
 1

 
 
 

Pricing Asian Options with 
Fourier Convolution 

 
 
 
 
 
 
 
 
 

Cheng-Hsiung Shu 
Department of Computer Science and 

Information Engineering 
National Taiwan University 



 2

 
 
 
Contents 
 
1. Introduction 

2. Background 

3. The Fourier Convolution Method 

3.1 Steward and Hodges factorization 

3.2 Re-centering the densities 

3.3 The interpolation formula 

3.4 The pricing algorithm 

3.5 The choice of parameters 

4. Numerical Results 

4.1 Discrete case 

4.2 Continuous case 

5. Conclusions 

Bibliography 



 3

 

Abstract 

This thesis investigates the fast Fourier transform-based pricing algorithm for 

discrete Asian options by Benhamou [1]. We compare it with other methods and 

combine it with extrapolation to increase numerical accuracy. We also apply it to the 

continuous case by using extrapolation. Running the algorithm with different numbers 

of grid points, we observe the convergence of option values both in the continuous case 

and in the discrete case. The disadvantages of the algorithm are also discussed. 
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Chapter 1 

Introduction 

Asian options are path-dependent contingent claims whose payoff is based on an 

average of underlying prices, interest rates, indices, or countless others. They have 

become popular in hedging periodic cash flows in that they cost far less than standard 

options on the same underlying assets. As pointed out by Levy [7], the reason Asian 

options are cheaper than the otherwise identical standard options is explained by the fact 

that the variance of the Asian option is smaller than that of the underlying asset’s price 

process under the Black-Scholes model. Asian options can mitigate the possibility of 

spot manipulations or extreme movements of underlying prices at settlement. This 

feature is especially useful in thinly traded assets markets in which case the price 

manipulation on or near the expiration date has a significant impact on the payoff of 

standard options. In summary, the averaging feature of Asian options become attractive 

for hedging because it can avoid the large volatility of the price change and can also 

remove extreme sensitivity of standard options’ payoff to the underlying price.  

There are two main classes of Asian options: floating-strike and fixed-strike. The 

floating-strike Asian option pays the difference between the average and the spot price 

of the underlying. The fixed-strike Asian option pays the difference between the average 

price of the underlying and the pre-specified strike price. Asian options can also be 

classified as discrete or continuous according to the way the average is calculated. 

When the average is calculated from underlying asset’s prices at discrete times, it is 

called a discrete Asian option. If all of the underlying’s prices on the time line take part 

in the calculation of average, it is called a continuous Asian option. When the initial 

underlying asset’s price does not take part in the calculation of the average, the option is 
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called a forward-starting Asian option. We will deal exclusively with forward-starting 

discrete Asian options in this thesis unless stated otherwise. 

Under the Black-Scholes option model, the asset price follows a geometric 

Brownian motion. Thus the asset price at any future time is described by the lognormal 

density function. If the Asian option is based on geometric average, the average is still 

lognormally distributed because the product of lognormal random variables remains 

lognormal. In this case, it is possible to derive an explicit formula for geometric 

averaging Asian options (see, for example, Kemna and Vorst [6] and Zhang [15]). 

However, if the Asian option is based on arithmetic average, there is no explicit 

representation for the distribution of the average of the underlying asset’s prices because 

the sum of lognormal random variables is not lognormally distributed any more. Thus, 

there is no explicit pricing formula for arithmetic averaging Asian options as of now, 

and this is the source of difficulty in pricing them. This thesis focuses on arithmetic 

averaging Asian options. The main goal is to approximate its probability density 

function by using discrete points on the density function’s domain to represent the 

distribution function of average. 

Several approaches have been proposed in the literature to tackle the difficulty of 

pricing Asian options. We classify them as follows. 

1. Monte-Carlo simulations with variance reduction techniques. 

Kemna and Vorst [6] derive a pricing formula for geometric-based discrete 

Asian options and used it as a control variate to reduce the variance of the 

discrete Asian option prices.  

2. Binomial tree. 

Hull and White [5] augment an additional state variable to each node in the 

tree to record the possible averages of the underlying asset’s price realized 
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between time zero and the time of that node. Cho and Lee [3] improve it by 

deriving the maximum and minimum averages for each node. Hsu and Lyuu [4] 

further improve it by using non-uniform allocation scheme of states in each 

node according to its probability. All above are numerical methods for 

continuous Asian options. 

3. Approximation of the density function of the average. 

Turnbull and Wakeman [13] apply the Edgeworth series expansion up to 

the fourth term around the lognormal distribution function to approximate the 

density function of the average for discrete Asian options. Levy [7] derives an 

approximate pricing formula for discrete Asian options by matching the first 

two moments of the density of the average with that of the lognormal density. 

Carverhill and Clewlow [2] use discrete points on the density function’s 

domain to represent the density function and evaluate the convolution of 

density functions to approximate the density function of the average for 

discrete Asian options. Benhamou [1] improves it by incorporating a 

re-centering step into the algorithm. 

4. Partial differential equations 

Zhang [14] derives an analytical approximate formula and a correction term 

governed by a partial differential equation, which requires numerical evaluation, 

for continuous Asian options. Rogers and Shi [12] compute the price of 

continuous Asian options by reducing the pricing problem into that of solving a 

PDE with the finite-difference method. 

The methodology adopted in this thesis to price Asian options belongs to category 3. 

The rest of the thesis is organized as follows. In chapter 2, we set up the framework 

and then introduce basic facts for later use. Chapter 3 develops a procedure to calculate 
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the density function of the average represented by discrete points in the density 

function’s domain and describes the pricing algorithm. The considerations for the choice 

of parameters in the algorithm are also detailed. Chapter 4 presents the numerical results. 

From them important characteristics of the Fourier convolution method can be drawn. 

Conclusions are given in Chapter 5. 
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Chapter 2 

Background 
Consider an Asian call option with maturity T, strike K, and n fixing dates during 

its life. The underlying’s price at time t is denoted by St. Only the prices St on fixing 

dates take part in the calculation of the arithmetic average. We divide the total length of 

the derivative’s life into n time intervals of equal length. There is a fixing date between 

two consecutive intervals. Assume these n fixing dates are denoted by t1, t2,…, tn with tn 

= T and the initial time of the option is denoted by 0t . The average price is then defined 

by 
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We assume the Black-Scholes model, where the underlying’s price follows a 

geometric Brownian motion, 

SdzSdtdS σμ +=  

where dz is a Brownian motion whose increments are uncorrelated, σ  is the volatility 

of the underlying’s price, and μ  is its expected rate of return. The assumption implies 

that the underlying’s price at any time 
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where z  is a Brownian motion. It is most intuitively to think of z  as being normally 
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distributed with mean 0 and variance 1−− ii tt . We can view this expression as the 

product of the preceding price and the rate of return. In particular, 

it
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Comparing equations (3) and (4), we see that the rate of return 
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R  defined by equation 
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Note that if each interval is not of equal length, then each rate of return 
it

R  

corresponding to each interval still follows a normal distribution but has different mean 

and variance. Alternatively, equation (4) can also be expressed in terms of the initial 

price 
0t

S  as 
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Substitute the above equation (5) into expression (1) of the average to get 
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In complete markets with no arbitrage opportunities, there exists a unique risk-neutral 

probability measure under which the price process of the derivative is a martingale. In 

this case, the mean of the rate of return 
it

R  will be ( )
2

12 i ir t tσ
−
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 and the price of 

the Asian call C  is the expected payoff under the measure discounted by the risk-free 

interest rate r : 

])([E +− −= KAeC rTQ                      (7)  
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where +X  stands for )0,max(X . As stated above, the distribution of the average is 

unknown; there is no simple closed-form formula to calculate equation (7). Instead, we 

will numerically compute the density function backwards in the time line by means of 

representing the density function at discrete points. The method converges to the real 

density functions as the number of such points tends to infinity. 

The convolution of two functions )(xf  and )(yg  is defined as 

∑
∞

−∞=
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x

xzgxfzC )()()( . The pair of Fourier transform and its inverse transform for 

function )(xf  is defined as  
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We state the following two facts for later use. 
 

Fact 1 Suppose that X  and Y  are independent random variables with the joint 

distribution function ),( yxf , and let YXZ += . The distribution function of 

Z  is the convolution of the distribution function )(xf  for X  and the 

distribution function )(yg  for Y . 

Fact 2 The Fourier transform of the convolution of two functions )(xf  and )(yg  

equals the product of )(xF  and )(yG , which are the Fourier transforms of 

)(xf  and )(yg , respectively. The convolution of the two functions can be 

obtained by taking the inverse Fourier transform of the product of )(xF  and 

)(yG .  
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Chapter 3 

The Fourier Convolution Method 
The Fourier convolution method represents the density function by discrete grid 

points within a fixed-width window on the density function’s domain. 

 
Figure 1                         Figure 2 

Figure 1 shows the graph of the density function for a standard normal random variable 

X . The horizontal axis represents the possible values of X , and the vertical axis 

represents the corresponding density value. Note that the density values for large 

absolute values of X  tend to zero. Figure 2 shows the representation of the density 

function corresponding to Figure 1 in the Fourier convolution method. The method first 

needs to determine the two parameters: the number of grid points and the window width. 

In the case of Figure 2, there are 13 grid points in the window, and the window width is 

6 ranging from −3 to +3. Note that the Fourier transform requires that these grid points 

be equally spaced. Only those density values on grid points are recorded in the 

representation of the density function. Obviously, the number of grid points has 

significant impact on the accuracy of representing the density function. Errors will 

inevitably be produced if we need the density values for non-grid points. The 

fixed-width window defines the domain of the density function. The density values at 
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grid points out of the window will be assumed to be zero. Thus the window should be 

wide enough to contain the bulk of the density function, but it should not be too large as 

to consume too much resource. To sum up, the density function will be limited to these 

density values on discrete grid points, and computing the density function is equivalent 

to computing these density values on discrete grid points. 

At the beginning, the mean of the initial density function will be located at the 

center of the window. As the process of computing the density function for the average 

progresses, the window will be shifted to make sure the location of the mean of the 

density function remains roughly at the center. The following develops the procedures 

to compute the density function for the average in detail. 

3.1 Steward and Hodges factorization 

The average is expressed in equation (6) as a function of the rates of returns. Each 

rate of return 
it

R  follows a normal distribution with mean 2
1( 2)( )i ir t tσ −− −  and 

variance )( 1−− ii ttσ . From the information about the distribution for the rate of return 

in each interval, we can compute the density function for the underlying asset’s price at 

any particular time, but the density function for the average is still hard to compute. 

Because the summands in the average are not independent, Fact 1 cannot be applied to 

compute the density function for the average. In order to apply Fact 1, the following 

proposition is needed. 

Proposition 1 (Steward and Hodges factorization) 

The average in equation (6) can be expressed as: 
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Proof: From equation (6), we have 
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After applying Proposition 1, the summands in the exponential term of the 

equation (8) for the average are independent and now we can apply Fact 1 recursively 

and backwards in time to compute the density function for the average. Before 

proceeding, we define the sequence iB  as 

)exp1ln( 11 −++=
−+ iti BRB

in
, 2,3, ,i n= K          (9) 

with 
nt

RB =1 . Then equation (8) can be compactly written as 

nBt e
n

S
A 0=                                  (10) 

Our objective is in fact to compute the density function for nB  step by step from 1B , 

which is known to be normally distributed as discussed before. Equation (9) gives a 

formula that can be used to compute the density function of iB  from that of 1−iB  



 14

recursively. 

3.2 Re-centering the densities 

Notice that the term )exp1ln( 1−+ iB  in the right hand side of equation (9) would 

cause the density function computed at the preceding step 1−i  to shift. More 

specifically, the probability at any point b  would be mapped to the probability at the 

point )exp1ln( b+ , which results in the shift in location of the density function. In 

order to prevent the density functions from shifting out of the window, at each step we 

will move the window so as to fit the density functions as much as possible and make 

the mean of the density roughly at the center. 

We next determine how distant the window would move. If we knew the mean of 

)exp1ln( 1−+ iB , we could directly move the center of the window to that location. 

Suppose that we know the mean 1−im  of 1−iB  whereas the mean of )exp1ln( 1−+ iB  is 

not available. We approximate the mean of )exp1ln( 1−+ iB  by )exp1ln( 1−+ im . Then 

we can define the following sequence to approximate the mean of iB  defined by 

equation (9): 

)exp1ln( 11 −−+ ++= iini mum                      (11) 

with num =1 , where ]E[
ntn Ru = , which is 2

1( 2)( )i ir t tσ −− −  under the Black-Scholes 

model. Remember that the total life of option is divided into n intervals of equal length 

and all 
it

R  are normally distributed with the same mean and variance. Therefore, all 

inu −+1  will be the same and equal 2
1( 2)( )i ir t tσ −− − . If these intervals are not of equal 

length, then these 
it

R  are still normally distributed but have different means and 

variances. Equation (11) gives an approximated ]E[ iB  from the previously 

approximated ]E[ 1−iB . The center of the window is then set to the approximated ]E[ iB . 
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Note that the function )exp1ln( x+  is convex and thus the approximated mean 

underestimates the true mean, which can be proved by Jensen’s inequality: 

)](E[])(E[ XfXf ≤ . 

We define the centered sequence for the equation (9) as iii mBA −= . In effect, 

this moves the center of the window to the approximated im . The expression for the 

average defined by equation (10) can be expressed in terms of the centered sequence as 

nn mAt e
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S
A += 0                                        (12) 

where nA  is derived as follows 
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with initial condition 11 mRA
nt
−= . 

With the re-centering step incorporated into the algorithm, we compute the 

approximate density function for nA  step by step from 1A . Note that the initial 

random variable 1A  is known to be normally distributed and its mean is centered in the 

window. Equation (13) gives a formula to compute the density function of iA  from 

that of 1−iA  which has been computed at the preceding step. 

3.3 The interpolation formula 

Suppose we are computing the density function of iA  at step i . From equation 

(13), we need the convolution of the density functions of 
int

R
−+1

 and 

iii mmA −+ −− )expexp1ln( 11 . The distribution function for 
int

R
−+1

 is known and the 

distribution function for 1−iA  has been computed in the preceding step. The density 
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function for iii mmA −+ −− )expexp1ln( 11  is also known and represented by gird points 

equally spaced in the domain of 1−iA , but these grid points are not equally spaced in the 

domain of iii mmA −+ −− )expexp1ln( 11  because the function is non-linear. But the 

Fourier transform requires that the grid points representing the density function be 

equally spaced. Thus what we need to compute is the density values for 

iii mmA −+ −− )expexp1ln( 11  on non-grid points before applying convolution so that 

these new grid points are also equally spaced. In general, the density value for a 

function y  of a random variable x  is 11 )( −− y
dy
dyf x , where xf  represents the 

density function for x  and 1−y  represents the inverse function for y  [11]. This 

leads to the following interpolation formula: 

))1(ln(
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)( 1)expexp1ln( 111 −
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+
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e

eaf i
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which gives the density value of iii mmA −+ −− )expexp1ln( 11  at grid point a  in the 

domain of iii mmA −+ −− )expexp1ln( 11  from that of 1−iA  at point 1)1ln( −
+ −− i

ma me i  

in the domain of 1−iA . Note that the interpolation formula (14) will introduce errors 

because of the discretization of the density functions. Specifically, if a  is on a grid 

point in the domain of 1−iA , then 1)1ln( −
+ −− i

ma me i  will not be on a grid point in the 

domain of 1−iA . Thus in applying formula (14), interpolation will be used to get the 

density value at point 1)1ln( −
+ −− i

ma me i  between the two nearest grid points in the 

domain of 1−iA . The errors caused by interpolation will accumulate as the number of 

applying formula (14) increases. Although the formula (14) is exact, the term 

))1(ln( 11 −
+ −−

− i
ma

A mef i

i
 is not exact and can only be obtained by interpolation [1]. 
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3.4 The pricing algorithm 

All the needed procedures to compute the density function for the average have 

been developed in previous sections. Now we merge them to obtain the pricing 

algorithm. 

The algorithm initially calculates the approximated mean num =1  for 
nt

RB =1  

and the centered density function for 11 mRA
nt
−= . Note that the centered density 

function for 1A  is discretized and represented by discrete grid points in a fixed-width 

window. The objective is to get the density function of nn mA + , that is, the density 

values at grid points. All the operations performed will be on these grid points. 

Inductively, suppose we know the values of the 1−im  and the density function of 1−iA  

computed at step 1−i . We then recursively execute the following procedures to 

compute the next approximated mean and centered density function until we get the 

value of nm  and the density function of nA : 

1. Interpolate the density function for 1−iA  using formula (14) to get the density 

function for iii mmA −+ −− )expexp1ln( 11 . 

2. Compute the density function for iA  by Fact 2. Note that iA  is the sum of 

the two independent random variables 
int

R
−+1

 and 

iii mmA −+ −− )expexp1ln( 11 .  

Once we have gotten the approximated density function for the average, we 

compute the expected payoff by numerical integration and then discount it by the 

risk-free interest rate to obtain the option value. The above completes Benhamou’s 

algorithm [1]. 

3.5 The choice of parameters 
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There are two parameters, which are the number of grid points and the window 

width, in the algorithm. Either of the two parameters can affect the accuracy of the 

algorithm. How to choose an appropriate number of grid points depends on the required 

accuracy. If one desires a more accurate value, he can increase the number of grid points 

at the expense of computation time. The window width should be chosen at the 

beginning of the algorithm and then fixed so as to be large enough to contain the bulk of 

the density function. However, the larger the window width is, the less accurate the 

option value is when the number of grid points is fixed. In Benhamou’s original paper, 

he chooses the window width as 
n
Tnσ9 . This choice produces less accurate results in 

our experiments because its width is too large when given the same number of grid 

points. So we try to reduce the window width so that the accuracy can be improved. 

From empirical rule, we know that about 99.7% of probability is within the interval 

between +3 and −3 standard deviations. Because the density function of the initial 

random variable 11 mRA
nt
−=  is normally distributed, the window width should be at 

least larger than 
n
Tσ6  in order to contain the bulk of the initial density function. 

When the number of convolution operations increases, more and more probability will 

be at the tail of the two ends of the distribution and thus the window width should also 

increase. Through extensive experiments, we find that the increase in the window width 

should be roughly proportional to n  to achieve good accuracy. So we choose the 

initial window width as Tσ6  so as to contain the bulk of the density function. This 

choice is different from Benhamou’s choice, and it produces accurate results.
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Chapter 4 

Numerical Results 

In this chapter, we compare the Fourier convolution method with other methods in 

pricing discrete Asian options. In order to further speed up the convergence of option 

values, we incorporate extrapolation into the Fourier convolution. We finally apply 

extrapolation to the discrete version of Asian options to obtain prices of the continuous 

version. 

4.1 Discrete case 

Table 1 shows the results with different methods for pricing discrete Asian options 

with different strikes. The window width of Fourier convolution (FC) in Table 1 is the 

same as Benhamou’s choice. Its results are far less accurate compared to the other 

methods because the window width is too wide. Table 2 shows the results corresponding 

to Table 1 except that the window widths of FC follow our choice. As the results show, 

its accuracy is improved, although it is still not as accurate as the other methods. But 

when the number of grid points doubles, the convergence rate also doubles with a 

concurrent improvement in accuracy. This linear relationship between the number of 

grid points and convergence rate suggests that extrapolation can be used in order to 

increase accuracy. Extrapolation is a technique to speed up the convergence rate by 

using two approximated option values. The formula is 

( )
21

2211 )(
nn

nfnnfnf
−
−

=  

where 1n  and 2n  are two different choices of numbers of grid points. When 12 2nn = , 

the extrapolation is called the Richardson extrapolation. Table 3 shows the results when 

the Richardson extrapolation is incorporated into the FC method. The numbers of grid 
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points under FC in Table 3 are the values of 2n . The FC method without extrapolation 

is not accurate enough; however, its accuracy outperforms the other methods if it is 

combined with extrapolation. 

4.2 Continuous case 

All the underlying asset’s prices on the time line take part into the pricing of 

continuous Asian options. Thus, in theory the life of options should be divided into an 

infinite number of time intervals. Extrapolation technique is used to approximate the 

result. As in the discrete case, the same formula is used with 1n  and 2n  being two 

different choices of number of intervals. Table 4 shows the results when 1001 =n  and 

uses Richardson extrapolation. Table 5 shows the results when 1801 =n  and 

2402 =n . 

There are two extrapolation stages in the continuous case. We know from the 

results in the discrete case that the FC method without extrapolation is not accurate 

enough. So we use Richardson extrapolation in the first stage to obtain approximated 

values as the number of grid points tends to infinity. The numbers of grid points under 

the FC in Table 4 and Table 5 are the values of 2n  for extrapolation in the first stage. 

Then we apply extrapolation in the second stage by using the results in the previous 

stage to obtain the approximated values as the number of intervals tends to infinity in 

the continuous case. 

The results in both Table 4 and Table 5 show that the option value converges to 

some value, although it is different from the exact value. But if higher 1n  and 2n  in 

the second extrapolation stage are used, the results can be more accurate. Because the 

results in Table 5 use more time intervals to extrapolate than in Table 4, it is more 

accurate if the number of grid points increases. However, as the number of time 
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intervals increases, the number of times the interpolation formula (14) is applied also 

increases, which results in more accumulated errors. That the approximations in Table 5 

using 213 are slightly less accurate than those in Table 4 with the same number of grid 

points verifies this fact. The accumulated errors can be lowered by using more grid 

points, and this also can be seen from approximations in Table 5 as the number of grid 

points increases. 
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Chapter 5 

Conclusions 

The FC is an efficient pricing algorithm for discrete Asian options. Let m  be the 

number of time intervals and n  be the number of grid points used in the algorithm. 

The complexity of FC is )ln( nmnO . In practice, m  is contractual and rather small 

compared to n  in the discrete case. The combined version of FC with extrapolation 

becomes a fast and accurate pricing algorithm for discrete Asian options. 

However, m  will be large for the continuous case, which results in more 

applications of the interpolation formula (14). In order to compensate the accumulated 

errors caused by interpolation, n  must also be increased. Because both m  and n  

increase at the same time, the computation time also increases rapidly. This is the main 

disadvantage of the FC if it is to be applied to the continuous case. 
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Approximations 
FC with different numbers of grid points 

Strikes MC SD Levy TW Vorst Hsu-Lyuu 212 213 214 215 216 
50 50.0506 0.0056 50.0531 50.2409 50.0494 50.0475 54.7577 52.3659 51.1964 50.6205 50.3344
60 41.2315 0.0056 41.2637 41.387 41.2388 41.2301 45.9205 43.5369 42.3732 41.8002 41.5156
70 32.6621 0.0056 32.7573 32.5403 32.6726 32.6617 37.2537 34.9149 33.7774 33.2181 32.9407
80 24.7540 0.0057 24.9110 24.4198 24.7302 24.7492 29.0802 26.8633 25.7933 25.2692 25.0096
90 17.9405 0.0058 18.1138 17.6413 17.8339 17.9357 21.8106 19.8120 18.8583 18.3936 18.1641

100 12.4799 0.0059 12.6129 12.3638 12.2663 12.4816 15.7552 14.0508 13.2488 12.8607 12.6698
110 8.3887 0.0060 8.4489 8.4428 8.0849 8.3925 11.0133 9.6351 8.9965 8.6899 8.5396
120 5.4897 0.0059 5.4761 5.6268 5.1388 5.4900 7.4919 6.4279 5.9429 5.7118 5.5990
130 3.5187 0.0058 3.4510 3.6602 3.1664 3.5164 4.9870 4.1968 3.8423 3.6748 3.5934
140 2.2153 0.0056 2.1221 2.3237 1.8989 2.2177 3.2646 2.6956 2.4444 2.3267 2.2696
150 1.3787 0.0052 1.2777 1.4415 1.1125 1.3839 2.1106 1.7109 1.5371 1.4562 1.4172
160 0.8507 0.0048 0.7560 0.8761 0.6396 0.8578 1.3522 1.0768 0.9588 0.9043 0.8781
170 0.5203 0.0043 0.4415 0.5236 0.3625 0.5293 0.8614 0.6741 0.5950 0.5588 0.5414
180 0.3196 0.0039 0.2555 0.3090 0.2036 0.3255 0.5466 0.4207 0.3683 0.3444 0.3330
190 0.1955 0.0034 0.1471 0.1807 0.1137 0.1998 0.3461 0.2622 0.2277 0.2121 0.2047
200 0.1214 0.0029 0.0844 0.1050 0.0633 0.1223 0.2192 0.1635 0.1409 0.1307 0.1259

Table 1: Comparison of different pricing methods: the case of 3-year discrete Asian options. The options are forward-starting Asian calls with 

S = 100, T = 3, σ = 0.25, r = 0.04 and n = 36 (monthly averaging). The width of the FC method is 
n
Tnσ9 , which is 23.3 in this case. 
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Approximations 

FC with different numbers of grid points 
Strikes MC SD Levy TW Vorst Hsu-Lyuu 212 213 214 215 216 

50 50.0506 0.0056 50.0531 50.2409 50.0494 50.0475 50.5558 50.3017 50.1748 50.1116 50.0800
60 41.2315 0.0056 41.2637 41.387 41.2388 41.2301 41.7357 41.4829 41.3569 41.2940 41.2626
70 32.6621 0.0056 32.7573 32.5403 32.6726 32.6617 33.1553 32.9088 32.7860 32.7247 32.6941
80 24.7540 0.0057 24.9110 24.4198 24.7302 24.7492 25.2103 24.9798 24.8651 24.8078 24.7792
90 17.9405 0.0058 18.1138 17.6413 17.8339 17.9357 18.3414 18.1377 18.0365 17.9860 17.9608

100 12.4799 0.0059 12.6129 12.3638 12.2663 12.4816 12.8171 12.6477 12.5637 12.5218 12.5009
110 8.3887 0.0060 8.4489 8.4428 8.0849 8.3925 8.6553 8.5221 8.4561 8.4232 8.4068
120 5.4897 0.0059 5.4761 5.6268 5.1388 5.4900 5.6856 5.5857 5.5363 5.5117 5.4994
130 3.5187 0.0058 3.4510 3.6602 3.1664 3.5164 3.6556 3.5835 3.5479 3.5302 3.5214
140 2.2153 0.0056 2.1221 2.3237 1.8989 2.2177 2.3130 2.2625 2.2376 2.2253 2.2191
150 1.3787 0.0052 1.2777 1.4415 1.1125 1.3839 1.4466 1.4121 1.3951 1.3867 1.3825
160 0.8507 0.0048 0.7560 0.8761 0.6396 0.8578 0.8976 0.8744 0.8631 0.8574 0.8546
170 0.5203 0.0043 0.4415 0.5236 0.3625 0.5293 0.5541 0.5388 0.5313 0.5275 0.5257
180 0.3196 0.0039 0.2555 0.3090 0.2036 0.3255 0.3411 0.3310 0.3261 0.3237 0.3225
190 0.1955 0.0034 0.1471 0.1807 0.1137 0.1998 0.2097 0.2032 0.2000 0.1984 0.1976
200 0.1214 0.0029 0.0844 0.1050 0.0633 0.1223 0.1290 0.1247 0.1227 0.1217 0.1212

Table 2: Comparison of different pricing methods: the case of 3-year discrete Asian options. The options are forward-starting Asian calls 
with S = 100, T = 3, σ = 0.25, r = 0.04 and n = 36 (monthly averaging). The width of the FC method is 2.6. 
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Approximations 
FC with different numbers of grid points

Strikes MC SD Levy TW Vorst Hsu-Lyuu 213 214 215 216 
50 50.0506 0.0056 50.0531 50.2409 50.0494 50.0475 50.0476 50.0479 50.0484 50.0484
60 41.2315 0.0056 41.2637 41.387 41.2388 41.2301 41.2301 41.2309 41.2311 41.2312
70 32.6621 0.0056 32.7573 32.5403 32.6726 32.6617 32.6623 32.6632 32.6634 32.6635
80 24.7540 0.0057 24.9110 24.4198 24.7302 24.7492 24.7493 24.7504 24.7505 24.7506
90 17.9405 0.0058 18.1138 17.6413 17.8339 17.9357 17.9340 17.9353 17.9355 17.9356

100 12.4799 0.0059 12.6129 12.3638 12.2663 12.4816 12.4783 12.4797 12.4799 12.4800
110 8.3887 0.0060 8.4489 8.4428 8.0849 8.3925 8.3889 8.3901 8.3903 8.3904
120 5.4897 0.0059 5.4761 5.6268 5.1388 5.4900 5.4858 5.4869 5.4871 5.4871
130 3.5187 0.0058 3.4510 3.6602 3.1664 3.5164 3.5114 3.5123 3.5125 3.5126
140 2.2153 0.0056 2.1221 2.3237 1.8989 2.2177 2.2120 2.2127 2.2130 2.2129
150 1.3787 0.0052 1.2777 1.4415 1.1125 1.3839 1.3776 1.3781 1.3783 1.3783
160 0.8507 0.0048 0.7560 0.8761 0.6396 0.8578 0.8512 0.8518 0.8517 0.8518
170 0.5203 0.0043 0.4415 0.5236 0.3625 0.5293 0.5235 0.5238 0.5237 0.5239
180 0.3196 0.0039 0.2555 0.3090 0.2036 0.3255 0.3209 0.3212 0.3213 0.3213
190 0.1955 0.0034 0.1471 0.1807 0.1137 0.1998 0.1967 0.1968 0.1968 0.1968
200 0.1214 0.0029 0.0844 0.1050 0.0633 0.1223 0.1204 0.1207 0.1207 0.1207

Table 3: Comparison of different pricing methods: the case of 3-year discrete Asian options. The options are forward-starting Asian 
calls with S = 100, T = 3, σ = 0.25, r = 0.04 and n = 36 (monthly averaging). The width of the FC method is 2.6. The Richardson 
extrapolation with different n2=2n1 values is incorporated into the FC. 
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Approximations 
FC with different n2=2n1 

Strikes σ  Exact AA2 AA3 Hsu-Lyuu 213 214 215 216 
95 8.8088392 8.80884 8.80884 8.808717 8.80827 8.80836 8.80838 8.80839

100 4.3082350 4.30823 4.30823 4.309247 4.30739 4.30770 4.30778 4.30780
105 

0.05 

0.9583841 0.95838 0.95838 0.960068 0.95689 0.95780 0.95802 0.95808
95 8.9118509 8.91171 8.91184 8.912238 8.91052 8.91120 8.91137 8.91142

100 4.9151167 4.91514 4.91512 4.914254 4.91283 4.91427 4.91463 4.91472
105 

0.1 

2.0700634 2.07006 2.07006 2.072473 2.06733 2.06919 2.06965 2.06977
95 9.9956567 9.99597 9.99569 9.995661 9.99093 9.99419 9.99501 9.99521

100 6.7773481 6.77758 6.77738 6.777748 6.77182 6.77572 6.77670 6.77695
105 

0.2 

4.2965626 4.29643 4.29649 4.297021 4.29073 4.29482 4.29585 4.29610
95 11.6558858 11.65747 11.65618 11.656062 11.64664 11.65263 11.65494 11.65533

100 8.8287588 8.82942 8,82900 8.829033 8.81950 8.82616 8.82782 8.82824
105 

0.3 

6.5177905 6.51763 6.51802 6.518063 6.50845 6.51518 6.51685 6.51726
95 13.5107083 13.51426 13.51182 13.510861 13.49733 13.50687 13.50925 13.50985

100 10.9237708 10.92507 10.92474 10.923943 10.91007 10.91988 10.92232 10.92292
105 

0.4 

8.7299362 8.72936 8.73089 8.730102 8.71629 8.72607 8.72849 8.72910
Table 4: Comparison with Zhang (2001, 2003) with a wide range of volatilities: the case of 1-year continuous Asian options. The 
parameters are from Table 2 of Zhang (2003). The options are calls with S=100, r=0.09, and T = 1. The width of the FC method is 

Tσ6 . The Richardson extrapolation with different n2=2n1 values is incorporated into the FC. The continuous option values for FC 
are approximated by dividing T  into 100 periods and then using Richardson extrapolation. 
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Approximations 
FC with different n2=2n1 

Strikes σ  Exact AA2 AA3 Hsu-Lyuu 213 214 215 216 
95 8.8088392 8.80884 8.80884 8.808717 8.80957 8.80868 8.80865 8.80863

100 4.3082350 4.30823 4.30823 4.309247 4.30980 4.30841 4.30814 4.30807
105 

0.05 

0.9583841 0.95838 0.95838 0.960068 0.96295 0.95939 0.95854 0.95833
95 8.9118509 8.91171 8.91184 8.912238 8.91551 8.91248 8.91185 8.91169

100 4.9151167 4.91514 4.91512 4.914254 4.92241 4.91679 4.91544 4.91509
105 

0.1 

2.0700634 2.07006 2.07006 2.072473 2.07960 2.07229 2.07052 2.07008
95 9.9956567 9.99597 9.99569 9.995661 10.01228 9.99959 9.99651 9.99570

100 6.7773481 6.77758 6.77738 6.777748 6.79731 6.78213 6.77842 6.77747
105 

0.2 

4.2965626 4.29643 4.29649 4.297021 4.31761 4.30152 4.29761 4.29662
95 11.6558858 11.65747 11.65618 11.656062 11.68719 11.66350 11.65757 11.65605

100 8.8287588 8.82942 8,82900 8.829033 8.86252 8.83694 8.83059 8.82898
105 

0.3 

6.5177905 6.51763 6.51802 6.518063 6.55222 6.52606 6.51963 6.51801
95 13.5107083 13.51426 13.51182 13.510861 13.55918 13.52229 13.51311 13.51082

100 10.9237708 10.92507 10.92474 10.923943 10.97388 10.93571 10.92626 10.92391
105 

0.4 

8.7299362 8.72936 8.73089 8.730102 8.78023 8.74184 8.73242 8.73009
Table 5: Comparison with Zhang (2001, 2003) with a wide range of volatilities: the case of 1-year continuous Asian option. The 
parameters are from Table 2 of Zhang (2003). The options are calls with S=100, r=0.09, and T = 1. The width of the FC method is 

Tσ6 . The Richardson extrapolation with different n2=2n1 values is incorporated into the FC. The continuous option values for 
FC are approximated by dividing T  into 180 periods and using extrapolation with n2=240 periods. 


