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 i 

摘要摘要摘要摘要 

    自從 Longstaff and Swartz (2001)提出的最小平方估計法 (least-squares 

Monte Carlo)，解決了蒙地卡羅模擬法難以用於美式選擇權之訂價的一大缺點。

於是，蒙地卡羅模擬法簡單、易懂，且易於應用至多資產商品的特性，使得蒙

地卡羅模擬廣泛地被用於選擇權的評價問題上。然而，蒙地卡羅模樣通常需要

大量的模擬路徑，才能得到較好的估計；這使得評價變得極為耗時。 

    本研究即是探討兩種降低變異的方法，希望能藉此提昇蒙地卡羅的模擬效

率。這兩種降低變異的方法分別是由 Rasmussen (2005)以及 Duan and Simonato 

(2001)所提出來的。本研究將之分別應用到美式賣權及極大值買權的評價，結

果發現由 Rasmussen (2005)所提出來的方法，皆能有效地降低模擬的變異程

度。
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Abstract 

For many complex options, analytical solutions are not available. In these cases 

a Monte Carlo simulation is computationally inefficient, the variance reduction 

method can be used to improve the efficiency of a Monte Carlo simulation.  

 In this thesis we apply the two variance reduction methods proposed by 

Rasmussen (2005) and Duan and Simonato (1998) in American option pricing. We 

find that the variance reduction method proposed by Rasmussen can provide 

significant improvement of efficiency than Duan and Simonato even the 

combination of these two methods does not perform better than only using the 

variance reduction methods proposed by Rasmussen. We also apply this variance 

reduction method proposed by Rasmussen in the valuation of two-, three- or five 

max-call options and we find that they can provide significant improvement both on 

efficiency and accuracy for pricing. 
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1. Introduction 

Closed-form pricing formulas have been derived for many European options 

under a variety of financial models, the most notable being the Black-Sholes 

formula under the geometric Brownian motion model. American-type options are 

options with flexible early exercise features. Examples are American equity and 

fixed-income options and convertible bonds. These contracts arise in virtually all 

major financial markets. However, when the option is American-type, the possibility 

of early exercise should be considered for the determination of the optimal early 

exercise policy. This often leads to highly complicated calculations. 

There is a long and rich history of numerical methods for pricing American-style 

contingent claims. Among the earliest approaches are the binomial lattice of Cox et 

al. (1979) and the explicit finite difference scheme of Brennan and Schwartz (1977). 

These methods work particularly well for American options on a single underlying 

asset. However, many American-style options have been introduced that depend on 

multiple underlying assets or state variables. Multidimensional generalizations of the 

Cox et al. binomial method were proposed in Boyle (1988), Boyle et al. (1989), and 

others. A related approach involves extensions of the finite difference method to 

higher dimensions were proposed by Mitchell and Griffiths (2001). Adapting 

binomial, trinomial, or finite difference methods to higher dimensions works well 
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for options on two or three state variables, but because their computational effort 

grows exponentially with the number of state variables, these methods are 

impractical for higher dimensional problems. This is the so-called curse of 

dimensionality. In contrast, simulation methods do not suffer from this difficulty. 

This thesis considers adapting the Monte Carlo approach for pricing American 

options.  

The conditional expectations involved in the iterations of dynamic programming 

cause the main difficulty for the development of Monte Carlo techniques. Boyle 

(1977) first proposed Monte Carlo simulation for the pricing of European claims. 

However, it was not until much later that the possibility of using Monte Carlo 

simulation for pricing American-style options was suggested by Bossaerts (1989) 

and Tilley (1993). Tilley ranked simulated stock price from the maximum to 

minimum and divided them into several groups. He computed the holding value by 

averaging the discounted payoff within each group and used these holding values to 

find an exercise boundary. In this method, stock price is the only factor determining 

whether to exercise or not. Barraquand and Martineau (1995) developed a method 

which is closely related to that of Tilley (1993) but easier to extend. The idea is to 

partition the state space of simulated paths into a number of cells in such a way that 

the payoff from the option is approximately equal across the paths in the particular 
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cell. The probabilities of moving to different cells in the next period conditional on 

the current cell can then be calculated from the simulated paths. With these 

probabilities in place, the expected value of keeping the option alive until the next 

period can be calculated, and a strategy for exercise determined. Broadie and 

Glasserman (1997) proposed a convergent algorithm based on simulated trees. Their 

method generated both lower and upper bounds so that valid confidence intervals on 

the true Bermudan price can be determined. The simulation tree method removes the 

exponential dependence of the computation time (CPU time) on the problem 

dimension; however, the CPU time is still exponential in the number of exercise 

opportunities. A new and somewhat simpler simulation based method to price 

American options has recently been proposed by Longstaff and Schwartz (2001). 

The idea is to estimate the conditional expectation of the payoff from keeping the 

option alive at each possible exercise point from a simple least squares 

cross-sectional regression using the simulated paths. They show how to price 

different types of path-dependent options using this least-squares Monte Carlo (LSM) 

approach. 

In these papers, authors introduced numerical methods based on Monte Carlo 

techniques. The starting point of these methods is to replace the time interval of 

exercise dates by a fixed finite subset. This amounts to approximating the American 
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option by a Bermudan option, i.e., options with discretely exercisable features not 

continuous ones. The solution of the discrete optimal stopping problem reduces to an 

effective implementation of the dynamic programming principle.  

 Although there are many works about least squares regression methods, most 

have paid only little attention to the issue of variance reduction. Only a few articles 

go beyond applying antithetic variates. In this thesis we consider the application of 

control variates to the valuation of American- or Bermudan-type options. In Broadie 

and Glasserman (1997), the European option’s payoff at expiry is used as a control 

variate. They found that the control variates work quite well for out-of-the-money 

options, but are less effective for deep-in-the-money options. They also found that 

payoff processes of European options and American options are less correlated when 

American options are deep-in-the-money than when American options are 

out-of-the-money. The reason is that out-of-the-money American options might have 

lower probability to be exercised than deep-in-the-money American options. As a 

result, European options are highly correlated with out-of-the-money American 

options but less correlated with deep-in-the-money American options. In other 

words, traditional European option is not a very good control variate for 

deep-in-the-money options.  

Another idea is based on a simple observation that simulated sample paths for 



 

 - 5 - 

the underlying asset price almost always fail to possess the martingale property even 

though the theoretical model uses the assumption of martingale. The failure to 

ensure the martingale property has particularly serious consequences in the later 

time interval when there is more time division. It often requires a very large number 

of simulation repetitions to dampen these simulation errors. Duan and Simonato 

(1998) proposed a correction to the standard procedure by ensuring that the 

simulated sample paths all satisfy the martingale property in each time interval. This 

correction is referred to as empirical martingale simulation (EMS).   

In this thesis we apply the two variance reduction methods proposed by 

Rasmussen (2005) and Duan and Simonato (1998) in American option pricing. We 

also compare these two methods and combine them. We find that this new variance 

reduction method, which combines the above two methods, cannot provide 

significant improvement of efficiency and accuracy for pricing. Then we also apply 

variance reduction methods in the valuation of max-call options and we find that 

they can provide significant improvement on efficiency and accuracy for pricing.
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2. The American Option Valuation Problem 

The problem of valuing an American option consists of finding an optimal 

exercise strategy and then valuing the expected discounted payoff from this strategy 

under the equivalent martingale measure.
1
 We let rV  denote the time t  solution to 

this problem, that is,  









Ε=

∈

tF

T

| sup
),( τ

τ

τ
ββ

XV
Q

Ttt

t  

where { }
TttX

≤≤0
 is the payoff process adapted to the filtration and ),( TtT  denotes 

the set of stopping time τ  satisfying  

Tτt ≤≤  

We can easily define a lower bound on the American option price at time t  denoted 

by tL , since for any given exercise strategy or stopping time τ  we have  

t

tQ

t

t VXL

βββ τ

τ ≤







Ε= tF|  

For an upper bound we refer the reader to Theorem 1 of Anderson and Broadie 

                                                 
1
 In what follows we assume that the financial market is defined for the finite horizon [0, T] on a 

complete filtered probability space ),}{,,( 0 ΡΩ ≤≤ TttFF . Here the state Ω  is the set of all 

realizations of the financial market, F  is the sigma algebra of events at time T, and Ρ is a 

probability measure defined on .F  The filtration { }
Ttt ≤≤0

F  is assumed to be generated by the price 

processes of the financial market and augmented with the null sets of F , and assuming FF =T . 

We furthermore assume that using the numeraire process { }
Ttt ≤≤0

β  there exists a measure Q  

equivalent to Ρ  under which all asset prices relative to the numeraire are martingales. 



 

 - 7 - 

(2004) and leave out the details here. 

In the following sections we give numerical results based on the single-asset 

American put option, using the same combinations of underlying asset prices, time 

to expiry and volatilities as in Table 1 of Lonstaff and Schwartz (2001). The payoff 

process of the single-asset put option for strike K  is given by  

)0,(max tt SKX −=  

In this case, holders can exercise on the following set of equidistant points only, 

,)/( Tdete =  for 0,1,2, ,e d= K  and is hence a Bermudan rather than an American 

option. 
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3. Monte Carlo Valuation with Variance Reduction Method 

3.1. Control Variates for Monte Carlo Simulation (Rasmussen (2005)) 

Given a stopping time ),( Tt T∈τ , we want to determine the following 

conditional expectation given the information at time t : 

                          







= tF|

τ

τQ

t

t

β

X
Ε

β

L
                        (1) 

Using the underlying model to generate N independent paths of the variables 

determining the payoff process { }
TttX

≤≤0
 and the numeraire process{ }

Ttt ≤≤0
β , the 

crude Monte Carlo estimate is  

∑
=

=
N

i
i

i

t

(N)

t

τ

τ

β

X

Nβ

L

1

1
 

where iiX ττ β  is the discounted payoff from thi path using the exercise strategy 

given by the stopping time .τ  

 To reduce the variance of the Monte Carlo estimate of the American option, we 

can replace the path estimate iiX ττ β  with the following path estimate 

                     [ ]( )iQ
t

i
ti

i

i
τ

i
τ ΥEΥθ

β

X

β

Z

τ

τ −+=                       (2) 

for some appropriately chosen tF -measurable random variable tθ , where iY is the 
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thi  observation of a random variable for which we can easily compute the time t  

conditional expectation. The Monte Carlo estimate using control variates is then 

given by 

[ ]( )iQ
t

(N)
tt

t

(N)

t

N

i
i

i

t

(N)

t

YΕΥθ
β

L

β

Z

Nβ

L

τ

τ

−+=

= ∑
=

         

1

1

 

where         

∑∑
==

==
N

i

i(N)
t

N

i
i

i
τ

t

(N)

t Y
N

,  Υ
β

X

Nβ

L

τ
11

11
 

By the standard ordinary least-squares theory, the optimal choice of tθ  is  

                      
[ ]

[ ]Υ
,ΥβX

Q
t

ττ
Q
t

t
Var

Cov
* −=θ                         (3) 

which results in the following minimum variance  

[ ]( )
( )CV

2

t

1
Var Var 1

N
Q Qt τ
t t t τ τ

τ

L X
ρ X β ,Υ

N ββ

   
= −   

   
 

where 

[ ]

[ ] [ ]

Cov

Var Var

Q

t τ ττ

t
Q Q

τ t τ τ t

X β ,ΥX
ρ ,Υ

β X β Υ

 
≡ 

⋅ 
 

Hence the most effective control variates Y  are obtained by having the largest 

possible correlation, either positive of negative, with the discounted payoff from the 
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Bermudan option. 

A good control variate should have the following two properties: it should be 

highly correlated with the payoff of the option in question and its conditional 

expectation should be easy to compute. When looking for a control variate for the 

Bermudan option, the corresponding European option would be our general choice. 

Let TW  be the value of a self-financing portfolio at expiry of the Bermudan option. 

Using the discounted value of this portfolio, the European option control variate TY  

is then defined by  

T

T

T

W
Y

β
=  

By construction of the equivalent martingale measure Q, the process { }
TttY

≤≤0
 

defined by  

[ ]tF|T
Q

t YΕY =  

is a martingale. 

    The optimal European option control variates is given by  

                               
T

T

T

X
Y

β
=                           (4) 

for which we have  
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t

t

T

TQ
t

CX
ΕY

ββ
=








= tF|                      (5) 

the discounted European option price. This control variate clearly satisfies the 

second properties mentioned; however, its correlation with the payoff of the 

Bermudan option is not high enough, especially for in-the-money options. Therefore, 

we replace the control variate (4) with the control variates 

                          







== τ

τ

τ
τ

ββ
F|

T

TQ
W

Ε
W

Y                     (6) 

Thus, rather than sampling the discounted payoff process at expiry of the option, 

Rasmussen (2005) suggests sampling the discounted value process at the time of 

exercise of the Bermudan option. The conditional expectation of control variates (4) 

is 

[ ] t
Q YYΕ =tF|τ                  

which is identical to the expectation of the control variate (4). 

It is intuitively true that European option and American option payoffs are less 

correlated when the options are in-the-money. From an option holder’s viewpoint, 

the estimate accuracy is of greatest importance for in-the-money options because 

this is where the critical exercise decisions have to be made. As a result, Rasmussen 

(2005) proposed a choice of control variates (4) for American and Bermudan options. 
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He has shown that the application of the control variates to the valuation of 

American or Bermudan options can be very effective if we sampled these control 

variates at the exercise time rather than at expiry. 

3.2. Empirical Martingale Simulation (Duan and Simonato (1998)) 

The theoretical works for contingent claim pricing mostly rely on the absence 

of arbitrage opportunities. The martingale connection to the arbitrage-free price 

system was first observed by Cox and Ross (1976) and later formalized by Harrison 

and Kreps (199). For the ease of exposition, we consider a price system consisting of 

two securities, one risky and the other risk-free. The risky security, a common stock, 

does not pay dividends and its price, denoted by )(tS , has the following dynamics 

under the risk-neutral probability measure Q: 

( ) 







+−= ∫∫

tt

o sdWsdssrSts
00

2 )()()(5.0exp)( σσ  

where r  is the continuously compounded return on the risk-free security, )(sσ  is 

the instantaneous standard deviation of the asset return and )(sW  is a standard 

Brownian motion under probability measure Q. It is easy to verify that the 

discounted asset price is indeed a Q-martingale in that, for any 0≥≥ tτ , 

[ ] )(|)( tSeFSeΕ rt
t

rQ −− =ττ  
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where [ ]⋅QΕ  denotes the expectation operator under the risk-neutral measure Q and 

tF  the information filtration up to time t.  

In a typical Monte Carlo simulation, this martingale property almost always 

fails in the simulated sample. Valuation often requires a very large number of 

simulation repetitions to dampen simulation errors. Duan and Simonato (1998) 

proposed a simple transformation for the original simulation asset process and 

adjusted them to satisfy the martingale property. Their transformation steps are listed 

below:  

(1) Define the discrete times by 
0 1 2 m

t , t , t , , tK , where 0t  is the current time. 

(2) Simulate asset prices at times 
0 1 2 m

t , t , t , , tK  for each simulated path 

Ni ,,2,1 K= and define the ith simulated asset price at time jt  by 

).( j
i tS  

(3) Compute the ith simulated asset returns at time jt  defined as  

)(

)(
)(

1−

=
j

i

j
i

j
i

tS

tS
tR , for all Nimj ,,2,1 ; ,,2,1 KK ==  

(4). Set 000 )()( StStS ii ==
)

 for all Ni ,,2,1 K=  In this equation, )( j
i tS

)
 is 

the adjusted EMS asset price at the ith sample path and at time jt  and 0S  

is the initial asset price at time 0t . 
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(5). Do a recursive procedure for all Nimj ,,2,1 ; ,,2,1 KK ==  

)(

)(
)(

)(
1

)(

)()()(

00

1

0

1

j

j
i

j
i

N

i

j
irt

j

j
i

j
i

j
i

tZ

tZ
StS

tZ
N

etZ

tRtStZ

j

=

=

⋅=

∑
=

−

−

)

)

 

where r is the risk-free interest rate. 

 Although they had proposed a correction to the standard Monte Carlo 

simulation procedure and imposed the martingale property on the collection of 

simulated sample paths, in their paper they only applied this modification within 

some specific parameters (e.g., maturities less than 1 year) and European-type 

options. This thesis will apply the modification to American options with longer 

maturities and different volatility parameters and combine this simulation 

adjustment to the control variates method proposed by Rasmussen (2005) for 

American options.
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4. The LSM Approach with Control Variates 

The main assumption of the LSM approach is that the time t conditional 

expectation in (1) can be expressed as a linear combination of a countable set of 

tF -measurable basis functions as follows: 

                            ∑
∞

=

=
1j

j
t

j
t

t

t Fa
L

β
                          (7) 

The implement this assumption in the LSM approach, (7) can be approximated with 

a finite sum at a given level. We let t
M
tL β  denote this approximation when M 

basis functions are used. We then have 

                           ∑
=

=
M

j

j
t

j
t

t

M
t Fa

L

1β
                          (8) 

Using cross-sectional observations of the Monte Carlo generated state variable (such 

as stock price), the coefficients j
ta , Mj ,,2,1 K= , are determined by least-squares 

regression, where the current basis functions j
tF , Mj ,,2,1 K= , are independent 

variables and the discounted payoff process ttX β  is the dependent variable. As 

argued by Longstaff and Schwartz (2001), we only need the approximation where 

the option is in-the-money at time t and include these observations in the regression. 

With a total of N Monte Carlo generated paths, we let )( Nj
ta , Mj ,,2,1 K= , denote 

the time t coefficients determined from the regression using only the in-the-money 

paths. Hence the approximation used in the implementation denoted by t
NM

tL β)(  is 
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given by 

                             ∑
=

=
M

j

j
t

Nj
t

t

M
t Fa

L

1

)(

β
                      (9) 

Given the time t value of the state variable summarized by the basis 

functions j
tF , j=1, 2, …, M, we exercise the option whenever the time t exercise 

value exceeds the corresponding conditional expectation. In other words, we will 

exercise when the following inequality is satisfied 

t

M
t

t

t LX

ββ
≥  

4.1. The Choice of Basis Functions 

For the sake of simplicity and to maintain some financial intuition, we use the 

following basis functions corresponding to 3=M . All functions depend on the 

current time t and the current stock price tS , i.e., ),( tj
j

t StfF = , where  

),(),(

),(),(

),(

),(

3

2

1

0

stCsstf

stCstf

sstf

Kstf

⋅=

=

=

=

 

Above, K is the strike price of the Bermudan put option, s is the current asset price 

and ),( stC  is the time t European put option price expiring at time T and with its 

other parameters identical to the Bermudan option.  
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4.2. Accuracy, Stability and Convergence of the LSM Approach 

The accuracy of the LSM exercise strategy is solely determined by the accuracy 

of the following two approximations: 

t

NM
t

t

M
t

t

M
t

t

t

LL

LL

ββ

ββ

)(

≅

≅

 

With an infinite computational budget, we should require that t
NM

t LL →)(  as 

∞→N  and ∞→M . However, in Clement et al (2002), the convergence of 

t
M
t LL →  as ∞→M  is established when an orthogonal set of basis functions is 

used. They also considered the convergence of t
NM

t LL →)(  as ∞→N . Finally, 

they established a central limit result for the rate of convergence of the LSM 

algorithm. These results are very important especially from a theoretical point of 

view. However, from a practical point of view, we are more concerned with the 

performance given a finite sample of N paths and a finite number of basis functions 

M. Hence we focus in the following section on improving the above approximation 

for a given number of paths and basis functions. The object is to replace (8) with a 

more accurate approximation.   
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4.3. Improvement of LSM with Control Variates 

In traditional LSM approach, we only choose the discounted payoff ttX β of 

in-the-money paths to do regression for evaluating the conditional expectation value 









= tF|

τ

τQ

t

t

β

X
Ε

β

L
 

as in (1). In this section, we reuse and generalize the concept of control variates as 

the Monte Carlo variation in section 3.1. We replace the discounted payoff ttX β  

with the random variable ttZ β : 

                  [ ]( )ττ

τ

τ

τ

τ ΥEΥθ
β

X

β

Z
Q
tt −+=                  (10) 

where τY  is the control variates sampled from European option’s payoffs at 

exercise points as in (6), and tθ  is an appropriately chosen tF -measurable random 

variable. Rather than a point estimate as in (3), we now use a functional estimate of 

∗
tθ . By the definition of [ ]τβ YX tt

Q
t ,Cov  and [ ]τYar Q

tV  we get 

[ ]

[ ] [ ]( )

( )

( ) ( )22

2Q2Q

QQQ

     

E

tt

t
t

t

t

t

tt

ttt

t

YY

Y
LLY

YEYE

Y
X

EY
X

E

−

⋅





−

−=

−

⋅




−





⋅







−=∗

ββ

ββ
θ

ττ

τ
τ

τ
τ

τ

τ

 

where ttL β  is defined in (1), tY  is defined in (5), and ( )tY 2  and ( ) ttLY β  are 

defined by 
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( ) [ ]

( )








⋅







≡

≡

τ

t

tQ
t

t

t

τ
Q
tt

Y
β

X
E

β
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 ,  YEY 22

 

respectively. Generalizing the assumptions of LSM as (7), we assume that the time t 

conditional expectations tY , ( )tY 2  and ( ) ttLY β  can also be expressed as a 

countable sum of the same set of tF -measurable basis functions, i.e., 

( )

( )
j

t

j

j
t

t

t

j
t

j

j
tt

j
t

j

j
tt

Fd
LY

FcY

FbY

⋅=

⋅=

⋅=
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Again we can approximate the conditional expectations by truncating the sums at the 

same level M. Let 
M

tY , ( ) M

tY 2  and ( ) t

M

tLY β  denote the approximations as in 

(8). 
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We can approximate ∗
tθ  with M

tθ  given by  
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Using the concept of control variates in (10), we can approximate the time t 

conditional expectation of the discounted payoff from following the strategy τ  by 

CV,M
tL  given by the following expression: 
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5. Numerical Results 

5.1. American Put 

In this chapter, we use some numerical examples
2
 to compare the efficiency 

and accuracy of three different variance reduction methods. First, we use normalized 

antithetic paths, i.e., we use traditional moment matching simulation and antithetic 

method, and denote this method as “AN+MM” in the following. Second, we 

replicate the simulated paths in the first method and use discounted European 

options sampling at exercise as control variates and denote this as “CV-at-exercise.” 

Third, we also replicate the simulated paths in the first method but only adjusting the 

underlying process to satisfy martingale property and denote this as “EMS” method.  

In order to show the efficiency and accuracy of the AN+MM, CV-at-exercise 

and EMS, we use binomial-based put prices as the benchmark and compare their 

standard error (S.E.) and mean absolute percentage error (MAPE) to see the 

efficiency and accuracy of these three methods (AN+MM, CV-at-exercise and EMS). 

Also we will use ratios of S.E and MAPE between AN+MM and CV-at-exercise or 

AN+MM and EMS to see whether CV-at-exercise or EMS can improve the 

efficiency or accuracy of the LSM approach. 

From the results of CV-at-exercise method in the second category in Table 1, 

                                                 
2
 These numerical examples are all for single-asset put options, with the same combinations of 

underlying asset prices, time to expiry and volatilities as in Table 1 of Longstaff and Schwartz (2001). 



 

 - 22 - 

we find the standard errors in CV-at-exercise are only one tenth of the AN+NN 

method in the third column of the second category. These improvements are more 

significant when options are at-the-money ( 40=S ) or out-of-the-money ( 44,42=S ) 

and with shorter maturity ( 1=t ). This can be confirmed by observing the smaller 

ratio of S.E of CV divided by S.E of AN+MM listed in the third column of the 

second category. But from the next two columns, improvement in terms of MAPE is 

not very significant in CV-at-exercise method except when option is 

deep-out-of-the-money ( 44=S ). Also from the third column of third category in 

Table 1, we find that standard errors in the EMS method are not less than the 

AN+MM method but the MAPE in this method are smaller than AN+MM method 

when options are in-the-money ( 38,36=S ).  

In Table 1, the improvements of standard errors using CV-at-exercise are quite 

significant. Now we try to combine CV-at-exercise and EMS and evaluate if the 

resulting method can improve the efficiency or accuracy in pricing Bermudan 

options compared with the AN+MM method. The results are shown in Table 2.   

 As before, we use the parameters of Longstaff and Schwartz (2001) in the 

following numerical examples whose results are listed in Table 2. In our second test, 

we combine the CV-at-exercise method and the EMS method, denoted by CV+EMS. 

We also compare the result of CV+EMS with CV-at-exercise and list the results in 
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Table 2. In order to more clearly compare the results, we find the ratios of their S.E 

and MAPE and list the results in Table 3. From the results in Table 3, we find only 

when 2.0=σ  and options are deep-in-the-money ( 36=S ), can CV+EMS obtain 

smaller S.E. than CV-at-exercise in all our maturity parameters. In other parameters, 

the improvement in terms of S.E. in CV+EMS method is not significant. Also, the 

improvement in terms of MAPE in CV+EMS is not very significant in most 

parameters of our test except when 5.0=σ and options are deep-in-the-money 

( 36=S ).  
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Table 1. This is Monte Carlo valuation of the Bermudan options. We use the binomial tree-based 

exercise strategy as the benchmark and compare three different variance reduction methods. First, we 

only use antithetic pair paths and do moment matching method (AN+MM) in the simulation. Second, 

we replicate the AN+MM and use European options sampling at exercise as control variates 

(CV-at-exercise). Last, we also replicate the AN+MM and use empirical martingale simulation (EMS) 

to adjust underlying asset processes. All simulations are based on 2000 pairs of antithetic paths. All 

options have strike K=40, and the interest rate equals r=0.06. The current stock price S, the volatility 

σ, and the time to expiry T are given. 

 

AN+MM CV-at-exercise EMS 

S t σ 
binomial 

model price 
S.E.    

(%) 

MAPE   

(%) 
price 

S.E.      

(%) 

CV/   

AN+MM 

MAPE   

(%) 

 CV/   

AN+MM 
price 

S.E.   

(%) 

EMS/   

AN+MM 

MAPE   

(%) 

EMS/   

AN+MM 

0.2 4.4845 4.4885 2.6433 0.0891 4.4726 0.2777 0.1051 0.2645 2.9693 4.4874 2.6627 1.0074 0.0642 0.7213 
1 

0.4 7.0997 7.1392 4.1982 0.5568 7.0852 0.2724 0.0649 0.2043 0.3670 7.1143 4.9029 1.1678 0.2059 0.3699 

0.2 4.8512 4.8498 3.3725 0.0287 4.8474 0.5526 0.1639 0.0790 2.7514 4.8500 3.3443 0.9916 0.025 0.8713 
36 

2 
0.4 8.5310 8.5397 4.6569 0.1019 8.5328 0.6612 0.1420 0.0207 0.2032 8.5383 6.5843 1.4139 0.0857 0.8415 

0.2 3.2529 3.2672 2.2367 0.4402 3.2420 0.2285 0.1022 0.3355 0.7622 3.2586 2.3066 1.0313 0.1747 0.3969 
1 

0.4 6.1805 6.1843 4.2744 0.0610 6.1782 0.2400 0.0561 0.0372 0.6090 6.1816 6.0043 1.4047 0.0185 0.3034 

0.2 3.7546 3.7524 2.7642 0.0591 3.7564 0.4651 0.1683 0.0481 0.8138 3.7526 2.9799 1.0780 0.0542 0.9171 
38 

2 
0.4 7.6990 7.6943 4.7164 0.0605 7.6929 0.5717 0.1212 0.0792 1.3098 7.6983 7.0241 1.4893 0.0092 0.1515 

0.2 2.3130 2.3369 2.6482 1.0347 2.2966 0.2157 0.0815 0.7081 0.6844 2.3388 2.8427 1.0735 1.1139 1.0766 
1 

0.4 6.3028 5.3505 4.3863 15.1086 5.2802 0.2161 0.0493 16.2243 1.0738 5.3539 6.1141 1.3939 15.0553 0.9965 

0.2 2.8800 2.8947 2.7106 0.5089 2.8532 0.4146 0.1529 0.9298 1.8271 2.8951 3.1117 1.1480 0.5249 1.0315 
40 

2 
0.4 6.9036 6.9458 4.6295 0.6117 6.8654 0.5427 0.1172 0.5527 0.9035 6.9502 7.3925 1.5968 0.6755 1.1042 

0.2 1.6239 1.6400 2.8891 0.9903 1.6163 0.1686 0.0583 0.4685 0.4731 1.6409 3.3076 1.1449 1.0492 1.0594 
1 

0.4 4.6137 4.6182 4.8191 0.0982 4.6128 0.2047 0.0425 0.0192 0.1958 4.6252 6.9900 1.4505 0.2486 2.5310 

0.2 2.2249 2.2274 3.0713 0.1132 2.2277 0.4061 0.1322 0.1242 1.0971 2.2291 3.5747 1.1639 0.1908 1.6856 
42 

2 
0.4 6.2670 6.2690 4.8283 0.0312 6.2680 0.4679 0.0969 0.0157 0.5040 6.2682 8.1596 1.6899 0.0199 0.6403 

0.2 1.1212 1.1300 2.6878 0.7858 1.1198 0.1496 0.0557 0.1210 0.1539 1.1309 2.9862 1.1110 0.8653 1.1011 
1 

0.4 3.9616 3.9797 5.6508 0.4576 3.9502 0.1908 0.0338 0.2877 0.6288 3.9657 7.6675 1.3569 0.1034 0.2260 

0.2 1.6907 1.7082 3.1561 1.0339 1.6885 0.3569 0.1131 0.1295 0.1253 1.7088 3.6018 1.1412 1.0719 1.0367 
44 

2 
0.4 5.6781 5.6620 4.8480 0.2835 5.6764 0.3953 0.0815 0.0307 0.1081 5.6682 7.9300 1.6357 0.1749 0.6167 
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Table 2. This is Monte Carlo valuation of the Bermudan options. We use the binomial tree-based exercise 

strategy as the benchmark and compare two variance reduction methods. First we use CV-at-exercise 

method. Second, we combine CV-at-exercise and EMS method and denote this as EMS+CV method. All 

these simulations are based on 2000 pairs of antithetic paths. All options have strike K=40, and the interest 

rate equal to r=0.06. The current stock price S is given the same value as in Table 1. In order to see the 

effect of the volatility σ and the time to expiry T , we give additional values to these two parameters besides 

in Table 1.  

  T=0.25 T=0.5 

σ S 
binomial 

model 
CV 

S.E 

(%) 
MAPE 

CV+ 

EMS 

S.E 

(%) 
MAPE 

binomia

l model 
CV 

S.E 

(%) 
MAPE 

CV+ 

EMS 

S.E 

(%) 
MAPE 

4.0000 4.0000 0.0000 0.0000 4.0000 0.0000 0.0000 4.0000 4.0007 0.0052 0.0002 4.0007 0.0052 0.0002 

2.0000 2.0000 0.0105 0.0000 2.0000 0.0105 0.0000 2.0000 1.9948 0.0190 0.0026 1.9948 0.0190 0.0026 

0.2245 0.2215 0.0549 0.0134 0.2215 0.0546 0.0134 0.2587 0.2541 0.0934 0.0178 0.2541 0.0949 0.0178 

0.0019 0.0018 0.0053 0.0618 0.0018 0.0051 0.0666 0.0082 0.0080 0.0141 0.0288 0.0080 0.0141 0.0284 

0.05 

36 

38 

40 

42 

44 0.0000 0.0000 0.0000 * 0.0000 0.0000 * 0.0001 0.0001 0.0011 0.3318 0.0001 0.0011 0.3318 

4.0000 4.0023 0.0171 0.0006 4.0023 0.0171 0.0006 4.0000 4.0018 0.0348 0.0004 4.0018 0.0348 0.0004 

2.0000 2.0003 0.7655 0.0001 2.0003 0.7629 0.0002 2.0123 2.0148 0.4546 0.0012 2.0148 0.4477 0.0012 

0.5861 0.5819 0.0494 0.0071 0.5819 0.0495 0.0071 0.7372 0.7304 0.1057 0.0092 0.7304 0.1064 0.0092 

0.1051 0.1051 0.0177 0.0003 0.1051 0.0197 0.0002 0.2173 0.2178 0.0570 0.0021 0.2177 0.0576 0.0021 

0.1 

36 

38 

40 

42 

44 0.0104 0.0102 0.0140 0.0219 0.0102 0.0136 0.0208 0.0493 0.0489 0.0273 0.0085 0.0489 0.0262 0.0087 

4.0480 4.0472 0.3861 0.0002 4.0472 0.3669 0.0002 4.2105 4.2122 0.3066 0.0004 4.2122 0.2947 0.0004 

2.4718 2.4701 0.0814 0.0007 2.4701 0.0785 0.0007 2.8242 2.8212 0.1404 0.0011 2.8212 0.1389 0.0011 

1.3527 1.3472 0.0507 0.0041 1.3472 0.0513 0.0041 1.7921 1.7825 0.0964 0.0053 1.7825 0.0959 0.0053 

0.6700 0.6685 0.0357 0.0022 0.6685 0.0353 0.0022 1.0928 1.0921 0.0801 0.0007 1.0921 0.0805 0.0007 

0.2 

36 

38 

40 

42 

44 0.2937 0.2934 0.0273 0.0010 0.2934 0.0289 0.0010 0.6362 0.6361 0.0543 0.0001 0.6361 0.0603 0.0001 

4.5098 4.5090 0.1621 0.0002 4.5090 0.1495 0.0002 5.0238 5.0219 0.1863 0.0004 5.0219 0.1737 0.0004 

3.1775 3.1732 0.0622 0.0013 3.1732 0.0614 0.0013 3.8403 3.8365 0.1376 0.0010 3.8365 0.1339 0.0010 

2.1314 2.1249 0.0468 0.0031 2.1249 0.0477 0.0031 2.8760 2.8646 0.1010 0.0039 2.8647 0.1002 0.0039 

1.3800 1.3787 0.0357 0.0009 1.3787 0.0372 0.0009 2.1361 2.1308 0.0836 0.0025 2.1308 0.0831 0.0025 

0.3 

36 

38 

40 

42 

44 0.8569 0.8564 0.0355 0.0006 0.8563 0.0343 0.0006 1.5595 1.5579 0.0743 0.0010 1.5579 0.0813 0.0010 

5.1170 5.1138 0.1156 0.0006 5.1138 0.1038 0.0006 5.9823 5.9777 0.1664 0.0008 5.9777 0.1570 0.0008 

3.9069 3.9033 0.0546 0.0009 3.9033 0.0528 0.0009 4.9086 4.9074 0.1267 0.0003 4.9074 0.1256 0.0003 

2.9128 2.9056 0.0440 0.0025 2.9056 0.0446 0.0025 3.9653 3.9526 0.0984 0.0032 3.9527 0.1008 0.0032 

2.1422 2.1377 0.0360 0.0021 2.1377 0.0357 0.0021 3.2317 3.2285 0.0924 0.0010 3.2286 0.0957 0.0010 

0.4 

36 

38 

40 

42 

44 1.5469 1.5445 0.0417 0.0016 1.5445 0.0379 0.0015 2.5772 2.5753 0.0859 0.0007 2.5753 0.0878 0.0007 

5.8042 5.8021 0.0719 0.0004 5.8021 0.0664 0.0004 6.9490 6.9351 0.1388 0.0020 6.9351 0.1354 0.0020 

4.6715 4.6698 0.0482 0.0004 4.6697 0.0474 0.0004 5.9766 5.9741 0.1251 0.0004 5.9741 0.1291 0.0004 

3.6939 3.6861 0.0443 0.0021 3.6861 0.0452 0.0021 5.0539 5.0400 0.0948 0.0028 5.0400 0.0983 0.0028 

2.9327 2.9294 0.0425 0.0011 2.9294 0.0433 0.0011 4.3345 4.3321 0.0789 0.0006 4.3321 0.0837 0.0006 

0.5 

36 

38 

40 

42 

44 2.2849 2.2836 0.0417 0.0006 2.2836 0.0429 0.0006 3.6371 3.6266 0.0735 0.0029 3.6266 0.0747 0.0029 
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*When T=0.25 and σ=0.05, the option price of binomial model is nearly zero. In this case, MAPE is infinite and has no meaning.. 

 

  T=1 T=2 

σ S 
binomial 

model 
CV 

S.E 

(%) 
MAPE 

CV+ 

EMS 

S.E 

(%) 
MAPE 

binomial 

model 
CV S.E (%) MAPE 

CV+ 

EMS 
S.E (%) MAPE 

4.0000 4.0045 0.0170 0.0011 4.0045 0.0170 0.0011 4.0000 4.0014 0.0376 0.0003 4.0014 0.0356 0.0003 

2.0000 2.0082 0.0374 0.0041 2.0081 0.0354 0.0041 2.0000 2.0142 0.0583 0.0071 2.0142 0.0587 0.0071 

0.2825 0.2728 0.1600 0.0342 0.2729 0.1654 0.0341 0.2936 0.2786 0.2646 0.0509 0.2786 0.2645 0.0509 

0.0176 0.0177 0.0369 0.0066 0.0177 0.0378 0.0070 0.0243 0.0243 0.1118 0.0015 0.0242 0.1106 0.0035 

0.05 

36 

38 

40 

42 

44 0.0007 0.0006 0.0080 0.0906 0.0006 0.0079 0.0912 0.0019 0.0019 0.0247 0.0185 0.0018 0.0245 0.0267 

4.0000 4.0076 0.1311 0.0019 4.0076 0.1286 0.0019 4.0000 4.0234 0.7864 0.0058 4.0234 0.7863 0.0058 

2.0554 2.0424 0.2309 0.0063 2.0424 0.2310 0.0063 2.1077 2.0950 0.4239 0.0060 2.0950 0.4237 0.0060 

0.8894 0.8775 0.1849 0.0134 0.8775 0.1894 0.0134 1.0188 1.0012 0.3712 0.0173 1.0012 0.3814 0.0173 

0.3558 0.3549 0.1522 0.0026 0.3549 0.1555 0.0026 0.4874 0.4847 0.3222 0.0055 0.4847 0.3363 0.0056 

0.1 

36 

38 

40 

42 

44 0.1276 0.1279 0.0766 0.0025 0.1279 0.0780 0.0026 0.2267 0.2273 0.2072 0.0027 0.2273 0.2087 0.0026 

4.4845 4.4722 0.3610 0.0027 4.4722 0.3475 0.0027 4.8512 4.8475 0.5288 0.0008 4.8476 0.5208 0.0008 

3.2529 3.2421 0.2553 0.0033 3.2420 0.2533 0.0033 3.7546 3.7562 0.4683 0.0004 3.7562 0.4766 0.0004 

2.3130 2.2967 0.2157 0.0071 2.2967 0.2235 0.0071 2.8800 2.8535 0.4498 0.0092 2.8536 0.4612 0.0092 

1.6239 1.6163 0.1686 0.0047 1.6163 0.1750 0.0047 2.2249 2.2272 0.3702 0.0010 2.2271 0.3828 0.0010 

0.2 

36 

38 

40 

42 

44 1.1212 1.1192 0.1396 0.0018 1.1192 0.1450 0.0018 1.6907 1.6887 0.3168 0.0012 1.6887 0.3287 0.0012 

5.7476 5.7399 0.2565 0.0013 5.7399 0.2506 0.0013 6.6160 6.5993 0.5140 0.0025 6.5993 0.5262 0.0025 

4.7055 4.7062 0.2296 0.0001 4.7062 0.2361 0.0001 5.1707 5.7116 0.4534 0.1046 5.7116 0.4815 0.1046 

3.8016 3.7820 0.2002 0.0052 3.7820 0.2024 0.0052 4.8797 4.8461 0.4179 0.0069 4.8461 0.4395 0.0069 

3.1002 3.0987 0.1858 0.0005 3.0987 0.1879 0.0005 4.2214 4.2240 0.4182 0.0006 4.2241 0.4457 0.0006 

0.3 

36 

38 

40 

42 

44 2.4738 2.4689 0.1682 0.0020 2.4688 0.1736 0.0020 3.6232 3.6126 0.3780 0.0029 3.6127 0.4028 0.0029 

7.0997 7.0854 0.2724 0.0020 7.0855 0.2725 0.0020 8.5310 8.5338 0.5882 0.0003 8.5339 0.6032 0.0003 

6.1805 6.1784 0.2400 0.0003 6.1784 0.2427 0.0003 7.6990 7.6943 0.5167 0.0006 7.6944 0.5507 0.0006 

6.3028 5.2804 0.2161 0.1622 5.2805 0.2223 0.1622 6.9036 6.8665 0.4681 0.0054 6.8665 0.5161 0.0054 

4.6137 4.6129 0.2047 0.0002 4.6129 0.2139 0.0002 6.2670 6.2682 0.4657 0.0002 6.2683 0.5115 0.0002 

0.4 

36 

38 

40 

42 

44 3.9616 3.9503 0.1908 0.0028 3.9503 0.1998 0.0028 5.6781 5.6767 0.4536 0.0002 5.6768 0.5056 0.0002 

8.5205 8.5181 0.2791 0.0003 8.5182 0.2760 0.0003 10.4470 10.4480 0.6471 0.0001 10.4475 0.7124 0.0000 

7.6491 7.6438 0.2661 0.0007 7.6438 0.2748 0.0007 9.6697 9.6552 0.5931 0.0015 9.6547 0.6680 0.0015 

6.7993 6.7754 0.2316 0.0035 6.7755 0.2476 0.0035 8.9128 8.8707 0.5587 0.0047 8.8703 0.6297 0.0048 

6.1322 6.1311 0.2179 0.0002 6.1312 0.2321 0.0002 8.3091 8.3051 0.5202 0.0005 8.3047 0.5774 0.0005 

0.5 

36 

38 

40 

42 

44 5.4964 5.4900 0.1974 0.0012 5.4901 0.2185 0.0012 7.7441 7.7442 0.4541 0.0000 7.7438 0.5161 0.0000 
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Table 3. This is Monte Carlo valuation of the Bermudan options. We select S.E. and MAPE of CV-at-exercise 

and CV+EMS from Table 2 and define new ratios called S.E-ratio and MAPE-ratio. S.E.-ratios are derived by 

S.E of EMS+CV divided by S.E. of CV-at-exercise and MAPE-ratios are derived by MAPE of EMS+CV 

divided by MAPE of CV-at-exercise.   

S.E.-ratio ( EMS+CV/CV )   MAPE-ratio ( EMS+CV/CV ) 

σ t S=36 S=38 S=40 S=42 S=44 σ t S=36 S=38 S=40 S=42 S=44 

0.25 0.9045 1.0000 0.9941 0.9608 * 0.25 0.9557  0.9874  1.0003  1.0780  * 

0.5 1.0001 1.0000 1.0151 0.9985 1.0889 0.5 1.0009  0.9998  0.9999  0.9878  1.0000  

1 1.0002 0.9448 1.0341 1.0247 0.9776 1 1.0002  0.9978  0.9989  1.0562  1.0069  
0.05 

2 0.9456 1.0060 0.9997 0.9892 0.9940 

0.05 

2 1.0075  0.9997  0.9999  2.3503  1.4443  

0.25 1.0000 0.9965 1.0011 1.1127 0.9728 0.25 1.0005  1.1457  1.0003  0.6734  0.9488  

0.5 0.9998 0.9848 1.0066 1.0122 0.9609 0.5 1.0010  0.9844  1.0007  0.9635  1.0295  

1 0.9812 1.0003 1.0243 1.0216 1.0191 1 1.0045  1.0009  1.0000  0.9927  1.0362  
0.1 

2 0.9999 0.9993 1.0275 1.0437 1.0070 

0.1 

2 1.0008  1.0008  1.0002  1.0075  0.9884  

0.25 0.9503 0.9638 1.0125 0.9894 1.0577 0.25 0.9909  1.0031  0.9999  0.9977  1.0138  

0.5 0.9610 0.9890 0.9942 1.0061 1.1122 0.5 1.0026  1.0013  0.9992  0.9900  1.2660  

1 0.9624 0.9922 1.0362 1.0381 1.0390 1 1.0030  1.0046  1.0000  1.0042  0.9995  
0.2 

2 0.9849 1.0177 1.0254 1.0342 1.0374 

0.2 

2 0.9936  1.0080  0.9987  0.9823  0.9968  

0.25 0.9222 0.9866 1.0191 1.0412 0.9658 0.25 0.9360  0.9955  0.9989  0.9997  1.0535  

0.5 0.9322 0.9731 0.9925 0.9950 1.0939 0.5 1.0088  0.9957  0.9993  0.9940  1.0211  

1 0.9770 1.0281 1.0109 1.0111 1.0324 1 0.9948  1.0017  0.9994  1.0079  1.0070  
0.3 

2 1.0238 1.0622 1.0518 1.0658 1.0656 

0.3 

2 0.9966  1.0001  1.0008  1.0115  0.9947  

0.25 0.8982 0.9671 1.0138 0.9906 0.9078 0.25 1.0011  1.0018  1.0018  1.0031  0.9831  

0.5 0.9436 0.9917 1.0248 1.0361 1.0220 0.5 0.9947  0.9924  0.9977  0.9949  1.0070  

1 1.0003 1.0114 1.0287 1.0454 1.0471 1 0.9949  0.9913  1.0000  0.9779  0.9992  
0.4 

2 1.0256 1.0657 1.1026 1.0984 1.1147 

0.4 

2 1.0544  0.9782  0.9984  1.0939  0.9175  

0.25 0.9237 0.9830 1.0217 1.0183 1.0287 0.25 0.9962  1.0021  1.0007  1.0045  0.9800  

0.5 0.9752 1.0314 1.0364 1.0614 1.0172 0.5 0.9991  0.9879  0.9994  1.0004  1.0003  

1 0.9891 1.0326 1.0691 1.0654 1.4106 1 0.9741  0.9884  0.9980  0.9208  0.9844  
0.5 

2 1.1010 1.1263 1.1270 1.1099 1.1367 

0.5 

2 0.4883  1.0348  1.0100  1.0902  4.1065  

*When T=0.25 and σ=0.05, the option price of binomial model is nearly zero. In this case, MAPE is infinite and has no meaning.. 
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5.2. American Rainbow Options 

    To investigate the application of control variates to a more complex example 

than the single-asset put option investigated in the previous numerical examples, we 

now investigate the n-asset Bermudan rainbow option for the case of n=2,3, and 5 

assets. We use the same parameters as the example in Andersen and Broadie (2004) 

without any use of variance reduction and compare the results. 

    Andersen and Broadie use a set of 13 basis functions involving the highest and 

second highest asset prices, as well as polynomials of these, together with the value 

of European max-call option on the two largest assets and polynomials of this. 

Inspired by their choice and the concept of Rasmussen (2005), we use another set of 

basis functions. 

    For the case of two assets, the European max-call option price can easily be 

computed according to Stulz (1982). Although the pricing formula of multi-asset 

max-option has been derived by Johnson (1987) the computation of multivariate 

normal cumulated probability requires numerical integration. To circumvent this 

shortcoming we therefore choose to use combinations of two-asset max-call options 

as basis functions in our regression and as control variates. We list our basis 

functions as following. For the case of two assets, the six basis functions are  
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For the case of three assets, the seven basis functions are 
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For the case of five assets, the fifteen basis functions are 
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    In the example of Andersen and Broadie (2004), the risk-neutral dynamics of n 

assets follow correlated geometric Brownian motion processes, i.e.,  

iii

i

i dWdtqr
tS

tdS
σ+−= )(

)(

)(
 

where n,, ,2,1 , K=iWi are standard Brownian motion processes and the 

instantaneous correlation of iW  and jW  is ijρ . For simplicity and consistency 

with Andersen and Broadie (2004), in our numerical results we also take 

σσ == ii qq  ,  and ρρ =ij  for all nji ,,2,1 , K=  and ji ≠ . The interest rate is 
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assumed to be constant, so the value of the money market account at time t  is 

rt
t eB = . Exercise opportunities are equally spaced at times edTt )/(= , 

de ,,1 ,0 K=  with d=9.  

    In the example of Andersen and Broadie (2004), they use 2,000,000 

independent paths for the valuation of the Bermudan max-call option. In our 

example, we only use 100,000 independent paths combined with the use of control 

variates as outlined above. The results are listed in Table 4.   

    From the resulting estimates of Bermudan max-call options in Table 4, we see 

that the use of control variates reduces standard error and obtains more accuracy 

estimates by fewer simulation paths. 
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Table 4. This is Monte Carlo valuation of two-, three- and five-asset Bermudan 

max-call options using CV-at-exercise. Combinations of discounted European two-asset 

max-call options sampled at exercise are used as control variates. For all the options, the 

strike K=100, the interest rate equals r=0.05, the dividend rate δ=0.1, the volatility of 

each asset σ=0.2, and the correlation ρ=0. For all the max-call options, the time to expiry 

T=3 years with exercise points at edTt )/(= , for e=0,1,2,…,d with d=9. The binomial 

model estimates and no variance reduction estimates are taken from Andersen and 

Broadie (2004). The current stock prices S are given. Numbers of simulation paths N are 

different. Values in parentheses are the standard errors. 

n S Binomial Model 
no-variance-reduction 

( N=2,000,000 ) 

CV-at-exercise 

( N=50,000 ) 

90 8.075 8.065 (0.006) 8.074 (0.0043) 

100 13.902 13.907 (0.008) 13.904 (0.0067) 2 

110 21.345 21.333 (0.009) 21.339 (0.0080) 

90 11.29 11.279 (0.007) 11.287 (0.0049) 

100 18.69 18.678 (0.009) 18.683 (0.0061) 3 

110 27.58 27.531 (0.010) 27.568 (0.0077) 

90  16.618 (0.008) 16.577 (0.0074) 

100  26.128 (0.010) 26.213 (0.0088) 5 

110  36.725 (0.011) 36.723 (0.0092) 
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6. Conclusion 

From the results of American put options, we see that improvement coming 

from EMS or CV+EMS is not very significant compared with CV-at-exercise. 

Therefore, when pricing American options, we can use CV-at-exercise to raise the 

simulation efficiency.  

For the Bermudan max-call option in the multi-asset Black-Sholes model, the 

improvement coming from CV-at-exercise is very significant in terms of standard 

error reduction. The estimates of CV-at-exercise also are more close to binomial 

model estimates than no-variance-reduction LSM. It is thus evident that 

CV-at-exercise is a good variance reduction method when we price single- or 

multi-asset American options under Black-Sholes framework.  
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