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Abstract

Equity-index volatility and variance swaps offer an efficient way for traders to

take synthetic positions in pure volatility. General pricing method for volatility and

variance swaps uses the replication method in Demeterfi, Derman, Kamal, and Zou

(1999). In thisthesis, we try to use the more direct and intuitive way to price volatility

and variance swaps. Specifically, we will use implied trees introduced in Derman,

Kani, Chriss (1994) and Derman, Kani (1996) which can match the implied local

volatilities and variances. Then we employ these local volatilities and variances to

price volatility and variance swaps. After using the implied tree to price, we also

compare the result of this method to the general pricing method. We find out that

using this method can also get the value of volatility and variance swaps just similar

to the general method.
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Chapter 1
| ntroduction

1. 1 Motivations

Equity-index volatility and variance swaps offer an efficient way for traders to
take synthetic positions in pure volatility. There are several ways to use volatility and
variance swaps. People who use volatility and variance swaps are trading volatility
levels directionally, trading the spread between the realized and implied volatility

levels, or hedging implicit volatility expasure.

Genera pricing method for volatility and variance swaps uses the replication
method in Demeterfi, Derman, Kamal, and Zou (1999). Pricing variances is more
direct than pricing volatilities. In general, we will price variances first, and then take
the sgquare roots of variances to price volatilities. But general pricing method is not a
straightforward method. It is to try to use lots of options to replicate the value of
variance swaps. In this thesis, we try to use the more direct and intuitive way to price
volatility and variance swaps. Specifically, we will use implied trees which can match

theimplied local volatilities and variances and are introduced in Derman, Kani, Chriss



(1994) and Derman, Kani (1996). Then we employ these local volatilities and

variances to price volatility and variance swaps.

1. 2 Organization of ThisThesis

There are seven chapters in this thesis. In Chapter 1, a brief introduction and
motivation of this thesis are presented. In Chapter 2, we will introduce some
background information and aso the concepts of volatilities. In Chapter 3, we will go
through the basic definitions and pricing methods for volatility and variance swaps. In
Chapter 4, we will explain the methodology used to price volatility and variance
swaps. For that purpose, we will explain the structure of implied trees and how we use
them to price volatility and variance swaps. Also we will give an example to compare
the results between the genera pricing method and our method. In Chapter 5, the
strategies and applications of volatility and variance swaps will be briefly discussed.

Finally, Chapter 6 concludes and points out future research.



Chapter 2
Background

2. 1Literature Review

First of all, we introduce some concepts about volatilities. Derman, Kani, and
Zou (1995) explain the local volatility surface, give examples of its applications, and
propose several properties of volatilities for understanding the relation between local
and implied volatilities. Kani, Derman, and Kamal (1996) outline a methodology for
hedging and trading index volatilities. In the world of index options, local volatilities
are the arbitrage-free volatilities at future times and market levels that can be locked
in by trading options today. Derman, Kamal, Kani, McClure, Pirasteh, and Zou (1998)
explain the definition of volatilities and how to invest in index volatilities. They also

talk about the advantage of volatility contracts.

We now introduce volatility and variance swaps. Demeterfi, Derman, Kamal,
and Zou (1999) explain the properties and the theories of both volatility and variance
swaps, from an intuitive point of view and then more rigorously. Hull (2003) explains

some basic definition of volatility and variance swaps. Neftci and Fame (2004)



explain the concepts and pricing methods of volatility and variance swaps more

precisely.

Finaly, we introduce our methodology to price volatility and variance swaps

based on the implied tree. Derman and Kani (1994) introduce the volatility smile and

show how to extend the Black-Scholes model to a model which assumes that the

index level executes a random wak with a constant volatility so as to make it

consistent with the volatility smile. By this extension of the Black —Scholes model,

they obtain a new model which is consistent with the volatility smile. They cal it the

implied binomial tree. Derman, Kani, and Chriss (1996) show how to build implied

trinomial tree models that incorporate the volatility smile.

2. 2\Volatilities

Volatility plays an important role in option pricing and risk management. It is

the simplest measure of itsrisk or uncertainty.

Stock investors think they know something about the direction of the stock

market. So, they may have insight into the level of future volatility. If they think



current volatility is too low, for the right price they may want to take a position that

will profit when the volatility increases.

Volatility has a lot of definitions. People usualy use the word “volatility” to

denote several related but different concepts. We shall now clarify the different

volatilities; specifically, we shall clarify exactly what “realized”, “implied”, and

“local” volatilities mean.

The realized volatility of an index over some period is the annualized standard
deviation of its daily returns over that period. The implied volatility of an index, as
implied by the current price of a particular European-style option with strike K and
expiration T, is the volatility parameter that, when entered into the Black-Scholes
formula, equates the model value and the market option price. The local volatilities of
an index at some future market levels and time levels are the future volatilities that the
index must have at that market level and time in order to make current option prices

fair.

The role of volatility in the option world is as important as the role of interest

rate in the bond world. That is, the concepts between volatilities and options are

similar to the concepts between interest rates and bond prices. So understanding



different kinds of interest rates first is helpful for us to understand the characteristics

of different kinds of volatilities.

The realized interest rate is the actual interest rate that comes to pass during

some period. The realized volatility is similar to it. The yield to maturity of the bond

isits implied yield. As implied volatility translates into an option price through the

Black-Scholes option pricing formula, so the yield-to-maturity transates into a bond

price through the present value formula. The forward rate is the future rate that must

come to pass to justify current yield-to-maturity; it is the future rate that can be locked

in by trading a bond portfolio. The local volatility is similar.



Chapter 3
Volatility and Variance Swaps

3. 1 Basic Definitions

The volatility or variance swap allows an investor to directly implement a view
on the direction of future realized volatility or variance. Like an equity swap, in which
two parties exchange cash flows based on the return of specified equity, the volatility
or variance swap is characterized by the exchange of cash flows tied to the

performance of realized volatility or variance.

In avolatility or variance swap, an investor agrees to receive or pay the realized
volatility or variance of an equity index or single stock relative to an agreed strike
level. Redlized volatility is typically measured as the annualized standard deviation of
the daily natura log returns of the stock or index. The formula for the realized

volatility is asfollows. Define



S = thestock priceat each time level
u = thelog return of the stock index at each time level
u = theaveragelog return of the stock index
- m[ij
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where o isthe annualized realized volatility.

Whereas, an equity swap is based on a specified number of shares, avolatility or

variance swap is expressed in terms of the dollar value of each volatility point.

A volatility swap is sometimes called a realized volatility forward contract
because it provides pure exposure to volatility. A stock volatility swap is a forward
contract on realized volatility. And there is no initial exchange of cash flow between
two parties, only an agreement upon the strike price. Its payoff is equal to

Nx(or—K,)x100 (3
where o is the realized stock volétility over the life of the contracts, K, is the
annualized volatility strike price, and N is the notional amount of the swap in
dollars per annualized volatility point. The holder of a volatility swap at expiration

receives N dollars for every point by which the stock’s realized volatility has



exceeded the volatility strike price. That is, the holder is swapping a fixed volatility
for the actual future volatility which is floating. For example, the cash flow of buying

avolatility swap isshown in Figure 1.

Figure 1. The Cash Flow of Buying a Volatility Swap.
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A variance swap is similar to a volatility' swap. A variance swap is a forward
contract on realized variance, the square of the realized volatility. Its payoff at
expiration isequal to

Nx(0F— K,y )x100 (4)
where o is the realized stock variance over the life of the contracts, K, is the
annualized variance strike price, and N isthe notional amount of the swap in dollars
per annualized volatility point squared. The holder of a variance swap at expiration
receives N dollars for every point by which the stock’s realized variance has

exceeded the variance strike price. That is, the holder is swapping a fixed variance for



the actual future variance which is floating. For example, the cash flow of selling a

variance swap is shown in Figure 2.

Figure 2. The Cash Flow of Selling a Variance Swap.
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Who will use volatility and variance swaps? Volatility has several characteristics
that make trading it attractive. It is likely to grow when uncertainty and risk increase.
Similar to interest rates, volatilities appear to revert to the mean. And voléatility is
often negatively correlated with stock or index level. Derman, Kani, and Zou (1995)
have explained this relationship. Given these characteristics, there are several kinds of
users of volatility and variance swaps. The main users of volatility and variance swaps
are those who are trading volatility levels directionally, who are trading the spread
between the realized and implied volatility levels, and who are hedging implicit

volatility exposure.
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3. 2 General Pricing M ethod

Genera pricing method for volatility and variance swaps is to replicate the value
of variance swaps first, and then take square roots of variance swaps to get the value
of volatility swaps. In fact, volatility swaps are more straightforward for investors
who want to hedge their volatility. According to the actual condition, why we price
variance swaps first? There are two main reasons. First, variance swaps provide
similar volatility exposure to straight volatility swaps. Second, variance is easier to
calculate than volatility. It can serve as the basic building block for constructing
volatility-dependent instruments. The fair value of a variance swap is the delivery
price that makes the swap have zero value. It is determined by the cost of the

replicating portfolio.

To price variance swaps, we assume that there is no jumps allowed for the stock

or index process. Therefore, we assume that the stock price processis given by

O'—S*=/,z(t,---)dt+cr(t,---)dzt : (5
S
where u isthedrift, o isthe continuously-sampled volatility, and we assume that

both of them are arbitrary functions of time and other parameters. For ssmplicity, we

assume that the stock pays no dividends.

11



The theoretical definition of realized variance for a given price history is the

continuous integral

v :%Eaz(t,...)dt . ()

To value a variance swap or forward contract is similar to vauing other
derivative securities. The value of a forward contract F on future realized variance
with strike price K is the expected present value of the future payoff in the
risk-neutral world, or,

F=E[e"(V-K)] , (7)
where r is the risk-free discount rate corresponding to the expiration T, and E[ |
denotes the expectation. The fair delivery value of future realized variance is the strike

price K, for which the contract has zero present value, or,
K. =E[V] . (8
If the future volatility is specified, then one way to calculate the fair value of variance

isto calculate the risk-neutral expectation directly

Ky = EHE o (t,---)dt} . ©)

By applying Ito’'slemmato log§ , wefind

d(IogS):(u—%O'szt+0'dZt : (10)

12



Subtracting the process of logS from the process of the stock price, we obtain
——d(lo ==odt |, 11
5 (logS)=>0 (11)
in which al dependence on the drift x has been cancelled. Integrating this result

over al timesfromtimeOtotime T, we obtain the continuously sampled variance

1,7, 2| ¢7d
v:?joadt:{joé—log%} . (12)

This equation identity dictates the replication strategy for variance. The first term in
the bracket can be thought as the net outcome of continuous rebalancing a stock
position so that it is always instantaneously long 1/ S shares of stock worth $1. The
second term represents a static short position in a contract which pays the logarithm of
the total return at expiration. We call this contract a log contract. It has a detailed
explanation in Neuberger (1994). Following this rebalancing strategy captures the
realized variance of the stock from initiation to expiration. In this equation, we note
that no expectations or averages have been taken. So, it guarantees that variance can

be captured no matter how the stock price moves, as long as it moves continuously.

According to the previous equation, Eg. (12), we can take the expected

risk-neutral value of the right-hand side of it to obtain the cost of replication directly

-2
:

L)Tdé—log%} . (13)
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The expected value of the first term in this equation accounts for the cost of
rebalancing. In a risk-neutral world with a constant risk-free rate r, the stock price
process changes to

Olgstzrdwd(t,---)dzt : (14)

so the risk-neutral price of rebalancing component of the hedging strategy is given by

E{E%ﬂ =T . (15)

This equation represents the fact that a shares position, continuously rebalanced to be

worth $1, has a forward price that grows at the risk-less rate.

There is no actively traded log contract which pays the logarithm of the total
return at expiration for the second term in the previous equation of the strike price
K. Ed. (15). We must replicate the log payoff, at all stock price levels and
expiration, by decomposing its shape into linear and curvature components, and then
replicate each of these separately. The linear component can be replicate with a
forward contract on the stock with expiration at time T . The curvature component,

including the quadratic and higher order contributions, can be replicated by using lots

of standard options with all possible strike levels and the same expirationtime T .

14



For practical reasons, we will replicate the log payoff with liquid options, that is,
with a combination of out-of-the-money calls for high stock vaues and
out-of-the-money puts for low stock values. There is a new parameter S to
represent the boundary between calls and puts. The log payoff can be written as
S IogSr+IogS* . (16)

S S

As the second term in this equation is a constant and independent of the final stock

log—-
price S;, only the first term in this equation has to be replicated.

The following equation which holds for future values of S, suggests this
decomposition of the log payoff
—|ogSr Sf S j 2 max K—s,o)dK+j;f%max(g—K,o)dK. (17)
This decomposition of a log payoff into a portfolio consisting of a short position in
1/S forward contracts struck at S, along position in 1/K? put options struck at
K, for all strike pricefrom0to S, and asimilar long positionin 1/K? call options

struck at K, for all strike pricefromOto S . All contracts expireat time T .

In summary, we can obtain the fair delivery value of variance swap as follows

_2 S o7 S sl (=L
Kvar_?(rT_(ge _1j—|og§+e JO FP(K)dK+e J‘S*FC(K)dKj,(l@

15



where P(K) and C(K) denote the current fair value of a put and call option with
strike price K, respectively. If we use the fair market prices of there options, we can

obtain an estimate of the current market price of future variance.

At the beginning of this section, we focused on pricing and replicating variance
swaps. But most market participants prefer to quote levels of volatility rather than
variance because volatility swaps are more straightforward for investors who want to

hedge their volatility. So we have to consider volatility swaps.

Unfortunately, there is no simple replication strategy for a volatility swap. The
replication strategy for a volatility swap is difficult, and it is affected by changes in
volatility and its value depends on the volatility of future realized volatility. Therefore,
variance is the primary underlying and al other volatility payoffs, such as volatility
swaps, are considered to be derivative securities with variance as underlying. From
this point of view, volatility is a nonlinear function of variance and is therefore more

difficult to value and hedge.

Basically, we will obtain the fair delivery price of avolatility swap by taking the

square root of a variance swap rate. It is the simplest way to approximate the fair

16



delivery price of avolatility swap. That is, the approximated value of avolatility swap
is the square root of the value of a variance swap
K,y =K , (29

vol var

where K is the fair delivery price of the volatility swap. This method will have

vl
some bias for the following reason. Our method first calculates the expected value of
variances, and then takes square root of it to obtain the volatility. But by definition,
we should take the square root of variances first to obtain the volatilities, and then
calculate the expected volatility. Our method will overestimate the fair delivery price
of the volatility swap as

K =E[W < EV]= K, (20)
This bias is mentioned in Demeterfi, Derman, Kamal, and Zou (1999), who also

introduce ways to reduce the bias. This thesis only uses Eg. (19) to approximate the

fair delivery price of the volatility swap.

17



Chapter 4
M ethodology

4.1 Implied Binomial Trees

The market implied volatilities of stock index options often have a skewed
structure, which is commonly called the volatility smile. It implies a negative
relationship between implied volatilities and strike prices. So out-of-the-money puts
trade at higher implied volatilities than out-of-the-money calls. The implied binomial
tree is an arbitrage-free model that fits the smile, is preference-free, avoids additional

factors and can be used to value options from observabl e data.

We use forward induction and Arrow-Debreu prices to build an implied tree with
identical time periods. The volatility function in the implied tree is deduced
numerically from the volatility smile given by the prices of liquid options; the implied
tree model is calibrated to be arbitrage-free relative to observed option prices. Use
forward stock prices and option prices to solve unknown values (the implied stock
prices and transition probabilities) and then find out implied local volatilities.

Following are the notations we will use when we construct the implied tree.

18



r = forward risk-lessinterest rate at each time step
S.i = stock price at timen and state of stock pricei;
the strike price for options expiring at timen+1
Siiia = Stock priceat timen+1and state of stock pricei +1;
theupnodeof S,; a timen+1

S, = stock priceat timen+1and state of stock pricei;
thedownnodeof S; a timen+1
F.. = forward price of the known stock price S,; attimen , whereF, , = €S
i = Arrow-Debreu price at timen and state of stock pricei
p,, = risk-neutra transition probability from node (n,i) to node (n+1,i +1)

First of al, we have to construct a binomial tree for the stock price which is
proposed by Cox, Ross, and Rubinstein (1979). See Appendix A. Then use forward
induction and Arrow-Debreu prices to build an implied tree and reconstruct the

binomial tree of the stock price.

When we stand at time n which starts from 0 and wish to find the unknown
parameters at time n+1, there are 2n+3 unknown parameters to solve for, namely
the n+2 unknown stock prices and the n+1 unknown transition probabilities from
node (n,i) tonode (n+1i+1).Butweonly have 2n+2 known quantities, that is,
n+1 known forward sock pricesat time n, F, ,=€*S , and n+1 known option
prices al expiring at time n+1. Therefore, There are 2n+2 equations to solve for

2n+3 parameters.

19



For example, when we stand at time n=2, the stock prices S,; for each i

from O to 2 are known. We wish to find the unknown parameters at time n=3. There

are 7 unknown parameters to solve for, namely the 4 unknown stock prices, S;; for
each i from O to 3, and the 3 unknown transition probabilities, p,; from node

(2,i) to node (3,i+1). But we only have 6 known quantities, that is, 3 known

r At

forward sock prices at time n=2, F,;=€"S,; and 3 known option prices all

expiring a time n=3. Therefore, There are 6 equations to solve for 7 parameters.

See Figure 3.

Figure 3. An Example For Constructing The Implied Tree.

"= i i i 1
| | | |
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We use the one remaining degree of freedom to make the center of the tree

coincide with the center of the standard CRR tree which has constant local volatilities.

20



Thisis explained as follows. If the number of nodes at a given time is odd, choose the
center node’s stock price to be equal to the spot today. If the number is even, make the
average of the natural logarithms of the two center nodes stock prices equa the
logarithm of today’s spot price. That is S, =S*/S,,, ... Then, we will have

2n+3 equationsto solvefor 2n+3 unknown parameters.

Before starting to construct the implied tree, we have to understand the concept
of Arrow-Debreu prices. An Arrow-Debreu priceis aprice today of a security that has
acash flow at the given time and state of stock price. The Arrow-Debreu price for the

nexttime n+1 isgiven by

Prnn , when i=n+1
€ A =9 Priadnia (1= P )4y 0 when 1<i<n+1 (21)
(1= Pro) Ao , when i=0

Now, we have to derive the theoretical values of forward stock prices. The

implied tree is risk-neutral. Therefore, the expected value of stock at any node (n,i)

one time step later must be its known forward price

I:n, i = pn, i Sn+l, i+1 + (1_ pn, i ) Sn+1, i (22)

where F,, isknown, F ,=€™S ,.Thereare n of theseforward equations.

21



We aso have to derive the theoretical values of options. The strike price for the
option at time n whichisexpiring at time n+1 isthe known stock priceat time n.
The strike §,; can go to the up or down node, § ., or S,;, a the next time.
This ensures that only the up (down) node and al nodes above (below, respectively) it
contribute to a call (put, respectively) struck at S, . Let C(S,.t,,) and
P(S,.t.,) be the known market values for a call and put struck at S,; and

1+l

expiring at time n+1, respectively.

The theoretical binomial value of acall struck at K and expiring at time n+1
Is given by the sum over al discounted probability nodes at time n+1 multiplied by

the call payoff there. Alternatively; we represent it by Arrow-Debreu prices
C(K;T,,)= er“g[ o n; + (1= Pojia) Angon | M (Spzja=KLO) - (23)
When the strike price K equals S, ;, Eq. (23) can be separated into three parts.
First, contributions come from the up and down nodes of S, ;. Because the down
nodeof S ;, S, isout-of-the money to the call option, we ignore its contribution
and only keep the contribution of the up node of S ;, S,,,,,,. Second, contributions
come from up and down nodes of the nodes below S, ;. That is, contributions come

from up and down nodes of S, ,,S,,:S,, . Because al of them are

22



out-of-the-money to the call option, we ignore them all. Third, the contribution from

up and down nodes of the nodes above S, ;. That is, contributions come from up and
down nodes of §, ;.S ., :-S,,. Because these nodes are al in-the-money to the

call option, they can be written into the summation of the known Arrow-Debreu prices

A

n,j?

the known stock prices S, ;, and the known forward stock prices F ;= e's, ;.
Therefore, Eq. (23) becomes to

n

e (Sm ;Tn+1) — pn,i/ln,i (Sn+l,i+l — Sn’i )—I— Z ﬂn’j (Fn,j - Sm ) . (24)

The first term depends on the unknown transition probability p,; and the up node

with unknown stock price S,,;;,,. The second term is the sum of known quantities.

Since we know both the forward stock pricesand call option prices for the smile,
we can solve the equations of these values to find out the stock prices which are above
the center node at the next time and the transition probabilities. The equations are as
follows

UC(S,1Tos) = Puss (S =S )+ 2 Ay (o, S
= (25)
Foi = PoiShaia + (17 Py ) S
If the number of time steps n aready solved isodd, n+1 iseven, theinitial central
node is set equal to the central node of CRR tree. And then we get the value of stock

prices above the center node

23



o Sn+1,i [erAIC (Snl ;Tn+l) - z:l - ﬂn,i Sn,i (Fn,i - Sn+1,i )
e [ermc (Sm ;Tn+1) - Z:I - /ln,i ( Fn,i - Sn+1,i )

: (26)

where

n

Z = z ;i'n,i (Fn,j _Sn,i) ) Fn,j = Sn’je(r—q)At
j=i+1
Similar to using forward stock prices and call option prices to solve the stock prices

above the center node, we use forward stock prices and put options to solve for the

stock prices below the center node

. Sn+1,i+1 [erAI I:)(Sn,i ;Tn+1) - Zjl + /1n,i Sn,i (Fn,i - Sn+1,i+1)

e [€P(SyiTya) =2 |+ Ay (Fi = Suria) (27)
where
=i+
The transition probability at any time step and any state is given by
C S S

If the number of time steps n aready solved iseven and n+1 isodd, use the

logarithmic CRR centering condition S,.,, =S°/S,,,;,, Where S is today’s stock

price corresponding to the CRR-style center node at the previous time. Then we get

the formulafor the node above the two center nodes as

< _s[e"C(ST,.)+4,S-X]
MR AP —€NC(S T )+ 2

N, n,i

: (29)

where

24



Z: Zn: ﬂn,i (Fn,j _Sn,i) ) Fn,j = Sn’je(r—q)At

j=i+1

Similarly, we can fix all the nodes below the center node at this time by using put

options prices. We get the formula for these nodes

_ Sn+1,i+1 [erAI I:)(Sn,i ;Tn+1) - Zjl + /1n,i Sn,i (Fn,i - Sn+1,i+1)
Sn+1'i B [erAt P(Snl ;Tn+1) - Z:I + ﬂn,i ( l:n,i - Sn+1,i+1) ’

(30)

where

n

Z = z ﬂn,i (Fn,j _Sn,i) ) Fn,j = Sn’je(r_Q)At
j=i+1
According to the implied stock prices and transition probabilities, we can find

out theimplied local volatilities at each node;

O-n,i :%V pn,i (1—' pn,i ) |n[ssn:1,i+lJ . (31)

-+1,i

The transition probabilities at any node in the implied tree must lie between O

and 1. If p,; >1, the stock price at the upper node will fall below the forward price.

Similarly, if p,; <0, the stock price at the lower node will fall above the forward

price. Either these conditions allows risk-less arbitrage. Therefore, as we go through

the tree node by node, we demand that each newly determined node's stock price lie

between the neighboring forwards from the previoustime, thatis F; < S <F

n+1,i+1 ni+1-"

If the stock price at any node violates the above inequality, we override the option

25



price that produced it. In its place, we choose a stock price that keeps the logarithm
spacing between this node and its neighboring node the same as that between
corresponding nodes at the previous time. This procedure removes arbitrage violations

from input option prices, while keeping the implied local volatility function smooth.

4. 2 Implied Trinomial Trees

Implied trinomial trees have more parameters than implied binomial trees.
Implied trinomial trees offer more flexibility and can match alarger class of volatility
structure than implied binomia trees. We use these additional parameters to
conveniently choose the state space of al node prices, and let the transition
probabilities be constrained only by option prices. That is, we choose the state space
independent of the transition probabilities and use option prices to solve for the

transition probabilities only.

Similar to implied binomial trees, we have to construct a trinomial tree for the
stock price. See Appendix B. We aso use forward stock prices and option prices to
find out the transition probabilities. And the option prices are presented by

Arrow-Debreu prices. But we do not have to find out the newly implied stock price at
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each node because we assume that the state space at each node is independent of the

transition probabilities.

We use forward stock prices and call option prices to solve for the transition
probabilities of the node above the center node. Therefore the equations we have to

solve are given by

C(K;Tm-l) = e_rAtZ[ pn,j—zﬂ’n+1,j—2 +(1_ pn,j—l_qn,j—1)+Qn,j/1n+l,j :| maX(Sn+l,j - K’O)

j=1

I:n,i = pn,i Sn+1,i+2 + (1_ pn,i - qn,i ) Sn+1,i+1 + qn,i Sn+1,i

(32)
Similar to constructing the implied binomial trees, we can rewrite the equationsto
At 2n
e C(Sn,i+1;Tn+1) = pn,i/?'n+l,i (Sn+1,i+2 - Sn+1,i+1) - Z ﬂn+1,j ( Fn,j - Sn+1,i+1) (33)
j=i+1

I:n,i = pn,i Sn+1,i+2 + (1_ pn,i s qn,i ) Sn+1,i+1 . qn,i Sn+1,i '

where p,; isthe up transition probability and q,; is the down probability at each

node.

According to the result of the equations, we obtain the formulas for the up

transition probability and down transition probability at each node above the center

node. The transition probabilities are presented as follows
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2n
e*'C ( Sw+1,i+1;Tn+1) - Z ﬂ’n,i ( anJ' - Sn+1»i+1) (34)

j=i+1

ﬁ“ ( n+1i+2 Sn+1|+l)

pn,i =

qnvi _ Fn,i - pn,i (Sn+1,i+2 - Sn+1,i+1) - Sn+1,i+1 . (35)
Sn+1,i - Sn+1,i+l

To solve the transition probabilities at each node below the center node is
similar to the way we solve for the transition probabilities at each node above the
center node. We use forward stock prices and put option prices to solve them. And
then we obtain the formula for the up transition probability and down probability at

each node below the center node. They are presented as follows

erAtP( +1|+11 n+1) Z ( +1|+l ,i)

qn i = (36)
' ﬂ‘n,i (Sn+1,i+l Sn+1,i )
_ I:n,i +qni (Sn+li+1_3w+li )_Sr\+l,i+l
pn'i - n+1|+2 Sn+1|+1 . (37)

In the implied trinomial trees, there is still a problem of negative transition

probabilities. If we obtain negative transition probabilities, we will try to overwrite

them. There are alot of ways to overwrite negative transition probability. One way we

use is to choose the value of middle transition probability to be zero, in other words,
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we try to reducing the sub-tree to be a binomial tree. By doing this, we will obtain the

formulafor the overwriting value of the transition probabilities.

lf Sn+1,i+1 < I:n,i < Sn+1,i+2

P, = 1( l:n,i B Sn+l,i+1 + l:n,i - Sn+1,i J (38)
Y 2 Sn+1,i+2 - Sn+1,i+1 Sn+1,i+2 - Sn+1,i
q. = 1( Sﬁ+l,i+2 - I:n,i J .
" 2 Sn+1,i+2 - Sn+1,i (39)
If Sn+1,i < I:n,i < Sn+1,i+1
P = E[LSM'] (40)
2 Sn+1,i+2 i Sn+1,i
g, = l( Sw+l,i+2 I I:n,i 4 Sn+1,i+1 v I:n,i J .
" 2 Sn+1,i+2 1 Sm—l,i Sn+1,i+1 1 Sn+1,i (41)

After getting the transition probabilities, we can use these transition probabilities
to calculate the implied local volatility for corresponding node in the tree. The implied

local volatility is given by

2 12

_ Pn, (Sn+1,i+2 - Fo)2 + (1_ Pni —0n; )(Sn+1,i+l - Fo)2 +0,, (Sn+1,i - Fo)

o , (42
P (42)

where

I:0 = Phi Sn+1,i+2 + (1_ P — qn,i )Sn+1,i+1 + qn,i Sn+1,i
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4. 3 Pricing Volatility and Variance Swaps

In this section, we try to use the implied trinomial tree to price volatility and
variance swaps. After constructing the implied trinomial tree, we have already
obtained the implied local volatilities or variances for each corresponding node. Now
we use these implied local volatilities and variances to price volatility and variance
swaps.

We try to price variance swaps first. Because, by definition, we know that
volatilities are the square roots of variances, and that variances have the property of

the additivity that makes variance much easier to price than volatilities.

By definition, the variance for a given price history is the continuous integral
and given by V :%Eaz(t,...)dt, where T is the whole life of the contract and

o?(t,---) isthelocal variance for every time period. And then now we try to present
it by the discrete form, that is

vV = 1iaz(t,...)m
T (43)
- Ay o)
1Yo
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According to the implied trinomial tree, we have already obtained implied local
variances for each node. We try to find out the expected local variances for each time.
Then use the definition by Eq. (8) to calculate the fair delivery price for the variance
swap contract, see Figure 4. So we obtain

Kvar :_ZE(O-iz) . (44)

After calculating the variance for the whole life of the swap contract, we now try
to calculate the volatility. Because local volatilities are the square root of local
variances, they do not have the property of additivity. We have to calculate the local
variances first, find out the variance for the whole life of the swap contract, and then
take the square root of it to approximate the volatility for the whole life of the swap

contract. Therefore,
K= |2 E(0?) (45)

where K, isthefair delivery price for the volatility swap contract.
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Figure 4. The Process of Calculating the Fair Delivery Price of a Variance Swap.
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4.4 An Example

In Demeterfi, Derman, Kamal, and Zou (1999), they have given a detailed
example of variance swap. We try to use the same assumption and data of this
example, and use our pricing method which is using implied trinomial trees to price

volatility and variance swap.

First of al, we have to introduce the basic assumption and pricing result of the
example in Demeterfi, Derman, Kamal, and Zou (1999). When we want to price a
swap on the realized variance of the daily returns of some equity index, the fair
delivery price is determined by the cost of the replication. If we could buy options
with strike prices from zero to infinity, we would get the fair delivery price of
variance swap by the formula Eq. (18)

_2(r (Sgr S s e L
Kvar_?(rT—(ge —1}—Iog§+e jo FP(K)dK+e Is*FC(K)dK] :

with the choicewhich S’ isequal to S ,thatis S =5,.

Unfortunately, only a small set of discrete option strike prices are available. The
formula will have some error. So we try to use some other approximation. Starting

with the definition of the fair variance given by Eq. (13)
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and it can be written as

SR
S *So (46)
= E{rT—(iie” —1]—Iog§}+e”l'[cp :
T S S

where Il isthe present value of the portfolio of options with payoff at expiration

given by

f(a):g(ﬁ—logi] : (47)

Assume that we can trade call options with strike prices K,. such that
Ko=S <K, <K, <K, <--- and put options with strike prices K,  such that
Ky=S > Kyp > Ky, > Ky, >---. We can approximate the payoff function with a

piece-wise linear function asin Figure 5



Figure 5. Log Payoff and Options Portfolio at Maturity.

The first segment to the right of (S is equivalent to the payoff of a call option

with strike K, . The number of options is determined by the slope of this segment

f =f
Wc(KO): (Kléc)_K(KO) ] (48)

Similarly, the second segment looks like a combination of calls with strike K, and
K, . Given that we aready have w,(K,) call options with strike K,, we need to

findout w, (K, ) call optionswith strike K, where

f (KZC)_ f (ch)
KZC_KlC

w, (K, )= -w, (K,) . (49)
Continuing this way, we can build the whole payoff curve. In general, the number of

call options of strike K . isgiven by

f Kn+1,c —f Kn,c <
o 19 S0 ) o

n+lc~ "Mn,c i=0

C

W, (Koe) =
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The other side of the curve can be build by put options

Wp(Kn,p)z K K ' _pr(Ki,p) . (51)

This approximation guarantees that these payoffs will always exceed or match

the value of the log contract, but never be worth less. After calculating the weight of
each option, I, isobtained

e = 2 W(K;, ) P(S Ky )+ 2 wW(K,)C(S K (52)

Assume theinitial stock index S; is 100, the continuously compounded annual
risk-less interest rate r is 5%, the dividend yield q is zero, and the maturity of the
variance swap is 3 months(T =0.25). Also assume that we can buy options with
strike prices from 50 to 150, uniformly spaced 5 points apart, and the at-the-money
implied volatility is 20% with a skew such that when the strike price decreases for 5

points, the implied volatility will increase 1 volatility point.

After calculating the weight of each option, we obtain the cost of the options

portfolio. We calculate the fair delivery price for variance swap by the equation
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rT —(iie” —1)—Iog% +€ M,

rT —(%e” —1)—Iog§_ +e7 {ZW(K“,) P(S, Kip)+Zw(Kic)C(S, Kic)}.

(53)

The cost of the variance swap istheresult of K , that isK, = (20.467%)". And then

var !

the fair delivery price of the volatility swap iskK,,, = 20.467%.

After introducing the example in Demeterfi, Derman, Kamal, and Zou (1999),
we now use our method to calculate the same example in order to compare the result

and see whether our method is available.

Again, we assume the initial stock index S, 'is 100, the strike price K is 100,
the continuously compounded annual risk-less interest rate r is 5%, the dividend
yield q is zero, and the maturity of the variance swap is 3 months (T =0.25), and
the at-the-money implied volatility is 20% with a skew such that when the strike price
decreases for 5 points, the implied volatility will increase 1 volatility point. To keep
our example simple, we choose the state space of our implied trinomia tree to
coincide with the CRR type trinomial tree which has 4period. That is, the number of

period to the state space n is four. Use the formulas we have explained in the
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chapter 4 to solve for the transition probabilities and implied variances. The results

aregiven in Figure 6.

After obtaining the total probabilities and implied variances by implied trinomial

tree, we use them to calculate the expected implied variance for each time period.

E(07) = PoX0i+PuX0h+ P ,X05,
= 0.2369x0.0561+ 0.4996x 0.0398+ 0.2634% 0.0340
= 0.0421
E (0-22) = PyoX 022,0 T Py X 0-22,1 T Py X 022,2 + Py 0-22,3 T Py s X 0-22,4
= 0.0814x0.0836+ 0.1879x0.0552+ 0.3879x 0.0381+ 0.2827x 0.0323
+0.06x0.0251
= 0.0426
E (O-e?) = PgoX O-?io T Py X 03?,1 + P3p X 0??,2 T Ps3X 0-3?,3 T PsaX 0-3?,4 T P35 0-3?,5 T Py X O-a?,e
= 0.0426x0.0838+0.059x0.0888+ 0.1882x 0.0506 + 0.3224x 0.038
+0.2746x0.0315+ 0.1028x 0.0242 + 0.0104 x 0.0415
= 0.0421

Next, calculate fair delivery price of the variance swap contract by Eq. (44)

_AtS E(O_iz)_0.0625 g E(O_z):O.O625

var t
T3

K (0.0398+0.0421+ 0.0426 + 0.0421) = 0.0417

025 5
Finally, take the square root of the variance we find out in order to get the fair

delivery price of the volatility swap contract by Eq. (45)
> E(07) =~/0.0417 =0.2041

KvoI =A==
T

Therefore, K, =(20.41%)° and K, = 20.41%.
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Figure 6. The Result of the Example.
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Compare results of the general pricing method and our pricing method which
use the implied trinomial tree. The results are given by the Table 1. Using our pricing
method can arrive at a result a little smaller than the result of the general pricing
method. When the number of period becomes large, the result will converge. We have
aready explained that the fair delivery price may exceed the realized value by using
genera pricing method. In conclusion, our pricing method is available and more

straightforward than the general pricing method.

Table 1. The Assumed Data and the Result of Two Pricing Methods.

Basic Pricing by Pricing by
Assumption Replication Implied Trinomial Tree
S 100 Kia Ku n Kia Ku
K 100 0.0419 0.2047 4 0.0417 0.2041
T 0.25 10 0.0414 0.2034
r 5% 50 0.0408 0.2021
q 0% 100 0.0407 0.2017
o 20%
skew | 0.2%
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Chapter 5
Srategiesand Applications

There are several ways in which volatility and variance swaps can be used. If a
trader expected volatility to increase, he could long a volatility or variance swap to
take a position on that view, or if his portfolio is naturally short vega, he could use the
swap to hedge the loss in option portfolio. In fact, a swap would provide a cleaner

vega hedge than offsetting options portfolios.

For example, suppose a trader, whose option portfolio is short volatility with
vega position of -$55,000, suspects an impending market correction and simultaneous
increase in volatility sometime over the next six months. Suppose further that
six-month implied volatility is 25% and that the trader predicts that volatility will
increase by 35 percentage points (from 25% to 60%) over this time frame. If this
prediction comes to fruition, the option portfolio could stand to lose $1,925,000

($55,000 x 35) in market value as aresult of changesin volatility alone.

To hedge this volatility exposure, the trader could purchase options to

neutralized vega. However, the problem with this strategy is that as soon as the
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underlying index moves, the position is no longer perfectly hedged. In other words,
the trader would need to readjust the hedged position every time the market moves.

This could be troublesome and expensive in avolatile market.

Rather than hedging with offsetting options, the trader could enter into a long
position on volatility or variance swap. Using the volatility swap rate of 25%, a swap
having notional value of $55,000 would hedge the option portfolio. If the actual
volatility during this period was 60% as the trader predicted, he would receive
$1,925,000 ($55,000 x (60% — 25%) x 100 ) at the end of the swap contract, which
could just offset the loss that would have been incurred on the option portfolio. Even
if the volatility only rises to x% which is smaller than 60%, the trader will receive the
amount of ($55,000 x (x% — 25%) x 100) which is smaller than $1,925,000. In
other words, the trader may not offset all his loss. But he will not lose as much if he

has not hedged.

There are other strategies that can be effective as well. Volatility and variance
swaps may be used to execute stock index spread trading strategies. In these strategies,
a short position of volatility or variance swap on an equity index is hedged by along

position of volatility or variance swap on a different index. This spread trade has a
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payoff based on the difference between the realized volatilities or variances in these

two indices.

For example, suppose a trader shorted a volatility swap on the S& P 500 with a
swap rate of 20%, and purchased a volatility swap on the NASDAQ 100 with a swap
rate of 25% (see Figure 7). With this strategy, four conditions may happen in the
future. The trader is betting that the realized volatility of NASDAQ 100 will exceed
the realized volatility of S&P 500 by more than 5 volatility points. The analysis for

every possible condition follows.

Figure 7. The Cash Flows of Selling aVolatility Swap on S& P 500 and Buying a
Volatility Swap on NASDAQ 100.

Short Volatility Swap on S& P 500

If Osepsn > 20%, NX(Oggpse0 — 20%)x100.

Investor > Financial Institute

If Osgpsn < 20%, NX(20%— O psyo ) x100.

Long Volatility Swap on NASDAQ 100

If O amnoi < 25%, NX(ZS%_O-NASDAQloO)X]-OO-

[ nvestor > Financial Institute

N isthe notional amount of the contract.
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Condition 1. Oggpsy >20% and O \ugppoiee > 25%

When o pe > 20%, the trader who sells a volatility swap on S&P 500 has to
pay NX(Oggpsp —20%)x100 to the financial institute. That is, he will have a cash
outflow equal t0 N X (0 ggpsp —20%)x100. And When o ,paoi00 > 25%, the trader
who buys a voldility swap on NASDAQ 100 will receive
N X (O aspagioo — 25%) %100 from the financial institute. That is, he will have a cash
inflow equal t0 (Gyagpoio — 25%) . Therefore, if the trader wants to have profit, the

volatility of NASDAQ 100 shall exceed the volatility of S& P 500.

Condition 2. Tggpsy, >20% and o ugpacise < 25%

When o pe > 20%, the trader who sells a volatility swap on S& P 500 has to
pay NX(Oggpsp —20%)x100 to the financial institute. That is, he will have a cash
outflow equal t0 N X (0 ggpsp —20%)x100. And When o ,gpaoi00 < 25%, the trader
who buys a voldility swap on NASDAQ 100 has to pay
N X (25% — O yuepnoio ) X100t0 the financial intitute. That is, he will have a cash

outflow equal to NX(25%— Oyugpoin )x100. Therefore, if the trader wants to have

profit, the volatility of NASDAQ 100 shall exceed the volatility of S& P 500.

Condition 3. Oggpsy <20% and O ugpaciee > 25%



Whenog, po, < 20%, the trader who sells a volatility swap on S&P 500 will
receive N x(20%— O psy, )x100 from the financia institute. That is, he will have a
cash inflow equal t0 Nx(20%—0g,psy)x100. And When o,gpoi0 > 25%, the
trader who buys a volatlity swap on NASDAQ 100 will receive
N X (O aspagioo — 25%)x100from the financial institute. That is, he will have a cash

inflow equal t0 N X(Oyagpoio — 25%)x100. Therefore, if the trader wants to have

profit, the volatility of NASDAQ 100 shall exceed the volatility of S& P 500.

Condition 4. Oggpsy <20% and O ugpacioe < 25%

When o pq < 20%, the trader who sells a volatility swap on S&P 500 will
receive N x(20%— O, psy ) x100from the financial institute. That is, he will have a
cash inflow equal t0 Nx(20%—0ggpey)x100. And When o,gpou0 < 25%, the
trader who buys a volaility swap on NASDAQ 100 has to pay
N X (25% — Oyuepnoio ) X100t0 the financial intitute. That is, he will have a cash
outflow equal to NX(25% — Oyugpoin )x100. Therefore, if the trader wants to have

profit, the volatility of NASDAQ 100 shall exceed the volatility of S& P 500.

In summary, the trader will benefit when the volatility of NASDAQ 100 exceeds

the volatility of S& P 500 by more than 5 volatility points.
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Chapter 6
Conclusions

In general, pricing volatility and variance swaps uses the method of replication.
In this thesis, we use a methodology that is more direct and intuitive in pricing
volatility and variance swaps. And the methodology we choose is the implied tree. We
try to use the implied tree to calculate implied local volatilities and variances, and
then use these implied local volatilities and variances to price volatility and variance
swaps. After using the implied tree to price, we also compare the result of this method
to the general pricing method. We find that using this method can obtain the values of

volatility and variance swaps similar to the general method.

For further research, we can try to use the modified implied tree to price
volatility and variance swaps because the implied tree model we used contains lots of
assumptions and includes something that is artificial when we have the negative

probabilitiesin the tree. So, there some inaccuracies remain in our pricing method.
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Appendix

A. Constructing Binomial Trees

This appendix provides the constructing method for the constant volatility

binomial tree which isfirst proposed by Cox, Ross, and Rubinstein (1979).

Consider the evaluation of an option on a stock without dividends. Assume that
the initial stock price isS,. Divide the life of the option into time intervals of
length At . Assume there are two possible states that the stock price at each node may
move to when time goes to the next period. For example, the stock price will move
fromStoSuorSd. See Figure 8. In general, u>1 and d <1. When the stock price
moves from S to Su, it is an up movement. When the stock price moves from S
to &, it is a down movement. The probability of an up movement will be denoted
by p . The probability of adown movement equals 1-p.

Figure 8. CRR-Type Binomial Tree.
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The risk-neutral valuation principle states that an option can be valued on the
assumption that the world is risk neutral. This means that for valuation we can assume
that the expected return from all traded securities is the risk-free interest rate, and
future cash flows can be valued by discounting their expected values at the risk-free
interest rate r. Hence the expected value of the stock price at the end of a time
interval of lengthAt isSe™ , where S isthe stock price at the beginning of the time
interval, i.e.,

S =pu+(1-p)d . (A.1)
Eliminate S from both side of this equation to obtain
e =pu+(1-p)d . (A.2)

Thisisthefirst condition to solvefor p, u,and d.

Assume that the stochastic process for stock price which has constant volatility
isasfollows:
s =udt+odz, (A.3)
S
whereu is the drift term and o is the volatility. This implies that the variance of the
percentage change in the stock price in a small time interval At isc®At. The

variance for avariable X isdefined asE(X?)~[E(X)]". Thenit follows that

pu? +(1- p)d*—[ pu+(1- p)d]zzazAt . (A. 4)
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Substituting the up probability p reduces this equation to
€ (u+d)-ud-e"* =o’At . (A.5)

Thisisthe second condition to solvefor p, u,and d.

The third condition to solvefor p, u,and d by Cox, Ross, and Rubinsteinis

the assumption that

ud=1 . (A.6)
Therefore, we obtain
erAt I d
p =
u-d (A.7)
u = en™ (A.8)
Ul =. et ap . (A.9)

B. Constructing Trinomial Trees

We have more freedom when constructing constant volatility trinomial tree. In
constructing trinomial tree, we can view two steps of binomial tree in combination as
a single step of a trinomial tree. The CRR type trinomia tree is constructed

analogously to the binomial tree.
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Assume there are three possible states that the stock price at each node may

move to when time goes to the next period. For example, the stock price will move

fromStoSu, Sm orSd. See Figure 9. In general, u>1,m=1, andd <1. When the

stock price moves from S to Su, it is an up movement. When the stock price

moves from S to 9n, it staysa S and is a middle movement. When the stock

price moves from S to d, it is a down movement. The probability of an up

movement will be denoted by p, the probability of a down movement will be

denoted by ¢, and the probability of a middle movement equals 1- p—q.

Figure 9. CRR-Type Trinomial Tree.

As in constructing the binomial tree, we use the risk-neutral valuation principle.

So we have that the expected value of the stock price at the end of atime period is
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S = pu+(1- p—q)Sm+qgsd . (B. 1)
Eliminate S from both side of this equation,

e =pu+(l-p-q)+qd . (B. 2)

Because we assume that in constructing trinomial tree, we view two steps of

binomial tree in combination as a single step of atrinomial tree. Therefore,

u = eV (B.3)
d o= eo® (B.4)

Also similar to constructing the binomial tree, we obtain an equation from
calculating the variance. That is,

pu? +(1- p—q)+0qd? - pu+(1- p—q)+qd]2 =0°At . (B.5)

Substituting uandd into equations from expected value and variance, we can

obtain the up and down probabilities

2
rAt/2 —oAt/2
goVA2 _ oAtz
g oA _ grat2

qa = goVAU2 _ grovat2 ’ (B_ 7)
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