
 
 
 

Pricing CDOs with the 
Fourier Transform Method 

 
 

 
 
 
 
 
 
 

Chien-Han Tseng 
Department of Finance 

National Taiwan University 
 
 
 
 
 
 

 



 

 
- 2 -

 

Contents 
 
1 Introduction 

1.1 Introduction 
1.2 Organization of This Thesis 
 

2 Literature Review 
2.1 The Merton Model 
2.2 The Chen-Zang Model 
 2.2.1 One Factor Model 
 2.2.2 Fourier Transform 
2.3 The Yeh-Liao-Tao Model 
 

3    Generalization of the Chen-Zang Model 
3.1 Generalizations 
3.2 Structure of Model 
 

4    A Numerical Example 
4.1 Environment Settings and Results 
4.2 Comparison with the Original Model 
 

5    Conclusions 
 
Bibliography 



 

 
- 3 -

 

ABSTRACT 
 

In pricing CDOs, the correlation between assets is a major issue. A multi-asset 

joint distribution function is too complicated to transform to a loss distribution. Chen 

and Zang developed a method to price a large credit portfolio. This method is 

composed of two elements: Factor model and Fourier inversion. This thesis 

generalizes their method. We assume that there are two common factors, and all 

assets have their own correlations with the common factors. Since the assets in a pool 

are not affected by only one common factor, and each asset has different degrees of 

influence over that common factor, we generalize the one-factor model with more 

accurate performance. 
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Chapter 1 

Introduction 
1.1 Introduction 

A collateralized debt obligation (CDO) is an asset-backed security which is 

backed by a diversified pool of one or more classes of debts. All CDO investors 

receive the cash flow of the collateralized asset. However, they share the credit risk of 

the assets too. CDO investors are usually divided into several tranches by 

senior/subordinate of loss bearing. Roughly speaking, notes investors could be 

divided into four parts: senior, mezzanine, subordinate, and equity tranches. When 

loss occurs, the lowest tranche (i.e., the equity tranche) has to absorb loss first. If 

equity tranche is exhausted, then the higher tranche (i.e., the subordinate tranche) has 

to absorb the following loss. Each CDO tranche has different expected return and risk. 

Investors can choose the tranche to match their own risk preferences. 

To be a sponsor of CDO, banks have to establish a special purpose vehicle 

(SPV), which is in charge of issuing securities and holding collateral. This mechanism 

ensures the operation of the CDO even if the originating bank goes bankrupt. 

Furthermore, the sponsor always retains the equity tranche of a CDO. A typical CDO 

structure is shown in Figure 1.1.1. The primary advantages of CDO products are as 

following. First, it can remove the credit risk and interest rate risk from the originating 

bank. Second, issuing CDO is a comparatively cheaper way of funding for a bank. 

Generally speaking, CDOs are usually divided as: Cash flow CDOs, Market 

value CDOs, and Synthetic CDOs. 

A cash flow CDO is the simplest one. All cash flows of collateral assets are 

directly paid to investors. For a market value CDO, CDO manager actively trades the 

assets in the collateral pool. The payment CDO investors receive depends on rate of 

return of the collateral pool. The return is calculated by mark to market, and it is 

apparently determined by the performance of the CDO manager. 
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Figure 1.1.1: A typical structure of a CDO. 
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The major difference between a synthetic CDO and others is that the notes of a 

synthetic CDO are synthetic. It means the underlying asset pool is still held by the 
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contract claims that the received cash flow of investors is decided by the collateral 

held by the bank. To ensure that operation of this CDO from the bankruptcy of the 

bank, the SPV has the duty of buying another asset pool. The pool has to be composed 

of good quality asset, such as government bonds or triple A rating assets. When assets 

in original pool default, the SPV sells assets in new pool and pays the amount of loss 

to the originating bank. 
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is issued. Therefore, we adjust the coupon rate of a tranche to let the expected loss 
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called fair credit spread of this tranche. 
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Figure 1.1.2: A typical structure of a synthetic CDO. 
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The advantage of a synthetic CDO is that true sale of the underlying assets is 
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debts. The primary reason is that if a loan is transferred into a SPV, borrower 

notification is always required. And it may influence the customer relationships. 
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assets. To tackle this problem, we introduce factor models, which simplify this 

problem. 

Even if all the asset values are independent, the transformation from assets’ 

joint distribution to the loss distribution of a large credit portfolio remains 

complicated computationally. We will follow Chen and Zang (2004) in introducing 

the Fourier transform method, which has been applied to value CDOs recently. The 

reason is that simulation is too slow and time consuming, whereas through the Fourier 

inversion, a CDO can be analyzed in much shorter time. 
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1.2 Organization of This Thesis 
 

There are six chapters in this thesis. In chapter 1, a brief introduction is 

presented. In chapter 2, we review the literature on pricing credit products. Chapter 3 

introduces the generalization of Chen and Zang model. In chapter 4, we show a 

numerical example. Chapter 5 compares the results from the Fourier transform 

method and the simulation method. Finally, conclusions are given in chapter 6. 
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Chapter 2 

Literature Review 
2.1 The Merton Model 
 

This chapter reviews three papers on default risk. The first one is the Merton 

model. In Merton (1974), the value of a firm is assumed to follow a geometric 

Brownian motion: 0 AdA A dt A dzμ σ= + ,where A  is the asset value of the firm,  is 

the initial asset value, 

0A

μ  is the expected rate of return, t  is time, Aσ  is the volatility, 

and  is a standard Wiener process. The asset value at time T is given by: dz
2

0 exp ( )
2
A

T AA T Z Tσμ σ
⎡ ⎤⎛ ⎞

= − +⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

A  

There are two other assumptions: A firm has only one zero coupon bond, and 

the default event happens only on the maturity time T of the bond. If TA  is less than 

the principal of the bond at time T, then the firm defaults. 

First, define the probability density function of A as ( )f A . By the definition of 

default, we define another random variable L  as: 

,
0, otherwise
B A A B

L
− ≤⎧

= ⎨
⎩

 

where L  represents the loss of default, and B  is the bond’s principal. The equation 

above means that if the asset defaults (i.e., A B≤ ), the loss of default L  is equal to 

B A− . If the asset does not default, then L (loss) equals zero. Through f ,we can 

derive the probability density function of L : 

   ( ) ( ) ,
0, otherwise
f B L A B

g L
⎧ − ≤

= ⎨
⎩

The default probability can also be derived, as follows: 

( ) ( )1Pr A B N d≤ = , 
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where 

2

1

ln ln
2
A

T

A

A B
d

T

σμ

σ

⎛ ⎞
− + −⎜ ⎟

⎝ ⎠=
T

. 

 

2.2 The Chen-Zang Model 
2.2.1 One-Factor Model 
 

This thesis draws upon two methods: factor model and Fourier inversion. 

Similar to the Merton model, the one-factor model assumes the asset value of a firm 

follows the following stochastic process: 
2

ln ln ( )
2

j
j j j jd A dt d z t

σ
μ σ
⎛ ⎞

= − +⎜ ⎟⎜ ⎟
⎝ ⎠

, 

where ln ( ) ( ) 1 ( )j Md z t dW t dW tρ ρ= + − jAj ,  is the asset value of asset j, jσ  is 

the volatility,  jμ  is the expected rate of return,  represents the idiosyncratic risk 

of firm j, 

jW

MW  is the common factor, and ρ  is the correlation everybody has with the 

common factor. In this model, all asset values are assumed to be independent of each 

other conditional on MW . 

Note that /MW t  is a common factor, which affects all assets. For example, it 

could be the annualized return of the market portfolio. The default probability is then: 
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( )

2

2

*

Pr ( ) Pr ln ( ) ln

Pr ln (0) ln ( ) ln
2

1Pr ln ( ) ln ln (0)
2

1Pr ( ) 1 ( ) ln

ln
( )

Pr

j j j j

j
j j j j j

j
j j j j

j

M j j j
j

j

j

A t K A t K

A t z t K

z t K A t

W t W t K

K
W t

t

σ
μ σ

σ
μ

σ

ρ ρ μ
σ

μ

⎡ ⎤ ⎡ ⎤≤ = ≤⎣ ⎦ ⎣ ⎦
⎡ ⎤⎛ ⎞

= + − + ≤⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
⎧ ⎫⎡ ⎤⎛ ⎞⎪ ⎪= ≤ − − − ×⎢ ⎥⎜ ⎟⎨ ⎬⎜ ⎟⎢ ⎥⎪ ⎪⎝ ⎠⎣ ⎦⎩ ⎭
⎡ ⎤

= + − ≤ − ×⎢ ⎥
⎢ ⎥⎣ ⎦

−

= ≤
( )

( )

*

*

( )

1

ln
( )

1

j
M

j

j j
M

j

W t

t

K
W t

N
t

ρ
σ

ρ

μ
ρ

σ

ρ

⎡ ⎤
−⎢ ⎥

⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥⎣ ⎦
⎡ ⎤−

−⎢ ⎥
⎢ ⎥= ⎢ ⎥−⎢ ⎥
⎢ ⎥⎣ ⎦

 

Here,  is the default barrier of asset j. jK

Conditional on  being a real number , the above probability becomes: ( )MW t m

( )

|

*

Pr ( ) ( )

ln

1

j m

j j M

j j

j

P

A t K W t m

K
m

N
t

μ
ρ

σ

ρ

⎡ ⎤≡ ≤ =⎣ ⎦
⎛ ⎞−

−⎜ ⎟
⎜ ⎟= ⎜ ⎟−⎜ ⎟⎜ ⎟
⎝ ⎠

|  

 

2.2.2 Fourier Transform 
Since we know the probability density function of every firm, we have the 

probability density function of each firm’s losses. Therefore, we can derive the 

conditional characteristic function for the loss of all the assets: 

|

| |

( )

1 ,

j

j

j m

iuL
M

iuL
j m j m j

u

E e W m

P P E e m L 0

φ
−

−

⎡ ⎤≡ =⎣ ⎦
⎡ ⎤= − + >⎣ ⎦

|

|

, 
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where  is the loss of asset j. jL

Let Z be the total loss. Then Z can be represented as: 
1

N

j
j

Z L
=

=∑ . Conditional on 

,  are independent for all i( )MW t m= ,iL Lj j≠ . The characteristic function of Z is: 

( )1 2 3

1 2

|

|
1

( )

|

|

| |

( )

N

N

Z m

iuZ
M

iu L L L L
M

iuLiuL iuL

N

j m
j

u

E e W m

E e W m

E e m E e m E e m

u

|

φ

φ

−

− + + + +

−− −

=

⎡ ⎤≡ =⎣ ⎦
⎡ ⎤= =⎣ ⎦

⎡ ⎤⎡ ⎤ ⎡ ⎤= ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

=∏

L

L

 

Finally, we can derive the unconditional characteristic function of Z as follows:  

( )|
1

( ) ( )
N

Z j m
j

u u f m dmφ φ
∞

=−∞

= ∏∫ , where ( )f m  is a standard normal probability density 

function. Thus, we can use Fourier inversion to obtain the unconditional probability 

density function of the total loss Z: 

( ) 1 ( )
2

iuZ
Zh Z e u duφ

π

∞
−

−∞

= ∫  

Finally, we can use this probability density function to calculate the value of 

each tranche in a CDO structure. Since the tranches differ by their orders of suffering 

loss, we can easily calculate the expected loss of each tranche from . ( )h Z
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2.3 The Yeh-Liao-Tao Model 
This thesis also adapts the Fourier transform method to evaluate tranches of a 

CDO. It defined  indicator functions  and a random variable PDR (portfolio 

default rate): 

N iX

1, if asset  default
0, otherwisei

i
X ⎧

= ⎨
⎩

 

1

1

N

i i
i

N

i
i

S X
PDR

S

=

=

=
∑

∑
 

Through the Fourier transform method, the expected PDR is derived. Since PDR 

means the percentage of assets defaults, there must be an exogenous recovery rate to 

calculate the total loss. 

The advantage of adapting an exogenous recovery rate is that the rating 

information could be considered. The two disadvantages are: A global recovery rate is 

not reasonable, and estimating errors may exist. 
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Chapter 3 

Generalization of the Chen-Zang Model 

3.1 Generalizations 

As described in the previous chapter, the Chen-Zang model assumes that there 

is only one common factor influencing all assets. But often assets in a CDO pool are 

so diversified that one common factor is not sufficient to describe the correlations 

between assets. Therefore, we use a two-factor model to describe the correlations 

more accurately. Besides, the correlation coefficients between different assets and 

common factors are surely distinct from each other in the real world. Therefore, we 

want to generalize the Chen-Zang model by improving it in two respects: From one-

factor model to two-factor model, and from the single correlation coefficient to 

multiple ones. 

We assume: 
2

ln ln ( )
2

j
j j j jd A dt d z t

σ
μ σ
⎛ ⎞

= − +⎜ ⎟⎜ ⎟
⎝ ⎠

, 

where 

2 2
1 1 2 2 1 2ln ( ) ( ) ( ) 1 ( )j j j j j jd z t r dM t r dM t r r dW t= + + − − . 

The parameters assume the same meanings as in the last chapter, 1M , 2M  are 

the common factors, and ,  are the correlation between asset j and two common 

factors, respectively. And we assume that  is independent of 

1 jr 2 jr

( )jW t 1( )M t  and 2 ( )M t . 
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3.2 Structure of the Model 
The goal of this section is to derive the probability density function of the total 

loss. For the jth asset, the asset value follows: 
2

ln ln ( )
2

j
j j j jd A dt d z t

σ
μ σ
⎛ ⎞

= − +⎜ ⎟⎜ ⎟
⎝ ⎠

, 

where 2 2
1 1 2 2 1 2ln ( ) ( ) ( ) 1 ( )j j j j j jd z t r dM t r dM t r r dW t= + + − − . The default probability 

is: 

( )

2

2

2 2 *
1 1 2 2 1 2

Pr ( ) Pr ln ( ) ln

Pr ln (0) ln ( ) ln
2

1Pr ln ( ) ln ln (0)
2

1Pr ( ) ( ) 1 ( ) ln

j j j j

j
j j j j j

j
j j j j

j

j j j j j j j
j

A t K A t K

A t z t K

z t K A t

r M t r M t r r W t K

σ
μ σ

σ
μ

σ

μ
σ

⎡ ⎤ ⎡ ⎤≤ = ≤⎣ ⎦ ⎣ ⎦
⎡ ⎤⎛ ⎞

= + − + ≤⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
⎧ ⎫⎡ ⎤⎛ ⎞⎪ ⎪= ≤ − − − ×⎢ ⎥⎜ ⎟⎨ ⎬⎜ ⎟⎢ ⎥⎪ ⎪⎝ ⎠⎣ ⎦⎩ ⎭
⎡ ⎤

= + + − − ≤ − ×⎢
⎢⎣

⎥
⎥

( )

( )

*

1 1 2 2

2 2
1 2

*

1 1 2 2

2 2
1 2

ln
( ) ( )

( )
Pr

1

ln
( ) ( )

1

j j
j j

j j

j j

j j
j j

j

j j

K
r M t r M t

W t
t r r t

K
r M t r M t

N
r r t

μ
σ

μ
σ

⎦
⎡ ⎤−

− −⎢ ⎥
⎢ ⎥= ≤⎢ ⎥− −⎢ ⎥
⎢ ⎥⎣ ⎦
⎡ ⎤−

− −⎢ ⎥
⎢ ⎥= ⎢ ⎥− −⎢ ⎥
⎢ ⎥⎣ ⎦

 

Conditional on ( )1 1M t m=  and ( )2 2M t m=  we have the distributions of all . 

We find that asset values follow a joint lognormal distribution. Recall that a 

lognormal random variable x is defined as follows: 

jA

(~ lognormal ,x )μ σ  if and only if ln ~ normal( , )x μ σ . 

The distribution of the asset value is: 

( )( )2 2*
1 1 2 2 1 2~ lognormal , 1j j j j j j j jA r m r m rμ σ σ σ+ + − − jr t . 

Now,  
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( )
( )

1 2| ,

1 1 2

*
1 1 2 2

2 2
1 2

Pr ( ) ( ) , ( )

ln

1

j m m

j j

j j j j j j

j j j

P

2A t K M t m M t m

K r m r m
N

r r t

μ σ σ

σ

⎡ ⎤≡ ≤ = =⎣ ⎦
⎡ ⎤− − −⎢ ⎥=
⎢ ⎥− −⎣ ⎦

|  

Substituting the mean and variance into the probability density function of the 

lognormal random variable, we have: 

( )( )

( )

( )
( )

( )

2 2*
1 1 2 2 1 2

2*
1 1 2 2

2 2 2
1 2

1 2 2 2
1 2

~ lognormal , 1

ln
exp

2 1
,

1 2

j j j j j j j j

j j j j j j

j j j

j

j j j j

A r m r m r

A r m r m

r r t
f A m m

A r r t

μ σ σ σ

μ σ σ

σ

σ π

+ + − −

⎡ ⎤− − − −
⎢ ⎥
⎢ ⎥− −⎣ ⎦=

− −
|

jr t

 

Note that f is the probability density function of A. Let be the loss from the 

jth asset. Then we derive ’s probability density function from

jL

jL f  as follows: 

( ) ( )1 2
1 2

, , 0 , if 0
,

0, otherwise
j j j j j

j

f K L m m L K L
g L m m

⎧ − ≥ ≥⎪= ⎨
⎪⎩

|
|

≥

jL

, 0

 

Since the Fourier transform is also the characteristic function of  and we have 

the conditional probability density function of , we can derive the conditional 

characteristic function of  as follows: 

jL

jL

1 2

1 2 1 2

| , 1 2

| , | , 1 2

( ) ,

1 ,

j

j

iuL
j m m

iuL
j m m j m m j

u E e m m

P P E e m m L

φ −

−

⎡ ⎤= ⎣ ⎦
⎡ ⎤= − + >⎣ ⎦

|

|
 

Let Z be the total loss of a portfolio. Then we have: 
1

N

j
j

Z L
=

= ∑ . Conditional on 

1 1 2 2M ( ) ,  and ( )t m M t m= ,i jL L j= ,  are independent for all i ≠ . The characteristic 

function of Z is: 
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( )

1 2

1 2 3

1 2

1 2

| ,

1 1 2 2

1 1 2 2

1 2 1 2 1 2

| ,
1

( )

E ,

E ,

E , E , E ,

( )

N

N

Z m m

iuZ

iu L L L L

iuLiuL iuL

N

j m m
j

u

e M m M m

e M m M m

e m m e m m e m m

u

φ

φ

−

− + + + +

−− −

=

⎡ ⎤= = =⎣ ⎦
⎡ ⎤= = =⎣ ⎦

⎡ ⎤⎡ ⎤ ⎡ ⎤= ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

=∏

L

L

|

|

| | |

 

Finally, we can derive the unconditional characteristic function of Z: 

( ) (
1 2

,

| , 1 2 1 2
1,

( ) ( ) , ,
N

Z j m m
j

u u f m m dφ φ
∞ ∞

=−∞ −∞

= ∏∫ )m m , where ( )1 2,f m m  is a two-dimensional 

standard normal probability density function. Thus, we can use Fourier inversion to 

obtain the unconditional probability density function of the total loss Z: 

( ) 1 ( )
2

iuZ
Zh Z e u duφ

π

∞
−

−∞

= ∫  

Our original goal has been achieved. 
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∫

 

Chapter 4 

A Numerical Example 
4.1 Environment Settings and Results 

In order to test if this model is workable, we fix a group of parameters for the 

study of a CDO pool. We assume that the CDO pool has twenty underlying assets. 

Parameters of each asset are listed in table 4.1.1. We also assume this CDO has 5 

tranches: 0–3, 3–7, 7–15, 15–30, 30–100. It means that tranche 1 bears the first three 

percent loss, tranche 2 bears the next four percent loss, and so on. 

We calculate the expected loss of each tranche by the probability density 

function with the following formulas: 

∑∫  

∑∫
00% 4

i=1

  iL− ∑∫

The derived probability density function is shown in Figure 4.1.1. We can see 

that the probability is highest when the loss is about three percent. The probability of 

loss exceeding forty percent of amount is almost zero. 

We can also calculate the expected loss of each tranche. The result is shown in 

Table 4.1.2.  
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Table 4.1.1: Parameters of assets. 

 μ Maturity σ 1r  2r  Asset value K 
asset_1 7% 2 40% 20% 15% 150 100 
asset_2 10% 2 40% 31% 12% 150 100 
asset_3 4% 2 30% 24% 5% 130 100 
asset_4 10% 2 50% 20% 10% 150 100 
asset_5 10% 2 60% 20% 10% 132 100 
asset_6 5% 2 20% 30% 13% 144 100 
asset_7 7% 2 70% 41% 12% 132 100 
asset_8 8% 2 40% 30% 25% 134 100 
asset_9 9% 2 30% 9% 30% 164 100 
asset_10 5% 2 60% 30% 24% 132 100 
asset_11 7% 2 40% 20% 15% 140 100 
asset_12 10% 2 40% 31% 12% 130 100 
asset_13 4% 2 30% 24% 5% 150 100 
asset_14 10% 2 50% 20% 10% 144 100 
asset_15 10% 2 60% 20% 10% 162 100 
asset_16 5% 2 20% 30% 13% 134 100 
asset_17 7% 2 70% 41% 12% 132 100 
asset_18 8% 2 40% 30% 25% 154 100 
asset_19 9% 2 30% 9% 30% 144 100 
asset_20 5% 2 60% 30% 24% 152 100 

 

Table 4.1.2: Comparison of scenarios. 

tranche expected loss percentage loss 

1  50.13  83.55% 

2  51.28  64.10% 

3  60.55  37.84% 

4  34.77  11.59% 

5  23.69  1.69% 
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Figure 4.1.1: Probability density function of example. 
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2

 

4.2 Comparison with the Original Model 
To measure the influence of the generalizations (from one factor to two factors 

and from a single correlation to multiple correlations), we devise a numerical test to 

compare these models. 

For comparison, we continue to use the parameters in the previous section. Then 

we calculate the probability density function of the total loss under five scenarios. The 

factor loading of the second common factor ( ) decreases from scenario 1 to scenario 

5. (In scenario 1, . In scenario 2, 

2r

*
2r r= * 2

2 2
rr = . In scenario 3, * 2

2 4
rr = . In scenario 4, 

* 2
2 8

rr = . In scenario 5, .) *
2 0r =

Figure 4.2.1 shows the probability density functions for the five scenarios. Table 

4.2.1 shows the expected loss in percentage of all the tranches in each scenario. 

The shapes of scenario 1 and scenario 5 in Figure 4.2.1 are very similar to each 

other. But the probability density function of scenario 5 has less kurtosis than scenario 

1. Furthermore, the kurtosis of the probability density function is decreasing as  

increases. Therefore, there are some increasing or decreasing trends of the expected 

loss in Table 4.2.1. 

*
2r

With an increasing , the losses of tranche 4 and tranche 5 increase. This result 

is caused by probability density functions in Figure 4.2.1. Between 21% and 45%, the 

probability increases with an increasing . This interval of loss is mostly borne by 

tranche 4 and tranche 5. 

*
2r

*
2r

This implication of this result is that equity tranche and very senior tranche are 

under-valued in the original model. 
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Figure 4.2.1: Comparison of five scenarios. 
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Table 4.2.1: Expected loss of each tranches in all scenarios. 

tranche scenario 1 scenario 2 scenario 3 scenario 4 scenario 5 

1 83.55% 84.90% 85.55% 85.86% 86.12% 

2 64.10% 65.76% 66.58% 66.96% 67.22% 

3 37.84% 38.25% 38.40% 38.44% 38.33% 

4 11.59% 10.84% 10.42% 10.19% 9.88% 

5 1.69% 1.36% 1.19% 1.11% 1.02% 
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Chapter 5 

Conclusion 
This thesis introduces a general Fourier method to evaluate large credit 

portfolios and CDO tranches. This model is more flexible and closer to the real world. 

Especially when dealing with a well diversified portfolio, it can analyze asset returns 

more accurately and generate more results. Surprisingly, this generalization costs little 

time beyond the original model. However, some problems remain to be solved, such 

as parameter estimation and asset value determination. 
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