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摘要 

本文提出了一個固定機率-隨機波動度的隱含波動二元樹的建構方法。此方

法改善了先前其他學者曾提出方法的缺點。相較於 Derman-Kani 隱含波動二元樹

與 Li 隱含波動二元樹，以此方法建構隱含波動樹時，具有相當的穩定性。在

Derman-Kani 隱含波動二元樹中有不良機率的問題，亦即在二元樹建構的同時，

會出現機率大於 1 或小於 0 的狀況；在 Li 隱含波動二元樹中，雖改良了不良機

率發生的情形，但當隱含波動微笑曲線陡峭時，在建構樹的過程中，股價仍會發

生違反無套利原則的狀況。然而，本文所提出的新方法，不僅改善了上述二者的

缺點，在二元樹的建構概念上相當的簡單易懂，選擇權評價的結果也相當穩定。 

 

關鍵字: 波動度微笑曲線、波動度面、隱含波動度樹、二元樹 
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Abstract 

This thesis proposes a constant probability-stochastic volatility implied binomial 
tree. Our method improves upon some weaknesses of previous works. Compared with 
the Derman-Kani tree (1994) and the Li tree (2000), our method is considerably more 
stable. In our method, neither the invalid transition probability problem occurs, like in 
the Derman-Kani tree, nor the results of option pricing diverge when the slope of 
volatility with respect to the strike price is steep, as in the Li tree. Incorporating the 
known local volatility function, our method constructs the implied binomial tree 
directly by forward induction. The option value is calculated from the stock prices in 
the terminal nodes of the tree backward. As a whole, for the proposed constant 
probability-stochastic volatility implied binomial tree, its construction is direct, and its 
implementation is straightforward. 

 

Keywords: volatility smile, volatility surface, implied tree, binomial tree 
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Chapter 1 
Introduction 

1.1 Introduction 

Since the market crash in October 19th, 1987, numbers of studies have indicated 
the volatility smile phenomenon in which at-the-money (ATM) options tend to have 
lower implied volatilities than both in-the-money (ITM) and out-of-the-money (OTM) 
ones. Several researchers have also examined the existence in various markets, and 
the patterns exhibit uniquely. Stock options typically have smirk with negative slope 
with respect to the strike price (see Corrado and Su (1997)), currency options usually 
show a smile (see Hull (2007)), and commodity options represent a smirk with positive 
slope with respect to the strike price (see Melick and Thomas (1997)). 

Financial economists provide several explanations to the occurrence of volatility 
smiles, such as Barndorff-Nielsen and Shepherd (1999), London (2004), Ait-Sahalia 
and Lo (2000), Jackwerth (2000), Bates (2000), and Bollen and Whaley (2004). The 
leverage effect, the correlation effect, the investor wealth effect, the risk effect, the 
liquidity effect and the demand-supply of options are all possible explanations (we 
provide the details in Chapter 2). All of these reasons are sufficient to shape the 
probability distribution of asset returns, and consequently lead to a common conclusion. 
The pattern of implied volatility depends on how the return distribution behaves. 

On the other hand, the failure of the Black-Scholes (1976) option pricing model is 
thought of as the structural cause of volatility smile. Its inability to describe the 
structure of market option prices arises from the model’s assumptions of constant 
volatility and normal distribution of asset returns. In reality, the implied volatilities 
differ across strike prices and terms to expiration and the probability distribution of 
asset returns is empirically fat-tailed and skewed rather than normal, which is 
examined by Derman and Kani (1994). This implies that the market prices of OTM 
puts and calls are higher than their theoretical values. If the volatility is solved 
inversely by the Black-Scholes formula given all parameters other than volatility 
known, the volatility implied from the model would therefore be higher than assumed. 

Constant volatility, however, is not suitable for pricing options under such a 
circumstance. Stochastic volatility models and deterministic volatility models are 
proposed in which varying volatilities are taken into consideration. The former are 
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represented by Hull & White (1987), Dupire (1992), Heston (1993), Stein and Stein 
(1991) and Nelson (1991), and the latter are suggested by Derman and Kani (1994), 
Rubinstein (1994) and Li (2000). Among them, the tree-based implied volatility 
models, one kind of deterministic model, are easy to understand and implement. By 
incorporating the market prices of options and forwards, Derman and Kani (1994) and 
Li (2000) derived algorithms to construct implied binominal trees. These two 
algorithms are regarded as the extensions of the Cox, Ross, and Rubinstein (CRR) 
(1979) tree and the Jarrow and Rudd (1982) (JR) tree, respectively, by taking the smile 
effect into account. 

 

1.2 Motivations and Contributions 

The main disadvantage of the Derman-Kani tree is the invalid transition 
probability problem, in which the transition probability may become greater than one 
or less than zero. In other words, this allows the existence of arbitrage opportunity. 
Although there are some ways to override these nodes that break the no-arbitrage 
principle to continue the construction of the tree, the implied information will be lost 
by this artificial modification. 

Li, on the other hand, derives another implied binomial tree by using constant 
probability approach, that is, to set the transition probabilities between nodes of the 
tree as 0.5. This algorithm, in effect, solves the problem of invalid transition 
probability, and the pricing results are quite stable even after numbers of iteration. 
However, the stock prices on the nodes may still violate the no-arbitrage principle 
when the slope of the implied volatility with respect to the strike price is steep. When 
this happens, the results of option pricing will, in effect, diverge as the number of 
time partitions increases. Under such a circumstance, the construction of the Li tree is 
not plausible anymore. 

In order to cope with the problems exhibited in the Derman-Kani tree and the Li 
tree, we propose an alternative method to construct the implied binomial tree. The 
idea is identical to the Li tree, yet the implementation is quite different. Instead of 
using a mirror constant probability binomial tree with constant volatility 
corresponding to the implied volatility for pricing options, our method is to grow the 
stock prices on the nodes within the tree in the next time step directly from the stock 
prices on the nodes in the previous time step by multiplying by the up-move or 
down-move parameters in their binomial stock price settings. These parameters are 
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calculated according to a known local volatility, which is a function of strike price 
and time to maturity.  

Compared with the Derman-Kani tree, our method does not have the invalid 
transition probability problem because the up and down probabilities are set to 0.5. 
Contrary to the Li tree, our proposed approach could still work even if the slope of 
the volatility with respect to the strike price is relatively steep. 

1.3 Organization of this Thesis 

The structure of this thesis is organized as follows. Chapter 2 introduces notions 
on the implied volatility surface, the local volatility surface, and the strike structure 
and the term structure of volatility, exploits economic and structural causes of 
volatility smile, and reviews volatility modeling approaches, the implied trees 
proposed by Derman and Kani, and Li in particular. Chapter 3 and Chapter 4 explore 
the Derman-Kani tree and the Li tree respectively and specify their problems in detail. 
Chapter 5 is our proposed method. Finally, Chapter 6 concludes. 
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Chapter 2 
Literature Review 

This chapter concentrates on the introduction of basic notations about the 
volatility, including 1) the definitions of implied volatility and local volatility, and the 
relationship between them, 2) the causes of the strike structure of volatility, and 3) 
volatility modeling methods. Finally, The last part reviews implied tree based option 
valuation approaches. 

 

2.1 Implied Volatility Surface 

The Black-Scholes model, which is one of the most important instruments for 
options pricing, assumes that volatilities are constant for options on the same 
underlying asset with the same expiration date and different exercise prices. However, 
the volatility backed from the Black-Scholes formula, namely implied volatility, 
changes depending on strike prices and time to maturities. The relationship between 
the implied volatility of an option and its exercise price is known as the volatility 
smile or the strike structure of implied volatility; the pattern of implied volatility 
across time to expiration is called the term structure of volatility. The combination of 
the strike structure and the term structure, which is plotted in space, generates a 
volatility surface. In other words, the implied volatility surface defines implied 
volatility as a function of strike price and time to maturity. 

 

2.2 Local Volatility Surface 

Local volatility, on the other hand, is thought of as the market consensus 
estimate of instantaneous volatility at a certain future market level of strike and future 
time. Local volatilities corresponding to different future market levels and times 
together comprise the local volatility surface. 

According to Derman and Kani’s (1997) explanation, the relationship between 
local volatilities and implied volatilities in the option world is analogous to the 
relationship between forward rates and spot rates in the fixed-income world. In 
general, the variation of local volatilities is greater than of implied volatilities. 
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2.3 Causes of Strike Structure of Volatility 

Previous studies explained the existence of the strike structure of volatility in 
twofold, the behavioral causes and the structural causes. The former is concentrated 
on the financial behaviors of investors, and the latter originates from the violations of 
the Black-Scholes assumptions. 

From economic viewpoint, the leverage effect, the correlation effect, the investor 
wealth effect, the risk effect, the liquidity effect and the demand-supply of options are 
all possible attributions to the strike structure of implied volatility. First, Campbell 
and Kyle (1993), Barndorff-Nielsen and Shepherd (1999) indicated the leverage 
effect that debt-equity ratio rises as stock prices fall. Thus, this leads to a rise in 
volatility. Second, London (2004) stated the correlation effect. He argued that stock 
prices are likely to be highly correlated in down markets so that the diversification 
effect is reduced, and eventually causes volatility to rise. Third, the investor wealth 
effect and the risk effect are the two sides of one coin, which are proposed by 
Ait-Sahalia and Lo (2000) and Jackwerth (2000). As the market falls, investors feel 
poorer and become more risk averse so that any news brings about greater market 
reactions and trading volume, which drives volatility to rise. As volatility rises, risk 
premium required by investors increases, which results in a decline in the market 
price. In addition, the liquidity effect as a source of volatility smile is claimed by 
Platen and Schweitzer (1998), Pena, Rubio and Serna (1999) and Bates (2000). Due 
to low liquidity by market makers who take the other side of those trades selling 
OTM puts and buying OTM calls, the liquidity premium makes the prices of OTM 
options become higher. As a consequence, these OTM options are priced higher in 
implied volatilities compared with ATM ones, which are priced lower in implied 
volatilities. Finally, from the perspective of demand-supply of options, Rubinstein 
(1994), Bollen and Whaley (2004) suggested that there is strong demand for OTM 
puts created by portfolio hedgers and there is strong supply of OTM calls by portfolio 
writers. The demand-supply of options, therefore, makes the OTM options priced 
higher than ATM ones in implied volatilities. 

From the perspective of structural causes, the violations of the Black-Scholes 
assumptions are the most profound. The Black-Scholes model theoretically postulates 
that asset prices follow a lognormal diffusion process under the risk-neutral measure 
with constant volatility. The logical conclusions are 1) historical volatilities of 
underlying asset obtained from time series data are constant over time; 2) all options 
of the same underlying asset with different exercise prices and expiration dates have 
the same implied volatility; and 3) the risk-neutral probability distribution of 
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underlying asset prices (returns) at some future date is lognormal (normal, 
respectively). However, these logical conclusions contradict what is observed in the 
market. Indeed, it has been empirically proved that the volatilities vary at different 
strike prices across time, and the probability distributions of asset returns are 
leptokurtic with thick tail rather than normal, as demonstrated by Jackwerth and 
Rubinstein (1996) and Melick and Thomas (1997). Furthermore, Rubinstein (1994) 
interpreted the fear of market crash as “crash-o-phobia,” that market participants have 
different views on the distribution of the underlying asset from assumed by the 
Black-Scholes model. The following table illustrates more detailed explanations to 
this point. 
 

 Fat-tailed instead of normal  

At-the-money  Under the fat-tailed distribution, the probability that a call is 
exercised is 0.5. It is the same as in the normal distribution.  

Out-of-the-money 
call 

Under the fat-tailed distribution, the probability that a call is 
exercised is higher than in the normal distribution so that the 
implied volatility is higher.  

Out-of-the-money 
put 

Under the fat-tailed distribution, the probability that a put is 
exercised is higher than in the normal distribution so that the 
implied volatility is higher.  

Table 2.1 The causes of higher implied volatilities for OTM options. 

 

2.4 Volatility Modeling 

The inadequacy of the Black-Scholes model or other models with constant 
volatility as the basic assumption drives a vast number of studies to take the strike 
structure and the term structure effects of volatility into account. Stochastic volatility 
models and deterministic volatility models are two mainstreams of the volatility 
modeling. 

In stochastic volatility models, the volatility is regarded as an unknown factor, 
which is directly associated with a certain type of diffusion process, such as Brownian 
motion or mean-reverting process. The researches in this direction are Hull and White 
(1987), Stein and Stein (1991), Heston (1993), and Nicolato and Venardos (2003). 
The models toward this direction are featured by increasing complexity or serial 
dependence; however, they also have their drawbacks. First, Lim and Zhi (2002) 
suggested that using merely the underlying assets and riskless bonds is inadequate to 
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hedge the volatility risk directly, and the option valuation is in general no longer 
preference free. Second, Mahieu and Schotman (1998) pointed out the intractability 
of the likelihood-function of stochastic volatility models. Since the volatility is an 
unobserved component and the model is non-Gussian, the likelihood function is only 
available in the form of a multiple integral. But, exact likelihood-oriented methods 
require simulations and are computer intensive. Third, the option price relies on 
several additional parameters whose values have to be estimated. The precision of 
estimation poses another issue. 

Deterministic volatility models, on the other hand, hypothesize that the local 
volatility of the underlying asset’s return is a deterministic function of the asset price 
and time. In this case, the option valuation based on the Black-Scholes partial 
differential equation remains possible. These models capture the exact characteristics 
of the strike structure and the term structure of volatility by finding the local volatility 
function of the underlying asset. This sort of method is feasible in case the following 
conditions are meant. In the framework of deterministic volatility model, 1) markets 
are regarded as dynamically complete and 2) options are redundant assets that can be 
replicated by combinations of other assets. Accordingly, options can be priced by the 
no-arbitrage principle without restoring to general equilibrium models.  

On the whole, there are three categories of deterministic volatility models: 1) the 
constant elasticity of variance model (CEV) such as Cox and Ross (1976), Jarrow & 
Rudd (1987); 2) the implied tree approach such as Dupire (1994), Derman and Kani 
(1994), Rubinstein (1994), and Li (2000); and 3) the kernel approach such as 
Ait-Sahalia and Lo (2000). The CEV model does not take into account the 
characteristics of skewness and kurtosis for asset returns and the volatility smile for 
option prices. In addition, the kernel approach has to construct a non-parametric 
estimator based on the state-price density, and to perform the Monte Carlo simulation. 
Yet, the severe finite sample bias, indicated by Pritsker (1997), is the primary 
shortcoming of the kernel approach. In contrary to the CEV models and the kernel 
approach, the implied tree based models are relatively simple to implement without 
posting a structural form for the volatility function. Option valuation is carried out 
through constructing the implied tree by feeding market observed data. 

 

2.5 Implied Trees 

The fundamental concept of the implied tree approaches is to build a binomial or 
trinomial tree that can fit currently traded derivatives prices whether exactly or in 
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some ways, and the tree can further be adapted to price any other derivatives on the 
same underlying asset with the same or earlier maturity. 

Jackwerth (1999) divided the existing approaches to construct implied trees into 
three classes. First, implied binomial trees are constructed by only using backward 
induction. These trees fit either the volatility smile, e.g. Rubinstein (1994), or both the 
volatility smile and the time dimension of implied volatilities such as Jackwerth 
(1997). The second class builds the implied binomial trees by using backward and 
forward induction simultaneously, Derman and Kani (1994), Barle and Cakici (1998), 
and Brown and Toft (1999), for instance. Additionally, the third class constructs 
implied trinomial trees with both backward and forward inductions. Dupire (1994), 
Derma, Kani and Chriss (1996) are examples. The unique feature of the third class is 
that the complete state space of implied trinomial trees is fixed in advance, and, 
therefore, only the transition probabilities have to be specified. 

On the other hand, concerned with the requirement of extracting risk-neutral 
distribution of asset returns in the process of building the implied tree, the literature 
takes two directions In the methods of Dupire (1994), Rubinstein (1994), Jackwerth 
(1997) and Brown and Toft (1999), the risk-neutral distribution of asset returns have 
to be extracted in the process of constructing the implied tree. On the contrary, 
approaches of Derman and Kani (1994), Barle and Cakici (1998), Derma, Kani and 
Chriss (1996), and Li (2000) construct the implied tree directly by feeding market 
prices and other required variables. 

Li (2000) pointed out some advantages of pricing options by implied trees: 1) It 
is a preference-free approach. The market price of volatility risk tends need not to be 
specified. 2) All contingent claims priced based on the model are consistent with the 
market. This could be used for pricing exotic options and over-the-counter options 
using standard options as inputs for the implied model. 3) No assumption is made on 
the form of local volatility function, which is determined to be consistent with the 
market.  
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Chapter 3 
The Derman-Kani Tree 

Derman and Kani were the first authors who proposed the implied binomial tree. 
Their tree captures the feature of volatility smile by incorporating market observations. 
However, the primary drawback is that the invalid transition probability problem 
occurs even with a small number of time partitions when growing the trees. This 
further leads to the violation of the no-arbitrage principle. Although the nodes with 
stock prices which violate the no-arbitrage principle could be replaced, such kind of 
manipulation makes the original idea of catching market information less meaningful. 
In other words, the market information is lost in the procedure of replacing these 
stock prices.  

This chapter concentrates on the analysis of problems happen in the 
Derman-Kani tree. First, the Derman-Kani algorithm is described, including the 
assumptions, settings and the implied tree construction method. Then, the occurrence 
of invalid transition probabilities between nodes with stock prices in the process of 
evolving the implied tree is illustrated numerically. Finally, the disadvantage of 
replacing those stock prices that violate the no-arbitrage principle is indicated 
specifically. 

 

3.1 The Derman-Kani Algorithm 

The Derman-Kani method constructs the implied binomial tree by forward 
induction initially and then calculates option value by backward induction. The 
implied binomial tree is built with uniformly spaced time partitions,  apart. The 
root of the tree begins at  with the current spot price, and the stock prices in the 
nodes in future time steps evolve from the central nodes up and down by using all 
market prices of calls and puts, respectively. All transition probabilities, 
Arrow-Debreu prices and the stock prices are also calculated in each time step. After 
the implied tree is constructed, the option value is calculated from the stock prices in 
the terminal nodes of the tree by backward induction. Figure 3.1 shows the time step 

 with  implied binomial tree nodes and their already known stock prices . 
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Notation: 
: Known forward riskless interest rate 

: Stock price at node  at time step , node  
: Known forward price at node  at time step , node  
: Known Arrow-Debreu price at node  
: Unknown risk-neutral transition probability from node  to node 

 

Figure 3.1 Inductive procedure in the Derman-Kani tree. The implied binomial 
tree is built from the central node up and down. The stock price for the central node is 
derived from stock prices in the previous time step. The upper part of the tree grows 
from the central node up one by one by using market call prices; and the lower part of 
the tree evolves from the central node one after one through using market put prices. 
Inductive procedure is performed for stock prices when n is (a) odd and (b) even. 

 

For known stock price  at time step , there are two possibilities to grow 
the tree: either going up to  with probability , or going down to  
with probability . Therefore, there are  parameters of transiting from 
time step  to time step , that is,  stock prices, , and  transition 
probabilities, . In addition, using the risk-neutrality of the implied binomial tree, 

  

 

 

 

 

 

 

 

 

 

Upper tree 

 

Center condition 

Lower tree 

(a)  (b)
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the expected value, one period later, of the stock price at any node, is its known 
forward price, which could be expressed as 

         (3.1) 

Consequently, there are totally  equations for  parameters. In 
turn, the transition probability could be stated in terms of forward prices and stock 
prices as 

           (3.2) 

Let  and  denote the known market values of European 
call and put prices, respectively, with strike  maturing at . The value in a 
binomial context that assumes constant volatility, with strike  and maturity  is 
given as 

  (3.3) 

and 

  (3.4) 

where  is the Arrow-Debreu price, i.e., the price today of a security that pays 
unity at period , in state , and zero elsewhere. Their values are: 

 

   (3.5) 

 Consider the portion of the tree that extends from the central node upward. 
Because both forward prices and call prices are known,  could be solved 
from Eqs. (3.1) and (3.3), and is expressed in terms of  as 

  (3.6) 

where  
          (3.7) 

In the same way, by solving Eqs. (3.1) and (3.4), the lower part of the tree could 
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be derived iteratively from the central node downward: 

 (3.8) 

where  

           (3.9) 

The final degree of freedom is assigned to the central condition. If the number of 
nodes at a given time step is odd, choose the central node’s stock price to be equal to 
the spot price today. If the number is even, then make the average of the logarithm of 
the two central stock prices in the nodes equal the logarithm of today’s spot price. 
Accordingly, for , . The central condition 
implies that , where . Using this condition in Eq. 
(3.6), the upper stock price of the two central nodes for even level is: 

     (3.10) 

After the initial node with stock price is calculated, all the stock prices in the 
nodes above for it  can be calculated one by one using Eq. (3.6) 
and all the stock prices in the nodes below for it  can be calculated 
iteratively by using Eq. (3.7). 

 

3.2 Invalid Transition Probabilities 

Although the Derman-Kani tree is valid in principle, it is not robust in practice. 
Unfortunately, the transition probability is pretty sensitive to stock prices. This is 
easily observed from Eq. (3.2). Both of the numerator and the denominator will 
become very small as the number of time partitions increases, i.e., when  is small. 
As a result, this leads to large swings in transition probabilities, which is likely to go 
beyond 1 or below 0. In theory, the transition probabilities, , at any node in the 
implied tree must lie between 0 and 1. If , the stock price  will fall 
below the forward price . Similarly, if , the stock price  will be 
located above the forward price . Either of these conditions causes riskless 
arbitrage. 
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(a) Stock price tree 

 

(b) Up-transition probability tree 

 

 

Figure 3.2 Derman-Kani implied binomial tree for stock prices and 
up-transition probabilities. The implied volatility function adapts Eq. (4.13). The 
parameters a, b and c are 0.3, －3 and 0.25, respectively. Therefore, the slope of 
implied volatility with respect to strike is negative, i.e. it is a volatility skew. In 
addition, the values used are: ,  , , . Figure (a) and (b) 
are the Derman-Kani implied binomial tree for stock prices and up-transition 
probability, respectively. The words in shade are the invalid transition probabilities. 
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The invalid transition probability problem exists even if with only few time 
partitions of construction. Figure 3.2 illustrates the occurrence of invalid transition 
probability problem in the Derman-Kani tree for a certain implied volatility smile 
with time horizon of 0.5 and six time partitions. 

3.3 Replacement of Nodes that Violate the No-Arbitrage Principle 

As the illustration in the previous section, the transition probabilities between 
nodes of the tree may become greater than 1 or less than 0 beyond a certain time step. 
This could happen even within just few time partitions of construction if the slope of 
the implied volatility with respect to the strike price is steep. To avoid the occurrence 
of invalid transition probability, each newly determined stock price is required to be 
within the range: 

            (3.11) 

As a mater of fact, invalid transition probability indicates an arbitrage 
opportunity. Appendix A indeed proves 1) one invalid transition probability indicates 
an arbitrage opportunity, and 2) if the stock price is within the range as indicated in 
Eq. (3.11), it is equivalent to ensuring valid transition probabilities.  

If the transition probabilities are invalid, the stock prices which violate the 
no-arbitrage principle have to be overridden in order to continue the building of the 
tree. One idea of ensuring the transition probabilities to be valid, i.e., ensuring these 
stock prices not to violate the no-arbitrage principle, is to maintain the logarithm 
spacing between adjacent nodes equal to that of previous level. Yet, stock prices may 
still not be in the range as indicated in the inequality (3.11) after replacement. To 
avoid it, a choice of for  at any point between  and  is sufficient. 
Simply choose the average of the two forwards. 

However, there is one weakness in the procedure of replacing these stock prices 
that violate the no-arbitrage principle. Once the stock prices are replaced, the market 
information is lost. The tree with manual manipulation catches less market implied 
information than desired. Due to modification of stock prices, the final results of 
some option pricing do not match the option prices well.  
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Chapter 4 
Problems with the Li Tree 

In order to deal with the invalid transition probability problem, Li proposed 
another algorithm for constructing the implied binomial tree, in which the transition 
probability is constant. As the author demonstrated, for a quite general process with 
known local volatilities, the constant probability method indeed gives rise to a 
recombining binomial tree. Compared with the Derman-Kani tree, the Li tree is, in 
general, considerably more stable and also easier to use. Nevertheless, the stock prices 
in the nodes may still violate the no-arbitrage principle beyond some steps of iteration 
and the option pricing result is unstable, or even diverges as the number of time 
partitions increases when the slope of the implied volatility with respect to the strike 
price is steep. As a result, the construction of the Li tree is not plausible anymore in 
this situation. 

 

4.1 The Li Algorithm 

First, assume the stock price movement follows the following stochastic 
differential equation,  

          (4.1) 

where  is the stock price at time ,  is the risk-free interest rate, and  is the 
Wiener process. Second, assume (1) the local volatility function  is continuous and 
non-negative and (2) the local rate  exists. The constant probability tree is 
constructed as follows: 

      (4.2) 

where  stands for the  stock price at time step , moving 
upward from the  stock price, , at time step .  represents the  
stock price at time step , moving downward from the  stock price, , at 
time step .  is the probability that stock price move upward from  to 

. 

Since the local volatility is stochastic, the stock prices tend to be different after 
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two time steps of movement in different paths, i.e., the stock price, , moves 
upward and than downward is not likely to be the same as the stock price, , 
moves downward and than upward. In other words, the tree will explode. 

By applying the Taylor’s expansion for small ,  and  are 
expressed in terms of  as (for detailed derivation, please see Section 5.3.) 

     

                              (4.3) 
where 

  

Theoretically, when , the third term proportional to  in Eq. (4.3) 
is much smaller than the second term, so it can be neglected. In practice, however, the 
tree will not recombine because errors by the third term tend to accumulate in the 
process of forward induction. But, if the stock price in time step  is taken as 

, the errors will be canceled out. As a consequence, the 
recombined tree for time step  is constructed as 

  (4.4) 

Although Eq. (4.4) could be used directly to find stock prices, this is not a good 
strategy in practice. Since the Arrow-Debreu price  becomes very small for a 
large number of time steps, using Eq. (4.4) directly results in great inaccuracy. 

Fortunately, Arrow-Debreu prices are known for the tree with constant 
probabilities. The Arrow-Debreu price  on  node at the  time step is given 
by  

          (4.5) 

In addition, the forward price satisfies the following risk-neutral condition: 

        (4.6) 
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where  is the forward price at  node in time step . Therefore, there are 
 equations for the forward contracts. 

Let  denote the price of the European call option maturing at time  
with strike price . It is supposed to be known either by interpolation form option 
pieces in the market or by the Black-Scholes formula using the interpolated implied 
volatility smile. Using the tree approach, the call price is expressed as 

 

                (4.7) 

To find the stock prices by Eq. (4.7), one can use the Black-Scholes formula for 
the left-hand side of Eq. (4.7). However, this is not stable because of the small 
Arrow-Debreu prices problem for large . Instead, a “mirror” constant probability 
binomial tree is used, in which constant volatility corresponds to the implied volatility 
for pricing options. The strike prices are chosen to be equal to the forward prices at 
the previous time step ,  for . There are  
independent options. Using the mirror tree for the left-hand side of Eq. (4.7) while the 
implied tree is used for the right-hand side so that Eq. (4.7) can be recast in the form 

   (4.8) 

where  are the stock prices in the mirror tree with constant volatility corresponds 
to the implied volatility  and . The parameters  
are the effective Arrow-Debreu prices, which are: 

   (4.9) 

The common factor, , in  is extremely small for large , can 
be canceled on both sides of Eq. (4.8). So, the equation could be re-written iteratively: 

  (4.10) 

where  

            (4.11) 
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Using Eq. (4.10),  is found firstly for , then  for  and all other 
stock prices sequentially. 

To reduce the calculation error, it is better to derive a similar formula using put 
options for the lower part of the tree. In case of put option, the equation is: 

    (4.12) 

By applying Eqs. (4.10) and (4.12), the implied binomial tree can be constructed 
iteratively and, therefore, it is used for option pricing. 

 

4.2 Problem of Stock Prices which Violate the No-Arbitrage 
Principle 

Compared with the Derman-Kani tree and its extensions, the invalid transition 
probability problem will not occur in the Li tree and the result of option pricing is 
considerably stable. However, there are still some problems in the Li algorithm. If the 
slope of implied volatility with respect to the strike price is steep, 1) the stock prices 
might still violate the no-arbitrage principle in the process of growing the implied tree, 
and 2) the option pricing results tend to diverge as the number of time partitions 
increases. The following section demonstrates how they could happen. 

Assume the implied volatility behaves as the implied volatility function1: 

       (4.13) 

where ,  and  are constant.  controls the range of volatility,  adjusts the 
change rate of volatility around , and  determines the magnitude of 
volatility. The shape of volatility smile can be controlled by changing the parameters. 
Table 4.1 shows how to assign parameters to desired shape of volatility smile. 
 

 

 

 

 
                                                 
 
1 This is an assumed implied volatility function. The purpose is to stimulate different shapes of 
volatility smile. 
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Desired shape of volatility smile Parameters setting 

Constant volatility Set  or  and  

Volatility skew with positive slope with 
respect to the strike price Set ,  and  

Volatility skew with negative slope with 
respect to the strike price Set ,  and  

Volatility smile symmetrically 

Set ,  and   
for  
Set ,  and   
for  

Table 4.1 The volatility function, parameters and shape of volatility smile. 

 

Figure 4.1 shows the results of option pricing under different shapes of volatility 
smile. When the volatility smile is smooth and positively sloped with respect to the 
strike price, the option pricing results converge as the number of time partitions 
increases. As illustrated in Panel (a), with smooth slope of implied volatility smile, the 
call price converges to around 10.30 when the number of time partitions is greater 
than 22, and the variation of the pricing results becomes smaller and smaller.  

In contrast, when the volatility smile is steep and positively sloped with respect 
to the strike price, the option pricing results diverge as the number of time partitions 
increases. As demonstrated in panel (b) of Figure 4.2, the call prices are stable when 
the number of time partitions is equal to or smaller than 11, whereas the pricing 
results become relatively unstable and diverge when the number of time partitions is 
greater than 12.  
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(a) Smooth Volatility Skew 

 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

50 100 150
    

9.5

10

10.5

11

11.5

12

12.5

13

1 11 21 31 41 51 61 71 81 91 101

 
 

(b) Steep Volatility Skew 
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Figure 4.1 The shape of volatility skew and option pricing results by using the Li 
tree. The option pricing result of the Li tree has a lot to do with the shape of implied 
volatility. In Panel (a), the implied volatility with respect to the strike price is smooth, 
the call price is stable as the number of time partitions increases. Whereas, in Panel 
(b), the implied volatility with respect to the strike price is steep, the call price 
diverges as the number of time partitions increases. The implied volatility function 
applies Eq. (4.13). Settings of required parameters are: , , , 

, , ,  and  for case (a) and , 
, , , , ,  and  for case (b) 

 

Looking into the stock prices in the nodes within the tree, it is found that the 
problems that occur in the Derman-Kani tree remains with the Li-tree when the slope 

Option Pricing Result Shape of Volatility Skew Volatility 
(σ) 

Call Price
(C) 

Strike Price (X) Number of Time Partitions (N) 

Option Pricing Result Shape of Volatility Skew 
Volatility 

(σ) 
Call Price

(C) 

Strike Price (X) Number of Time Partitions (N) 

N=11 



 21

of volatility with respect to the strike price is steep. First, stock prices violate the 
no-arbitrage principle if they are not in the range of the following inequality:2 

            (4.14) 

As illustrated in Figure 4.2, the values in shade are all stock prices that violate the 
no-arbitrage principle.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 Nodes of stock prices in the Li tree. When the slope of implied volatility 
with respect to strike is steep, the nodes with stock prices in the Li tree may still 
violate the no-arbitrage principle. For these values in shade are the stock prices that 
violate the no-arbitrage principle. The volatility function applies Eq. (4.13). Settings 
for parameters are: , , , , , , 

,  and . 

 

Looking back to Eqs. (4.10), the divergence of the option pricing results is likely 
to be attributed to the term . On the one hand, when the 

                                                 
 
2 Proof is provided in Appendix B. 
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volatility is large, the difference between stock price in the mirror tree and forward 
price will be large. This difference is huge especially when the slope of implied 
volatility with respect to the strike price is steep. The forward price calculated from 
stock price in the previous time step is small in relative to the stock price, , which 
is obtained from the mirror tree, because the volatility is greater than it was in the 
previous time step. On the other hand,  is big as the number of time partitions, , 
is large. For example, suppose it is now calculating the node 12 at time step 13 and 

, , by Eq. (4.11), is therefore 22. As these two components are large, the 
stock price will be large as well. 

In conclusion, although the Li tree is in general more stable than the 
Derman-Kani tree, and the invalid transition probability problem does not exist in the 
Li tree, the Li tree still faces some problems when the slope of implied volatility with 
respect to the strike price is steep. In this case, for one thing, the option pricing results 
do not converge as the number of time partitions increases. For the other thing, some 
stock prices in the nodes within the tree violate the no-arbitrage principle. 
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Chapter 5 
An Alternative Method in Constructing Implied Tree 

The settings and basic idea of our method are identical to the Li tree, yet the 
implementation is quite different. Rather than deriving an algorithm by using the 
mirror trees, which have constant probability and constant volatility, our approach 
constructs the implied binomial tree directly based on known local volatilities. 
However, whether the tree will recombine or not under stochastic volatility setting is 
essential. Indeed, assuming the stock price movement follows the geometric 
Brownian motion, and the local volatility function is continuous and non-negative, the 
tree which is constructed by our method will be proved to recombine. Besides, the 
recombining tree does eventually converge to the desired process. 

In our method, because the transition probabilities are set to be constant (in fact, 
0.5 for stock prices to move either upward or downward), the invalid transition 
probability problem will not occur like in the Derman-Kani tree. On the other hand, 
the stock prices in the nodes are growing within the tree directly from the previous 
time step by multiplying the up-move or down-move parameters. It is easy to 
implement. 

This Chapter firstly describes the settings for constructing an implied binomial 
tree, and proves the recombining property. Then, several scenarios are provided to see 
if the option pricing by applying our method will finally converge.  

 

5.1 Building a Recombining Binomial Tree 

Building a recombining tree is important because the nodes of one time step 
increase linearly with the number of time partitions in a recombining tree. On the 
other hand, if the tree does not recombine, the nodes of the tree will grow largely to 
the  power of 2 in time step . In other words, the exponential increase of nodes 
in the non-recombining tree makes the binomial construction impractical as  goes 
large. 

In the tree with constant volatility, the nodes will recombine after several steps of 
growing. Yet, if the volatility is stochastic, the tree is not likely to recombine. Looking 
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at Eq. (5.1), the stock prices in time step  grow from the stock prices in the 
previous time step, . 

         (5.1) 

where  represents the  stock price in time step ,  is the stock price 
moving upward from  and  is stock price moving downward from . 
Applying the Taylor expansion gives rise to the following equation: 

      (5.2) 

It is obvious that the tree tends not to recombine after some steps of evolving by 
Eq. (5.2). As illustrated in Figure 5.1, different paths of movement lead to different 
results. The stock price moves upward first and then downward differs from the stock 
price moves downward first and then upward. That is,  is not equal to  
because the parameter  is stochastic at different nodes and different time 
steps. 

 

 

 

 

Figure 5.1 Non-recombining under stochastic volatility.  represents the  
stock price in time step .  goes in the path from  upward to  and 
than from  downward to , whereas  goes in the path form  
downward to  and than from  upward to . 

 

If the tree does not recombine, there will be a big problem when discounting the 
stock prices in the terminal nodes since an exponential number of nodes in the 
non-recombining tree consumes too much time in computing. However, the 
subsequent section shows that our proposed tree will recombine under some 
assumptions and settings.  
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5.2 Assumptions and Settings  

Before constructing the recombining tree, this section discusses the conditions 
under which the implied binomial tree could be constructed by our method.  

Assumption 1 The stock price satisfies the following stochastic differential equation 

           (5.3) 

where  is the stock price at time , r is the instantaneous interest rate,  is 
the local volatility function of stock price and time, and  follows the Wiener 
process with mean of  and variance of .  

Assumption 2 The instantaneous interest rate r and the local volatility function 
 are continuous and non-negative.  

Assumption 3 A solution to the stochastic integral equation  

       (5.4) 

exists with probability 1 for  and is unique in distribution. 

Assumption 4  exist and  

     (5.5) 

is well defined for  

Given that all the above conditions hold, our tree could be constructed. 
 

5.3 Building a Constant Probability-Stochastic Volatility 
   Recombining Tree 

According to Eq. (5.2), the stock price movement after two time steps is 

     (5.6) 

 moves in the path from  upward to  and then from  
downward to , whereas  moves in the path from  downward to 



 26

 and then from  upward to . It is apparent that as one stock price 
grows in different paths, the stock price varies depending on which path it takes, that 
is,  and  are not likely to be the same since the local volatility is 
stochastic. Nevertheless, given the settings and assumptions mentioned in Section 5.2, 
the tree will recombine. Therefore, the following section will prove that 

. 

The stock price, , that moves upward and then downward is firstly 
discussed. We get started with the volatility. 

By Ito’s Lemma, 

       (5.7) 

And, 

     (5.8) 

Thus, 

   (5.9) 

When , the terms  and  are much smaller, so they can be 
neglected. (This policy will be adapted throughout the induction process.) Hence, 

       (5.10) 

By replacing Eqs. (5.9) and (5.10) into Eq. (5.7), Eq. (5.7) is written as 

    (5.11) 
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As a result, by replacing  as in Eq. (5.11) into Eq. (5.6), Eq. (5.6) is 
therefore written as 

   

   
               (5.12) 

where 

    (5.13) 

In the same way 

 (5.14) 

In Eqs. (5.12) and (5.14), the terms  and  are the same. Moreover, the 
terms of order higher than or equal to  could be safely neglected since  is 
relatively small as the number of time partitions, , is large. The third terms, however, 
attribute to the difference of  and . 

 If , then under Assumption 2 and 3, the tree built by Eq. (5.2) 
will recombine. In other words,  is the same as . Nevertheless, if  

 is set to be 0, the errors caused by the third term are apt to accumulate in 
the process of forward construction of the tree. Fortunately, the third terms in Eqs. 
(5.12) and (5.14) are identical except for their sign. If the stock price in time step 

 is taken as , the error will be canceled out. As a 
result, the recombining tree for time step  is constructed as 

  (5.15) 

After the recombining tree is constructed by forward induction, the option price 
is calculated backward inductively from the stock prices in the terminal nodes of the 
tree. 
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5.4 Numerical Illustration 

In order to check the convergence and option pricing results of our method, 
several scenarios are considered. The shapes of volatility smile are different in each of 
these scenarios. Equation (4.13) is used as the deterministic volatility function. As 
mentioned in Chapter 4, the shape of volatility smile is determined by providing 
different parameters in the volatility function. Hence, Table 5.1 provides seven 
scenarios that are applied to simulate various shapes of volatility smile. In addition, 
the initial stock price, , and strike price, , are both set as 100, risk-less rate, , is 
0.2, and dividend yield, , is 0. 

Figure 5.2 is the option pricing results in seven different scenarios according to 
the descriptions in Table 5.1. Different scenarios provide different shapes of local 
volatility smile, varying in shape, direction of slope with respect to the strike price, 
and steepness of slope with respect to the strike price. In a variety of situations, our 
method all performs well that the option prices will eventually converge as the 
number of time partitions increases.  

 

Desired shape of volatility smile  Parameters setting 

Case description  a b c 

Scenario 1 Constant volatility  0.0 0.0 0.25

Scenario 2 
1) Volatility skew  
2) Negative slope with respect to strike 
3) The slope is smooth 

0.1 –3.0 0.1

Scenario 3 
1) Volatility skew  
2) Negative slope with respect to strike 
3) The slope is steep 

 0.6 –3.0 0.1

Scenario 4 
1) Volatility skew  
2) Positive slope with respect to strike 
3) The slope is smooth 

 0.1 3.0 0.1

Scenario 5 
1) Volatility skew  
2) Positive slope with respect to strike 
3) The slope is steep 

 0.6 3.0 0.1

Scenario 6 1) Volatility Smile 
2) The slope is smooth  0.1 3.0 for  

–3.0 for  0.l 

Scenario 7 1) Volatility Smile 
2) The slope is smooth  0.6 3.0 for  

–3.0 for  0.1

Table 5.1 Different scenarios of volatility smile. 
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(a) Scenario 1 
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(b) Scenario 2 
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(c) Scenario 3 
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(d) Scenario 4 
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(e) Scenario 5 
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(f) Scenario 6 
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(g) Scenario 7 
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Figure 5.2 Option pricing results in seven different scenarios. Options are priced 
by our method in different scenarios. Different scenarios provide different shapes of 
local volatility smile, varying in shapes, direction of slopes with respect to the strike 
price, and steepness of slopes with respect to the strike price. Under various situations, 
our method all performs well that the option prices will eventually converge as the 
number of time partitions increases. The local volatility function applies Eq. (4.13). 
Settings of parameters are shown as Table 5.1 

 

Altogether, our tree solves the invalid transition probability problem that occurs 
in the Dreman-Kani tree, and deals with the option pricing instability problem that 
happens in the Li tree. According to the results in seven scenarios discussed above, 
the alternative method that we proposed is quite stable in all kinds of situations. 
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Chapter 6 
Conclusions 

We proposed an alternative method that constructs a constant 
probability-stochastic volatility recombining implied binominal tree. As mentioned in 
Chapter 5, the tree is considered to be recombined under some general assumptions 
with stochastic volatility. In addition, the numerical illustration shows that stock 
prices in the nodes within the tree as well as the results of option pricing are 
considerably stable.  

Our method for constructing the implied binomial tree addresses several 
weaknesses of the Derman-Kani tree and the Li tree. First, in the Derman-Kani tree, 
the invalid transition probability problem commonly occurs. For those transition 
probabilities less than 0 or greater than 1, arbitrage opportunity is allowed. The 
violation of the no-arbitrage principle contradicts the generally accepted theoretical 
assumptions in the pricing process. Although there are some ways to modify these 
stock prices that are invalid, the manual manipulation causes much loss in capturing 
market information and the resulting option prices do not equal market observations. 
In contrast, in our method, the transition probability is set to be constant, i.e., there is 
a 50% chance for the stock price to go either up or down. Under such a setting, the 
invalid transition probability problem will never occur. 

Second, even though the Li tree is more stable than the Derman-Kani tree, and 
the invalid transition probability problem is also mitigated, there is still some room for 
enhancement. As the slope of volatility with respect to the strike price is steep, the Li 
algorithm also faces the problem that some stock prices on the tree will violate the 
no-arbitrage principle, and thus impacting on the option prices. Additionally, the 
results of option pricing do not converge in the Li tree when the slope of volatility 
with respect to the strike price is steep. In contract, our method constructs the 
binomial tree directly from known local volatilities, and the results of option pricing 
converge as desired and are more stable than the Li algorithm. 

In conclusion, compared with the Derman-Kani tree and the Li tree, our method 
is much better. The constant probability-stochastic volatility recombining implied 
binominal tree, on the one hand, ensures the no-arbitrage opportunity not happen in 
every step of growing the tree. It is also very simple, direct and easy to understand. 



 33

Appendix A 

 This Appendix is intended to prove that the invalid transition probability in the 
Derman-Kani tree indicates the existence of arbitrage opportunities. Also, to avoid the 
occurrence of invalid transition probability, each newly determined stock price is 
required to be within the range as indicated in Eq. (3.11). 

 The up-move transition probability in the Derman-Kani tree is defined as: 

            (A.1) 

where  is the up-move transition probability at  node at time ,  is the 
 forward price at time , and  is the  stock price at time . 

 There are two cases for the transition probability to be invalid, which are 1) the 
transition probability is greater than 1, and 2) the transition probability is less than 0. 
We are going to discuss them separately. 

 

Case 1  

From Eq. (A.1),  

         (A.2) 

 In addition, since  is the up-move from , and  is the 
down-move from ,  is bound to be greater than or equal to . That is, 
the following condition must be hold 

 .             (A.3) 

 Combining with Inequities (A.2) and (A.3) gives rise to the following inequality: 

            (A.4) 

 If the relationship between stock prices and forward prices holds as inequality 
(A.4), one can make a riskless arbitrage by taking a short position on the forward at 
time  and to buy the stocks for settlement at time . The net payoff is 0 at 
time , but the net payoff is either  or  at time . 
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Both of these two payoffs are greater than 0, whereas the initial cost is 0. These 
indicate arbitrage opportunities. Therefore, if the inequality (A.4) holds, arbitrage 
opportunities exist. 

 

Case 2  

From (A.1),  

         (A.5) 

 Also, since  is the up-move from , and  is the down-move from 
,  is bound to be less than or equal to . That is, the following 

condition must be hold 

 .             (A.6) 

Combining with Inequities (A.5) and (A.6) gives rise to the following inequality: 

            (A.7) 

If the relationship between stock prices and forward prices holds as inequality 
(A.7), one can make a riskless arbitrage by taking a long position on the forward at 
time  and to settle the forward contract to buy the stocks and sell the stock 
immediately at time . The net payoff is 0 at time , but the net payoff is either 

 or  at time . Both of these two payoffs are greater than 
0, whereas the initial cost is 0. Therefore, if the inequality (A.7) holds, arbitrage 
opportunities exist. 

From Case 1 and Case 2, if the probability is greater than 1 or less than 0, there 
are arbitrage opportunities. Therefore, the forward price has to be within the range as 
the following inequality to ensure no arbitrage opportunities: 

        (A.8) 

Looking at  and  in inequality (A.8) simultaneously, there are 
two inequalities. They are: 
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          (A.9) 

Combining these two inequities into one gives rise to the following inequality: 

         (A.10) 

To rule out arbitrage opportunities, this inequality must also hold. Because the 
forward prices on time  are known, if  is less than  or greater 
than , the opportunities exist. 

In conclusion, invalid transition probabilities indicate arbitrage opportunities. To 
ensure arbitrage opportunities not occur, the stock prices in the nodes within the 
implied tree have to be within the following range: 

          (A.11) 

We have now proved that the invalid transition probability in the Derman-Kani 
tree indicates the existence of arbitrage opportunities. The following is to prove 
inequality (A.11) must hold for the transition probability to be valid. 

Looking at  and  in inequalities (A.11) simultaneously, there are 
two inequalities, which are: 

            (A.12) 

Combining these two inequities into one gives rise to the following inequality: 

         (A.13) 

If the first inequality does not hold, the transition probability,  will be less than 
0; if the second inequality does not hold, the transition probability,  will be 
greater than 1. The transition probabilities in both cases are invalid. The proof is as 
follows. 

 

Case 1  

If , then 

              (A.14) 

Also,  must hold in the tree, i.e., . Therefore, the 
up-move transition probability, , is less than 0. That is 
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            (A.15) 

This is an invalid transition probability. 

 

Case 2  

If , then 

              (A.16) 

Subtracting  from both  and , inequality (A.16) becomes 

          (A.17) 

By arranging items in inequality (A.17), (A.17) therefore becomes 

             (A.18) 

It is invalid for a transition probability to be greater than 1. 

According to both cases discussed above, if the inequality (A.13) does not hold, 
i.e., arbitrage opportunity exists; the transition probability will be invalid. 
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Appendix B 

This section is to prove that if the stock prices in the nodes within the Li tree are 
out of a specific range as indicated in inequality (4.14), arbitrage opportunities exist. 

To rule out arbitrage opportunities, the stock prices have to be within the range: 

          (B.1) 

where  is the  forward price at time , and  is the  stock price at time 
. In opposite to (B.1), if the relationship between the forward price and stock price is 

either  or , then arbitrage opportunities exist. Let’s 
discuss these two cases separately.  
 

Case 1  

Suppose the relationship between the forward price and stock price is 

            (B.2) 

Also, since  is the up-move form , and  is the down-move from 
,  is bound to be greater than or equal to . That is, the following 

condition must hold 

 .             (B.3) 

Combining with inequities (B.2) and (B.3) gives rise to the following inequality: 

            (B.4) 

If the relationship between stock prices and forward prices holds as inequality (B.4), 
one can make a riskless arbitrage by taking a short position on the forward at time 

 and to buy the stocks for settlement at time . The net payoff is 0 at time 
, but the net payoff is either  or  at time . Both of 

these two payoffs are greater than 0, whereas the initial cost is zero. These indicate 
arbitrage opportunities. Therefore, if inequality (B.4) holds, arbitrage opportunities 
exist. 
 

Case 2  

Suppose the relationship between the forward price and stock price is 



 38

            (B.5) 

Also, since  is the up-move from , and  is the down-move from 
,  is bound to be less than or equal to . That is, the following 

condition must hold 

 .             (B.6) 

Combining with inequities (B.5) and (B.6), gives rise to the following: 

            (B.7) 

If the relationship between stock prices and forward prices holds as inequality (B.7), 
one can make a riskless arbitrage by taking a long position on the forward at time 

 and to settle the forward contract to buy the stocks and sell the stocks 
immediately at time . The net payoff is 0 at time , but the net payoff is either 

 or  at time . Both of these two payoffs are greater than 
0. Therefore, if inequality (A.7) holds, arbitrage opportunities exist. 

From Case 1 and Case 2, if the probability is greater than 1 or less than 0, there is 
an arbitrage opportunity. Therefore, the forward price has to be within the range as the 
following inequality to rule out arbitrage opportunities. 

        (B.8) 

Looking at  and  in inequality (B.8) simultaneously, there are 
two inequities. They are: 

          (B.9) 

Combining these two inequities into one gives rise to the following: 

         (B.10) 

To rule out arbitrage opportunities, this must also hold. Because the forward 
prices on time  are known, if  is less than  or greater than 

, arbitrage opportunities exist. 

In conclusion, invalid transition probabilities indicate arbitrage opportunities. To 
ensure arbitrage opportunities not happen, the stock prices in the nodes within the 
implied tree have to be within the following range: 

          (B.11) 
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