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摘要： 
 

本論文主要是在介紹評價信用衍生性金融商品的動態模型，並應用之來評價

標準化的擔保債權憑證（CDO）商品，iTraxx Europe index。此動態模型相對於

之前市場上常用的 copula 靜態模型，應用的範圍更廣，其可以評價更多的新奇

型信用衍生性商品。本文引用了 Hull and White (2007)提出的簡單動態模型的概

念，修改其中幾項模型參數並探討出較合適的評價過程，使此模型更具經濟上的

意義。除了直接的解析解，我們還探討了二元樹與蒙地卡羅模擬的方法，使評價

過程更具多元性。其中我們補足了此模型轉成二元樹模型的數學證明，使此模型

的架構更加完整。最後，我們發現此模型帶入市場資料後所求得的商品分券價值

亦相當接近於市場價值。 
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Abstract 
 
This thesis investigates dynamic methods for pricing portfolio credit derivatives, 
especially the standardized market for CDO: iTraxx Europe index. Compared with 
previous static models, i.e., the copula functions, the dynamic models are applicable 
to much more exotic portfolio credit derivatives. This thesis uses the concept of the 
dynamic model from Hull and White (2007). But we modify it by adjusting some 
parameters. We also find a better way for calibration to give the model more 
economic sense. The iTraxx Europe index can also be valued analytically using our 
model. Besides the analytic method, we consider the binomial tree and Monte Carlo 
method to make pricing more flexible. Finally, the revised dynamic model captures 
the advantages of the original one and also provides a good fit to CDO quotes. 
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Chapter 1 

Introduction 

1.1 Background and Literature Review 
The standard market model for pricing portfolio credit derivatives is the copula model, 
which assumes a simple one factor model for a company’s time to default. While 
there are several types of copula function models, Li (2000) introduces the one-factor 
Gaussian copula model for the case of two companies and Gregory and Laurent (2005) 
extend the one-factor model to the case of N companies. Many alternatives to the 
Gaussian copula such as the t-copula, the double-t copula, the Clayton copula, the 
Archimedian copula, the Marshall Olkin copula have been suggested. However, these 
approaches are problematic for two main reasons. First, there is no dynamic 
consistency, and, second, there is no theoretical basis for the choice of any particular 
dependence structure. These copula models which lack of dynamics are called static 
models, because they do not describe how the default environment evolves. Thus, 
they do not allow us to price, for example, forward starting credit products or options 
on CDO tranches. 

Stimulated by the perspective of an emerging market of the exotic credit products 
mentioned above, there has been much research on developing a dynamic model that 
fits market data and tracks the evolution of the credit risk of a portfolio, including 
Albanese et al. (2006), Bennani (2006), Brigo et al. (2007), Di Graziano and Rogers 
(2006), Hull and White (2007), Schönbucher(2006), Sidenius (2006), among others. 
Among these, the dynamic models can be categorized into three categories: structural 
model, top-down model and reduced-form model.  

The most basic version of the structural model is similar to the Gaussian copula 
model. Albanese et al (2006) propose a rating transition model within the structural 
framework where the distance to default of each single obligor is represented by a 
Markov chain. Structural models have the advantage that they have sound economic 
fundament. 

The top-down model is a dynamic model which involves the development of a 
model for the evolution of the losses on a portfolio. It considers the frameworks for 
modeling quantities directly related to the loss distribution of a pool of names. In 
other words, it models directly the cumulative portfolio loss process. This approach is 
pursued in Bennani (2006), Sidenius, Piterbarg and Andersen (2006) and Schönbucher 
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(2006). Bennani (2006) proposes a model of the instantaneous loss as a percentage of 
the remaining notional principal. Sidenius et al (2006) use concepts from the Heath, 
Jarrow, and Morton (1992) interest-rate model to suggest a complex general 
no-arbitrage approach to modeling the probability that the loss at a future time will be 
less than some level. Sidenius et al (2006) model the dynamics of portfolio loss 
distributions in the absence of information about default times. Schönbucher (2006) 
models the evolution of the loss distribution from the transition rates of an auxiliary 
time-inhomogeneous Markov chain which reproduces the desired transition 
probability distribution. Stochastic evolution of the cumulative loss process is then 
obtained by using the transition rates with stochastic dynamics.  

The reduced-form approach for developing a dynamic model is to specify 
correlated diffusion processes for the hazard rates of the underlying companies. Di 
Graziano and Rogers (2005) present a new approach to default correlation modeling, 
where defaults of different names are driven by a common continuous-time Markov 
process. Individual default probabilities and default correlations can then be 
calculated in closed form. Brigo et al. (2007) consider a dynamical model for the 
number of defaults of a pool of names. The model is based on the notion of 
generalized Poisson process, allowing for more than one default in small time 
intervals. Hull and White (2007) develop a model that is both reduced-from and 
top-down. It is easy to implement and easy to calibrate to market data. Under the 
model the hazard rate of a company has a deterministic drift with periodic impulses. 
The impulse size plays a similar role to default correlation in the Gaussian copula 
model. Additionally, Brigo et al. (2007), Di Graziano and Rogers (2006) and Hull and 
White (2007) all have given examples of calibration to CDO tranche quotes with a 
high degree of precision.  

This thesis modifies the model of Hull and White (2007). The objective here is to 
specify the procedure from model set-up to calibration more completely. In particular, 
we adjust some parameters to give the model more economic sense, and propose a 
calibration method where index tranches quotes are matched as closely as possible.  

1.2 Structures of the Thesis 
The remainder of this thesis is organized as follows. Chapter 2 reviews basic concepts 
and pricing technologies of CDO and index tranche as well as the calibration to index 
spread. In chapter 3 we present three algorithms for pricing under our dynamic model: 
analytical method, binomial tree and Monte Carlo method. Chapter 4 discusses 
parameters and numerical data from calibration. Finally Chapter 5 summarizes our 
results and points to future research. 
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Chapter 2 

A Primer on CDO and Index Tranche Pricing 

2.1 Introduction to an Index Tranche 
The two most actively traded CDS indexes are the Dow Jones CDX NA IG index and 
the iTraxx Europe index. The former includes 125 North American investment grade 
companies. The latter includes 125 European investment-grade companies. Index 
tranches of these CDS indexes are CDO tranches whose underlying portfolio is 
composed of the 125 companies in the CDS indexes. For both index tranches, each 
company is equally weighted. They have standardized documentation and use 
standard attachment and detachment points. They are sliced into five tranches: equity 
tranche, junior mezzanine tranche, senior mezzanine tranche, junior senior tranche, 
and super senior tranche. The standard tranche structure in terms of attach 
point-detachment point pairs of the Dow Jones CDX NA IG is 0-3%, 3-7%, 7-10%, 
10-15%, and 15-30%. As for the iTraxx Europe, it is 0-3%, 3-6%, 6-9%, 9-12%, and 
12-22%. For both indexes, they are quoted on maturities of three, five, seven and ten 
years.  

The premium of the equity tranche is paid differently from the nonequity tranches. 
It includes two parts. The first is the upfront percentage payment as a percentage of 
the notional, and the second is the fixed 500 basis points premium per annum. The 
market quote is the upfront percentage payment. For the nonequity tranches, the 
premium includes only the second part. Their market quotes are the premium in basis 
points, paid quarterly in arrears to purchase protection from defaults. Thus for pricing 
these index tranches, we should notice the different quote conventions for the various 
tranches.  

Maturities 
  Attach point 

Detachment 
point 3 yr 5 yr 7 yr 10 yr 

Index   77.00 101.00 104.00  106.00 
0% 3% n/a 32.00  39.00  43.00  
3% 6% n/a 395.00 485.00  n/a 
6% 9% n/a 245.00 280.00  310.00 
9% 12% n/a n/a 180.00  n/a 

Tranche 

12% 22% n/a n/a 90.00  100.00 
Table 2.1 iTraxx CDO tranche quotes in basis points of Series 9 on April 2, 2008.  
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The market also quotes the index spreads which are the average of the CDS 
spreads of the companies in the portfolio pool for each maturity. For example, the 
Index row in the Table 2.1 shows the index spreads. Before pricing the index tranches 
we would like to use the index spreads to calibrate the implied default probability of 
each company under the assumption of homogeneity of the model to be described in 
Chapter 3. The following two sections review the concepts we use for calibrating and 
pricing index tranches.  

2.2 Extract Implied Default Probability from CDS Spread 
In this section, we present the method for calibrating the hazard rate from the index 
spread of an index tranche. The reduced-form model used here is the 
time-inhomogeneous Poisson process with time varying intensity ( )tλ  and 

cumulated hazard function ( ) ( )∫=Γ
t

duut
0
λ  detailed in Appendix A. For calibration 

we will take the hazard rate to be deterministic and piecewise constant: ( )t iλλ =  for 
[ ),,1 ii TTt −∈  where  are the relevant maturities. Let iT ( )tβ  be the index of the first 

 after t ; for example, if , then iT 25.6=t ( ) 7=tβ . The cumulated hazard function 
is 

 ( ) ( ) ( )
( )

( )( ) ( )tt

t

i
iii

t
TtTTduut ββ

β

λλλ 1

1

1
10 −

−

=
− −+−==Γ ∑∫ .         (2.1) 

A typical CDS contract usually specifies two potential cash flow streams: a default 
leg and a premium leg. On the default leg side, the protection seller makes one 
payment only if the reference credit defaults. The amount of a contingent payment is 
usually the notional amount multiplied by the recovery rate. On the premium leg side, 
the buyer of protection makes a series of fixed, periodic payments of CDS premium 
until the maturity or the reference credit defaults. For a breakeven spread, the net 
present value of both legs must equal zero. 

The payment on CDS is assumed to be quarterly in arrears. We also assume a 
constant recovery rate,  and deterministic interest rates. Let  denote the 
riskless discount factor from 0 to ,  be the spread for a CDS contract, 

,R id

it CDSS T  be 
the maturity year, τ  be the time point when credit event occurring and  is the 
probability of a credit event occurring under the risk-neutral world. The present value 
of default leg of a CDS is 

Q

[ ]( ) ( )( ) (( )( )∑∑
=

−
=

− Γ−−Γ−−=∈−
T

i
iii

T

i
iii ttdRttQdR

4

1
1

4

1
1 expexp)1(,)1( τ )  

(see Eq. (A.1) in Appendix A). With similar computation, the present value of the 
premium leg is 
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With a piecewise constant ( )tλ , we obtain the breakeven spread 
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(2.2) 
 
 
From the market data, we have fair CDS quotes, i.e., the index spreads for 

. We then use the fair quotes as the breakeven spread to calibrate the 
intensity parameters. Chapter 4 will present the numerical examples based on the 
market data on April 2, 2008. 

10,7,5,3=T

2.3 Valuation of a CDO  
Before explaining the model we give some assumptions and a general pricing 
equation for CDO. We assume homogeneity so that all companies have the same 
notional value and same default probabilities. Assume there are  companies in the 
underlying portfolio of a CDO contract with total notional principal  Let  and 

 be the tranche attachment and detachment points, respectively. The protection 
seller for a tranche of a CDO provides protection against losses on the portfolio that 
are in the range 

N
.P a

b

Pa×  to b  for the life of the instrument. The protection buyer 
pays a certain number of basis points on the outstanding notional principal of the 
tranche. The tranche principal equals 

P×

( ) Pab ×−  initially and declines as losses in the 
range  to Pa× Pb×  are experienced. That is, if the pool losses over  are 
less than , the seller does not suffer any loss; otherwise, the seller absorbs the 
losses up to the tranche size 

[ T, ]0
Pa×

( ab ) P×− . In return for the protection, the buyer pays 
periodic premiums at payment dates Ttmtt =<<< "21 , where  for 

 The payments on CDO are also assumed to be quarterly in arrears. 
From the assumption of homogeneity, denote the tranche principal at time  when 
there have been  defaults by 

0t T> 0=

t

i

.,, m…2,1i =

n

( )

( )

( )

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

−××−×

×−

=

0

1, R
N
PnPb

Pab

tnW  if 

R
Nbn

R
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R
Na

R
Nan

−
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>

−
×

<<
−
×

−
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<

1

11

1
      (2.3) 
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If we derive the expected tranche principal, [ ],iWΕ  at time  then we can value a 
CDO tranche at time zero according to the following procedure. Let  be the 
spread for a CDO contract. In general, valuation of a CDO tranche balances the 
expectation of the present values of the premium payments against the payoff from 
effective tranche losses, i.e., the premium leg against the default leg such that  

,it

CDOS

( ) ⎥
⎦

⎤
⎢
⎣

⎡
−Ε=⎥

⎦

⎤
⎢
⎣

⎡
−Ε ∑∑

=
−

=
−

T

i
iii

T

i
iiiiCDO dWWdWttS

4

1
1

4

1
1 )( .  

The right-hand side, the premium leg, is the calculation of the expected tranche 
principal at specified times, which equals the expected tranche principal at payments 
dates multiplied by the spread . The expected payoff, the default leg, between 
two payments dates equals the reduction in the expected tranche principal between 
those times. 

CDOS

The breakeven spread s is therefore given by  

[ ] [ ]
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S        (2.4) 

Alternately, if the spread is set, the value of the CDO is the difference between the 
two legs:  

( ) [ ] [ ] [ ]∑∑
=

−
=

− Ε−Ε−Ε−=
T

i
iii

T

i
iiiiCDO dWWdWttV

4

1
1

4

1
1 )(  

Therefore, the problem is reduced to the computation of the expected tranche 
principal,  at time . [ ],tWΕ t
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Chapter 3 

The Dynamic Model and Its Implementations 
In this chapter, we review the model of Hull and White (2007). Additionally we 
modify some parameters and the way of calibration to give the original model more 
economic sense. The first implementation of the model is the analytical method. 
However, in order to price other exotic portfolio credit products which must be priced 
by a backward recursion algorithm, we discretize the model on a binomial tree. 
Typically, these are products with embedded options, such as tranche options or 
leveraged super seniors. Finally, we present a Monte Carlo simulation method for 
pricing.  

3.1 The Dynamic Model  

3.1.1 Model Review 
 
The main model idea of this thesis is that we start by assuming that there exists a 
process for hazard rate which drives the common dynamics of the credits in the 
portfolio. Periodically there are economic shocks to the default environment. When a 
shock occurs each company has a nonzero probability of default. As a result the 
economic shocks are accompanied with defaults at the same time. It is these shocks 
and their sizes that create the default correlation. Empirical evidence suggests that 
default correlations increase when hazard rates are high. So the default correlation is 
positively related to the default rate. Thus, in a risk-neutral world, Hull and White 
(2007) construct the model of hazard rate, X , to be one that has a deterministic drift 
and periodic impulses:  

( ) ( )
( )

∑
=

+=
tN

j
jHtMtX

1
 

The number of economic shocks, ( )t ,N s a jump process with intensity  i λ  and jump 
size  

,0
βj

j eHH =                           (3.1) 

where  and 0H β are positive constants, and j  means the  economic shock.  thj

Hull and White (2007) first present a simplified version of the model for 
calibration. This is a one-parameter model where the drift of the hazard rate is zero 
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and the jump size is constant for any economic shock; in other words,  and ( ) 0=tM
0=β . The jump intensity ( )tλ  is time-dependent, and it is extracted from index 

spreads. Thus that leaves only one free parameter, the implied jump size 0 , which 
is calibrated to quotes of index tranches.

 H
  

The calibration for the original one, the three-parameter version of the model, is 
done in different way. The drift and the jump size are both nonzero, but the jump 
intensity λ  is now assumed to be constant. The drift of the hazard rate, , is 
determined to match index spreads, and the three parameters 

( )tM
λ ,  and 0H β  are 

calibrated to quotes of index tranches. 
 

3.1.2 Model Modification 
 
Although the three-parameter version of the model presented by Hull and White 
(2007) is designed to provide a good fit to all spreads of all maturities, the calibration 
methods for the jump intensity of this version and the simplified one are not 
consistent. The three-parameter version’s assumption of constant jump intensity does 
not make more economic sense than the simplified version’s assumption of 
time-dependent jump intensity. As mentioned in section 2.2, we would like to use the 
index spread to calibrate the implied jump intensity function of the model. The jump 
intensity function is based on the Poisson process which is used to model either rare 
events or discretely countable events. If we use this information, then we can say the 
default is accompanied with economic shocks which create the default correlation. 
This is consistent with our model’s philosophy. Furthermore the intensity we 
calibrated is time-varying, which makes more economic sense. Additionally, we 
consider the drift term to be submerged by , which is the jump size when there are 
no economic shocks. Based on the above considerations, our dynamic model is 

0H

( )
( )

∑
=

=
tN

j
jHtX

0
                          (3.2) 

Our model also can be presented as two versions, the one-parameter vision and the 
two-parameter version. Both versions’ jump intensity will be calibrated to index 
spreads and their other free parameters will be calibrated to tranche quotes.  

3.2 Three Implementations of the Model 

3.2.1 Analytical Method 
 
We assume homogeneity for the model so that all companies have the same default 
probabilities and the default probabilities of companies are independent of one 
another. Let  to be the cumulative probability of survival by time  conditional ( )tS t
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on a particular hazard rate path between time 0 and time . The transformation of 
 from 

t
( )tS X  is defined by ( ) ( )( )tXtS −= exp . If ( )tS  is known, the probability 

distribution of the number of defaults up to time  can be calculated. If there are N 
companies in the portfolio, then the probability that n of them will default by time  
is 

t
t

 ( ) ( )( ) ntS
nN

N
−

−
1

!!
!

[ ].iW

( )

( ) nN

n
−tS .                  (3.3) 

Now, we proceed to price the index tranches on the dynamic model using the 
analytical method. From the end of section 2.3, what we need to do is to calculate the 
expected tranche principal,  The probability of  jumps between time zero 
and time  is 

Ε J
t

( ) ( )( ) ,
!

exp,
J

ttt
J Γ−Γ

=

( ) ⎥
⎦

⎤
⎢
⎣

⎡
−= ∑

=

J

j
jHt

0
exp,

JP                       (3.4) 

(see Eq. (2.1) in section 2.2). The value of S in our model at time  if there have 
been  jumps is 

t
J

JS .                        (3.5) 

The probability of  defaults in the portfolio by time  conditional on  jumps 

can be calculated from Eq. (3.2); we denote that value by 

n t J

( )Jtn,Φ . The expected 

principal on the tranche at time  conditional on  jumps is  t J

( ) ( ) (∑
=
Φ=

N

n

)nWJtnJtE
0

,, t ,                       (3.6) 

(see Eq. (2.3) in section 2.3). Finally, the unconditional expected tranche principal, 
 at time t  is therefore  [ tWΕ ],

( ) ( ) (∑
∞

=

=
0

,
J

t JtEtJPWE ).                        (3.7) 

Finally, with this equation, the tranche spread can be recovered from Eq. (2.4) at the 
end of section 2.3. Therefore, the index tranches can be valued analytically using our 
dynamic model.  
 
3.2.2 Binomial Tree Method 
 
In this section, we build a binomial tree for our dynamic model. Under the binomial 
tree, we can price the exotic portfolio credit products which must be priced by a 
backward recursion algorithm. Typically, these are products with embedded options, 
such as tranche options or leveraged super seniors.  
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]
To construct the tree, the life of the model is divided into a number of short time 

intervals. For every fixed positive integer , partition the trading interval  into 

 subintervals of length 

m [ T,0

m
m
Thm = . The subscript denotes dependence on the 

particular value of  chosen. Denote the time corresponding to the end of the  
subinterval by 

m thi
iτ  and let 00 =τ . The iτ  are chosen so that there are nodes on each 

payment date, in other words, for each , k ki t=τ  for some . In practice this is 
achieved by creating  equal time steps between each payment date for some integer 

. Let 

i
v

v T  be the maturity year,  is equal to m T4v× , because the payments on 
credit portfolio products are assumed to be quarterly in arrears. 

Now consider the jump component of Eq. (3.2), the impulses of the hazard rate. 
For the Poisson jump component, the probability of a single jump occurring in an 
interval of length  is equal to mh ( )mm hoh +λ . The probability of multiple jumps in 
the same interval equals , where the symbol ( )mho ( )mho  represents any function 

such that ( ) 0lim
0

=⎥
⎦

⎤

m

m
⎢
⎣

⎡
→h h

ho . Therefore, we assume that the probability of a jump during 

each time interval is equal to mhλ . We also assume that multiple jumps at any 
discrete date cannot occur. This leads to a tree with the geometry shown in Figure 3.1. 

In this figure,  is the size of the  jump. The probability on the upper 

and lower branches emanating from a node at time 

βj
j eH 0H= thj

iτ  are mihλ  and mihλ−1 , 
respectively, where ( )ii τλλ = , which is calibrated from the index spread.  

Figure 3.1 The Binomial Tree for Hazard Rate. 
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It is reasonable for us to fit the process of hazard rate by this binomial tree, 

because if N nd ∞→= m 0→= mhP λ  in such a way that TNP λ= ant, 
then the binomial distribution converges to the Poisson distribution with mean T

 is const
λ . 

In Appendix B, we prove that the expectation of hazard rate under this binomial tree 
method does indeed converge to the value calculated under the above analytical 
method when the partition is dense enough, i.e., ∞→m . 

Denote the  node at time thj iτ  by ( )ji, . Let  and  be the cumulative 

survival probability and expected tranche principal at node 

ijS ijW

( )ji, , respectively. The 

value of  is equal to ijS ( )ijX−exp , which will be used to calculate the value of 

( )Jn iτ,Φ , the probability of n defaults by time iτ . Thus  can then be calculated 

from Eqs. (2.3) and (3.5). 

ijW

Let  and  be the premium leg and the default leg which we defined 

analogously in section 2.3, respectively. Sometimes 

ijPL ijDL

iτ  correspond to payment dates 
and others do not. Let iδ  be the day count factor defined as follows. For calculating 

, if ijPL iτ  is a payment date so that ki t=τ , then iδ  equals the accrual fraction 

. Otherwise when 1−k−k tt iτ  is not a payment date, 0=iδ . We use backward 
recursion algorithm to calculate the breakeven spread of an index tranche. At the final 

nodes ijiWijPL δ=  and . At earlier nodes, they can be calculated by 

working backward through the tree using  

0=ijDL

( )[ ] iji
i

i
jimijimiij W

d
dPLhPLhPL δλλ +×−+= +

+++
1

,11,1 1  

( )[ ]

( ) ( )( )[ ] .1

1

1
,11,1

1
,11,1

i

i
jiijmijiijmi

i

i
jimijimiij

d
d

WWhWWh

d
d

DLhDLhDL

+
+++

+
+++

×−−+−+

×−+=

λλ

λλ
  

Note that using this binomial tree method, we calculate , the conditional expected 

tranche principal given the  jump at time 

ijW

thJ iτ  rather than the expected tranche 

principal, [ ],WτΕ
i

 at time iτ , which converges to Eq. (3.7) of the analytical method. 
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Finally, the breakeven spread of a index tranche is 
00

00

PL
DL , which converges to the 

breakeven spread calculated by analytical method theoretically.  
 
3.2.3 Monte Carlo Simulation Method 
 
Another approach for valuation is to use Monte Carlo simulation to evaluate the 
number of economic shocks between payment dates, and then calculate the hazard 
rate and the cumulative survival probability under that circumstance. The simulation 
algorithm for Poisson distribution is quite standard. It makes use of a relationship 
between the Poisson distribution and the exponential distribution. 

We generate exponential distributed samples from a uniformly distributed variable. 
If y  is an exponentially-distributed random variable with mean λ1 , then the 
number of samples needed to sum up to, but not beyond the period between two 
payment dates, 0.25, is Poisson distributed with mean λ . 
First, we calibrate the intensity function from the index spread. Second, we generate 
samples from a Poisson distribution with the corresponding intensities at each 
payment day by the algorithm above. Then we calculate the hazard rate and the 
cumulative survival probability from Eqs. (3.1) and (3.5), respectively, where the 
jump number  is the value we sampled. The remaining procedures to calculate the 
breakeven spread of index tranche are the same as the analytical method. Finally, we 
repeat this simulation for one million times and calculate the average value of the 
breakeven spread of index tranche, which also converges to the breakeven spread 
calculated by analytical method theoretically.

J
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Chapter 4 

Calibration and Numerical Results 
Our dynamic model is calibrated to the market quotes in Table 2.1 for iTraxx Europe 
Index of Series 9 observed on April 2, 2008. All calibrations assume recovery rate, 

, and the risk-free interest rate %40=R %5=r . At the beginning of this chapter, we 
calibrate the jump intensity function and then use this data and analytic method to 
calibrate other parameters in the two versions of our dynamic model. At the end, we 
use all the data from calibration to compare the other two pricing methods, binomial 
tree and Monte Carlo method with the analytic method.  

Firstly, we use the model of CDS spread as Eq. (2.2) mentioned in section 2.2 to 
calibrate the jump intensity ( )tλ  to the index spread in Table 2.1. The calibration 
result is shown in Table 4.2 and the piecewise constant intensity function is presented 
in Figure 2.1. From the calibrated intensity graphs, the market perceives the second 
interval as the most risky, because the intensity is highest in that period. 
 

Maturities (yr) Maturity (date)  Index spread (bps) Intensity  
3 2011/4/2 77.00 1.2833% 
5 2013/4/2 101.00 2.3937% 
7 2015/4/2 104.00 1.8934% 
10 2018/4/2 106.00 1.8775% 

Table 4.2 Piecewise constant intensity calibrated to index spread on April 2, 2008. 

Figure 2.1 Piecewise constant intensity function calibrated 
to iTraxx index spreads on April 2, 2008. 

 

Second, we calibrate the jump sizes implied from the iTraxx market quotes in 
Table 2.1 using our one-parameter model. Additionally, we calibrate the tranche 
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correlations implied from the same quotes using the Gaussian copula model. The 
results of the jump size and the tranche correlation are given in Table 4.3 and Table 
4.4, respectively. Additionally, Figure 4.2 plots Table 4.3 and Table 4.4. 

 
Maturities 

a b 
3 yr 5 yr 7 yr 10 yr 

0% 3% n/a 0.021624 0.025900 0.028973 

3% 6% n/a 0.046711 0.052679 n/a 

6% 9% n/a 0.080631 0.086129 0.091677 

9% 12% n/a n/a 0.116501 n/a 

12% 22% n/a n/a 0.161174 0.166269 

Table 4.3 Implied jump sizes using our one-parameter model for available tranches of 
iTraxx on April 2, 2008. 
 

Maturities 
a b 

3 yr 5 yr 7 yr 10 yr 
0% 3% n/a 0.520072 0.492428  0.491335 
3% 6% n/a 0.859860 0.764007  n/a 
6% 9% n/a 0.044982 0.928230  0.885820 
9% 12% n/a n/a 0.062800  n/a  
12% 22% n/a n/a 0.180656  0.103481 

Table 4.4 Implied tranche correlations using the Gaussian copula model for available 
tranches of iTraxx on April 2, 2008. 

  
Figure 4.2 Implied jump size of our one-parameter model (left) compared with the 
implied tranche correlation of the Gaussian copula model (right) from the 7-year 
tranches quotes of iTraxx on April 2, 2008. 
 

As mentioned in section 3.1.1, the implied jump size creates the default 
correlation which is positively related to the default rate. Thus the jump size 
approaches zero when the default correlation approaches zero. As the jump size 
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becomes large, the default correlation approaches one. Figure 4.2 compares the jump 
sizes with the tranche correlations. It can be seen that the two exhibit different 
patterns. On April 2, 2008, a correlation structure that resembles a wave for implied 
tranche correlations rather than steeply upward sloping skew for implied jump sizes. 
Figure 4.3 compares the jump sizes with the base correlations. The pattern of implied 
jump size is similar to base correlation which is much smoother and more stable. 
Additionally, the advantage of calculating an implied jump size rather than an implied 
copula correlation is that the jump size is associated with a dynamic model, whereas 
the copula correlation is associated with a static model. To sum up, the pattern of 
implied jump size in our one-parameter dynamic model resembles the base correlation 
of the static model. 

  
Figure 4.3 Implied jump size of our one-parameter model (left) compared with the 
base correlation (right) from the 7-year tranches quotes of iTraxx on April 2, 2008. 
 

Third, we use the optimization numerical method to calibrate the parameters  
and 

0H
β of our two-parameter model, simultaneously. That is to minimize the sum of 

squared differences between market tranche spreads and model tranche spreads. The 
procedure involves repeatedly  

I. Choosing trial values of 0H  and β ; 
II. Calculating the sum of squared differences between model spreads and market 

spreads for all tranches of all maturities available. 
This iterative procedure is used to find the values of  and 0H β . Two parameters 
are used to match as closely as possible available tranche spreads and so there is 
always a unique optimal solution. We list in Table 4.4 the calibration result and the 
values of the calibrated parameters.  

For the iTraxx data in Table 2.1 the best fit parameter values are  
and 

046750.00 =H
835630.1=β . The pricing errors are shown in Table 4.4. The model fits market 

data much better than versions of the one-parameter model where the jump size is 
constant for any economic shock.  
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Maturities 

a b 
3 yr 5 yr 7 yr 10 yr 

0% 3% n/a 44.35  36.53  31.50  
3% 6% n/a 65.56  –88.86  n/a 
6% 9% n/a –74.41  –104.85  –131.83  
9% 12% n/a n/a –6.84  n/a 
12% 22% n/a n/a 3.87  –3.47  

Table 4.4 Errors resulting from calibration of our two-parameter model to the iTraxx 
data on April 2, 2008. (For example, the quote for the 12% to 22% 7-year tranche is 
90bps and the model spread is 93.87bps.) 
 

Calibrating to the iTraxx data on April 2, 2008, the values of  in our 

two-parameter model are initially small, but increase fast; i.e, , 
, and . Thus the survival probability decreases fast when 

the economic shock increases. The value of  indicates the initial survival 
probability and the value of 

jH

01 =H 2931.
8373.12 =H 5184.113 =H

0H
β  discovers the velocity of decreasing. There is a small 

probability of low values of S being reached. For the intensity function calibrated 
from the data on April 2, 2008, the probability that S at the end of 5 years is about 
93.21%. This is also consistent with the original model of the results in papers such as 
Hull and White (2006), which show that it is necessary to assign a very low, but 
non-zero, probability to a very high hazard rate in a static model in order to fit market 
quotes. 

We try to observe the fluctuation of the parameters from calibrating to all the 
available iTraxx tranche data between March 27, 2008 and April 2, 2008. This data 
includes the spreads on 3-, 5-, 7- and 10-year CDO tranches as well as 3- to 10- year 
index spreads. Among these days, the number of available CDO tranche spreads is 
between 11 and 15. The jump parameter values are showed in Figure 4.4, where we 
can infer that the two parameters fluctuate in opposite way.  
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 Figure 4.4 Jump parameters  and 0H β  calibrated to 

iTraxx data using our two-parameter model between March 
27, 2008 and April 2, 2008. 

 
 
 

Compared with the original model of Hull and White (2007), we calibrate the two 
parameters of our two-parameter model to the data in Table 4.5, which is the iTraxx 
CDO quotes on January 30, 2007 from Hull and White (2007). In addition, the best fit 
parameter values of their three-parameter model are 00223.00 =H , 9329.0=β  
and 1310.0=λ , and their pricing errors are shown in Table 4.6. The best fit 
parameter values of our two-parameter model are 03569.00 =H  and 42379.1=β , 
and our pricing errors are shown in Table 4.7. It turns out that our model is not as 
good as the original model of Hull and White (2007), although our model and the 
procedure of calibration make more economic sense. Our model’s spreads are close to 
the market spreads only for some tranches, such as the 12%~22% tranche of 5-year 
and 7-year. For the senior tranche of 3%~6% our model’s error is quite large. The 
model of Hull and White (2007) fits market data well for almost all the tranches 
quotes. 

 
Maturities 

 Attach point 
Detachment 

point 3 yr 5 yr 7 yr 10 yr 
Index  15.00 23.00  31.00  42.00  

0% 3% n/a 10.25  24.25  39.30  
3% 6% n/a 42.00  106.00  316.00 
6% 9% n/a 12.00  31.50  82.00  
9% 12% n/a 5.50 14.50  38.25 

Tranche 

12% 22% n/a 2.00 5.00  13.75  
Table 4.5 iTraxx CDO tranche quotes in basis points on January 30, 2007. 
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Maturities 

a b 
3 yr 5 yr 7 yr 10 yr 

0% 3% n/a 1.34 2.75 4.32 
3% 6% n/a 0.37 3.12 –1.37 
6% 9% n/a –0.54 –2.69 –1.92 
9% 12% n/a –1.01 –1.55 –0.12 
12% 22% n/a –0.47 –0.21 1.28 

Table 4.6 Errors in basis points resulting from calibration of three-parameter model of 
Hull and White (2007) to the iTraxx data in Table 4.5 on January 30, 2007. 
 

Maturities 
a b 

3 yr 5 yr 7 yr 10 yr 
0% 3% n/a –48.44  –32.48  –15.12  
3% 6% n/a –85.96  –13.11  194.89  
6% 9% n/a –21.99  –14.25  20.01  
9% 12% n/a –10.65  –7.45  8.00  
12% 22% n/a 0.92  3.12  10.09  

Table 4.7 Errors in basis points resulting from calibration of our two-parameter model 
to the iTraxx data in Table 4.5 on January 30, 2007. 
 

Finally, we use the jump parameters calibrated to the iTraxx market quotes on 
April 2, 2008 to compare the results of model spreads generated by the analytical 
method with those obtained by the binomial tree method and the Monte Carlo 
simulation. The results are presented in Table 4.8. 

 
Tranche of 6% ~ 9% on April 2, 2008 

Model spreads (bps) 
5 yr  7 yr 10 yr 

Analytical method 170.59  175.15  178.17  
Binomial tree method 169.95  174.96  178.02  
Monte Carlo method 172.05  176.73  180.06  

Table 4.8 Model spreads for 6%~9% tranche for different methods on April 2, 2008.  
 

For the binomial tree method, we choose proper size of  to let the spreads 
converge to the analytical one as closely as possible. They turn out to be 60, 196 and 
360 for the maturity of 5, 7 and 10 year, respectively. For the Monte Carlo method, 
we simulate the number of economic shocks for one million times and calculate the 
average value. The model spreads obtained by the binomial tree method and the 

m
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Monte Carlo simulation are both close to the values generated by the analytical 
method, it corresponds to the fact that it should converge theoretically as we 
mentioned in section 3.2.2 and 3.2.3. However, Monte Carlo simulation is 
time-consuming, especially when the intensity is very small which causes low 
probability of economic shocks.  
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Chapter 5 

Conclusion and Future Work 
This thesis presents a revised dynamic model based on Hull and White (2007). Their 
pricing algorithms are also revised to valuate portfolio credit derivatives. Our 
justification for the modification is that our model and way of calibration make more 
economic sense. We also use the result that the binomial distribution converges to 
Poisson distribution for a mathematical proof to support the procedure of representing 
the model in the form of a binomial tree. Although the numerical result for matching 
market quotes is not as well as the original model of Hull and White (2007), it 
captures the other specificities and advantages. For example, our model is a dynamic 
model which can be represented as a binomial tree. It is simple and easy to 
implement.  

This thesis highlights further research in the future. The first is to use the tree 
algorithm to price exotic credit portfolio derivatives such as tranche options, forward 
tranches, leveraged super-senior etc. The second is to develop an efficient Monte 
Carlo simulation whose implementation of the model can price more strongly 
path-dependent credit derivatives. Finally, we consider it worthwhile to develop the 
revised dynamic model further to make it provide a good fit to CDO quotes of all 
maturities. 
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Appendix A 

Poisson Process 
Poisson processes are usually used to model either rare events or discretely countable 
events. Both properties let Poisson processes apply to the rare and discrete default 
event. A Poisson process with intensity 0>λ is a non-decreasing, integer-values 
process with initial value ( ) 00 =N  whose increments are independent and satisfy, 
for all  Tt <≤0

( ) ( )[ ] ( ) ( )[ ].exp
!

1
λλ tTtT

n
ntNTNP nn −−−==−  

Here are some further properties: 
1. The Poisson process has no memory. The probability of  jumps in  is 

independent of  and the history of  before t . 
n [ ]stt +,

( )tN N
2. Let 1 2, , , ,mτ τ τ… …

…,, 231

 be the first, second etc. jump times of . Then N
, 21 τττττ −− , in other words, the times between any jump and the 

subsequent one, are exponentially distributed. 
3. Two or more jumps at exactly the same time have probability zero. 

In order to reach a more realistic shape of the spread curve we must allow the 
default intensity to change over time. We consider time-varying intensity ( )tλ , which 
is assumed to be a positive and piecewise right-continuous function. Define 

( ) ( ) ,
0∫=Γ
t

duut λ   

the cumulated intensity. A time inhomogeneous Poisson process with intensity 
function ( ) 0>tλ  is a non-decreasing, integer-valued process with initial value 

 whose increments are independent and satisfy ( ) 00 =N

( ) ( )[ ] ( ) ( )[ ] ( ) ( )[ ]{ }.exp
!

1 tTtT
n

ntNTNP n Γ−Γ−Γ−Γ==−   

It properties are similar to the properties of a homogeneous Poisson process. 
If  is a Poisson process with intensity one, then a time-inhomogeneous 

Poisson process  with intensity 

tM

tN ( )tλ  is defined as ( )tt MN Γ= . So a time 

inhomogeneous Poisson process is just a time-changed Poisson process with intensity 

one. From  we have obviously that  jumps the first time at ( )tM ΓtN = N τ  if and 

only if M  jumps the first time at ( )τΓ . Since we know that M is a Poisson process 
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with intensity one for which the first jump time is exponentially distributed, we have 
( ) ~ξτ =Γ exponential(1), in other words, ( )ξτ 1−Γ= , with ξ  is a standard 

exponential random variable. Also, we have easily 
[ ] ( ) ( ) ( )[ ]

( ) ( )[ ]
( )[ ] [
( )( ) expexp s

PsP
tsP

tsPtsP

Γ−−Γ−=
Γ>−Γ>=

Γ<<Γ=
( )]
( )( ),t
t

Γ<Γ<Γ=<<

ξξ
ξ
ττ

                        (A.1) 

which is the probability of the first jump to occur between s and t. 
In particular, the formula 

                       (A.2) ( ) ( )( ) ⎜
⎝
⎛−=Γ−=> ∫

t
ttP

0
expexp λτ ( ) ⎟

⎠
⎞duu

tells us the probability of the first jump to occur after t. Eqs. (A.1) and (A.2) are 
applicable to calculate the spread of credit derivatives by Eq. (2.2), the breakeven 
spread of a CDS contract at the end of section 2.2. 
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Appendix B 

Expectation of Hazard Rate 
We check whether the expectation of hazard rate from binomial tree is approach to the 
value we calculate from analytical method when the partition is dense enough.  

Let  be the Poisson process with intensity ( )tN λ . The jump size,  defined 

in the dynamic model is the function of 

,H

( )tN , that is ( )( ) (tNeHtN β
0= )H , where  

and 

0H

β  are positive constants. Then the hazard rate, ( )tX , is equal to . 

From analytical method, 
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From fitting binomial tree, we use parameters defined in section 3.2 except that λ  is 
constant for simplifying the proof as above. 
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The limit of the expectation of hazard rate from fitting binomial tree agrees with 
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the value from analytical method. 
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