joint distribution 

function by inversion of Sklar’s theorem. This will help explain the link between 

copulas and the factor copula framework described in the next section. 
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Given part (ii) of Sklar’s theorem, the subcopula such that ))(),((),( 21 yFxFCyxF =  

is ))(),((),( 1
2

1
1 zFvFFzvC −−= . If 1 2Range( ) Range( ) [0,1]F F= = , then the subcopula is 

a copula. 

2.4   The Factor Copula Pricing Framework 

Although the use of copula functions allows separate specifications and 

calibrations of single-name credit curves and the dependence structure among credits, it 

is rather slow when there are a large number of credits involved in a CDO. The main 

feature of the factor copula approaches is that default events are independent 

conditioned on some latent state variables. This eases the computation of aggregate loss 

distributions through dimensionality reduction and provides a semi-analytic solution to 

the pricing of CDOs. This factor approach is nicely suited for high-dimensional 

problems. For the sake of simplicity, only one-factor model is considered since it is 

parsimonious with respect to the number of parameters, which will ease model 

calibration. Nonetheless, this technique applies to multi-factor models as well.  

Consider an underlying portfolio containing debt instruments of n  companies and 

suppose that the marginal risk-neutral probabilities of default can be obtained for each 

company. One approach to back out the risk-neutral probabilities of default is shown in 

Appendix A. To model default times jointly, we define latent random variables iX  

below: 

21 , 1 1, 1, 2,...,i i i i iX a M a Z a i n= + − − ≤ ≤ =  

where M  and { }n
iiZ 1=  are stochastically independent and all of them have zero mean 

and unit variance. Notice that iX  also has zero mean and unit variance and the 

correlation between iX  and jX  is i ja a .  

To proceed, define the following notations: 

 iτ : The default time of the i-th company. 
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 ( )iQ t : The cumulative risk-neutral probability that company i will default 

before time t . 

 ( )iF x : The marginal distribution function of iX . 

 1 2( , ,..., )nF x x xX : The joint distribution function of iX ’s. 

Further suppose that iX ’s are continuous. So there exists a unique copula to 

represent the joint distribution of iX ’s. Then the copula specifying the dependence 

structure among iX ’s can be constructed by applying the corollary stated in the 

previous section. That is, 

( )1 1 1
1 2 1 1 2 2( , ,..., ) ( ), ( ),..., ( )n n nC u u u F F u F u F u− − −=X X . 

Applying this copula to represent the joint probabilities of default times, the 

following formula is obtained: 

( )
( )

[ ] [ ] [ ]( )

1 1 2 2

1 1 2 2

1 1 1
1 1 1 2 2 2

1 2

, ,...,
( ), ( ),..., ( )

( ) , ( ) ,..., ( )

( , ,..., )

n n

n n

n n n

n

Q t t t
C Q t Q t Q t

F F Q t F Q t F Q t

F x x x

τ τ τ

− − −

≤ ≤ ≤
=

=

=

X

X

X

 

where 1[ ( )], 1, 2,...,i i i ix F Q t i n−= = . Under this copula model, the event that the i-th 

company defaults before time it  is the same as the event that iX  falls below a 

threshold ix . Intuitively, we may think of latent variables iX ’s as the firm values of 

companies and consider ix ’s as default thresholds of companies. When the firm value 

of a company falls below the default threshold, its total assets cannot fulfill the 

obligations and thus the default occurs. Viewed in this way, the occurrences of defaults 

agree with the definition of default in structural-form models. This interpretation also 

provides some economic insights on the factor copula approach. 
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Since default events can be represented by iX ’s and iX ’s are stochastically 

independent given the common factor M , it is straightforward to build up the portfolio 

loss distribution by conditioning on the common factor. After the loss distribution by 

time t  conditioned on the common factor M  is calculated, it can be used to compute 

the expected tranche loss conditioned on M , i.e., [ ( ) ]Q trE L t M . Then the expected 

tranche loss by time t  can be determined by integrating the conditional expected 

tranche loss numerically with respect to the common factor M . Plugging the expected 

tranche loss by each payment date into formula (2.2), the fair spread of the CDO tranche 

can be obtained. 

Therefore, the problem reduces to how to construct the portfolio loss distribution 

conditioned on the common factor M  by time t . Several approaches have been 

proposed to build up the portfolio loss distribution. The approach described here is the 

probability bucketing method of Hull and White (2004) since it is intuitive and easy to 

understand. This method works by constructing a bucketed distribution to approximate 

the true portfolio loss distribution. The bucketed distribution is constructed by dividing 

the true portfolio loss distribution into several buckets. The probability associated with 

each bucket is assumed to be concentrated at the mean loss conditional that the loss is in 

the bucket.  

Suppose that all potential losses are divided into the following ranges: [0, 0b ), [ 0b , 

1b ), … , [ 1Kb − , ∞ ). We designate [0, 0b ) as the 0th bucket, [ 1kb − , kb ) as the k-th 

bucket (1 1k K≤ ≤ − ), and [ 1Kb − , ∞ ) as the K-th bucket. Denote kp  as the probability 

that the loss conditioned on the common factor M  by time t  will be in the k-th 

bucket and let kA  be the mean loss by time t conditional that the loss is in the k-th 

bucket ( 0 k K≤ ≤ ). Then the distribution function of the bucketed distribution used to 

approximate the true portfolio loss distribution can be expressed as follows: 

 l
{ }

0
( )

k

K

k x A
k

F x p ≥
=

=∑ 1  

The 
kp ’s and kA ’s in the above formula are calculated iteratively by introducing one 

debt instrument at a time. In the iterative procedure, it is assumed that the probability 
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associated with bucket k is concentrated at the current value of kA . After all of debt 

instruments are introduced, the bucketed distribution is completed. Though the 

probability bucketing method allows the recovery rates to be stochastic, it is assumed 

that the recovery rates are constant but need not be identical among all credits. We 

proceed to describe the details of the method below. 

Initially, there is no debt instrument. Hence, 0 1p = , 0kp =  for k > 0 and 0 0A = . 

The initial values of kA ’s for k > 0 are set arbitrarily as 1( )
2

k k
k

b bA − +=  for 

1 1k K≤ ≤ −  and 1K KA b −= . Suppose that 
kp ’s and kA ’s are determined when the 

first i–1 debt instruments are introduced, the loss given default from the i-th debt 

instrument is iLGD , and the default probability conditioned on M  by time t  is 

Mi
tp | . Let ( )H z  be the distribution function of iZ ’s. Then the conditional default 

probability for the i-th debt instrument can be obtained under the one-factor copula 

model as follows: 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−

−
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−

−
=

≤−+=≤=≤=
−

2

1

2

2|

1

))((

1

)|1()|()|(

i

iii

i

ii

iiiiiii
Mi

t

a

MatQF
H

a

Max
H

MxZaMaQMxXQMtQp τ
 

Define ( )u k  as the bucket containing ( )k iA LGD+  for 0 k K≤ ≤ . Since each 

bucket may be updated several times when one debt instrument is introduced, for the 

sake of clarity, we denote )( j
kp  and )( j

kA  as the values of kp  and kA  after j updates. 

In particular, )0(
kp  and )0(

kA  are the initial values before any updates. In addition, to 

update the conditional mean losses correctly, a variable )( j
kB  is introduced for each 

bucket k to denote the mean loss by time t after j updates that the default of the i-th debt 

instrument will move the aggregate loss from other buckets to bucket k. The (0)
kB ’s are 

set to zero for each time one debt instrument is introduced. Then the updating scheme 

can be determined as follows. If ( ) 0j
kp = , then no update is made for bucket k , i.e., kp  

and kA  remain unchanged. Since the probability that the aggregate losses fall on 
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bucket k is zero, the calculation of conditional mean loss kA  is unnecessary. If 

( )u k k= , then 

( 1) ( )

(0) (0) ( )
( 1)

( 1)

j j
k k

j
j k k k

k j
k

p p

p A BA
p

+

+
+

=

+=
 

If ( )u k k> , then 

( 1) ( ) (0) |

(0) | (0) ( )
( 1)

( 1)

( 1) ( ) (0) |
( ) ( )

( 1) ( ) (0) | (0)
( ) ( )

(1 )

( )

j j i M
k k k t

i M j
j k t k k

k j
k

j j i M
u k u k k t

j j i M
u k u k k t k i

p p p p

p p A BA
p

p p p p

B B p p A LGD

+

+
+

+

+

= −

− +=

= +

= + +

 

Notice that when ( )u k  is not equal to k, the addition of the i-th debt instrument 

will move some amount of probability from bucket k to bucket ( )u k  because only 

when no default occurs on the i-th debt instrument do the aggregate losses fall on the 

k-th bucket. After all debt instruments are added, the bucketed loss distribution is 

obtained.  

In the following, we will give a numerical example to illustrate the updating 

scheme. Suppose that there are three debt instruments in the portfolio. The notional of 

each debt instrument is 15 units of currency. Their default probabilities conditioned on 

M by time t and losses given default are listed below: 

 Debt instrument 1: 1| 0.2M
tp = , 1 4LGD = . 

 Debt instrument 2: 2| 0.4M
tp = , 2 4LGD = . 
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 Debt instrument 3: 3| 0.6M
tp = , 3 4LGD = . 

Further suppose that the tranche’s attachment point is 12% and the detachment point is 

22% and all potential losses are divided into the following ranges: [0, 4), [4, 8), [8, 9.9), 

[9.9, ∞ ). Initially, 
kp ’s , kA ’s and kB ’s are set as follows: 

 

Consider adding the debt instrument 1 into the portfolio. When 0k = , (0)
0 1 4A LGD+ = , 

(0) 1u = . Bucket 0 and bucket 1 are updated as follows: 

(1) (0) (0) 1|
0 0 0

(0) 1| (0) (0)
(1) 0 0 0
0 (1)

0

(1) (0) (0) 1|
1 1 0

(1) (0) (0) 1| (0)
1 1 0 0 1

1 1 0.2 0.8

(1 ) 1 (1 0.2) 0 0 0
0.8

0 1 0.2 0.2

( ) 0 1 0.2 (0 4) 0.8

M
t

M
t

M
t

M
t

p p p p

p p A BA
p

p p p p

B B p p A LGD

= − = − × =

− + × − × += = =

= + = + × =

= + + = + × × + =

 

When 1k = , (0)
1 1 6 4 10A LGD+ = + = , (1) 3u = . Bucket 1 and bucket 3 are updated as 

follows: 

(0)
2 0p =  

(0)
2 8.95A =  

(0)
2 0B =  

(0)
1 0p =  

(0)
1 6A =  

(0)
1 0B =

(0)
0 1p =  

(0)
0 0A =  

(0)
0 0B =  

(0)
3 0p =  

(0)
3 9.9A =  

(0)
3 0B =  

0 4 8 9.9

0b  1b 2b
Bucket 0 Bucket 1 Bucket 2 Bucket 3 
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(2) (1) (0) 1|
1 1 1

(0) 1| (0) (1)
(1) 1 1 1
1 (2)

1

(1) (0) (0) 1|
3 3 1

(1) (0) (0) 1| (0)
3 3 1 1 1

0.2 0 0.2 0.2

(1 ) 0 (1 0.2) 6 0.8 4
0.2

0 0 0.2 0

( ) 0 0 0.2 (6 4) 0

M
t

M
t

M
t

M
t

p p p p

p p A BA
p

p p p p

B B p p A LGD

= − = − × =

− + × − × += = =

= + = + × =

= + + = + × × + =

 

When 2k = , (0)
2 0p = , no update is made for bucket 2. When 3k = , (1)

3 0p = , no 

update is made for bucket 3. The bucketed loss distribution after debt instrument 1 is 

added is listed below: 

 

Follow the same procedure to add debt instrument 2. The bucketed loss distribution 

after debt instrument 2 is added is listed below: 

 

The bucketed loss distribution after debt instrument 3 added is listed below: 

(0)
2 0.08p =  

(0)
2 8A =  

(0)
2 0B =  

(0)
1 0.44p =  

(0)
1 4A =  

(0)
1 0B =  

(0)
0 0.48p =  

(0)
0 0A =  

(0)
0 0B =  

(0)
3 0p =  

(0)
3 9.9A =  

(0)
3 0B =  

0 4 8 9.9

0b  1b 2b
Bucket 0 Bucket 1 Bucket 2 Bucket 3 

(0)
2 0p =  

(0)
2 8.95A =  

(0)
2 0B =  

(0)
1 0.2p =  

(0)
1 4A =  

(0)
1 0B =  

(0)
0 0.8p =  

(0)
0 0A =  

(0)
0 0B =  

(0)
3 0p =  

(0)
3 9.9A =  

(0)
3 0B =  

0 4 8 9.9

0b  1b 2b
Bucket 0 Bucket 1 Bucket 2 Bucket 3 
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After all of debt instruments are added into the portfolio, the expected tranche loss 

conditioned on M  by time t can be calculated as follows: 

( ) 0 0.192 0 0.464 2.6 0.296 4.5 0.048 0.9856Q trE L t M⎡ ⎤ = × + × + × + × =⎣ ⎦  

Before we close this chapter, an implementation issue is to be noted. According to 

Hull and White (2004), the probability bucketing method is not sensitive to the bucket 

widths because it keeps track of the mean loss for each bucket and thus allows wide 

buckets to be used for losses not corresponding to the tranche. However, the bucket 

widths cannot be arbitrarily wide for buckets whose range is below the attachment point. 

Wide buckets may cause all of potential aggregate losses to fall wrongfully within the 

buckets whose range is below the attachment point. Consider the previous numerical 

example. If all potential losses are divided into the following ranges: [0, 5.4), [5.4, 9.9), 

[9.9, ∞ ), then the initial bucketed loss distribution can be expressed as follows: 

 

Consider adding the debt instrument 1 into the portfolio. When 0k = , (0)
0 1 4A LGD+ = , 

(0) 0u = . Bucket 0 is updated as follows: 

(0)
2 0p =  

(0)
2 9.9A =  

(0)
2 0B =  

(0)
1 0p =  

(0)
1 7.65A =  

(0)
1 0B =  

(0)
0 1p =  

(0)
0 0A =  

(0)
0 0B =  

0 5.4 9.9

0b  1b
Bucket 0 Bucket 1 Bucket 2

(0)
2 0.296p =  

(0)
2 8A =  

(0)
2 0B =  

(0)
1 0.464p =  

(0)
1 4A =  

(0)
1 0B =  

(0)
0 0.192p =  

(0)
0 0A =  

(0)
0 0B =  

(0)
3 0.048p =  

(0)
3 12A =  

(0)
3 0B =  

0 4 8 9.9

0b  1b 2b
Bucket 0 Bucket 1 Bucket 2 Bucket 3 
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(1) (0)
0 0

(0) (0) (0)
(1) 0 0 0
0 (1)

0

1

1 0 0 0
1

p p

p A BA
p

= =

+ × += = =
 

When 1k = , (0)
1 0p = , no update is made for bucket 1. When 2k = , (0)

2 0p = , no 

update is made for bucket 2. The bucketed loss distribution after debt instrument 1 is 

added is listed below: 

 

Clearly, bucket 0 is so wide that (0)
0 iA LGD+  is always within bucket 0. To address 

this problem, the greatest common divisor of losses given default is chosen as the 

bucket width. In addition, since the tranche losses for buckets whose range is above the 

detachment point are always the notional of the tranche, the exact values of kA ’s for 

these buckets are not important with respect to the calculation of the tranche losses. 

Consider using only one bucket to accommodate for the potential aggregate losses 

above the detachment point and dividing the total losses below the detachment point 

into buckets whose width is the greatest common divisor of losses given default. The 

kp ’s for buckets whose range is below the detachment point are correct since this 

choice of bucket width can avoid the pitfall mentioned above. Furthermore, the kp ’s 

associated with each bucket are always summed to one, i.e., (0)
0

1K
kk

p
=

=∑  since the 

aggregate losses must fall within one of these buckets. The correctness of kp ’s for 

buckets whose range is below the detachment point ensures that the kp  for the bucket 

whose range is above the detachment point is correct. Therefore, only one bucket is 

needed to accommodate for the potential aggregate losses above the detachment point. 

(0)
2 0p =  

(0)
2 9.9A =  

(0)
2 0B =  

(0)
1 0p =  

(0)
1 7.65A =  

(0)
1 0B =  

(0)
0 1p =  

(0)
0 0A =  

(0)
0 0B =  

0 5.4 9.9

0b  1b
Bucket 0 Bucket 1 Bucket 2
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Chapter 3 Correlation Skew 

3.1   Standard Market Model 

Standard approach to pricing CDOs is the one-factor Gaussian copula model with 

constant pairwise correlations, constant CDS spreads, and constant default intensities 

for all companies in the reference portfolio. Under this model, the recovery rates can be 

estimated from data published by rating agencies and is often assumed to be 40% (the 

recovery rate of unsecured senior debts). Since most of time only the CDS index spread 

can be observed in the market, this model also assumes that the CDS spreads for all 

companies are the same and can be represented by their average CDS spread. Also, the 

default process for each company is assumed to be driven by a Poisson process with 

constant intensity. The risk-neutral default probability for each company can be 

estimated from CDS spreads as described in Appendix A. The standard market model 

can be expressed as follows: 

11 ,0 1, ~ (0,1),{ } ~ (0,1), 1, 2,...,n
i i i iX M Z M N Z N i nρ ρ ρ == + − ≤ ≤ =   (3.1) 

In the above equation, M  and { }n
iiZ 1=  are stochastically independent, standard 

normal distributions. The correlation between iX  and jX  is ρ . Since the normal 

distribution is closed under convolution, iX  is also a standard normal distribution. 

Therefore, the default threshold ix  can be determined as follows: 

1 1 1[ ( )] [ ( )] [ ( )], 1, 2,...,i i i ix F Q t Q t Q t i n− − −= = Φ = Φ =  

where ( )Φ ⋅  is the cumulative distribution function of standard normal distribution. 

Since this model assumes that the CDS spread for each company equals the average 

CDS spread, the cumulative probabilities of default for each time are identical among 

credits. Therefore, the subscript i for Q is eliminated in the above formula. The default 

probability conditioned on M  by time t  for each company can be written below: 
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1

| [ ( )]
, 1, 2,...,

1 1
i M i
t

x M Q t M
p H i n

ρ ρ
ρ ρ

−⎡ ⎤ ⎡ ⎤− Φ −
= = Φ =⎢ ⎥ ⎢ ⎥

− −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
 

Once the correlation ρ  is available, the fair spreads of CDO tranches can be 

calculated as described in section 2.4. 

3.2   Correlation Skew 

As noted in section 2.4, the latent variables iX ’s can be thought of as the asset 

values of companies. Therefore, the correlation parameter ρ  in (3.1) can be viewed as 

the correlation between asset values of two companies. Since the asset value of a 

company cannot be directly observed in the market, it is often assumed that the 

correlation between their equities equals the correlation between their asset values. If 

we allow the correlation parameter ρ  to be different for each company, then the 

standard market model can be rewritten as follows: 

11 ,0 1, ~ (0,1),{ } ~ (0,1), 1,2,...,n
i i i i i i iX M Z M N Z N i nρ ρ ρ == + − ≤ ≤ =  (3.2) 

Since the correlation between iX  and M is iρ , the parameter iρ  for each 

company can be estimated by the correlation between the equity return of the company 

and the return of a market index, i.e., the beta coefficient of the company’s equity. 

However, as Walker (2005) points out, the default correlation under risk-neutral 

measure can be very different from the default correlation under real world measure. 

Hence, the use of the equity correlations in real world measure is inadequate for pricing 

basket credit derivatives.. 

As the credit derivatives market grows, it becomes possible to calibrate risk-neutral 

correlation ρ  in (3.1) from observed market prices of credit products directly, which 

avoids the hypothesis that the risk-neutral default correlation is the same as the real 

world default correlation. Since index tranches are standardized credit products and 

have been actively traded, dependence calibration from credit derivatives has been 

massively used with index tranches. Because index tranches involve a large number of 

reference entities while dependence measures are bivariate, default correlations have 
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been assumed to be the same among all reference entities in the portfolio, i.e., 

, 1, 2, ,i i nρ ρ= = " . This leads to formula (3.1). 

However, when the correlation parameter is implied through inverting the standard 

market model, different correlation parameter is needed to match each tranche spreads 

even if those tranches have the same underlying index portfolio. The correlation found 

by matching the model generated spreads to market quoted spreads is called implied 

correlation or compound correlation.  

iTraxx Europe 5 Year, Series 6 on 4 January 2007              Source: Bloomberg 

Tranche 0-3% 3-6% 6-9% 9-12% 12-22% Index 

Spread/Upfront fee  10% 44 bp 12 bp 4 bp 1 bp 22 bp 

Table 3.1: Market quotes of iTraxx Europe 5 year on January 4, 2007. 
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Figure 3.1: Compound correlations of iTraxx Europe 5 year on January 4, 2007.1 

 
Consider the market quotes of iTraxx Europe 5 year on January 4, 2007 shown in 

Table 3.1. The compound correlations of index tranches are presented in Figure 3.1. 

Because the mezzanine tranche typically has a lower compound correlation than the 
                                                 
1 When searching the compound correlations of 3-6% tranche and 6-9% tranche, there are two values 
such that the marked-to-market values of these two tranches have zero values. The values are 0.0824 and 
0.9646 for 3-6% tranche and 0.1846 and 0.9393 for 6-9% tranche. Because 0.9646 and 0.9393 are 
unreasonably high compared to the compound correlations of other tranches, they are ruled out and only 
0.0824 and 0.1846 are reported. 
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equity or senior tranche, this phenomenon is called correlation smile or correlation skew. 

Although the standard market model is simplistic in that the default correlations are 

assumed to be the same among all reference entities, the correlation parameter ρ  

should not depend on the attachment point and the detachment point of the tranche 

priced in the model. Theoretically, one would expect an almost flat implied correlation 

curve among tranches. However, the existence of correlation smile shows that there 

must be some problems in the standard market model. 

To investigate the meanings of correlation smile further, it is necessary to 
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Figure 3.2: The relationships between index tranches and correlation. 
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understand the relationships between the market values of tranches and the correlation 

parameter in formula (3.1). The relationships between the market value of each tranche 

and the correlation parameter are plotted in Figure 3.2. Formula (2.1) is used to 

determine the market values of tranches under the standard market model with the 

market spreads or the upfront fee presented in Table 3.1 applied. The total notional is 

assumed to be one unit of currency, and the recovery rate is taken as 40% for all of 

reference entities in Figure 3.2. From Figure 3.2, it is observed that when the correlation 

increases, the market value of the equity tranche (0-3%) will rise. It is caused by the fact 

that higher correlation leads to higher probability of joint default occurrence. In other 

words, high correlation implies that there will be either few defaults or many and thus 

have positive effect on the market value of equity tranche. This observation holds true 

generally for the equity tranche. That’s why market participants often call investing 

equity tranche as long correlation. 

If the one-factor Gaussian copula model uses the compound correlation of the 

mezzanine tranche to price the equity tranche, the market value of the equity tranche 

will be underestimated. It is because the compound correlation of the equity tranche is 

higher than the compound correlation of the mezzanine tranche and the value of the 

equity tranche is an increasing function of correlation. Therefore, the shape of 

correlation smile means essentially that Gaussian copula model underestimates the 

chance of observing a very high or very low number of defaults. Since a fat-tailed 

distribution has a higher probability to observe extreme events than the normal 

distribution, it means that the market implied loss distribution is fat-tailed. 

Nonetheless, the subprime mortgage crisis not only has negative impact on CDOs 

market but also changes the shape of correlation smile as well. Taking the market 

quotes in Table 2.1 for example, we plot the corresponding compound correlations in 

Figure 3.3. From Figure 3.3, it is observed that the shape and the level of correlation 

smile have changed a lot compared to Figure 3.1 after the subprime mortgage crisis. 

Actually, the 6-9% tranche has two values of compound correlations and they are 

0.0466 and 0.9753; the 9-12% tranche have two values of compound correlations and 

they are 0.1540 and 1.0000. However, even if we take the multiple values into account, 

it cannot change the fact that the compound correlation of equity tranche and senior 

tranche increase a lot, especially for the 0-3% tranche. Thus, the subprime mortgage 
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crisis must cause some structural changes in the CDO markets and raise doubts about 

the applicability of the current CDO pricing models. 
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Figure 3.3: Compound correlations of iTraxx Europe 5 year on April 7, 2008. 

 
3.3   Problems of Correlation Skew 

Since the standard market model has been well-known and widely used, the active 

trading of standardized index tranches leads to the market convention of pricing 

tranches in terms of compound correlation rather than in terms of spread. Market 

participants rely on compound correlation as it can facilitate a comparison of prices 

across tranches. This practice was inspired by the use of Black-Scholes implied 

volatilities of equity markets. 

However, the compound correlation is different from the Black-Scholes implied 

volatilities because the compound correlation may not exist and may even have multiple 

values. Empirically, inverting pricing formula under the standard market model for 

spreads of index tranches on different dates, series, and maturities shows that the 

compound correlation for a mezzanine tranche does not always exist. Furthermore, the 

compound correlation is often not unique for the mezzanine tranche. This can be 

explained by looking at Figure 3.2. In Figure 3.2, the correlation that makes the 

marked-to-market values of 3-6% tranche and 6-9% tranche zero is not unique. The 
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non-uniqueness problem is caused by the fact that the market values of mezzanine 

tranches are not monotonic functions of correlation. All of problems mentioned above 

make the compound correlation concept less applicable. 
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Chapter 4  
Correlation Skew Modeling 

4.1   Normal Inverse Gaussian Copula 

The insufficiency of one-factor Gaussian copula model to match market quotes has 

already been shown in previous section. The shape of correlation skew (before the 

subprime mortgage crisis) indicates that the market allocates consistently higher 

probability to high default scenarios than the one-factor Gaussian copula model and 

assigns a lower probability of zero or few defaults than the one-factor Gaussian copula 

model. Since Sklar’s theorem insures the existence of copula function that can represent 

the joint probabilities of default times, one natural way to model correlation skew is to 

specify fat-tailed distributions to the common factor M  and idiosyncratic factors iZ . 

The model we consider here is normal inverse Gaussian copula model proposed by 

Kalemanova, Schmid and Werner (2007). In this model, the distribution of the common 

factor and idiosyncratic factors are normal inverse Gaussian distribution, a subclass of 

the generalized hyperbolic distributions. The choice of NIG distribution is due to their 

particular versatility and ability to cope with heavy-tailed processes. It can provide an 

extensive range of shapes of the distribution if their parameters are appropriately chosen. 

In the following, the definition and basic properties of NIG distribution will be 

reviewed. Then the specification of NIG copula model will be given. 

The normal inverse Gaussian distribution is a mixture of normal and inverse 

Gaussian distributions. A non-negative random variable Y  has inverse Gaussian (IG) 

distribution with parameters 0α >  and 0β >  if its probability density function is of 

the following form: 

3 2
2 ( )exp , 0

( ; , ) 22
0 , 0

IG

yy y
f y y

y

α α β
α β βπβ

−⎧ ⎛ ⎞− − >⎪ ⎜ ⎟= ⎨ ⎝ ⎠
⎪ ≤⎩
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A random variable X  follows a normal inverse Gaussian (NIG) distribution with 

parameters α , β , μ  and δ  if 

 2~ ( ), ~ ( , )X Y y N y Y IGμ β δγ γ= +  

where 2 2γ α β= − , 0 β α≤ <  and 0δ > . We write ~ ( , , , )X NIG α β μ δ  and 

designate the probability density function and the distribution functions as 

( ; , , , )NIGf x α β μ δ  and ( ; , , , )NIGF x α β μ δ , respectively. 

The probability density function of NIG distribution can be written as follows: 

 { } ( )2 2
12 2

exp ( )
( ; , , , ) ( )

( )
NIG

x
f x K x

x

δα δγ β μ
α β μ δ α δ μ

π δ μ
+ −

= + −
+ −

 

where 1( )K ⋅  is the modified Bessel function of the third kind with order one and the 

meaning of γ  is the same as in the previous formula. 

The useful properties of NIG distribution are the scaling property and the closure 

under convolution for two independently NIG-distributed random variables. These 

properties are listed below: 

Scaling property: If ~ ( , , , )X NIG α β μ δ , then ~ , , , , 0cX NIG c c c
c c
α β μ δ⎛ ⎞ >⎜ ⎟
⎝ ⎠

. 

Closure property: If 1 1~ ( , , , )X NIG α β μ δ , 2 2~ ( , , , )Y NIG α β μ δ  and X and Y are 

mutually independent, then 1 2 1 2~ ( , , , )X Y NIG α β μ μ δ δ+ + + . 

The mean and variance of NIG distribution are  

 

2

3

E(X)

Var(X)

βμ δ
γ

αδ
γ

= +

=
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After the basic concepts of NIG distribution are reviewed, the NIG copula model 

can be constructed by replacing Gaussian random variables in the one-factor Gaussian 

copula model with NIG random variables. The closure property of NIG distribution 

ensures that this simple replacement can be achieved. The model specification is listed 

as follows: 

1 ,0 1i iX M Zρ ρ ρ= + − ≤ ≤  

where 
2 3

2 2~ ( , , , )M NIG βγ γα β
α α

− , 
2 3

1 2 2

1 1 1 1
{ } ~ ( , , , )n

i iZ NIG
ρ ρ ρ ρβγ γα β

α αρ ρ ρ ρ=
− − − −

− , 

and 2 2γ α β= − . In the above specification, M  and { } 1

n
i i

Z
=

 are stochastically 

independent. The last two parameters in NIG distribution are such that the means of M  

and iZ ’s are zero and the variances of M  and iZ ’s are one. The correlation between 

iX  and jX  still remains ρ . It is not difficult to show that 

2 3

2 2

1 1~ ( , , , )iX NIG α β βγ γ
α αρ ρ ρ ρ

−  by applying the scaling property and the 

closure property of NIG distribution. After the distribution of iX ’s are obtained, the 

default threshold ix  can be determined below: 

2 3
1

2 2

1 1( ); , , , , 1, 2, ,i NIG ix F Q t i nα β βγ γ
α αρ ρ ρ ρ

− ⎡ ⎤
= − =⎢ ⎥

⎢ ⎥⎣ ⎦
…  

The default probability conditioned on M  by time t  for each company can be 

written below: 

2 3

2 2

1 1 1 1; , , , , 1, 2, ,
1

i M i
t NIG

x Mp F i nρ ρ ρ ρ ρβγ γα β
α αρ ρ ρ ρ ρ

⎡ ⎤− − − − −
= − =⎢ ⎥

−⎢ ⎥⎣ ⎦
…  

After these two important quantities are determined, the fair spreads of CDO 

tranches can be obtained under the factor copula pricing framework described in section 

2.4. 
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4.2   Stochastic Correlation Model 

Another way to model correlation skew is to make the correlation parameter 

stochastic just like stochastic volatility models in option pricing field. One nice feature 

of stochastic correlation model is that the marginal distributions of the latent variables 

iX ’s remain normally distributed. This eases calibration and implementation of the 

models. The general structure of a stochastic correlation model can be expressed as 

follows: 

i i i
11 ,0 1, ~ (0,1),{ } ~ (0,1), 1, 2,...,n

i i i i i i iX M Z M N Z N i nρ ρ ρ == + − ≤ ≤ =  

where M  and { } 1

n
i i

Z
=

 are standard normally distributed and i{ }
1

n

i i
ρ

=
 are some 

random variables taking values in [0,1]. M , { } 1

n
i i

Z
=

 and i{ }
1

n

i i
ρ

=
 are jointly 

independent. The independence between i{ }
1

n

i i
ρ

=
, M  and { } 1

n
i i

Z
=

 is particularly 

important as conditioning upon iiρ  the latent variables iX ’s remain standard normally 

distributed. Therefore, the marginal distribution of iX  is also standard normal. This 

can be easily proved as follows: 

i i

i i i

P{ } P{ 1 }

                E P{ 1 | }

                E[ ( )] ( )

i i i i

i i i i

X x M Z x

M Z x

x x

ρ ρ

ρ ρ ρ

≤ = + − ≤

⎡ ⎤= + − ≤⎢ ⎥⎣ ⎦

= Φ = Φ
 

The uniqueness of the distribution function ensures that iX ’s are standard 

normally distributed. Hence, the default threshold ix  can be easily determined below: 

[ ]1 ( ) , 1, 2, ,i ix Q t i n−= Φ = …  

Also, the general formula for the default probability conditioned on M  by time t  

for each company can be written as follows: 
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( ) i i( )
i i i( )
i

i
i

1

E Q 1 ,
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E , 1,2, ,

1

i M
t i i i i i i

i i i i i

i

i

p Q X x M Q M Z x M

M Z x M

M
i n

ρ ρ

ρ ρ ρ

ρ

ρ

= ≤ = + − ≤

⎡ ⎤= + − ≤⎢ ⎥⎣ ⎦
⎡ ⎤⎛ ⎞−⎢ ⎥⎜ ⎟= Φ =

⎜ ⎟⎢ ⎥−⎝ ⎠⎣ ⎦
…

 

where the expectation appeared in the above formula is taken with respect toiiρ . In the 

following, one specification of iiρ  proposed by Burtschell et al. (2005) is considered 

since it is parsimonious and incorporates idiosyncratic risks as well as systemic risks 

into the model. The consideration of systemic risks in this model involves the 

incorporation of comonotonic state which corresponds to a state of 100% correlation. 

The effect of comonotonicity is to increase both equity and senior tranche premiums 

which accounts for the shape of correlation skew. The model can be written as follows: 

2[(1 )(1 ) ] (1 )[ 1 (1 ) ] ,0 1i s i s s i i iX B B B M B B B Zρ ρ ρ= − − + + − − − + ≤ ≤  

where i 2[(1 )(1 ) ]i s i sB B Bρ ρ= − − +  and sB  and 1{ }n
i iB =  are independent Bernoulli 

random variables with ( 1)s sQ B q= = and ( 1)iQ B q= = . Under this specification of 

i
iρ , the distribution of iiρ  can be expressed as follows: 

i

i

i

i

2 2

0 , ( 0) (1 )

, ( ) (1 )(1 )

1 , ( 1)

i s

i i s

i s

Q q q

Q q q

Q q

ρ
ρ ρ ρ ρ

ρ

⎧ = = −
⎪⎪= = = − −⎨
⎪ = =⎪⎩  

It can be seen from above that the perfect correlation occurs whenever 1sB = . 

Thus, the realized value of sB  determines if comonotonic state will be achieved. So, 

sB  represents the systemic risk exhibited in the reference portfolio. In addition, when 

0sB = , the realized values of iB ’s determine whether zero correlation will be achieved, 

i.e., independent defaults will happen. Hence, iB ’s represent the idiosyncratic risks 

among reference entities. 
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Under this specification of iiρ , the default probability conditioned on M  by time 

t  can be derived as follows: 

i

i

1

|

{ }2

1

{ [ ( )]}2

E
1

(1 ) ( ) (1 )(1 )
1

[ ( )](1 ) ( ) (1 )(1 )
1

i

i

i ii M
t

i

i
s i s s M x

i
s i s s M Q t

x M
p

x Mq q x q q q

Q t Mq q Q t q q q

ρ

ρ

ρ
ρ

ρ
ρ

−

≤

−

≤Φ

⎡ ⎤⎛ ⎞−⎢ ⎥⎜ ⎟= Φ
⎜ ⎟⎢ ⎥−⎝ ⎠⎣ ⎦

⎛ ⎞−
⎜ ⎟= − Φ + − − Φ +
⎜ ⎟−⎝ ⎠

⎛ ⎞Φ −
⎜ ⎟= − + − − Φ +
⎜ ⎟−⎝ ⎠

1

1

 

where { }⋅1  the indicator function which is equal to one when the event {.} occurs and 

zero otherwise. Then the fair spreads of CDO tranches can be determined under the 

factor copula pricing framework described in section 2.4. 

4.3   Local Correlation Model 

Still another way to account for the correlation skew is to introduce the concept of 

local correlation. The term “local correlation” refers to the idea underlying a model that 

the correlation is a function of the common factor M . Under stochastic correlation 

model, the correlation is stochastic but independent of the common factor, whereas the 

local correlation is a deterministic function of the common factor and thus is also 

stochastic. These terminologies parallel stochastic volatility models and local volatility 

models used in option pricing. 

The local correlation approach is introduced by Andersen and Sidenius (2004) with 

a random factor loading model and by Turc et al. (2005). These models attempt to 

explain correlation through the intuitive relationship between default correlation and the 

economic cycle. That is, default correlation tends to be higher during recession than 

during a growing economy period. 
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In the following, the random factor loading model (RFL) is chosen as the 

representative of local correlation models due to its simplicity and ease of calibration. 

This model can be expressed as follows: 

{ } { }( ) , 0, 0i M M iX m M vZθ θα β α β≤ >= + + + > >1 1  

where ( ) ( )m α β ϕ θ= − , 
1

2 2 2 2[1 ( ( ) ( )) ( ( ) 1 ( ))]v m α θ θϕ θ β θϕ θ θ= + − Φ − − + −Φ , ( )ϕ ⋅  is 

the probability density function of standard normal distribution. Also, M  and { } 1

n
i i

Z
=

 

are stochastically independent, standard normal distributions. The number m  and v  

are fixed and structured so that E[ ] 0iX =  and Var[ ] 1iX = . 

The ability of the random factor loading model to produce a correlation skew 

depends on the parameters α  and β . If α  > β , the factor loading falls as M  

increases, i.e., good economic state lowers the default correlation among reference 

entities while bad economic state increases the default correlation among reference 

entities. In the special case α β= , the model coincides with the one-factor Gaussian 

copula, but in general the latent variable iX ’s do not follow a Gaussian distribution. 

The distribution function of iX  is listed below and the derivation is shown in 

Appendix B: 

2 22 2 2 2 2 2 2 2 2 2
( ) , ; , ;

iX
x m x m x mF x
v v v v v

α βθ θ
α α β β β

⎛ ⎞ ⎛ ⎞⎛ ⎞− − −⎜ ⎟ ⎜ ⎟= Φ + Φ − Φ⎜ ⎟ ⎜ ⎟ ⎜ ⎟+ + + + +⎝ ⎠ ⎝ ⎠ ⎝ ⎠  

where 2 ( , ; )x y ρΦ  is the cumulative probability distribution function of bivariate 

standard normal distribution with correlation ρ . Then the default threshold can be 

obtained through inverting the distribution function of iX  and is expressed below: 

1[ ( )], 1, 2,...,
ii X ix F Q t i n−= =  

The default probability conditioned on M by time t  can be obtained as usual 

under random factor loading model and is listed below: 
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1
{ } { }| [ ( )] ( )

, 1, 2,...,iX i M Mi M
t

F Q t m M
p i n

v
θ θα β−

≤ >⎡ ⎤− − +
= Φ =⎢ ⎥

⎢ ⎥⎣ ⎦

1 1
 

Then the fair spreads of CDO tranches can be determined under the factor copula 

pricing framework as before. 
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Chapter 5  
Numerical Results 

5.1   Data and Model Calibration 

In this chapter, the capabilities of CDO pricing models mentioned in the previous 

chapter will be assessed. Since the one-factor Gaussian copula model is widely used in 

pricing CDOs, its results will be given as a benchmark. The data used are iTraxx Europe 

5 year daily quotes from January 4, 2007 to April 7, 2008. The marginal default 

probabilities of each reference entity are assumed to be the same and are obtained by the 

methodology described in Appendix A. The recovery rate is assumed to be 40% and is 

applied to all of reference entities. The model parameters are calibrated for each day by 

the least squares method. To be more specific, the parameters are chosen such that the 

following error function has the minimum value. 

2

tranches

market tranche quote model tranche fee/spreadSum of error squared
market tranche quote

⎛ ⎞−= ⎜ ⎟
⎝ ⎠

∑  

The Euro default-free rates are obtained from the data available on European 

Central Bank’s website (http://www.ecb.eu/stats/money/yc/html/index.en.html). The 

ECB estimates zero rate curves for the European region from AAA-rated, existing zero 

coupon bonds and fixed coupon bonds issued by European central governments on a 

daily basis. The estimation of the curve is done by minimizing the sum of the squared 

difference between the yields that can be computed from the model and the yields 

actually measured. The model they used is the Svensson model, which is a parametric 

model specifying a functional form for the spot rate. Other details about the estimation 

of zero rate curves are available on ECB’s website. 

After the default-free rates, the recovery rates, the marginal default probabilities 

are determined, the model spreads/upfront fees can be computed under the factor copula 

framework described in section 2.4. 
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5.2   Market Fitness 

As mentioned in section 3.3, the credit derivatives market has structural changes 

after the subprime mortgage crisis. Hence, the fitness of models may also change after 

the crisis. To take the impact of the crisis into account, the data are divided into three 

samples: one sample consists of data before the crisis and the other two samples consist 

of data after the crisis. The first sample includes the data from January 4, 2007 to July 

10, 2007 and the second sample includes the data from July 11, 2007 to February 13, 

2008. The third sample includes the rest of the data. July 10, 2007 is chosen as the 

division point since the index spreads and tranche spreads have big jumps after this date. 

In addition, the index spread is quite unstable after July 10, 2007 and has another surge 

at February 14, 2008. Therefore, two samples are split up further. 

The results are summarized in Table 5.1, Table 5.2 and Table 5.3. All of numbers 

shown in the three tables are average values over the sub-sample. The first rows of the 

three tables show average market spreads/upfront fees. The remaining rows of the tables 

show the average spreads/upfront fees for the four models. The numbers in parentheses 

are average absolute pricing errors for each model and tranche. It is defined as follows: 

sample
market tranche quote model tranche fee/spread

Absolute pricing error
Sample Size

−
=
∑

 

In Table 5.1, it can be seen that before the crisis all of three models are better than 

Gaussian copula in the least squares sense. The average absolute pricing errors for the 

three models are small enough compared with the bid-ask spread of market quotes (not 

shown here) except the local correlation model for the 3-6% tranche. All models 

including Gaussian copula have large pricing errors for the mezzanine tranches, 

especially the 3-6% tranche. The difficulty of pricing mezzanine tranche accurately in a 

single parameter set comes from the fact that the mezzanine tranche is not a monotonic 

function of correlation as illustrated in Figure 3.2. This observation can also be made 

for Table 5.2 and Table 5.3. 
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 0-3% 3-6% 6-9% 9-12% 12-22% 
Sum of 
Error  

Squared 

Market 9.28% 47.70 bp 11.79 bp 4.60 bp 1.40 bp  

Gaussian 
Copula 

10.70% 

(1.43%) 

74.01 bp 

(26.31 bp)

14.96 bp 

(3.18 bp)

3.69 bp 

(0.90 bp)

0.41 bp 

(1.00 bp) 

0.9522 

NIG Copula 11.69% 

(2.41%) 

46.95 bp 

(4.06 bp)

12.26 bp 

(0.61 bp)

4.87 bp 

(0.60 bp)

1.27 bp 

(0.18 bp) 

0.1389 

Stochastic 
Correlation 
Model 

11.56% 

(2.29%) 

52.86 bp 

(5.16 bp)

15.09 bp 

(3.30 bp)

5.02 bp 

(0.49 bp)

0.69 bp 

(0.71 bp) 

0.4291 

Local 
Correlation 
Model 

10.62% 

(1.51%) 

65.38 bp 

(17.67 bp)

13.81 bp 

(2.34 bp)

4.19 bp 

(0.78 bp)

0.83 bp 

(0.61 bp) 

0.5570 

Table 5.1: Average market spreads and average model spreads for iTraxx Europe 5 year 
from January 4, 2007 to July 10, 2007. 

 

 0-3% 3-6% 6-9% 9-12% 12-22% 
Sum of 
Error 

Squared 

Market 21.80% 140.43 bp 68.80 bp 42.17 bp 23.70 bp  

Gaussian 
Copula 

34.20% 

(12.40%) 

292.40 bp

(151.97 bp)

94.81 bp 

(27.82 bp)

38.90 bp 

(16.71 bp)

10.27 bp 

(14.47 bp) 

2.5680 

NIG Copula 29.06% 

(7.70%) 

132.20 bp

(17.90 bp)

65.42 bp 

(5.95 bp)

44.10 bp 

(4.03 bp)

26.85 bp 

(3.39 bp) 

0.2941 

Stochastic 
Correlation 
Model 

36.53% 

(14.73%) 

174.52 bp

(34.09 bp)

89.41 bp 

(20.61 bp)

54.88 bp 

(12.71 bp)

21.41 bp 

(9.00 bp) 

1.0067 

Local 
Correlation 
Model 

26.89% 

(6.75%) 

202.26 bp

(61.82 bp)

72.00 bp 

(18.58 bp)

41.12 bp 

(8.60 bp)

23.38 bp 

(5.49 bp) 

0.6769 

Table 5.2: Average market spreads and average model spreads for iTraxx Europe 5 year 
from July 11, 2007 to February 13, 2008. 
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 0-3% 3-6% 6-9% 9-12% 12-22% 
Sum of 
Error 

Squared 

Market 37.55% 464.27 bp 302.73 bp 210.18 bp 106.82 bp  

Gaussian 
Copula 

18.65% 

(29.01%) 

563.41 bp

(311.27 bp)

385.38 bp

(137.17 bp)

294.07 bp

(83.89 bp)

200.63 bp 

(93.81 bp) 

2.6516 

NIG Copula 45.13% 

(8.26%) 

461.15 bp

(39.01 bp)

265.19 bp

(37.54 bp)

199.87 bp

(15.41 bp)

143.50 bp 

(36.68 bp) 

0.2985 

Stochastic 
Correlation 
Model 

40.05% 

(2.56%) 

481.49 bp

(17.21 bp)

300.81 bp

(16.05 bp)

220.20 bp

(19.23 bp)

198.31 bp 

(91.49 bp) 

0.9128 

Local 
Correlation 
Model 

29.27% 

(12.84%) 

542.00 bp

(151.22 bp)

328.09 bp

(37.85 bp)

223.88 bp

(44.81 bp)

152.99 bp 

(46.18 bp) 

0.7702 

Table 5.3: Average market spreads and average model spreads for iTraxx Europe 5 year 
from February 14, 2008 to April 7, 2008. 
 

In Table 5.2 and Table 5.3, the three models still perform better than Gaussian 

copula. However, the fitness of all models worsens sharply, especially after February 14, 

2008. The absolute pricing errors for each model jump to several dozen basis points 

after the subprime mortgage crisis. The only exception is the stochastic correlation 

model. The fitness of this model improves for every tranche except the 9-12% and 

12-22% tranches. It shows that the systemic risk modeling in the stochastic correlation 

model is problematic. In Table 5.1, Table 5.2 and Table 5.3, it can be also seen that the 

normal inverse Gaussian copula outperforms other models in the least squares sense 

whether the subprime mortgage crisis occurs or not. Since after the crisis the 

idiosyncratic default risks as well as the systemic default risk is largely increased, it is 

advantageous to apply fat-tailed distribution for the common risk factor and 

idiosyncratic risk factors in the factor copula models. On the other hand, the local 

correlation model has consistently large pricing errors for the 3-6% tranche. It may be 

caused by the fact that only two-point distribution is used to account for the distribution 

of correlation in the local correlation model. A possible improvement is to use 

multinomial distribution instead of the binomial distribution to model the distribution of 

local correlation. However, this improvement complicates the distribution of latent 
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variable iX ’s and slows down the computation of default thresholds. So although the 

local correlation model may be meaningful in economic sense, it is not easy to 

implement in general. 

5.3   Stability of Parameters 

Another important aspect of pricing models is the stability of a model’s parameter 

values. Since the models we considered in the thesis are all static, the stability of 

calibrated parameter values may be questionable. Therefore, the calibrated parameter 

values of Gaussian copula, NIG copula, stochastic correlation model, and local 

correlation model are plotted against time in Figure 5.1, Figure 5.2, Figure 5.3, and 

Figure 5.4, respectively. The first vertical line in Figure 5.1, Figure 5.2, Figure 5.3 , and 

Figure 5.4 indicates when the subprime mortgage crisis occurs, i.e., July 11, 2007. The 

second vertical line in these figures indicates the time at which the second jump occurs 

in iTraxx index spread, namely February 14, 2008. From those figures, it can be 

observed that the parameters of all models are quite stable over time before the 

subprime mortgage crisis. After the crisis, all parameter values become very unstable, 

especially after the second jump of iTraxx index spread. The instability of parameter 

values is phenomenal for NIG copula in return for its good fit to market quotes. In 

addition, it can be also found that the systematic default risk rises dramatically as 

evidenced by the increase of ρ  in Gaussian copula, NIG copula and stochastic 

correlation models. It shows that the market-perceived systemic default risk increased 

after the subprime mortgage crisis. However, the worsening fitness of the models we 

consider in the thesis shows the inadequacy of systematic default risk treatments in 

these models. Hence, the appropriate approach to incorporate the systematic default risk 

into basket credit derivatives pricing models is still unsolved. 
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Figure 5.1: Parameter values of Gaussian copula from January 4, 2007 to April 7, 2008. 
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NIG Copula - alpha, beta
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Figure 5.2: Parameter values of NIG copula from January 4, 2007 to April 7, 2008. 
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Stochastic Correlation Model - qs, q, rho
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Figure 5.3: Parameter values of stochastic correlation model from January 4, 2007 to 
April 7, 2008. 
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Figure 5.4: Parameter values of local correlation model from January 4, 2007 to April 7, 
2008. 
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Chapter 6  
Conclusions 

In this thesis, we analyze three CDO pricing models and the standard Gaussian 

copula by examining their fitness to market quotes and the stability of calibrated 

parameter values over time. It is found that the occurrence of the subprime mortgage 

crisis not only changes the shape of correlation skew from “smile” type to “wave” type 

but also affects the accuracy of these models. These models perform quite well before 

the crisis and their fitness worsens a lot after it. Nonetheless, the normal inverse 

Gaussian copula still outperforms other models whether the crisis occurs or not. It 

suggests that the use of fat-tailed distribution in the factor copula models is effective. 

On the other hand, the local correlation model incorporates the relationship between 

default correlation and business cycle into model but fails to fit the market quotes of 

mezzanine tranches. It shows that although the local correlation model is meaningful in 

economic sense, this technique may not be appropriate for correlation modeling. Also, 

the stochastic correlation model performs well for the equity tranche and the mezzanine 

tranche but its fitness to the senior tranche is unacceptable after the subprime mortgage 

crisis. It indicates that the systematic default risk modeling in this model is not suitable 

for the senior tranche. Finally, the parameter values of these models are rather stable 

before the subprime mortgage crisis and become volatile after the crisis. It shows that 

the crisis disturbs the credit derivatives market and its impact still takes effect. 
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Appendix 

A. Extraction of Default Probabilities from CDS Spreads 

There are several approaches to extract default probabilities of a single credit. CDS 

spreads unlike corporate bonds only reflect the credit risks of the reference entities. 

Thus, CDS spreads are more suitable to be used to extract default probabilities. Since 

the default probabilities inferred from CDS spreads will be used to determine the fair 

spreads of CDO tranches, all of default probabilities obtained are in a risk-neutral sense. 

In the following, we will derive one version of CDS pricing formula adapted from Brigo, 

D. and F. Mercurio (2006). 

 To proceed, we need to determine the fair spread of a CDS contract first. The fair 

spread of a CDS contract is the spread such that the value of the contract is zero, i.e., the 

present value of the premium leg is equal to the present value of the protection leg.  

For convenience, the notations used are listed below. 

 τ : The time at which a credit event occurs. 

 R : The recovery rate as a fraction of the notional. 

 ii ,1−Δ : The year fraction between two payment dates 1it −  and it . 

 (0, )iB t : The discount factor at time 0 for cash flow occurring at it . 

 T : The time to maturity of the CDS contract as a fraction of a year. 

 ( )Q t : The risk-neutral probability that the company will default before time t . 

 λ : The default intensity associated with the default process. 

 S : The fair spread per annum of the CDS contract. 
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Suppose that the notional of the CDS contract is one unit of currency, the recovery 

rate is deterministic and the interest rates are stochastically independent of the default 

events. Given the payment dates 0 1 10 n nt t t t T−= < < < < =" , the payoff of a CDS 

contract from protection seller’s view can be expressed as follows: 

 0 0 0

11, { } 1 { } { }1 1

Spread Accrued Spread

( ) (1 )
ti

s s s

i i i

r ds r ds r dsn n
i i t i t t Ti i

LossPayments

S e S t e R e
τ τ

τ τ ττ
−

− − −

− ≥ − < < ≤= =
∫ ∫ ∫Δ + − − −∑ ∑1 1 1

����	���
�����	����
 ������	�����

 

For simplicity, it is assumed that the defaults can only occur at the payment dates.2 

Hence, we do not need to consider the accrued spread. The present values of protection 

leg and premium leg can be derived as follows: 

0 0
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Therefore, the fair spread of the CDS contact can be obtained by equalizing 

protection leg and premium leg and is expressed as follows: 

                                                 
2 Another usual approach to pricing CDS is to assume the default time always falls halfway between 
payment dates. However, the default probabilities obtained by these two assumptions are very similar in 
real applications.  
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1

1

1,
1
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Furthermore, if the reduced-form model is applied, then the default process can be 

represented as a Poisson process with constant intensity λ . Hence, the default time 

follows an exponential distribution and the risk-neutral default probability ( )Q t  can be 

expressed as follows: 

( ) 1 tQ t e λ−= −                (A.2) 

Substituting (A.2) into (A.1), the fair spread can be rewritten as follows: 

1

1

1,
1

(1 )[ ] (0, )
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n
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−− −

=

−
−
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− −
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Δ

∑

∑
           (A.3) 

To back out risk-neutral default probabilities of the reference entity, it is needed to 

estimate the recovery rate and construct the discount curve from other data sources. 

Then the default intensity can be obtained by using the CDS spread in the market and 

inversion of formula (A.3) numerically. After the default intensity is determined, 

risk-neutral probabilities of default by each time can be calculated via formula (A.2). 
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B. Derivation of Distribution Function of the Latent Variable 

in Local Correlation Model 

In this section, ( )ϕ ⋅  denotes the probability density function of standard normal 

distribution, ( )Φ ⋅  is the cumulative distribution function of standard normal 

distribution and 2 ( , ; )x y ρΦ  is the cumulative distribution function of bivariate 

standard normal distribution with correlation ρ . Also, { }⋅1  is the indicator function 

which is equal to one when the event {.} occurs and zero otherwise. For clearness, 

E ( )X ⋅  means the expectation taken with respect to random variable X . Some useful 

results are proved first to facilitate the derivation of the distribution function of iX  in 

random factor loading model. These results come from the appendix of Andersen, L and 

J. Sidenius (2004). 
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Now, the distribution function of iX  in random factor loading model can be 

derived as follows: 
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