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Abstract 

 

Equity-index volatility and variance swaps offer an efficient way for traders to 

take synthetic positions in pure volatility. General pricing method for volatility and 

variance swaps uses the replication method in Demeterfi, Derman, Kamal, and Zou 

(1999). In this thesis, we try to use the more direct and intuitive way to price volatility 

and variance swaps. Specifically, we will use implied trees introduced in Derman, 

Kani, Chriss (1994) and Derman, Kani (1996) which can match the implied local 

volatilities and variances. Then we employ these local volatilities and variances to 

price volatility and variance swaps. After using the implied tree to price, we also 

compare the result of this method to the general pricing method. We find out that 

using this method can also get the value of volatility and variance swaps just similar 

to the general method. 
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Chapter 1 
Introduction 
 

1. 1 Motivations 

 

Equity-index volatility and variance swaps offer an efficient way for traders to 

take synthetic positions in pure volatility. There are several ways to use volatility and 

variance swaps. People who use volatility and variance swaps are trading volatility 

levels directionally, trading the spread between the realized and implied volatility 

levels, or hedging implicit volatility exposure.  

 

General pricing method for volatility and variance swaps uses the replication 

method in Demeterfi, Derman, Kamal, and Zou (1999). Pricing variances is more 

direct than pricing volatilities. In general, we will price variances first, and then take 

the square roots of variances to price volatilities. But general pricing method is not a 

straightforward method. It is to try to use lots of options to replicate the value of 

variance swaps. In this thesis, we try to use the more direct and intuitive way to price 

volatility and variance swaps. Specifically, we will use implied trees which can match 

the implied local volatilities and variances and are introduced in Derman, Kani, Chriss 
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(1994) and Derman, Kani (1996). Then we employ these local volatilities and 

variances to price volatility and variance swaps. 

 

1. 2 Organization of This Thesis 

 

There are seven chapters in this thesis. In Chapter 1, a brief introduction and 

motivation of this thesis are presented. In Chapter 2, we will introduce some 

background information and also the concepts of volatilities. In Chapter 3, we will go 

through the basic definitions and pricing methods for volatility and variance swaps. In 

Chapter 4, we will explain the methodology used to price volatility and variance 

swaps. For that purpose, we will explain the structure of implied trees and how we use 

them to price volatility and variance swaps. Also we will give an example to compare 

the results between the general pricing method and our method. In Chapter 5, the 

strategies and applications of volatility and variance swaps will be briefly discussed. 

Finally, Chapter 6 concludes and points out future research.  
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Chapter 2 
Background 
 

2. 1 Literature Review 

 

First of all, we introduce some concepts about volatilities. Derman, Kani, and 

Zou (1995) explain the local volatility surface, give examples of its applications, and 

propose several properties of volatilities for understanding the relation between local 

and implied volatilities. Kani, Derman, and Kamal (1996) outline a methodology for 

hedging and trading index volatilities. In the world of index options, local volatilities 

are the arbitrage-free volatilities at future times and market levels that can be locked 

in by trading options today. Derman, Kamal, Kani, McClure, Pirasteh, and Zou (1998) 

explain the definition of volatilities and how to invest in index volatilities. They also 

talk about the advantage of volatility contracts.  

 

We now introduce volatility and variance swaps. Demeterfi, Derman, Kamal, 

and Zou (1999) explain the properties and the theories of both volatility and variance 

swaps, from an intuitive point of view and then more rigorously. Hull (2003) explains 

some basic definition of volatility and variance swaps. Neftci and Fame (2004) 
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explain the concepts and pricing methods of volatility and variance swaps more 

precisely.  

 

Finally, we introduce our methodology to price volatility and variance swaps 

based on the implied tree. Derman and Kani (1994) introduce the volatility smile and 

show how to extend the Black-Scholes model to a model which assumes that the 

index level executes a random walk with a constant volatility so as to make it 

consistent with the volatility smile. By this extension of the Black –Scholes model, 

they obtain a new model which is consistent with the volatility smile. They call it the 

implied binomial tree. Derman, Kani, and Chriss (1996) show how to build implied 

trinomial tree models that incorporate the volatility smile. 

 

2. 2 Volatilities 

 

Volatility plays an important role in option pricing and risk management. It is 

the simplest measure of its risk or uncertainty.  

 

Stock investors think they know something about the direction of the stock 

market. So, they may have insight into the level of future volatility. If they think 
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current volatility is too low, for the right price they may want to take a position that 

will profit when the volatility increases. 

 

Volatility has a lot of definitions. People usually use the word “volatility” to 

denote several related but different concepts. We shall now clarify the different 

volatilities; specifically, we shall clarify exactly what “realized”, “implied”, and 

“local” volatilities mean.  

 

The realized volatility of an index over some period is the annualized standard 

deviation of its daily returns over that period. The implied volatility of an index, as 

implied by the current price of a particular European-style option with strike K  and 

expiration T , is the volatility parameter that, when entered into the Black-Scholes 

formula, equates the model value and the market option price. The local volatilities of 

an index at some future market levels and time levels are the future volatilities that the 

index must have at that market level and time in order to make current option prices 

fair. 

 

The role of volatility in the option world is as important as the role of interest 

rate in the bond world. That is, the concepts between volatilities and options are 

similar to the concepts between interest rates and bond prices. So understanding 
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different kinds of interest rates first is helpful for us to understand the characteristics 

of different kinds of volatilities. 

 

The realized interest rate is the actual interest rate that comes to pass during 

some period. The realized volatility is similar to it. The yield to maturity of the bond 

is its implied yield. As implied volatility translates into an option price through the 

Black-Scholes option pricing formula, so the yield-to-maturity translates into a bond 

price through the present value formula. The forward rate is the future rate that must 

come to pass to justify current yield-to-maturity; it is the future rate that can be locked 

in by trading a bond portfolio. The local volatility is similar. 
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Chapter 3 
Volatility and Variance Swaps 
 

3. 1 Basic Definitions 

 

The volatility or variance swap allows an investor to directly implement a view 

on the direction of future realized volatility or variance. Like an equity swap, in which 

two parties exchange cash flows based on the return of specified equity, the volatility 

or variance swap is characterized by the exchange of cash flows tied to the 

performance of realized volatility or variance. 

 

In a volatility or variance swap, an investor agrees to receive or pay the realized 

volatility or variance of an equity index or single stock relative to an agreed strike 

level. Realized volatility is typically measured as the annualized standard deviation of 

the daily natural log returns of the stock or index. The formula for the realized 

volatility is as follows. Define 
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(2) 

where Rσ  is the annualized realized volatility. 

 

Whereas, an equity swap is based on a specified number of shares, a volatility or 

variance swap is expressed in terms of the dollar value of each volatility point.  

 

A volatility swap is sometimes called a realized volatility forward contract 

because it provides pure exposure to volatility. A stock volatility swap is a forward 

contract on realized volatility. And there is no initial exchange of cash flow between 

two parties, only an agreement upon the strike price. Its payoff is equal to  

( ) 100 ,R volN Kσ× − ×        (3) 

where Rσ  is the realized stock volatility over the life of the contracts, volK  is the 

annualized volatility strike price, and N  is the notional amount of the swap in 

dollars per annualized volatility point. The holder of a volatility swap at expiration 
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exceeded the volatility strike price. That is, the holder is swapping a fixed volatility 

for the actual future volatility which is floating. For example, the cash flow of buying 

a volatility swap is shown in Figure 1. 

 

 

 

A variance swap is similar to a volatility swap. A variance swap is a forward 

contract on realized variance, the square of the realized volatility. Its payoff at 

expiration is equal to  

( )2
var 100 ,RN Kσ× − ×        (4) 

where 2
Rσ  is the realized stock variance over the life of the contracts, varK  is the 

annualized variance strike price, and N  is the notional amount of the swap in dollars 

per annualized volatility point squared. The holder of a variance swap at expiration 

receives N  dollars for every point by which the stock’s realized variance has 

exceeded the variance strike price. That is, the holder is swapping a fixed variance for 

If R Kσ σ> , ( ) 100R KN σ σ× − × . 

Investor Financial Institute 

If R Kσ σ< , ( ) 100K RN σ σ× − × . 

Figure 1. The Cash Flow of Buying a Volatility Swap. 
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the actual future variance which is floating. For example, the cash flow of selling a 

variance swap is shown in Figure 2. 

 

 

 

Who will use volatility and variance swaps? Volatility has several characteristics 

that make trading it attractive. It is likely to grow when uncertainty and risk increase. 

Similar to interest rates, volatilities appear to revert to the mean. And volatility is 

often negatively correlated with stock or index level. Derman, Kani, and Zou (1995) 

have explained this relationship. Given these characteristics, there are several kinds of 

users of volatility and variance swaps. The main users of volatility and variance swaps 

are those who are trading volatility levels directionally, who are trading the spread 

between the realized and implied volatility levels, and who are hedging implicit 

volatility exposure.  

If 
2 2
R Kσ σ< , ( )2 2 100K RN σ σ× − × . 

Investor Financial Institute 

If 
2 2
R Kσ σ> , ( )2 2 100R KN σ σ× − × . 

Figure 2. The Cash Flow of Selling a Variance Swap. 
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3. 2 General Pricing Method 

 

General pricing method for volatility and variance swaps is to replicate the value 

of variance swaps first, and then take square roots of variance swaps to get the value 

of volatility swaps. In fact, volatility swaps are more straightforward for investors 

who want to hedge their volatility. According to the actual condition, why we price 

variance swaps first? There are two main reasons. First, variance swaps provide 

similar volatility exposure to straight volatility swaps. Second, variance is easier to 

calculate than volatility. It can serve as the basic building block for constructing 

volatility-dependent instruments. The fair value of a variance swap is the delivery 

price that makes the swap have zero value. It is determined by the cost of the 

replicating portfolio.  

 

To price variance swaps, we assume that there is no jumps allowed for the stock 

or index process. Therefore, we assume that the stock price process is given by  

( ) ( ), , ,t
t

t

dS t dt t dZ
S

μ σ= +L L      (5) 

where μ  is the drift, σ  is the continuously-sampled volatility, and we assume that 

both of them are arbitrary functions of time and other parameters. For simplicity, we 

assume that the stock pays no dividends.  



 

 12

The theoretical definition of realized variance for a given price history is the 

continuous integral 

2

0

1 ( , ) .
T

V t dt
T

σ= ∫ K       (6) 

 

To value a variance swap or forward contract is similar to valuing other 

derivative securities. The value of a forward contract F  on future realized variance 

with strike price K  is the expected present value of the future payoff in the 

risk-neutral world, or, 

[ ( )] ,rTF E e V K−= −       (7) 

where r  is the risk-free discount rate corresponding to the expiration T , and [ ]E  

denotes the expectation. The fair delivery value of future realized variance is the strike 

price varK  for which the contract has zero present value, or, 

var [ ] .K E V=        (8) 

If the future volatility is specified, then one way to calculate the fair value of variance 

is to calculate the risk-neutral expectation directly 

( )2
var 0

1 , .
T

K E t dt
T

σ⎡ ⎤= ⎢ ⎥⎣ ⎦∫ L      (9) 

 

By applying Ito’s lemma to log tS , we find 

( ) 21log .
2t td S dt dZμ σ σ⎛ ⎞= − +⎜ ⎟

⎝ ⎠
    (10) 
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Subtracting the process of log tS  from the process of the stock price, we obtain 

( ) 21log ,
2

t
t

t

dS d S dt
S

σ− =       (11) 

in which all dependence on the drift μ  has been cancelled. Integrating this result 

over all times from time 0 to time T , we obtain the continuously sampled variance 

2

0 0
0

1 2 log .
T T t T

t

dS SV dt
T T S S

σ
⎡ ⎤

= = −⎢ ⎥
⎣ ⎦

∫ ∫      (12) 

This equation identity dictates the replication strategy for variance. The first term in 

the bracket can be thought as the net outcome of continuous rebalancing a stock 

position so that it is always instantaneously long 1/ tS  shares of stock worth $1. The 

second term represents a static short position in a contract which pays the logarithm of 

the total return at expiration. We call this contract a log contract. It has a detailed 

explanation in Neuberger (1994). Following this rebalancing strategy captures the 

realized variance of the stock from initiation to expiration. In this equation, we note 

that no expectations or averages have been taken. So, it guarantees that variance can 

be captured no matter how the stock price moves, as long as it moves continuously.  

 

According to the previous equation, Eq. (12), we can take the expected 

risk-neutral value of the right-hand side of it to obtain the cost of replication directly 

var 0
0

2 log .
T t T

t

dS SK E
T S S

⎡ ⎤
= −⎢ ⎥

⎣ ⎦
∫      (13) 
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The expected value of the first term in this equation accounts for the cost of 

rebalancing. In a risk-neutral world with a constant risk-free rate r , the stock price 

process changes to  

( ), ,t
t

t

dS rdt t dZ
S

σ= + L      (14) 

so the risk-neutral price of rebalancing component of the hedging strategy is given by 

0
.

T t

t

dSE rT
S

⎡ ⎤
=⎢ ⎥

⎣ ⎦
∫        (15) 

This equation represents the fact that a shares position, continuously rebalanced to be 

worth $1, has a forward price that grows at the risk-less rate. 

 

There is no actively traded log contract which pays the logarithm of the total 

return at expiration for the second term in the previous equation of the strike price 

varK , Eq. (15). We must replicate the log payoff, at all stock price levels and 

expiration, by decomposing its shape into linear and curvature components, and then 

replicate each of these separately. The linear component can be replicate with a 

forward contract on the stock with expiration at time T . The curvature component, 

including the quadratic and higher order contributions, can be replicated by using lots 

of standard options with all possible strike levels and the same expiration time T . 
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For practical reasons, we will replicate the log payoff with liquid options, that is, 

with a combination of out-of-the-money calls for high stock values and 

out-of-the-money puts for low stock values. There is a new parameter *S  to 

represent the boundary between calls and puts. The log payoff can be written as  

*

*
0 0

log log log .T TS S S
S S S

= +       (16) 

As the second term in this equation is a constant and independent of the final stock 

price TS , only the first term in this equation has to be replicated.  

 

The following equation which holds for future values of TS  suggests this 

decomposition of the log payoff 

( ) ( )
*

*

*

* * 2 20

1 1log max ,0 max ,0
S

T T
T TS

S S S K S dK S K dK
S S K K

∞−− = − + − + −∫ ∫ . (17) 

This decomposition of a log payoff into a portfolio consisting of a short position in 

*1/ S  forward contracts struck at *S , a long position in 21/ K  put options struck at 

K , for all strike price from 0 to *S , and a similar long position in 21/ K  call options 

struck at K , for all strike price from 0 to *S . All contracts expire at time T .  

 

In summary, we can obtain the fair delivery value of variance swap as follows 

( ) ( )
*

*

*
0

var * 2 20
0

2 1 11 log
SrT rT rT

S

S SK rT e e P K dK e C K dK
T S S K K

∞⎛ ⎞⎛ ⎞= − − − + +⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

∫ ∫ , (18) 
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where ( )P K  and ( )C K  denote the current fair value of a put and call option with 

strike price K , respectively. If we use the fair market prices of there options, we can 

obtain an estimate of the current market price of future variance.  

 

At the beginning of this section, we focused on pricing and replicating variance 

swaps. But most market participants prefer to quote levels of volatility rather than 

variance because volatility swaps are more straightforward for investors who want to 

hedge their volatility. So we have to consider volatility swaps.  

 

Unfortunately, there is no simple replication strategy for a volatility swap. The 

replication strategy for a volatility swap is difficult, and it is affected by changes in 

volatility and its value depends on the volatility of future realized volatility. Therefore, 

variance is the primary underlying and all other volatility payoffs, such as volatility 

swaps, are considered to be derivative securities with variance as underlying. From 

this point of view, volatility is a nonlinear function of variance and is therefore more 

difficult to value and hedge.  

 

Basically, we will obtain the fair delivery price of a volatility swap by taking the 

square root of a variance swap rate. It is the simplest way to approximate the fair 
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delivery price of a volatility swap. That is, the approximated value of a volatility swap 

is the square root of the value of a variance swap  

var ,volK K=       (19) 

where volK  is the fair delivery price of the volatility swap. This method will have 

some bias for the following reason. Our method first calculates the expected value of 

variances, and then takes square root of it to obtain the volatility. But by definition, 

we should take the square root of variances first to obtain the volatilities, and then 

calculate the expected volatility. Our method will overestimate the fair delivery price 

of the volatility swap as 

[ ] var .volK E V E V K⎡ ⎤= < =⎣ ⎦     (20) 

This bias is mentioned in Demeterfi, Derman, Kamal, and Zou (1999), who also 

introduce ways to reduce the bias. This thesis only uses Eq. (19) to approximate the 

fair delivery price of the volatility swap. 
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Chapter 4 
Methodology 
 

4. 1 Implied Binomial Trees 

 

The market implied volatilities of stock index options often have a skewed 

structure, which is commonly called the volatility smile. It implies a negative 

relationship between implied volatilities and strike prices. So out-of-the-money puts 

trade at higher implied volatilities than out-of-the-money calls. The implied binomial 

tree is an arbitrage-free model that fits the smile, is preference-free, avoids additional 

factors and can be used to value options from observable data.  

 

We use forward induction and Arrow-Debreu prices to build an implied tree with 

identical time periods. The volatility function in the implied tree is deduced 

numerically from the volatility smile given by the prices of liquid options; the implied 

tree model is calibrated to be arbitrage-free relative to observed option prices. Use 

forward stock prices and option prices to solve unknown values (the implied stock 

prices and transition probabilities) and then find out implied local volatilities. 

Following are the notations we will use when we construct the implied tree.  
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,

1, 1

forward risk-less interest rate at each time step
stock price at time  and state of stock price ; 
the strike price for options expiring at time 1
stock price at time 1 and state of

n i

n i

r
S n i

n
S n+ +

=
=

+
+=

,

1,

,

, ,

 stock price 1; 
the up node of  at time 1
stock price at time 1 and state of stock price ; 
the down node of  at time 1
forward price of the known stock price  at time  

n i

n i

n i

n i n i

i
S n

S n i
S n

F S n

+

+
+

+=
+

=

( ) ( )

, , 

,

,

, where 
Arrow-Debreu price at time  and state of stock price 
risk-neutral transition probability from node ,  to node 1, 1

r t
n i n i

n i

n i

F e S
n i

p n i n i
λ

Δ=
=
= + +

 

First of all, we have to construct a binomial tree for the stock price which is 

proposed by Cox, Ross, and Rubinstein (1979). See Appendix A. Then use forward 

induction and Arrow-Debreu prices to build an implied tree and reconstruct the 

binomial tree of the stock price.  

 

When we stand at time n  which starts from 0 and wish to find the unknown 

parameters at time 1n + , there are 2 3n +  unknown parameters to solve for, namely 

the 2n +  unknown stock prices and the 1n +  unknown transition probabilities from 

node ( ),n i  to node ( )1, 1n i+ + . But we only have 2 2n +  known quantities, that is, 

1n +  known forward sock prices at time n , , , 
r t

n i n iF e SΔ=  and 1n +  known option 

prices all expiring at time 1n + . Therefore, There are 2 2n +  equations to solve for 

2 3n +  parameters.  
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For example, when we stand at time 2n = , the stock prices 2,iS  for each i  

from 0 to 2 are known. We wish to find the unknown parameters at time 3n = . There 

are 7 unknown parameters to solve for, namely the 4 unknown stock prices, 3,iS  for 

each i  from 0 to 3, and the 3 unknown transition probabilities, 2,ip  from node 

( )2, i  to node ( )3, 1i + . But we only have 6 known quantities, that is, 3 known 

forward sock prices at time 2n = , 2, 2, 
r t

i iF e SΔ=  and 3 known option prices all 

expiring at time 3n = . Therefore, There are 6 equations to solve for 7 parameters. 

See Figure 3. 

 

 

 

We use the one remaining degree of freedom to make the center of the tree 

coincide with the center of the standard CRR tree which has constant local volatilities. 

2,11 p−

2,1p
2,1S

3,2S

3,1S

Figure 3. An Example For Constructing The Implied Tree. 

n =    0         1          2         3           4 
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This is explained as follows. If the number of nodes at a given time is odd, choose the 

center node’s stock price to be equal to the spot today. If the number is even, make the 

average of the natural logarithms of the two center nodes’ stock prices equal the 

logarithm of today’s spot price. That is 2
1, 1, 1/n i n iS S S+ + += . Then, we will have 

2 3n +  equations to solve for 2 3n +  unknown parameters.  

 

Before starting to construct the implied tree, we have to understand the concept 

of Arrow-Debreu prices. An Arrow-Debreu price is a price today of a security that has 

a cash flow at the given time and state of stock price. The Arrow-Debreu price for the 

next time 1n +  is given by  

( )
( )

, ,

1, , 1 , 1 , ,

,0 ,0

, when 1
1 , when 1 1

1 , when 0 .

n n n n
r t

n i n i n i n i n i

n n

p i n
e p p i n

p i

λ
λ λ λ

λ

Δ
+ − −

⎧ = +
⎪⎪= + − ≤ ≤ +⎨
⎪ − =⎪⎩

  (21) 

 

Now, we have to derive the theoretical values of forward stock prices. The 

implied tree is risk-neutral. Therefore, the expected value of stock at any node ( ),n i  

one time step later must be its known forward price 

( ), , 1, 1 , 1, 1 ,n i n i n i n i n iF p S p S+ + += + −     (22) 

where ,n iF  is known, , , 
r t

n i n iF e SΔ= . There are n  of these forward equations.  
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We also have to derive the theoretical values of options. The strike price for the 

option at time n  which is expiring at time 1n +  is the known stock price at time n . 

The strike ,n iS  can go to the up or down node, 
1, 1n iS + +  or 1,n iS + , at the next time. 

This ensures that only the up (down) node and all nodes above (below, respectively) it 

contribute to a call (put, respectively) struck at ,n iS . Let ( ), 1,n i nC S t +  and 

( ), 1,n i nP S t +  be the known market values for a call and put struck at ,n iS  and 

expiring at time 1n + , respectively.  

 

The theoretical binomial value of a call struck at K  and expiring at time 1n +  

is given by the sum over all discounted probability nodes at time 1n +  multiplied by 

the call payoff there. Alternatively, we represent it by Arrow-Debreu prices 

( ) ( ) ( )1 , , , 1 , 1 1, 1
1

; 1 max ,0 .
n

r t
n n j n j n j n j n j

j
C K T e p p S Kλ λ− Δ

+ + + + +
=

⎡ ⎤= + − −⎣ ⎦∑  (23) 

 

When the strike price K  equals ,n iS , Eq. (23) can be separated into three parts. 

First, contributions come from the up and down nodes of ,n iS . Because the down 

node of ,n iS , 1,n iS + , is out-of-the money to the call option, we ignore its contribution 

and only keep the contribution of the up node of ,n iS , 1, 1n iS + + . Second, contributions 

come from up and down nodes of the nodes below ,n iS . That is, contributions come 

from up and down nodes of , 1 , 2 ,0,n i n i nS S S− − L . Because all of them are 
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out-of-the-money to the call option, we ignore them all. Third, the contribution from 

up and down nodes of the nodes above ,n iS . That is, contributions come from up and 

down nodes of , 1 , 2 ,,n i n i n nS S S+ + L . Because these nodes are all in-the-money to the 

call option, they can be written into the summation of the known Arrow-Debreu prices 

,n jλ , the known stock prices ,n jS , and the known forward stock prices , j , j
r t

n nF e SΔ= . 

Therefore, Eq. (23) becomes to  

( ) ( ) ( ), 1 , , 1, 1 , , , ,
1

; .
n

r t
n i n n i n i n i n i n j n j n i

j i
e C S T p S S F Sλ λΔ

+ + +
= +

= − + −∑   (24) 

The first term depends on the unknown transition probability ,n ip  and the up node 

with unknown stock price 1, 1n iS + + . The second term is the sum of known quantities.  

 

Since we know both the forward stock prices and call option prices for the smile, 

we can solve the equations of these values to find out the stock prices which are above 

the center node at the next time and the transition probabilities. The equations are as 

follows 

( ) ( ) ( )
( )

, 1 , 1, 1, 1 , , , ,
1

, , 1, 1 , 1,

;

1 .

n
r t

n i n n i n i n i n i n j n j n i
j i

n i n i n i n i n i

e C S T p S S F S

F p S p S

λ λΔ
+ + + +

= +

+ + +

⎧ = − + −⎪
⎨
⎪ = + −⎩

∑
 (25) 

If the number of time steps n  already solved is odd, 1n +  is even, the initial central 

node is set equal to the central node of CRR tree. And then we get the value of stock 

prices above the center node 
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( ) ( )
( ) ( )

1, , 1 , , , 1,
1, 1

, 1 , , 1,

;
,

;

r t
n i n i n n i n i n i n i

n i r t
n i n n i n i n i

S e C S T S F S
S

e C S T F S

λ

λ

Δ
+ + +

+ + Δ
+ +

⎡ ⎤−∑ − −⎣ ⎦=
⎡ ⎤−∑ − −⎣ ⎦

  (26) 

where 

( ) ( )
, , , , ,

1
, .

n
r q t

n j n j n i n j n j
j i

F S F S eλ − Δ

= +

∑ = − =∑  

Similar to using forward stock prices and call option prices to solve the stock prices 

above the center node, we use forward stock prices and put options to solve for the 

stock prices below the center node 

( ) ( )
( ) ( )

1, 1 , 1 , , , 1, 1
1,

, 1 , , 1, 1

;
,

;

r t
n i n i n n i n i n i n i

n i r t
n i n n i n i n i

S e P S T S F S
S

e P S T F S

λ

λ

Δ
+ + + + +

+ Δ
+ + +

⎡ ⎤−∑ + −⎣ ⎦=
⎡ ⎤−∑ + −⎣ ⎦

  (27) 

where 

( ) ( )
, , , , ,

1
, .

n
r q t

n j n j n i n j n j
j i

F S F S eλ − Δ

= +

∑ = − =∑  

The transition probability at any time step and any state is given by 

, 1,
,

1, 1 1,

.n i n i
n i

n i n i

F S
p

S S
+

+ + +

−
=

−
      (28) 

 

If the number of time steps n  already solved is even and 1n +  is odd, use the 

logarithmic CRR centering condition 2
1, 1, 1/n i n iS S S+ + +=  where S  is today’s stock 

price corresponding to the CRR-style center node at the previous time. Then we get 

the formula for the node above the two center nodes as 

( )
( )
1 ,

1, 1
, , , 1

;
,

;

r t
n n i

n i r t
n i n i n i n

S e C S T S
S

F e C S T

λ
λ

Δ
+

+ + Δ
+

⎡ ⎤+ −∑⎣ ⎦=
− +∑

     (29) 

where 
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( ) ( )
, , , , ,

1
, .

n
r q t

n j n j n i n j n j
j i

F S F S eλ − Δ

= +

∑ = − =∑  

Similarly, we can fix all the nodes below the center node at this time by using put 

options prices. We get the formula for these nodes 

( ) ( )
( ) ( )

1, 1 , 1 , , , 1, 1
1,

, 1 , , 1, 1

;
,

;

r t
n i n i n n i n i n i n i

n i r t
n i n n i n i n i

S e P S T S F S
S

e P S T F S

λ

λ

Δ
+ + + + +

+ Δ
+ + +

⎡ ⎤−∑ + −⎣ ⎦=
⎡ ⎤−∑ + −⎣ ⎦

  (30) 

where 

( ) ( )
, , , , ,

1
, .

n
r q t

n j n j n i n j n j
j i

F S F S eλ − Δ

= +

∑ = − =∑  

 

According to the implied stock prices and transition probabilities, we can find 

out the implied local volatilities at each node: 

( ) 1, 1
, , ,

1,

1 1 ln .n i
n i n i n i

n i

S
p p

St
σ + +

+

⎛ ⎞
= − ⎜ ⎟⎜ ⎟Δ ⎝ ⎠

    (31) 

 

The transition probabilities at any node in the implied tree must lie between 0 

and 1. If , 1n ip > , the stock price at the upper node will fall below the forward price. 

Similarly, if , 0n ip < , the stock price at the lower node will fall above the forward 

price. Either these conditions allows risk-less arbitrage. Therefore, as we go through 

the tree node by node, we demand that each newly determined node’s stock price lie 

between the neighboring forwards from the previous time, that is , 1, 1 , 1n i n i n iF S F+ + +< < . 

If the stock price at any node violates the above inequality, we override the option 
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price that produced it. In its place, we choose a stock price that keeps the logarithm 

spacing between this node and its neighboring node the same as that between 

corresponding nodes at the previous time. This procedure removes arbitrage violations 

from input option prices, while keeping the implied local volatility function smooth. 

 

4. 2 Implied Trinomial Trees 

 

Implied trinomial trees have more parameters than implied binomial trees. 

Implied trinomial trees offer more flexibility and can match a larger class of volatility 

structure than implied binomial trees. We use these additional parameters to 

conveniently choose the state space of all node prices, and let the transition 

probabilities be constrained only by option prices. That is, we choose the state space 

independent of the transition probabilities and use option prices to solve for the 

transition probabilities only. 

 

Similar to implied binomial trees, we have to construct a trinomial tree for the 

stock price. See Appendix B. We also use forward stock prices and option prices to 

find out the transition probabilities. And the option prices are presented by 

Arrow-Debreu prices. But we do not have to find out the newly implied stock price at 



 

 27

each node because we assume that the state space at each node is independent of the 

transition probabilities.  

 

We use forward stock prices and call option prices to solve for the transition 

probabilities of the node above the center node. Therefore the equations we have to 

solve are given by 

( ) ( ) ( )
( )

1 , 2 1, 2 , 1 , 1 , 1, 1,
1

, , 1, 2 , , 1, 1 , 1,

; 1 max ,0

1 .

n
r t

n n j n j n j n j n j n j n j
j

n i n i n i n i n i n i n i n i

C K T e p p q q S K

F p S p q S q S

λ λ− Δ
+ − + − − − + +

=

+ + + + +

⎧ ⎡ ⎤= + − − + −⎪ ⎣ ⎦
⎨
⎪ = + − − +⎩

∑

(32) 

Similar to constructing the implied binomial trees, we can rewrite the equations to  

( ) ( ) ( )
( )

2

, 1 1 , 1, 1, 2 1, 1 1, , 1, 1
1

, , 1, 2 , , 1, 1 , 1,

;

1 ,

n
r t

n i n n i n i n i n i n j n j n i
j i

n i n i n i n i n i n i n i n i

e C S T p S S F S

F p S p q S q S

λ λΔ
+ + + + + + + + + +

= +

+ + + + +

⎧ = − + −⎪
⎨
⎪ = + − − +⎩

∑
  (33) 

where ,n ip  is the up transition probability and ,n iq  is the down probability at each 

node. 

 

According to the result of the equations, we obtain the formulas for the up 

transition probability and down transition probability at each node above the center 

node. The transition probabilities are presented as follows 
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    (34) 

.      

(35) 

 

To solve the transition probabilities at each node below the center node is 

similar to the way we solve for the transition probabilities at each node above the 

center node. We use forward stock prices and put option prices to solve them. And 

then we obtain the formula for the up transition probability and down probability at 

each node below the center node. They are presented as follows     

 

(36) 

.      

(37) 

 

In the implied trinomial trees, there is still a problem of negative transition 

probabilities. If we obtain negative transition probabilities, we will try to overwrite 

them. There are a lot of ways to overwrite negative transition probability. One way we 

use is to choose the value of middle transition probability to be zero, in other words, 

( ) ( )
( )

( )

2

1, 1 1 , , 1, 1
1

,
, 1, 2 1, 1

, , 1, 2 1, 1 1, 1
,

1, 1, 1

;

.

n
r t

n i n n j n j n i
j i

n i
n i n i n i

n i n i n i n i n i
n i

n i n i

e C S T F S
p

S S

F p S S S
q

S S

λ

λ

Δ
+ + + + +

= +

+ + + +

+ + + + + +

+ + +

− −
=

−

− − −
=

−

∑

( ) ( )
( )

( )

1

1, 1 1 , 1, 1 ,
0

,
, 1, 1 1,

, , 1, 1 1, 1, 1
,

1, 2 1, 1

;

.

i
r t

n i n n j n i n j
j

n i
n i n i n i

n i n i n i n i n i
n i

n i n i

e P S T S F
q

S S

F q S S S
p

S S

λ

λ

−
Δ

+ + + + +
=

+ + +

+ + + + +

+ + + +

− −
=

−

+ − −
=

−

∑
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we try to reducing the sub-tree to be a binomial tree. By doing this, we will obtain the 

formula for the overwriting value of the transition probabilities.  

1, 1 , 1, 2If n i n i n iS F S+ + + +< <      

(38) 

        

(39) 

1, , 1, 1If n i n i n iS F S+ + +< <          

(40) 

     

(41) 

 

After getting the transition probabilities, we can use these transition probabilities 

to calculate the implied local volatility for corresponding node in the tree. The implied 

local volatility is given by 

( ) ( )( ) ( )
1

2 2 2 2
, 1, 2 0 , , 1, 1 0 , 1, 0

, 2
0

1
,n i n i n i n i n i n i n i

n i

p S F p q S F q S F
F t

σ + + + + +
⎡ ⎤− + − − − + −
⎢ ⎥=

Δ⎢ ⎥
⎣ ⎦

 (42) 

where 

( )0 , 1, 2 , , 1, 1 , 1,1 .n i n i n i n i n i n i n iF p S p q S q S+ + + + += + − − +  

 

, 1, 1 , 1,
,

1, 2 1, 1 1, 2 1,

1, 2 ,
,

1, 2 1,

1
2

1 .
2

n i n i n i n i
n i

n i n i n i n i

n i n i
n i

n i n i

F S F S
p

S S S S

S F
q

S S

+ + +

+ + + + + + +

+ +

+ + +

⎛ ⎞− −
= +⎜ ⎟⎜ ⎟− −⎝ ⎠

⎛ ⎞−
= ⎜ ⎟⎜ ⎟−⎝ ⎠

, 1,
,

1, 2 1,

1, 2 , 1, 1 ,
,

1, 2 1, 1, 1 1,

1
2

1 .
2

n i n i
n i

n i n i

n i n i n i n i
n i

n i n i n i n i

F S
p

S S

S F S F
q

S S S S

+

+ + +

+ + + +

+ + + + + +

⎛ ⎞−
= ⎜ ⎟⎜ ⎟−⎝ ⎠

⎛ ⎞− −
= +⎜ ⎟⎜ ⎟− −⎝ ⎠
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4. 3 Pricing Volatility and Variance Swaps 

 

In this section, we try to use the implied trinomial tree to price volatility and 

variance swaps. After constructing the implied trinomial tree, we have already 

obtained the implied local volatilities or variances for each corresponding node. Now 

we use these implied local volatilities and variances to price volatility and variance 

swaps.  

We try to price variance swaps first. Because, by definition, we know that 

volatilities are the square roots of variances, and that variances have the property of 

the additivity that makes variance much easier to price than volatilities. 

 

By definition, the variance for a given price history is the continuous integral 

and given by 2

0

1 ( , )
T

V t dt
T

σ= ∫ K , where T  is the whole life of the contract and 

( )2 ,tσ L  is the local variance for every time period. And then now we try to present 

it by the discrete form, that is 

2

0

2

0

1 ( , )

( , ) .

T

T

V t t
T

t t
T

σ

σ

= Δ

Δ=

∑

∑

K

K

      (43) 

 



 

 31

According to the implied trinomial tree, we have already obtained implied local 

variances for each node. We try to find out the expected local variances for each time. 

Then use the definition by Eq. (8) to calculate the fair delivery price for the variance 

swap contract, see Figure 4. So we obtain  

( )2
var

0
.

n

i
i

tK E
T

σ
=

Δ= ∑       (44) 

 

After calculating the variance for the whole life of the swap contract, we now try 

to calculate the volatility. Because local volatilities are the square root of local 

variances, they do not have the property of additivity. We have to calculate the local 

variances first, find out the variance for the whole life of the swap contract, and then 

take the square root of it to approximate the volatility for the whole life of the swap 

contract. Therefore, 

( )2

0
,

T

vol t
t

tK E
T

σ
=

Δ= ∑        (45) 

where volK  is the fair delivery price for the volatility swap contract. 
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Implied Local Variances 

1.00 

Total Probabilities 

Stock Prices 

Time n =     0         1          2         3           4 

S0 

σ2
0 ,0 

E(σ0
2) 

E(σ1
2) 

E(σ2
2) 

E(σ3
2) 

Figure 4. The Process of Calculating the Fair Delivery Price of a Variance Swap. 
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4. 4 An Example 

 

In Demeterfi, Derman, Kamal, and Zou (1999), they have given a detailed 

example of variance swap. We try to use the same assumption and data of this 

example, and use our pricing method which is using implied trinomial trees to price 

volatility and variance swap.  

 

First of all, we have to introduce the basic assumption and pricing result of the 

example in Demeterfi, Derman, Kamal, and Zou (1999). When we want to price a 

swap on the realized variance of the daily returns of some equity index, the fair 

delivery price is determined by the cost of the replication. If we could buy options 

with strike prices from zero to infinity, we would get the fair delivery price of 

variance swap by the formula Eq. (18) 

( ) ( )
*

*

*
0

var * 2 20
0

2 1 11 log ,
SrT rT rT

S

S SK rT e e P K dK e C K dK
T S S K K

∞⎛ ⎞⎛ ⎞= − − − + +⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

∫ ∫  

with the choice which *S  is equal to 0S , that is *
0S S= . 

 

Unfortunately, only a small set of discrete option strike prices are available. The 

formula will have some error. So we try to use some other approximation. Starting 

with the definition of the fair variance given by Eq. (13) 
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var 0
0

2 log ,
T t T

t

dS SK E
T S S

⎡ ⎤
= −⎢ ⎥

⎣ ⎦
∫  

and it can be written as  

* **

var * * *0
0

*
0
*

0

2 log log

2 1 log ,

T t T T T

t

rT rT
CP

dS S S S S SSK E
T S S S S S

S SrT e e
T S S

⎡ ⎤− −= − − + −⎢ ⎥
⎣ ⎦

⎡ ⎤⎛ ⎞= − − − + Π⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

∫
  (46) 

where CPΠ  is the present value of the portfolio of options with payoff at expiration  

given by 

( )
*

* *

2 log .T T
T

S S Sf S
T S S
⎛ ⎞−= −⎜ ⎟
⎝ ⎠

     (47) 

 

Assume that we can trade call options with strike prices icK  such that 

*
0 1 2 3c c cK S K K K= < < < <L  and put options with strike prices ipK  such that 

*
0 1 2 3p p pK S K K K= > > > >L . We can approximate the payoff function with a 

piece-wise linear function as in Figure 5 
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The first segment to the right of *S  is equivalent to the payoff of a call option 

with strike 0K . The number of options is determined by the slope of this segment  

( ) ( ) ( )1 0
0

1 0

.c
c

c

f K f K
w K

K K
−

=
−

     (48) 

Similarly, the second segment looks like a combination of calls with strike 0K  and 

1cK . Given that we already have ( )0cw K  call options with strike 0K , we need to 

find out ( )1c cw K  call options with strike 1cK  where 

( ) ( ) ( ) ( )2 1
1 0

2 1

.c c
c c c

c c

f K f K
w K w K

K K
−

= −
−

    (49) 

Continuing this way, we can build the whole payoff curve. In general, the number of 

call options of strike ,n cK  is given by 

( ) ( ) ( ) ( )
1

1, ,
, ,

01, ,

.
n

n c n c
c n c c i c

in c n c

f K f K
w K w K

K K

−
+

=+

−
= −

− ∑    (50) 

3 pK      2 pK       1pK       0K       1cK       2cK       3cK  

Figure 5. Log Payoff and Options Portfolio at Maturity. 
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The other side of the curve can be build by put options 

( ) ( ) ( ) ( )
1

1, ,
, ,

01, ,

.
n

n p n p
p n p p i p

in p n p

f K f K
w K w K

K K

−
+

=+

−
= −

− ∑    (51) 

 

This approximation guarantees that these payoffs will always exceed or match 

the value of the log contract, but never be worth less. After calculating the weight of 

each option, CPΠ  is obtained  

( ) ( ) ( ) ( ), , .CP ip ip ic ic
i i

w K P S K w K C S KΠ = +∑ ∑    (52) 

 

Assume the initial stock index 0S  is 100, the continuously compounded annual 

risk-less interest rate r  is 5%, the dividend yield q  is zero, and the maturity of the 

variance swap is 3 months ( )0.25T = . Also assume that we can buy options with 

strike prices from 50 to 150, uniformly spaced 5 points apart, and the at-the-money 

implied volatility is 20% with a skew such that when the strike price decreases for 5 

points, the implied volatility will increase 1 volatility point.  

 

After calculating the weight of each option, we obtain the cost of the options 

portfolio. We calculate the fair delivery price for variance swap by the equation 
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( ) ( ) ( ) ( )

*
0

var *
0

*
0
*

0

2 1 log

2 1 log , , .

rT rT
CP

rT rT
ip ip ic ic

i i

S SK rT e e
T S S

S SrT e e w K P S K w K C S K
T S S

⎡ ⎤⎛ ⎞= − − − + Π⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

⎡ ⎤ ⎡ ⎤⎛ ⎞= − − − + +⎢ ⎥⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎣ ⎦⎣ ⎦
∑ ∑

(53) 

The cost of the variance swap is the result of varK , that is ( )2
var 20.467%K = . And then 

the fair delivery price of the volatility swap is 20.467%volK = . 

 

After introducing the example in Demeterfi, Derman, Kamal, and Zou (1999), 

we now use our method to calculate the same example in order to compare the result 

and see whether our method is available.  

 

Again, we assume the initial stock index 0S  is 100, the strike price K  is 100, 

the continuously compounded annual risk-less interest rate r  is 5%, the dividend 

yield q  is zero, and the maturity of the variance swap is 3 months ( )0.25T = , and 

the at-the-money implied volatility is 20% with a skew such that when the strike price 

decreases for 5 points, the implied volatility will increase 1 volatility point. To keep 

our example simple, we choose the state space of our implied trinomial tree to 

coincide with the CRR type trinomial tree which has 4period. That is, the number of 

period to the state space n  is four. Use the formulas we have explained in the 
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chapter 4 to solve for the transition probabilities and implied variances. The results 

are given in Figure 6. 

 

After obtaining the total probabilities and implied variances by implied trinomial 

tree, we use them to calculate the expected implied variance for each time period.  

( )
( )

( )

2 2
0 0,0 0,0

2 2 2 2
1 1,0 1,0 1,1 1,1 1,2 1,2

2 2 2 2 2 2
2 2,0 2,0 2,1 2,1 2,2 2,2 2,3 2,3 2,4 2,4

1 0.0398

0.2369 0.0561 0.4996 0.0398 0.2634 0.0340
0.0421

0.0814 0.0836 0.1879 0.0552 0.

E p

E p p p

E p p p p p

σ σ

σ σ σ σ

σ σ σ σ σ σ

= × = ×

= × + × + ×

= × + × + ×
=

= × + × + × + × + ×

= × + × +

( )2 2 2 2 2 2 2 2
3 3,0 3,0 3,1 3,1 3,2 3,2 3,3 3,3 3,4 3,4 3,5 3,5 3,6 3,6

3879 0.0381 0.2827 0.0323
0.06 0.0251

0.0426

0.0426 0.0838 0.059 0.0888 0.1882 0.0506 0.3224 0.038
0.2746 0.0315 0.1028

E p p p p p p pσ σ σ σ σ σ σ σ

× + ×
+ ×

=

= × + × + × + × + × + × + ×

= × + × + × + ×
+ × + 0.0242 0.0104 0.0415
0.0421

× + ×
=

Next, calculate fair delivery price of the variance swap contract by Eq. (44) 

( ) ( ) ( )
4

2 2
var

0 0

0.0625 0.0625 0.0398 0.0421 0.0426 0.0421 0.0417
0.25 0.25

n

i t
i i

tK E E
T

σ σ
= =

Δ= = = + + + =∑ ∑

Finally, take the square root of the variance we find out in order to get the fair 

delivery price of the volatility swap contract by Eq. (45) 

( )2

0
0.0417 0.2041 .

T

vol t
t

tK E
T

σ
=

Δ= = =∑  

Therefore, ( )2
var 20.41%K =  and v 20.41%olK = . 
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0.0415 Implied Local Variances 

Total Probabilities 

Stock Prices 

100.00 

Time n =      0         1          2         3           4 

100.00 100.00 100.00 100.00 

107.33 

93.17 

123.63 

132.69 

 80.89 

 75.36 

123.63 

 80.89 

115.19 

107.33 

 93.17 

 86.81 

107.33 107.33 

 93.17  93.17 

 86.81  86.81 

115.19 115.19 

1.0000 0.4996 0.3879 0.3224 0.2806 

0.2369 

0.2634 

0.0305 

0.0223 

0.0426 

0.0104 

0.0814 

0.1879 

0.2827 

0.0600 

0.1882 0.1740 

0.2746 0.2613 

0.1028 0.1327 

0.0590 0.0735 

0.0398 

0.0561 

0.0398 

0.0340 

0.0836 

0.0552 

0.0381 

0.0323 

0.0251 

0.0838 

0.0888 

0.0506 

0.0380 

0.0315 

0.0242 

0.0028 

0.0224 

Figure 6. The Result of the Example. 



 

 40

Compare results of the general pricing method and our pricing method which 

use the implied trinomial tree. The results are given by the Table 1. Using our pricing 

method can arrive at a result a little smaller than the result of the general pricing 

method. When the number of period becomes large, the result will converge. We have 

already explained that the fair delivery price may exceed the realized value by using 

general pricing method. In conclusion, our pricing method is available and more 

straightforward than the general pricing method. 

 

 

 

Basic 

Assumption 
 

Pricing by 

Replication 
 

Pricing by       

Implied Trinomial Tree 

0S  100  varK  volK   n  varK  volK  

K  100  0.0419 0.2047  4 0.0417 0.2041 

T  0.25     10 0.0414 0.2034 

r  5%     50 0.0408 0.2021 

q  0%     100 0.0407 0.2017 

σ  20%        

skew  0.2%        

Table 1. The Assumed Data and the Result of Two Pricing Methods. 
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Chapter 5 
Strategies and Applications 
 

There are several ways in which volatility and variance swaps can be used. If a 

trader expected volatility to increase, he could long a volatility or variance swap to 

take a position on that view, or if his portfolio is naturally short vega, he could use the 

swap to hedge the loss in option portfolio. In fact, a swap would provide a cleaner 

vega hedge than offsetting options portfolios.  

 

For example, suppose a trader, whose option portfolio is short volatility with 

vega position of -$55,000, suspects an impending market correction and simultaneous 

increase in volatility sometime over the next six months. Suppose further that 

six-month implied volatility is 25% and that the trader predicts that volatility will 

increase by 35 percentage points (from 25% to 60%) over this time frame. If this 

prediction comes to fruition, the option portfolio could stand to lose $1,925,000 

($55,000 × 35) in market value as a result of changes in volatility alone.  

 

To hedge this volatility exposure, the trader could purchase options to 

neutralized vega. However, the problem with this strategy is that as soon as the 
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underlying index moves, the position is no longer perfectly hedged. In other words, 

the trader would need to readjust the hedged position every time the market moves. 

This could be troublesome and expensive in a volatile market.  

 

Rather than hedging with offsetting options, the trader could enter into a long 

position on volatility or variance swap. Using the volatility swap rate of 25%, a swap 

having notional value of $55,000 would hedge the option portfolio. If the actual 

volatility during this period was 60% as the trader predicted, he would receive 

$1,925,000 ($55,000 × (60% － 25%) × 100 ) at the end of the swap contract, which 

could just offset the loss that would have been incurred on the option portfolio. Even 

if the volatility only rises to x% which is smaller than 60%, the trader will receive the 

amount of ($55,000 × (x% － 25%) × 100) which is smaller than $1,925,000. In 

other words, the trader may not offset all his loss. But he will not lose as much if he 

has not hedged.  

 

There are other strategies that can be effective as well. Volatility and variance 

swaps may be used to execute stock index spread trading strategies. In these strategies, 

a short position of volatility or variance swap on an equity index is hedged by a long 

position of volatility or variance swap on a different index. This spread trade has a 
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payoff based on the difference between the realized volatilities or variances in these 

two indices.  

 

For example, suppose a trader shorted a volatility swap on the S&P 500 with a 

swap rate of 20%, and purchased a volatility swap on the NASDAQ 100 with a swap 

rate of 25% (see Figure 7). With this strategy, four conditions may happen in the 

future. The trader is betting that the realized volatility of NASDAQ 100 will exceed 

the realized volatility of S&P 500 by more than 5 volatility points. The analysis for 

every possible condition follows. 

 

 

If & 500 20%S Pσ < , ( )& 50020% 100S PN σ× − × . 

Investor Financial Institute 

If & 500 20%S Pσ > , ( )& 500 20% 100S PN σ× − × . 

Short Volatility Swap on S&P 500 

Long Volatility Swap on NASDAQ 100 

Investor Financial Institute 

If 100 25%NASDAQσ < , ( )10025% 100NASDAQN σ× − × . 

Figure 7. The Cash Flows of Selling a Volatility Swap on S&P 500 and Buying a 
Volatility Swap on NASDAQ 100. 

N  is the notional amount of the contract. 
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Condition 1. & 500 20%S Pσ >  and 100 25%NASDAQσ >  

When & 500 20%S Pσ > , the trader who sells a volatility swap on S&P 500 has to 

pay ( )& 500 20% 100S PN σ× − ×  to the financial institute. That is, he will have a cash 

outflow equal to ( )& 500 20% 100S PN σ× − × . And when 100 25%NASDAQσ > , the trader 

who buys a volatility swap on NASDAQ 100 will receive 

( )100 25% 100NASDAQN σ× − ×  from the financial institute. That is, he will have a cash 

inflow equal to ( )100 25%NASDAQσ − . Therefore, if the trader wants to have profit, the 

volatility of NASDAQ 100 shall exceed the volatility of S&P 500. 

 

Condition 2. & 500 20%S Pσ >  and 100 25%NASDAQσ <  

When & 500 20%S Pσ > , the trader who sells a volatility swap on S&P 500 has to 

pay ( )& 500 20% 100S PN σ× − ×  to the financial institute. That is, he will have a cash 

outflow equal to ( )& 500 20% 100S PN σ× − × . And when 100 25%NASDAQσ < , the trader 

who buys a volatility swap on NASDAQ 100 has to pay 

( )10025% 100NASDAQN σ× − × to the financial institute. That is, he will have a cash 

outflow equal to ( )10025% 100NASDAQN σ× − × . Therefore, if the trader wants to have 

profit, the volatility of NASDAQ 100 shall exceed the volatility of S&P 500. 

 

Condition 3. & 500 20%S Pσ <  and 100 25%NASDAQσ >  
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When & 500 20%S Pσ < , the trader who sells a volatility swap on S&P 500 will 

receive ( )& 50020% 100S PN σ× − ×  from the financial institute. That is, he will have a 

cash inflow equal to ( )& 50020% 100S PN σ× − × . And when 100 25%NASDAQσ > , the 

trader who buys a volatility swap on NASDAQ 100 will receive 

( )100 25% 100NASDAQN σ× − × from the financial institute. That is, he will have a cash 

inflow equal to ( )100 25% 100NASDAQN σ× − × . Therefore, if the trader wants to have 

profit, the volatility of NASDAQ 100 shall exceed the volatility of S&P 500. 

 

Condition 4. & 500 20%S Pσ <  and 100 25%NASDAQσ <  

When & 500 20%S Pσ < , the trader who sells a volatility swap on S&P 500 will 

receive ( )& 50020% 100S PN σ× − × from the financial institute. That is, he will have a 

cash inflow equal to ( )& 50020% 100S PN σ× − × . And when 100 25%NASDAQσ < , the 

trader who buys a volatility swap on NASDAQ 100 has to pay 

( )10025% 100NASDAQN σ× − × to the financial institute. That is, he will have a cash 

outflow equal to ( )10025% 100NASDAQN σ× − × . Therefore, if the trader wants to have 

profit, the volatility of NASDAQ 100 shall exceed the volatility of S&P 500. 

 

In summary, the trader will benefit when the volatility of NASDAQ 100 exceeds 

the volatility of S&P 500 by more than 5 volatility points. 
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Chapter 6 
Conclusions 
 

In general, pricing volatility and variance swaps uses the method of replication. 

In this thesis, we use a methodology that is more direct and intuitive in pricing 

volatility and variance swaps. And the methodology we choose is the implied tree. We 

try to use the implied tree to calculate implied local volatilities and variances, and 

then use these implied local volatilities and variances to price volatility and variance 

swaps. After using the implied tree to price, we also compare the result of this method 

to the general pricing method. We find that using this method can obtain the values of 

volatility and variance swaps similar to the general method. 

 

For further research, we can try to use the modified implied tree to price 

volatility and variance swaps because the implied tree model we used contains lots of 

assumptions and includes something that is artificial when we have the negative 

probabilities in the tree. So, there some inaccuracies remain in our pricing method.  
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Appendix 
 

A. Constructing Binomial Trees 

 

This appendix provides the constructing method for the constant volatility 

binomial tree which is first proposed by Cox, Ross, and Rubinstein (1979).  

 

Consider the evaluation of an option on a stock without dividends. Assume that 

the initial stock price is 0S . Divide the life of the option into time intervals of 

length tΔ . Assume there are two possible states that the stock price at each node may 

move to when time goes to the next period. For example, the stock price will move 

from S to Su or Sd . See Figure 8. In general, 1u >  and 1d < . When the stock price 

moves from S  to Su , it is an up movement. When the stock price moves from S  

to Sd , it is a down movement. The probability of an up movement will be denoted 

by p . The probability of a down movement equals 1 p− . 

 

1 p−

p
S  

Su

Sd

Figure 8. CRR-Type Binomial Tree. 
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The risk-neutral valuation principle states that an option can be valued on the 

assumption that the world is risk neutral. This means that for valuation we can assume 

that the expected return from all traded securities is the risk-free interest rate, and 

future cash flows can be valued by discounting their expected values at the risk-free 

interest rate r . Hence the expected value of the stock price at the end of a time 

interval of length tΔ  is r tSe Δ , where S  is the stock price at the beginning of the time 

interval, i.e.,  

( )1 .r tSe pSu p SdΔ = + −      (A. 1) 

Eliminate S  from both side of this equation to obtain  

( )1 .r te pu p dΔ = + −       (A. 2) 

This is the first condition to solve for p , u , and d . 

 

Assume that the stochastic process for stock price which has constant volatility 

is as follows: 

,t
t

t

dS dt dZ
S

μ σ= +       (A. 3) 

where μ is the drift term andσ is the volatility. This implies that the variance of the 

percentage change in the stock price in a small time interval tΔ  is 2 tσ Δ . The 

variance for a variable X  is defined as ( ) ( ) 22E X E X− ⎡ ⎤⎣ ⎦ . Then it follows that  

( ) ( ) 22 2 21 1 .pu p d pu p d tσ+ − − + − = Δ⎡ ⎤⎣ ⎦    (A. 4) 
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Substituting the up probability p reduces this equation to  

( ) 2 2 .r t r te u d ud e tσΔ Δ+ − − = Δ     (A. 5) 

This is the second condition to solve for p , u , and d . 

 

The third condition to solve for p , u , and d  by Cox, Ross, and Rubinstein is 

the assumption that 

1 .ud =        (A. 6) 

Therefore, we obtain  

(A. 7) 

(A. 8) 

(A. 9) 

 

B. Constructing Trinomial Trees 

 

We have more freedom when constructing constant volatility trinomial tree. In 

constructing trinomial tree, we can view two steps of binomial tree in combination as 

a single step of a trinomial tree. The CRR type trinomial tree is constructed 

analogously to the binomial tree.  

 

.

r t

t

t

e dp
u d

u e

d e

σ

σ

Δ

Δ

− Δ

−=
−

=

=
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Assume there are three possible states that the stock price at each node may 

move to when time goes to the next period. For example, the stock price will move 

from S to Su , Sm  or Sd . See Figure 9. In general, 1u > , 1m = , and 1d < . When the 

stock price moves from S  to Su , it is an up movement. When the stock price 

moves from S  to Sm , it stays at S  and is a middle movement. When the stock 

price moves from S  to Sd , it is a down movement. The probability of an up 

movement will be denoted by p , the probability of a down movement will be 

denoted by q , and the probability of a middle movement equals 1 p q− − . 

 

 

 

As in constructing the binomial tree, we use the risk-neutral valuation principle. 

So we have that the expected value of the stock price at the end of a time period is 

Figure 9. CRR-Type Trinomial Tree. 

1 p q− −
 

q

p

Sd  

Sm  

Su  

S  
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( )1 .r tSe pSu p q Sm qSdΔ = + − − +     (B. 1) 

Eliminate S  from both side of this equation,  

( )1 .r te pu p q qdΔ = + − − +      (B. 2) 

 

Because we assume that in constructing trinomial tree, we view two steps of 

binomial tree in combination as a single step of a trinomial tree. Therefore,  

(B. 3) 

(B. 4) 

 

Also similar to constructing the binomial tree, we obtain an equation from 

calculating the variance. That is,  

( ) ( ) 22 2 21 1 .pu p q qd pu p q qd tσ+ − − + − + − − + = Δ⎡ ⎤⎣ ⎦   (B. 5) 

 

Substituting u and d into equations from expected value and variance, we can 

obtain the up and down probabilities 

(B. 6) 

 

(B. 7) 
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