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Abstract

This thesis investigates dynamic methods for pricing portfolio credit derivatives,
especially the standardized market for CDO: iTraxx Europe index. Compared with
previous static models, i.e., the copula functions, the dynamic models are applicable
to much more exotic portfolio credit derivatives. This thesis uses the concept of the
dynamic model from Hull and White (2007). But we modify it by adjusting some
parameters. We also find a better way for calibration to give the model more
economic sense. The iTraxx Europe index can also be valued analytically using our
model. Besides the analytic method, we consider the binomial tree and Monte Carlo
method to make pricing more flexible. Finally, the revised dynamic model captures
the advantages of the original one and also provides a good fit to CDO quotes.
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Chapter 1
Introduction

1.1 Background and Literature Review

The standard market model for pricing portfolio credit derivatives is the copula model,
which assumes a simple one factor model for a company’s time to default. While
there are several types of copula function models, Li (2000) introduces the one-factor
Gaussian copula model for the case of two companies and Gregory and Laurent (2005)
extend the one-factor model to the case of N companies. Many alternatives to the
Gaussian copula such as the t-copula, the double-t copula, the Clayton copula, the
Archimedian copula, the Marshall Olkin copula have been suggested. However, these
approaches are problematic for two" main  reasons. First, there is no dynamic
consistency, and, second, there is no theoretical basis for the choice of any particular
dependence structure. These copula'models which, lack of dynamics are called static
models, because they do noet describe-how. the default environment evolves. Thus,
they do not allow us to price, for examplé',f'forward starting credit products or options
on CDO tranches. '

Stimulated by the perspective of an emerging market of the exotic credit products
mentioned above, there has been much:research on developing a dynamic model that
fits market data and tracks the evolution‘of the credit risk of a portfolio, including
Albanese et al. (2006), Bennani (2006), Brigo et al. (2007), Di Graziano and Rogers
(2006), Hull and White (2007), Schoénbucher(2006), Sidenius (2006), among others.
Among these, the dynamic models can be categorized into three categories: structural
model, top-down model and reduced-form model.

The most basic version of the structural model is similar to the Gaussian copula
model. Albanese et al (2006) propose a rating transition model within the structural
framework where the distance to default of each single obligor is represented by a
Markov chain. Structural models have the advantage that they have sound economic
fundament.

The top-down model is a dynamic model which involves the development of a
model for the evolution of the losses on a portfolio. It considers the frameworks for
modeling quantities directly related to the loss distribution of a pool of names. In
other words, it models directly the cumulative portfolio loss process. This approach is
pursued in Bennani (2006), Sidenius, Piterbarg and Andersen (2006) and Schénbucher
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Introduction 2

(2006). Bennani (2006) proposes a model of the instantaneous loss as a percentage of
the remaining notional principal. Sidenius et al (2006) use concepts from the Heath,
Jarrow, and Morton (1992) interest-rate model to suggest a complex general
no-arbitrage approach to modeling the probability that the loss at a future time will be
less than some level. Sidenius et al (2006) model the dynamics of portfolio loss
distributions in the absence of information about default times. Schénbucher (2006)
models the evolution of the loss distribution from the transition rates of an auxiliary
time-inhomogeneous Markov chain which reproduces the desired transition
probability distribution. Stochastic evolution of the cumulative loss process is then
obtained by using the transition rates with stochastic dynamics.

The reduced-form approach for developing a dynamic model is to specify
correlated diffusion processes for the hazard rates of the underlying companies. Di
Graziano and Rogers (2005) present a new approach to default correlation modeling,
where defaults of different names are driven by a common continuous-time Markov
process. Individual default probabilities and default correlations can then be
calculated in closed form. Brigo etal. (2007):consider a dynamical model for the
number of defaults of a pool of names.-The model is based on the notion of
generalized Poisson process, .allowing for more than one default in small time
intervals. Hull and White (2007) develop a-model ‘that is both reduced-from and
top-down. It is easy to implement and edé‘r'sy ta calibrate to market data. Under the
model the hazard rate of a company has a-deterministic drift with periodic impulses.
The impulse size plays a similar- role to_default correlation in the Gaussian copula
model. Additionally, Brigo et al.(2007),"Di Graziano and Rogers (2006) and Hull and
White (2007) all have given examples‘of calibration to CDO tranche quotes with a
high degree of precision.

This thesis modifies the model of Hull and White (2007). The objective here is to
specify the procedure from model set-up to calibration more completely. In particular,
we adjust some parameters to give the model more economic sense, and propose a
calibration method where index tranches quotes are matched as closely as possible.

1.2 Structures of the Thesis

The remainder of this thesis is organized as follows. Chapter 2 reviews basic concepts
and pricing technologies of CDO and index tranche as well as the calibration to index
spread. In chapter 3 we present three algorithms for pricing under our dynamic model:
analytical method, binomial tree and Monte Carlo method. Chapter 4 discusses
parameters and numerical data from calibration. Finally Chapter 5 summarizes our
results and points to future research.



Chapter 2
A Primer on CDO and Index Tranche Pricing

2.1 Introduction to an Index Tranche

The two most actively traded CDS indexes are the Dow Jones CDX NA IG index and
the iTraxx Europe index. The former includes 125 North American investment grade
companies. The latter includes 125 European investment-grade companies. Index
tranches of these CDS indexes are CDO tranches whose underlying portfolio is
composed of the 125 companies in the CDS indexes. For both index tranches, each
company is equally weighted. They have standardized documentation and use
standard attachment and detachment points. They are sliced into five tranches: equity
tranche, junior mezzanine tranche, senior mezzanine tranche, junior senior tranche,
and super senior tranche. The. standard-_tranche structure in terms of attach
point-detachment point pairs of the'Dow Jones CDX-NA IG is 0-3%, 3-7%, 7-10%,
10-15%, and 15-30%. As for the iTrakx.,];urc')pé, it is 0-3%, 3-6%, 6-9%, 9-12%, and
12-22%. For both indexes, they are quoteﬁ’bn maturitiés of three, five, seven and ten
years. - i
The premium of the equity tranchelis paid differently from the nonequity tranches.
It includes two parts. The first is.the upfront peréentage payment as a percentage of
the notional, and the second is the fixed 500 basis points premium per annum. The
market quote is the upfront percentage payment. For the nonequity tranches, the
premium includes only the second part. Their market quotes are the premium in basis
points, paid quarterly in arrears to purchase protection from defaults. Thus for pricing
these index tranches, we should notice the different quote conventions for the various

tranches.
. |Detachment Maturities
Attach point )
point 3yr Syr T7yr 10 yr
Index 77.00 101.00 104.00 106.00
Tranche 0% 3% n/a 32.00 39.00 43.00
3% 6% n/a 395.00 485.00 n/a
6% 9% n/a 245.00 280.00 310.00
9% 12% n/a n/a 180.00 n/a
12% 22% n/a n/a 90.00 100.00

Table 2.1 iTraxx CDO tranche quotes in basis points of Series 9 on April 2, 2008.
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A Primer on CDO and Index Tranche Pricing 4

The market also quotes the index spreads which are the average of the CDS
spreads of the companies in the portfolio pool for each maturity. For example, the
Index row in the Table 2.1 shows the index spreads. Before pricing the index tranches
we would like to use the index spreads to calibrate the implied default probability of
each company under the assumption of homogeneity of the model to be described in
Chapter 3. The following two sections review the concepts we use for calibrating and
pricing index tranches.

2.2 Extract Implied Default Probability from CDS Spread

In this section, we present the method for calibrating the hazard rate from the index
spread of an index tranche. The reduced-form model used here is the
time-inhomogeneous Poisson process with time varying intensity A(t) and

cumulated hazard function T(t) = Eﬂ(u)du detailed in Appendix A. For calibration

we will take the hazard rate to be deterministic and piecewise constant: A(t)= 4, for
te [Ti_l,Ti), where T, are the relevant maturities, Let B(t) be the index of the first

T, after t; for example, if t =6.25, then B(t)=7.The cumulated hazard function
is

r(t)= du_i(]_; T+ (T 002 (2.1)

A typical CDS contract usually SpECIerB two patential cash flow streams: a default
leg and a premium leg. On the*default deg side, the protection seller makes one
payment only if the reference credit defaults.*The amount of a contingent payment is
usually the notional amount multiplied by‘the recovery rate. On the premium leg side,
the buyer of protection makes a series of fixed, periodic payments of CDS premium
until the maturity or the reference credit defaults. For a breakeven spread, the net
present value of both legs must equal zero.

The payment on CDS is assumed to be quarterly in arrears. We also assume a
constant recovery rate, R, and deterministic interest rates. Let d, denote the
riskless discount factor from 0 to t;, S.,s be the spread for a CDS contract, T be
the maturity year, r be the time point when credit event occurring and Q is the
probability of a credit event occurring under the risk-neutral world. The present value
of default leg of a CDS is

(1- R)Zdore 2t )=0- R)Zd exp(-T(t; ;) —exp(-T(t;)))

(see Eqg. (A.1) in Appendix A). With similar computation, the present value of the
premium leg is
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CDSZd |1)Q7>t +SCDSZd ) Te[ti—l’ti])

oo -t _1) (exp(-T(t,,))—exp(-T(t, ).

Scos z d exp Scos Z d;

With a piecewise constant /1( ) we obtain the breakeven spread

- R&di (exp —rtu»—exp(—r(ti )
cmzd tJexp(-T( +smzd ) exp( ) expl )

. (22)

SCDS

From the market data, we have fair CDS quotes, i.e., the index spreads for
T =35,7,10. We then use the fair quotes as the breakeven spread to calibrate the
intensity parameters. Chapter 4 will present the numerical examples based on the
market data on April 2, 2008.

2.3 Valuation of a CDO

Before explaining the model ‘we- give some assumptions and a general pricing
equation for CDO. We assume, hemogeneity 'sosthat. all companies have the same
notional value and same default probdbilities' Assume there are N companies in the
underlying portfolio of a CDO centract w‘r'th total notional principal P. Let a and
b be the tranche attachment-and detachiment points, respectively. The protection
seller for a tranche of a CDO provides protection against losses on the portfolio that
are in the range axP to bx P for the lifeof the instrument. The protection buyer
pays a certain number of basis points‘on the outstanding notional principal of the
tranche. The tranche principal equals (b—a)x P initially and declines as losses in the
range axP to bxP are experienced. That is, if the pool losses over [0,T] are
less than ax P, the seller does not suffer any loss; otherwise, the seller absorbs the
losses up to the tranche size (b—a)x P . In return for the protection, the buyer pays
periodic premiums at payment dates t <t,<.--<t =T, where t>T,=0 for
i=12,...,m. The payments on CDO are also assumed to be quarterly in arrears.
From the assumption of homogeneity, denote the tranche principal at time t when
there have been n defaults by

(b-a)xP n< 2N
p N N
. ax X
W(n,t)= be—anx(l—R) if R <"<R (2.3)
0 bxN
1-R




A Primer on CDO and Index Tranche Pricing 6

If we derive the expected tranche principal, E[\/\/i ] at time t,, then we can value a
CDO tranche at time zero according to the following procedure. Let S.,, be the
spread for a CDO contract. In general, valuation of a CDO tranche balances the
expectation of the present values of the premium payments against the payoff from
effective tranche losses, i.e., the premium leg against the default leg such that

EEZL:SCDO (t, —til)Nidi = E{i (W, —Wil)di :

The right-hand side, the premium leg, is the calculation of the expected tranche
principal at specified times, which equals the expected tranche principal at payments
dates multiplied by the spread S.,,. The expected payoff, the default leg, between
two payments dates equals the reduction in the expected tranche principal between
those times.

The breakeven spread s is therefore given by

E{Z W, —vvu)di} i(E W, Dd,

B St o] -

- i—1

SCDO -

(2.4)

Alternately, if the spread is set, the value of the CDO Is the difference between the
two legs:

-
-

4T

Vepo = Z( W ]dE_Z(E [ 1])d

i=1
Therefore, the problem is reduced' to_the computation of the expected tranche
principal, E[W,] attime t.



Chapter 3

The Dynamic Model and Its Implementations

In this chapter, we review the model of Hull and White (2007). Additionally we
modify some parameters and the way of calibration to give the original model more
economic sense. The first implementation of the model is the analytical method.
However, in order to price other exotic portfolio credit products which must be priced
by a backward recursion algorithm, we discretize the model on a binomial tree.
Typically, these are products with embedded options, such as tranche options or
leveraged super seniors. Finally, we present a Monte Carlo simulation method for
pricing.

3.1 The Dynamic Model
3.1.1 Model Review

The main model idea of this thesis is.that (ve| start by assuming that there exists a
process for hazard rate which drives thhé:""common dynamics of the credits in the
portfolio. Periodically there are economic-shocks to the default environment. When a
shock occurs each company has*a-honzero probability of default. As a result the
economic shocks are accompanied with*defaults at the same time. It is these shocks
and their sizes that create the default correlation. Empirical evidence suggests that
default correlations increase when hazard rates are high. So the default correlation is
positively related to the default rate. Thus, in a risk-neutral world, Hull and White
(2007) construct the model of hazard rate, X, to be one that has a deterministic drift
and periodic impulses:

X([O)=M()+ 3 H,

The number of economic shocks, N(t), is a jJump process with intensity A and jump
size

H; =Hge”, (3.1)

where H, and 2 are positive constants, and j meansthe j" economic shock.

Hull and White (2007) first present a simplified version of the model for
calibration. This is a one-parameter model where the drift of the hazard rate is zero

7



The Dynamic Model and Its Implementations 8

and the jump size is constant for any economic shock; in other words, M (t): 0 and
S =0. The jump intensity A(t) is time-dependent, and it is extracted from index
spreads. Thus that leaves only one free parameter, the implied jump size H,, which
is calibrated to quotes of index tranches.

The calibration for the original one, the three-parameter version of the model, is
done in different way. The drift and the jump size are both nonzero, but the jump
intensity A is now assumed to be constant. The drift of the hazard rate, M(t), is
determined to match index spreads, and the three parameters A, H, and g are

calibrated to quotes of index tranches.

3.1.2 Model Modification

Although the three-parameter version of the model presented by Hull and White
(2007) is designed to provide a good fit to all spreads of all maturities, the calibration
methods for the jump intensity of this version and the simplified one are not
consistent. The three-parameter version’s assumption of constant jump intensity does
not make more economic sense than-the  simplified version’s assumption of
time-dependent jump intensity..As.mentioned In‘section 2.2, we would like to use the
index spread to calibrate the implied jurr‘}p__inténsity function of the model. The jump
intensity function is based on‘the Poissoﬁf’brocess which is used to model either rare
events or discretely countable events. If we-use this information, then we can say the
default is accompanied with economic shocks which, create the default correlation.
This is consistent with our model’s “philosophy. Furthermore the intensity we
calibrated is time-varying, which makes more economic sense. Additionally, we
consider the drift term to be submerged by H,, which is the jump size when there are
no economic shocks. Based on the above considerations, our dynamic model is

X(t)= %Hj (3.2)

Our model also can be presented as two versions, the one-parameter vision and the
two-parameter version. Both versions’ jump intensity will be calibrated to index
spreads and their other free parameters will be calibrated to tranche quotes.

3.2 Three Implementations of the Model
3.2.1 Analytical Method
We assume homogeneity for the model so that all companies have the same default

probabilities and the default probabilities of companies are independent of one
another. Let S(t) to be the cumulative probability of survival by time t conditional

8



The Dynamic Model and Its Implementations 9

on a particular hazard rate path between time 0 and time t. The transformation of

S(t) from X is defined by S(t)=exp(~ X(t)). If S(t) is known, the probability

distribution of the number of defaults up to time t can be calculated. If there are N

companies in the portfolio, then the probability that n of them will default by time t
is

N!
ni(N —n)!
Now, we proceed to price the index tranches on the dynamic model using the

analytical method. From the end of section 2.3, what we need to do is to calculate the
expected tranche principal, E[\Ni ] The probability of J jumps between time zero

(1-s(t)"s("". (3.3)

and time t is

J
P(3,t)= r(t) e)f]pl(_r(t))’ (3.4)
(see EQ. (2.1) in section 2.2). The value of S in our model at time t if there have
been J jumpsis

S(J,t);exp{—gﬂj} (3.5)

The probability of n defaults in the _pQr,t_fo'Iib by time 't conditional on J jumps
can be calculated from Eqg. (3.2);awe dé'E;Qfé thatevalue by d)(n,t|J). The expected

principal on the tranche at time.t* conditional on- J “jumps is
N:
E(t9) = Do@ln, (I (n;t), (3.6)
n=0

(see Eq. (2.3) in section 2.3). Finally, the unconditional expected tranche principal,
E[W,] attime t is therefore

EW,)=> P(3,LE(I). (3.7)
J=0
Finally, with this equation, the tranche spread can be recovered from Eq. (2.4) at the
end of section 2.3. Therefore, the index tranches can be valued analytically using our
dynamic model.

3.2.2 Binomial Tree Method

In this section, we build a binomial tree for our dynamic model. Under the binomial
tree, we can price the exotic portfolio credit products which must be priced by a
backward recursion algorithm. Typically, these are products with embedded options,
such as tranche options or leveraged super seniors.

9



The Dynamic Model and Its Implementations 10

To construct the tree, the life of the model is divided into a number of short time
intervals. For every fixed positive integer m, partition the trading interval [O,T] into

m subintervals of length h_ :l. The subscript denotes dependence on the
m

particular value of m chosen. Denote the time corresponding to the end of the i"
subinterval by z; and let r, =0. The z; are chosen so that there are nodes on each

payment date, in other words, for each k, r; =t, for some i. In practice this is
achieved by creating v equal time steps between each payment date for some integer
v. Let T be the maturity year, m is equal to vx4T , because the payments on
credit portfolio products are assumed to be quarterly in arrears.

Now consider the jump component of Eq. (3.2), the impulses of the hazard rate.

For the Poisson jump component, the probability of a single jump occurring in an
interval of length h_ is equal to Ah, +o(hm). The probability of multiple jumps in
the same interval equals o(h,,), where the symbol o(h,) represents any function

such that m{%m)} = 0. Therefore; we‘assume that the probability of a jump during

each time interval is equal to  Ahy. We alsa assume that multiple jumps at any
discrete date cannot occur. This leads|to-a tree-with the geometry shown in Figure 3.1.

e

In this figure, H; =Hge" s theisize of":t%_é' j" jump. The probability on the upper

and lower branches emanating: from a_node 'at time z; are Ah, and 1-A4h,,
respectively, where 4 = Alz,), which isicalibrated from the index spread.

=
2

J=0

>

=)

WZWHJ

1=Ah .

, o, 1, ¥ ,
T 27 37 4T

T,=0 L= = T = —= s Toa
m m m m

Figure 3.1 The Binomial Tree for Hazard Rate.
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The Dynamic Model and Its Implementations 1

It is reasonable for us to fit the process of hazard rate by this binomial tree,
because if N=m—>ow and P=1h, — 0 insuchawaythat NP =AT is constant,

then the binomial distribution converges to the Poisson distribution with mean AT .
In Appendix B, we prove that the expectation of hazard rate under this binomial tree
method does indeed converge to the value calculated under the above analytical
method when the partition is dense enough, i.e., m — oo,

Denote the j™ node at time 7, by (i,j). Let S; and W; be the cumulative
survival probability and expected tranche principal at node (i, j), respectively. The

value of §; is equal to exp(—Xij), which will be used to calculate the value of

®(n,ri|J), the probability of n defaults by time z;. Thus W, can then be calculated
from Egs. (2.3) and (3.5).
Let PL; and DL; be the premium leg and the default leg which we defined

analogously in section 2.3, respectively. Sometimes z, correspond to payment dates
and others do not. Let o, be the day count factor.defined as follows. For calculating

PL;, if z; is a payment date so that \z5= t), then o, equals the accrual fraction

t. —t,_,. Otherwise when  ¢;7is hat a payment date, 0,=0. We use backward
recursion algorithm to calculate the breakewven spread-of an index tranche. At the final

nodes PL;=o6W; and DL;=0 LAt edrlier nodes, they can be calculated by

working backward through the tree using

PLij = [ﬂ’i hm PL'+1,j+l + (1_ A hm )PLHl,j ]X dcrl + §iWij

DLij = [ﬂ“i hm DL'+1,j+l + (1_ /1ihm )DLi+1,j ]X d(;l

d.
+ [ﬂi h, (Wij _Wi+1,j+1)+(1_/1i h,, )(\Nij Wi )]X (;1 :

Note that using this binomial tree method, we calculate W, the conditional expected

tranche principal given the J™ jump at time r, rather than the expected tranche

principal, EI_W J at time z,, which converges to Eg. (3.7) of the analytical method.

11
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Finally, the breakeven spread of a index tranche is %, which converges to the
00

breakeven spread calculated by analytical method theoretically.

3.2.3 Monte Carlo Simulation Method

Another approach for valuation is to use Monte Carlo simulation to evaluate the
number of economic shocks between payment dates, and then calculate the hazard
rate and the cumulative survival probability under that circumstance. The simulation
algorithm for Poisson distribution is quite standard. It makes use of a relationship
between the Poisson distribution and the exponential distribution.

We generate exponential distributed samples from a uniformly distributed variable.
If y is an exponentially-distributed random variable with mean 1/1, then the
number of samples needed to sum up to, but not beyond the period between two
payment dates, 0.25, is Poisson distributed with mean A .
First, we calibrate the intensity function from the.index spread. Second, we generate
samples from a Poisson distribution with_ the -corresponding intensities at each
payment day by the algorithm above. Then weycalculate the hazard rate and the
cumulative survival probability from Egs. '(3'.1) and (3.5), respectively, where the
jump number J is the value we samplecff;"The remaining procedures to calculate the
breakeven spread of index tranche are the'Same ! as the analytical method. Finally, we
repeat this simulation for one million times and calculate the average value of the
breakeven spread of index tranche, which also converges to the breakeven spread
calculated by analytical method theoretically.

12



Calibration and Numerical Results 13

Chapter 4

Calibration and Numerical Results

Our dynamic model is calibrated to the market quotes in Table 2.1 for iTraxx Europe
Index of Series 9 observed on April 2, 2008. All calibrations assume recovery rate,
R =40%, and the risk-free interest rate r =5% . At the beginning of this chapter, we
calibrate the jump intensity function and then use this data and analytic method to
calibrate other parameters in the two versions of our dynamic model. At the end, we
use all the data from calibration to compare the other two pricing methods, binomial
tree and Monte Carlo method with the analytic method.

Firstly, we use the model of CDS spread as Eg. (2.2) mentioned in section 2.2 to
calibrate the jump intensity A(t) to the index spread in Table 2.1. The calibration
result is shown in Table 4.2 and the piecewise constant intensity function is presented
in Figure 2.1. From the calibrated.intensity graphs, the market perceives the second
interval as the most risky, because the intensify is highest in that period.

Maturities (yr) Maturity (dafe)f;_,_ 1 |Index épread (bps) Intensity
3 2011/4/2_| ::' 77.00 1.2833%
5 2013/4/2 | <=| || | 101.00 2.3937%
7 2015/4/2 '- ~.. 104.00 1.8934%
10 2018/4/2 [ 4106.00 1.8775%

Table 4.2 Piecewise constant intensity calibrated to index spread on April 2, 2008.

Piecewise Constant Intensity

0.024

0.022

0.02

0.018

0.016

0.014 -

0.012

2008/4/2 2010/4/2 2012/4/2 2014/4/2 2016/4/2 2018/4/2

Figure 2.1 Piecewise constant intensity function calibrated
to iTraxx index spreads on April 2, 2008.

Second, we calibrate the jump sizes implied from the iTraxx market quotes in
Table 2.1 using our one-parameter model. Additionally, we calibrate the tranche

13
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correlations implied from the same quotes using the Gaussian copula model. The
results of the jump size and the tranche correlation are given in Table 4.3 and Table
4.4, respectively. Additionally, Figure 4.2 plots Table 4.3 and Table 4.4.

b Maturities
a 3yr 5yr 7yr 10 yr
0% 3% nla 0.021624 0.025900 0.028973
3% 6% nla 0.046711 0.052679 n/a
6% 9% nla 0.080631 0.086129 0.091677
9% 12% n/a n/a 0.116501 n/a
12% 22% nla n/a 0.161174 0.166269

Table 4.3 Implied jump sizes using our one-parameter model for available tranches of
iTraxx on April 2, 2008.

b Maturities
a 3yr Syr Tyr 10 yr
0% 3% nfa 0:520072 0.492428 0.491335
3% 6% nfa/" | 0.859860 0.764007 n/a
6% 9% nfa |/ -.‘;;,9.644982 0.928230 0.885820
9% 12% A | || <% “nla 0.062800 nla
12% 22% niaq ||| == nid 0.180656 0.103481

Table 4.4 Implied tranche correlations-usifg the Gaussian copula model for available
tranches of iTraxx on April 2, 2008..

Implied Jump Size
0.18 - 14
0.16 - 0.9 =

0.14 - 08 -
07 -

06 -
0.5 -
0.4 -
0.3 -
0.2 -
01 -

Implied Correlation

0.12
0.10
0.08
0.06 -
0.04 -
0.02
0.00

Trenches Trenshes

0%3% 2%6% 6% 9% 9%12%  12%22% 0%3% 3% 6% 6% 9% 9%12% 12%6722%

Figure 4.2 Implied jump size of our one-parameter model (left) compared with the
implied tranche correlation of the Gaussian copula model (right) from the 7-year
tranches quotes of iTraxx on April 2, 2008.

As mentioned in section 3.1.1, the implied jump size creates the default
correlation which is positively related to the default rate. Thus the jump size
approaches zero when the default correlation approaches zero. As the jump size

14
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becomes large, the default correlation approaches one. Figure 4.2 compares the jump
sizes with the tranche correlations. It can be seen that the two exhibit different
patterns. On April 2, 2008, a correlation structure that resembles a wave for implied
tranche correlations rather than steeply upward sloping skew for implied jump sizes.
Figure 4.3 compares the jump sizes with the base correlations. The pattern of implied
jump size is similar to base correlation which is much smoother and more stable.
Additionally, the advantage of calculating an implied jump size rather than an implied
copula correlation is that the jump size is associated with a dynamic model, whereas
the copula correlation is associated with a static model. To sum up, the pattern of
implied jump size in our one-parameter dynamic model resembles the base correlation
of the static model.

Implied Jump Size Base Correlation
0.18 0.85 -
0.16 - 0.8 -
0.14 + 0.75 -
0.12 4 0.7
0.10 | 0.65 -
0.6 -
0.08
0.55
0.06 0:s:
0.04 + 0.45
0.02 5 i i .
renches
0.00 ‘ ‘ : : 0.35 Detachment points
0%73%  3%U6%  6%70%  0%712%  12%722% | 3% 6% 9% 12% 22%

Figure 4.3 Implied jump size of.our onéfTia'rameter model (left) compared with the
base correlation (right) from the 7=year tranches quotes:of i Traxx on April 2, 2008.

Third, we use the optimization numerical method to calibrate the parameters H,
and S of our two-parameter model, simultaneously. That is to minimize the sum of
squared differences between market tranche spreads and model tranche spreads. The
procedure involves repeatedly

I. Choosing trial values of H, and S ;
Il. Calculating the sum of squared differences between model spreads and market
spreads for all tranches of all maturities available.
This iterative procedure is used to find the values of H, and g . Two parameters
are used to match as closely as possible available tranche spreads and so there is
always a unique optimal solution. We list in Table 4.4 the calibration result and the

values of the calibrated parameters.
For the iTraxx data in Table 2.1 the best fit parameter values are H, =0.046750

and £ =1.835630. The pricing errors are shown in Table 4.4. The model fits market
data much better than versions of the one-parameter model where the jump size is
constant for any economic shock.

15
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N b Maturities
3yr 5yr 7yr 10 yr
0% 3% nla 44.35 36.53 31.50
3% 6% n/a 65.56 —88.86 n/a
6% 9% n/a —74.41 —104.85 —131.83
9% 12% n/a n/a —6.84 n/a
12% 22% n/a n/a 3.87 -3.47

Table 4.4 Errors resulting from calibration of our two-parameter model to the iTraxx
data on April 2, 2008. (For example, the quote for the 12% to 22% 7-year tranche is
90bps and the model spread is 93.87bps.)

Calibrating to the iTraxx data on April 2, 2008, the values of H, in our

two-parameter model are initially small, but increase fast; i.e, H,=0.2931,
H,=1.8373, and H,=11.5184. Thus the survival probability decreases fast when
the economic shock increases. -The'value_of :H, .indicates the initial survival
probability and the value of /3. discovers the velocity. of decreasing. There is a small
probability of low values of S being reached. | For the intensity function calibrated
from the data on April 2, 2008, the probgvf)'ility that S at the end of 5 years is about
93.21%. This is also consistent'with the ori@inal model‘of the results in papers such as
Hull and White (2006), which 'show. 'thathit_iS- 'necessary to assign a very low, but
non-zero, probability to a very high hazard.rate-in.a static model in order to fit market
quotes.

We try to observe the fluctuation of the parameters from calibrating to all the
available iTraxx tranche data between March 27, 2008 and April 2, 2008. This data
includes the spreads on 3-, 5-, 7- and 10-year CDO tranches as well as 3- to 10- year
index spreads. Among these days, the number of available CDO tranche spreads is
between 11 and 15. The jump parameter values are showed in Figure 4.4, where we
can infer that the two parameters fluctuate in opposite way.

16
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Ho (left-hand scale)
beta (right-hand scale) r 2.000000
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Figure 4.4 Jump parameters H, and S calibrated to

iTraxx data using our two-parameter model between March
27,2008 and April 2, 2008.

Compared with the original model of Hull and White (2007), we calibrate the two
parameters of our two-parameter model to the data in Table 4.5, which is the iTraxx
CDO quotes on January 30, 2007 from' Hull and White (2007). In addition, the best fit
parameter values of their three-parameter model are" H , =0.00223, £ =0.9329
and 1=0.1310, and their pricing errors/are shown in Table 4.6. The best fit
parameter values of our two-parameter @déli are H,'=0.03569 and S =1.42379,
and our pricing errors are shown In "I'[abl&4.7, (It turns out that our model is not as
good as the original model of Hull-and Whitél(2007), although our model and the
procedure of calibration make mare economic sense; Our model’s spreads are close to
the market spreads only for some tranches, such as the 12%~22% tranche of 5-year
and 7-year. For the senior tranche of 3%~6% our model’s error is quite large. The
model of Hull and White (2007) fits market data well for almost all the tranches
quotes.

. |Detachment Maturities
Attach point )
point 3yr 5yr Tyr 10 yr
Index 15.00 23.00 31.00 42.00
0% 3% n/a 10.25 24.25 39.30
3% 6% n/a 42.00 106.00 316.00
Tranche 6% 9% n/a 12.00 31.50 82.00
9% 12% n/a 5.50 14.50 38.25
12% 22% n/a 2.00 5.00 13.75

Table 4.5 iTraxx CDO tranche quotes in basis points on January 30, 2007.
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a b Maturities
3yr 5yr Tyr 10 yr
0% 3% n/a 1.34 2.75 4.32
3% 6% n/a 0.37 3.12 -1.37
6% 9% n/a -0.54 -2.69 -1.92
9% 12% n/a -1.01 -1.55 -0.12
12% 22% n/a -0.47 -0.21 1.28

Table 4.6 Errors in basis points resulting from calibration of three-parameter model of
Hull and White (2007) to the iTraxx data in Table 4.5 on January 30, 2007.

. b Maturities
3yr Syr 7yr 10 yr
0% 3% n/a —48.44 —32.48 —15.12
3% 6% n/a —85.96 -13.11 194.89
6% 9% nla =/ 198 —14.25 20.01
9% 12% nfa =10.65 —7.45 8.00
12% 22% nla - ~0.92 3.12 10.09

Table 4.7 Errors in basis points resulting ﬂgt_r'j'calibration of our two-parameter model
to the iTraxx data in Table 4.5 onJanuary 30, 2007

Finally, we use the jump pz;rém:eters calibrated to the iTraxx market quotes on
April 2, 2008 to compare the results of model-spreads generated by the analytical
method with those obtained by the binomial tree method and the Monte Carlo
simulation. The results are presented in Table 4.8.

Tranche of 6% ~ 9% on April 2, 2008
Model spreads (bps)
Syr Tyr 10 yr
Analytical method 170.59 175.15 178.17
Binomial tree method 169.95 174.96 178.02
Monte Carlo method 172.05 176.73 180.06

Table 4.8 Model spreads for 6%~9% tranche for different methods on April 2, 2008.

For the binomial tree method, we choose proper size of m to let the spreads
converge to the analytical one as closely as possible. They turn out to be 60, 196 and
360 for the maturity of 5, 7 and 10 year, respectively. For the Monte Carlo method,
we simulate the number of economic shocks for one million times and calculate the

average value. The model spreads obtained by the binomial tree method and the
18
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Monte Carlo simulation are both close to the values generated by the analytical
method, it corresponds to the fact that it should converge theoretically as we
mentioned in section 3.2.2 and 3.2.3. However, Monte Carlo simulation is
time-consuming, especially when the intensity is very small which causes low
probability of economic shocks.

< ";55 I
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Chapter 5

Conclusion and Future Work

This thesis presents a revised dynamic model based on Hull and White (2007). Their
pricing algorithms are also revised to valuate portfolio credit derivatives. Our
justification for the modification is that our model and way of calibration make more
economic sense. We also use the result that the binomial distribution converges to
Poisson distribution for a mathematical proof to support the procedure of representing
the model in the form of a binomial tree. Although the numerical result for matching
market quotes is not as well as the original model of Hull and White (2007), it
captures the other specificities and advantages. For example, our model is a dynamic
model which can be represented as a binomial tree. It is simple and easy to
implement. :

This thesis highlights further research-in the -future. The first is to use the tree
algorithm to price exotic credit portfolio derivatives such as tranche options, forward
tranches, leveraged super-senior; etc, The sécond is'to develop an efficient Monte
Carlo simulation whose implementatioﬁi"@f the model can price more strongly
path-dependent credit derivatives. Finallyf‘:we consider it worthwhile to develop the
revised dynamic model further to make it provide a good fit to CDO quotes of all
maturities.

20
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Appendix A

Poisson Process

Poisson processes are usually used to model either rare events or discretely countable
events. Both properties let Poisson processes apply to the rare and discrete default
event. A Poisson process with intensity A >0is a non-decreasing, integer-values
process with initial value N(0)=O whose increments are independent and satisfy,
forall0<t<T

P[N(T) = N(t) = n] =$(T —t)" Pexpl— (T —t) A].

Here are some further properties:

1. The Poisson process has no memory. The probability of n jumps in [t,t+s] is
independent of N(t) and the history of "N before t.

2. Let 7,7,,...,7,,... be the first, second -etc. jump times of N . Then
7,7, —Ty,T3—Ty,..., IN Other anords, the times. between any jump and the
subsequent one, are exponentially di_st,i;ip_uted.

3. Two or more jumps at exactly the same:-if:ﬁhe have probability zero.

In order to reach a more realistic shaif;e ofthe spread curve we must allow the
default intensity to change over time.‘\We consider time-varying intensity At), which

is assumed to be a positive and piecewise right-continuous function. Define

r(t)= I;z(u)du,

the cumulated intensity. A time inhomogeneous Poisson process with intensity
function A(t)>0 is a non-decreasing, integer-valued process with initial value
N(0)=0 whose increments are independent and satisfy

PIN(T)-N(t)= n]ﬁ[F(T)—F(t)]” expt=[(T)-T(U)];

It properties are similar to the properties of a homogeneous Poisson process.
If M, is a Poisson process with intensity one, then a time-inhomogeneous

Poisson process N, with intensity A(t) is defined as N, =My, . So a time

inhomogeneous Poisson process is just a time-changed Poisson process with intensity

one. From N, =M, we have obviously that N jumps the first time at z if and
only if M jumps the first time at T'(z). Since we know that M is a Poisson process

21
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with intensity one for which the first jump time is exponentially distributed, we have
I'(r)= & ~ exponential(1), in other words, r=T"(&), with & is a standard
exponential random variable. Also, we have easily
Pls <z <t]=P[(s)< () < ()]

= P[[(s) <& <T(t)

= Pl¢ > 1(s)]-Pls > T(t)]

=exp(~T(s))—exp(~I'(t))
which is the probability of the first jump to occur between s and t.

In particular, the formula

P(z >t)=exp(-I(t))= exp[— Jiﬂ(u )duj (A.2)

tells us the probability of the first jump to occur after t. Egs. (A.1) and (A.2) are
applicable to calculate the spread of credit derivatives by Eq. (2.2), the breakeven
spread of a CDS contract at the end of section 2.2.

(A1)

< ";55 I
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Appendix B

Expectation of Hazard Rate

We check whether the expectation of hazard rate from binomial tree is approach to the
value we calculate from analytical method when the partition is dense enough.
Let N(t) be the Poisson process with intensity A. The jump size, H, defined

in the dynamic model is the function of N(t), thatis H(N(t))=H,e™", where H,

N (t
and £ are positive constants. Then the hazard rate, X(t), is equal to > H(N(t)).

N(t)=0
From analytical method,

E[X iE{ZH e™YIN(t) }P (t)=k)
k=0 N(
© k k =gt © (k+1)p k .-t
_ o [(a)"e Ho (e ~1) (21)'e
kzz(; %;0H°e j ki kZ; \ ! k!
H - 00

- =R fi o k=0 ! k=0
_ I:ﬂoe . [eﬁ e <¢” ] [exp(,B+/1t(e/’ 1)) 1]
From fitting binomial tree, we use parameters deflned in section 3.2 except that 4 is
constant for simplifying the proof as above.

Z (eT“*iié..'g.l)z Hoe:{ z(eﬂ/u) 5 k_k}

k m—k
.o (mY ot )" H, (e 1)
= A—1ll1=p—] 0% =
L'I!J%M( mj ( mj e’ -1

[eﬂ exp(at(e” —1))- 1]— [exp(ﬂ+it(eﬂ 1)) 1]

The limit of the expectation of hazard rate from fitting binomial tree agrees with
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the value from analytical method.
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