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Abstract

A derivative is a financial instrument which is constructed from other more
basic underlying assets, such as bonds or stocks. With the dramatic growth
of the derivatives markets, more and more derivatives have been designed
and issued by financial institutions. This thesis presents a method that can
be used to speed up the pricing of discrete European barrier options under
binomial and trinomial tree models. Binomial tree and trinomial tree are
two common and efficient models for pricing options. However, in practice,
almost all barrier options are discretely monitored and the reXection principle
no longer works. It seems that the only way to price discrete barrier options
is to traverse the whole tree, which takes quadratic time. This thesis gives
the first subquadratic-time algorithm for the problem.
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Chapter 1

Introduction

A derivative is a financial instrument which is constructed from other more
basic underlying assets, such as bonds or stocks. With the dramatic growth
of the derivatives markets, more and more derivatives have been designed and
issued by financial institutions. Those financial innovations make the market
more versatile and efficient. But on the other hand, some of those products
are complicated. As a result, there are new problems with the pricing and
the hedging of those derivatives.

This thesis presents a method that can be used to speed up the pricing of
discrete European barrier options under binomial and trinomial tree models.
Binomial tree and trinomial tree are two common and efficient models for
pricing options. For barrier options, most of the pricing models assume that
the underlying asset price is observed continuously.

For this type of options, the reflection principle gives a linear time solution
for such case. However, in practice, almost all barrier options are discretely
monitored and the reflection principle no longer works. It seems that the
only way to price discrete barrier options is to traverse the whole tree, which
takes quadratic time. This thesis gives the first subquadratic-time algorithm
for the problem. The method relies on the discrete Fourier transform as a
basic tool. Our results apply to both binomial and trinomial models.

1.1 Structures of the Thesis

This thesis is organized as follows. In Chapter 2, we give some background
knowledge about financial derivatives, including the properties of derivatives,
pricing models and methods. The discrete Fourier transform is also intro-
duced. In Chapter 3, we describe the main question we are to solve and some
basic assumptions we make for the problem. And we give a basic algorithm
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which is the basis of our final improved algorithm. Chapter 4 illustrates
how the improved algorithm works. Conclusion and remarks are provided in
Chapter 5.
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Chapter 2

Preliminaries

2.1 Option Pricing Basics

There are two basic types of options. A call option is a contract that gives its
holder the right to buy the underlying asset by a expiration date for a strike
price. A put option is a contract that gives its holder the right to sell the
underlying asset by a expiration date for a strike price. European options can
only be exercised at expiration date. In contrast, American options can be
exercised any time up to the expiration date. An American option is worth
as least as much as an otherwise identical European option. In most cases,
it is easier to analyze European options than American options.

Now consider standard European options. Given the value of the under-
lying asset S, the strike price K and the price of the call (put) option C (P
respectively), the payoff of a long call at maturity is max(S −K, 0), and the
payoff of a long put at maturity is max(K −S, 0). So the profit of a long call
option at maturity is

max(S − K, 0) − C

and the profit of a long put option at maturity is

max(K − S, 0) − P

Symmetrically, the profit of a short call option at maturity is

min(K − S, 0) + C

and the profit of a short put option at maturity is

min(S − X, 0) + P

Functions above can be expressed in Figure 2.1. Note that the calculations
above ignore the time value of money.
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Figure 2.1: Profit of Options. (a) A long call. (b) A long put. (c) A short
call. (d) A short put.
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2.2 The Black-Scholes Option Pricing Model

In 1973, Fischer Black and Myron Scholes introduced their celebrated op-
tion pricing model, the Black-Scholes option pricing model. They derived a
differential equation that must be satisfied by any derivative security whose
underlying asset is a non-dividene-paying stock. To solve their equation, we
must make the following assumptions:

1. The value of the underlying assets follows the log-normal distribution.

2. The rate of return on stock µ, the volatility of stock price σ, and the
risk-free interest rate r, are constant throughout the option’s life.

3. The short selling of securities with full use of proceeds is allowed.

4. There are no transaction costs or taxes.

5. All securities are infinitely divisible.

6. There are no dividends during the life of the option.

7. Trading is continuous.

8. There are no arbitrage opportunities.

Then Black and Scholes give the closed-form solution for European call
and put options. The key formula is

∂f

∂t
+ rS

∂f

∂S
+

1

2
σ2S2 ∂2f

∂S2
− rf = 0 (2.1)

where f is the option value, S is the stock price, σ is the volatility of the
stock price, and r is the continuously compounded risk-free interest rate.

The closed-form solutions for the values of European calls and puts by
solving (2.1) are:

C = SN(d1) − Ke−rT N(d2)

P = Ke−rT N(−d2) − SN(−d1)

where

d1 =
ln( S

K
) + ( r+σ2

2
)T

σ
√

T

d2 =
ln( S

K
) + ( r−σ2

2
)T

σ
√

T
= d1 − σ

√
T

N(x) is the probability distribution function for the standard normal distri-
bution, and T is the time to maturity of the option.
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Figure 2.2: The Binomial Option Pricing Model. (a) A three-time-step
binomial tree of stock prices. (b) A three-time-step binomial tree and the
payoff functions at terminal nodes of a call option.

2.3 The Binomial Option Pricing Model

The binomial option pricing model is a discrete-time approximation of the
continuous-time pricing model. When the current stock price is S, it can go
to Su with probability q and to Sd with probability 1−q where 0 < q < 1 and
ud = 1. Given S, u, d, K, r̂ and the number n of time steps to expiration, it
suffices to determine the option value by backward induction. See Figure 2.2
for illustration.

2.4 Barrier Options: Continuous and Discrete

Monitoring

Barrier options are options that are activated (knocked-in) or terminated
(knocked-out) when the underlying asset’s price reaches a certain price level
L. For example, a knock-out call gives its holder the right to buy the underly-
ing asset if the price of the underlying asset does not touch the barrier level L
before expiration. A knock-in call is sometimes called a down-and-in option;
A knock-out call is sometimes called a down-and-out option; A knock-in put
is sometimes called a up-and-in option; A knock-out put is sometimes called
a up-and-out option. There are also some variants of barrier options that
have more than one barrier. This thesis considers single-barrier options only.

8



Most of the pricing models assume the underlying asset price is observed
continuously. That is, at any time instant before expiration, once the price
of the underlying asset touches the barrier, the knock-in or knock-out feature
will take hold immediately. However, in practice, most barrier options are
not continuously but discretely monitored. In other words, the underlying
asset price is observed only at specified times, such as hourly, daily, or weekly.

For pricing continuous barrier options under the binomial tree, there is
the famous reflection principle that can be used to speed up pricing. But for
the discrete case, no algorithms before this thesis have successfully lowered
the complexity to subquadratic time.

2.5 Polynomial Multiplication and Discrete

Fourier Transform

One of the most frequently use algorithms in any algebraic manipulation
system is multiplication. The straightforward method of multiplying two
polynomials of degree n takes Θ(n2) time. However, better methods exist.
Karatsuba’s method, discovered in 1962, is the first algorithm to accomplish
polynomial multiplication with under O(n2) operations: Its time complexity
is O(nlog2 3).

Fact 1 Multiplication of two polynomials of degree n can be carried out in

time O(nlog2 3).

An asymptotically better method for polynomial multiplication uses the
Fast Fourier Transform (FFT). It transforms polynomials from the coefficient
form to the point-value form, where multiplication can be done in O(n) time.
Transforming the results back to the coefficient form then accomplishes the
polynomial multiplication. The transformation takes O(n lg n) operations,
thus we have the following fact.

Fact 2 Multiplication of two polynomials of degree u and v can be carried

out in time O((u + v) lg(u + v)) using the FFT.
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Chapter 3

Pricing European Discrete

Barrier Options with n
Monitoring Days

3.1 Problem Statement

We consider knock-out options in this chapter. The probability distribution
of terminal nodes of knock-in options can be derived from the probability
distribution of knock-out options.

Under the binomial model, the stock price increases from a price S to
Su with probability p and decreases to Sd with probability q = 1 − p in
a time step where ud = 1. Suppose there are n monitoring days and each
day is broken into m time steps. (A day is simply a fixed point in time,
not necessarily a calendar day.) So there are a total of nm time steps. For
simplicity, let the barrier be at L steps above the current stock price S0. That
is, the barrier price is S0u

L. Assume m is even for ease of calculation. This
implies on each day, there is a node with price S0. We want to calculate the
probability distribution of terminal nodes, at step nm, which is contributed
by legitimate paths (i.e. those that do not touch the barrier at monitoring
days). See Figure 3.1 for illustration.

Once we have the probability distribution of terminal nodes, it is easy
to price European options by summing up the products of the probability
and the payoff function at each terminal node and then discounting it. In
general, the value of a call can be expressed as follows:

C =

∑T
j=0 PT,j · max(0, SujdT−j − K)

erT

where T = nm is the number of time steps, and Pi,j is the probability of
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Figure 3.1: A binomial tree for discrete knock-out barrier option

where n = 3 and m = 4. A filled circle means the node is legitimately
reached with positive probability.

node j at time step i.

3.2 A Straightforward Solution

The probability of a node in the binomial tree to be reached is determined
by its predecessor nodes (see Figure 3.2). A straightforward algorithm to
calculate the probability distribution of terminal nodes is to calculate the
probabilities of not touching the barrier of all nodes of the binomial tree step
by step. Since there are O(n2m2) nodes, the running time is O(n2m2).
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Figure 3.2: The probability of a node in the binomial tree to be

legitimately reached. (a) A standard node is determined by its parents.
(b) The probability of a node which touches the barrier is 0.

3.3 The Basic Algorithm

On day 1, the probability distribution (without considering the knock-out
barrier) for the m + 1 nodes is

Cm
i piqm−i , for i = 0, . . . ,m

where

Cm
n =

m!

n!(m − n)!

We can represent it as a generating function

p(x) =
m

∑

i=0

Cm
i piqm−ixi

Now the price S0 is associated with the term xm/2 and the barrier L is
associated with the term xm/2+L since the barrier is L steps above the stock
price S0. Because of the knock-out barrier L, anything with i ≥ m/2 + L at
a monitoring day should be set to 0. So the actual probability distribution
is the truncated

{

Cm
i piqm−i for i = 0, . . . ,m/2 + L − 1

0 otherwise
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Figure 3.3: A binomial tree for discrete knock-out barrier option

where n = 3 and m = 4. The probability distribution of day 1 can be seen
as q1(x) = 4p3qx3 + 6p2q2x2 + 4pq3x + q4. The probability distribution of
day 2 can be obtained from q1(x)p(x).

which is represented by the generating function

q1(x) =
m/2+L−1

∑

i=0

Cm
i piqm−ixi

To compute the generating function of the probability distribution of
day 2, we first calculate q1(x)p(x) to obtain a polynomial of degree at most
(m/2+L)m, and for all terms that are associated with prices at or higher than
barrier L (which is associated with the term xm+L), we set their coefficients
to 0. See Figure 3.3.

Continue this until we reach day n. Finally, after zeroing the coefficients
of xi with i ≥ (m/2)n + L, we obtain a generating function qn(x), whose
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1: Let q0(x) := p(x) :=
∑m

i=0 Cm
i piqm−ixi

2: for i := 0 to n − 1 do

3: qi+1(x) := qi(x)p(x)
4: Set the coefficients of xj to 0 with j ≥ (m/2)(i + 1) + L
5: end for

6: Output coefficients of qn(x)

Figure 3.4: The basic algorithm.

coefficients are the probabilities we are looking for. The complete algorithm
appears in Figure 3.4. In this algorithm, what we did is basically a series of
n polynomial multiplications. Thus a fast polynomial multiplication method
automatically results in a fast pricing algorithm.

In step 3 of Figure 3.4, the degree of p(x) is O(m) and the degree of qi(x)
is O(nm). With Fact 2 at hand, since step 3 takes time O(nm lg(nm)) and
it is executed n times, the total execution time of the algorithm in

O(n · nm lg(nm)) = O(n2m lg(nm))

, whereas the running time of the straightforward algorithm is O(n2m2).

Lemma 1 European barrier options with n monitoring days under the bino-

mial tree model can be priced in time O(n2m lg(nm)).

But there is a better way. We first state a useful lemma.

Lemma 2 Multiplication of two polynomials of degree u and v where u > v
can be carried out in time O(u lg v) using the FFT.

Proof: Consider the multiplication of two polynomials p(x) and q(x), where
p(x) has degree u and q(x) has degree v. Since u > v, we divide

p(x) =
u

∑

i=0

cix
i

into u/v polynomials, p1(x), . . . , pu/v(x), where

pj(x) =
jv−1
∑

i=(j−1)v

cix
i

for all j. Then we calculate p1(x)q(x), . . . , pu/v(x)q(x) in time

O(
u

v
· v lg v) = O(u lg v)
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with the FFT and finally calculate

p(x)q(x) =
u/v
∑

i=1

pi(x)q(x)

in time O(u). The total time complexity is therefore O(u lg v). 2

Now we use Lemma 2 to improve the running time of the algorithm in
Figure 3.4. Step 3 runs in time O(nm lg m) since deg p(x) = O(m) and
deg qi(x) = O(nm). The total time complexity becomes O(n2m lg m).

Lemma 3 European barrier options with n monitoring days under the bino-

mial tree model can be priced in time O(n2m lg m).
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Chapter 4

The Improved Algorithms

4.1 The First Improvement

The basic algorithm in Figure 3.4 calculates the probabilities of the nodes
day by day (see step 2 in Figure 3.4), and the loop is executed n times. We
next improve the running time by making the loop execute only k times (k
will be determined later) by calculating the prices every n/k days. In other
words, we calculate q(i+1)n/k(x) from qin/k(x) directly. In the basic algorithm,
to calculate q(i+1)n/k(x) from qin/k(x), we must do the following:

1. Calculate qin/k(x)p(x) and chopping off terms that is higher than the
barrier to get qin/k+1(x).

2. Repeat the above procedure n/k times until q(i+1)n/k(x) is obtained.

Let

qin/k(x) =

i nm
2k

+L
∑

j=0

cjx
j

for some cj. Our new method divides qin/k(x) into two parts,

qin/k(x) = ain/k(x) + bin/k(x)

where

ain/k(x) =

i nm
2k

+L
∑

j=(i−1)nm
2k

+L

cjx
j

and

bin/k(x) =

(i−1) nm
2k

+L−1
∑

j=0

cjx
j
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1: Let q0(x) := p(x) :=
∑m

i=0 Cm
i piqm−ixi

2: Calculate [ p(x) ]n/k for later computation.
3: for i := 0 to k do

4: Divide qin/k(x) into two parts ain/k(x) and bin/k(x).
5: for j := in/k + 1 to (i + 1)n/k do

6: aj(x) := aj−1(x)p(x)
7: Set the coefficients of xh to 0 with h ≥ (m/2)j + L
8: end for

9: b(i+1)n/k(x) := bin/k(x)[ p(x) ]n/k

10: q(i+1)n/k(x) := a(i+1)n/k(x) + b(i+1)n/k(x)
11: end for

12: Output the coefficients of qn(x)

Figure 4.1: The improved algorithm.

As a result, the multiplication of qin/k(x) and p(x) becomes ain/k(x)p(x)+
bin/k(x)p(x). As the degree of bin/k(x) is

(i − 1)
nm

2k
+ L − 1

and the degree of [ p(x) ]n/k is
nm

k

The degree of bin/k(x)[ p(x) ]n/k is

(i − 1)
nm

2k
+ L − 1 +

nm

k
= (i + 1)

nm

2k
+ L − 1,

whereas the barrier L is associated with x(i+1)nm/(2k)+L.
Thus we can multiply [ p(x) ]n/k with bin/k(x) directly. For the ain/k(x)

part, we apply the same basic algorithm in Figure 3.4:

1. Calculate ain/k(x)p(x) and chopping off terms that are higher than
barrier to get ain/k+1(x).

2. Repeat the above procedure for n/k times until a(i+1)n/k(x)is obtained.

The improved algorithm appears in Figure 4.1.

Theorem 1 European barrier options with n monitoring days under the bi-

nomial tree model can be priced in time O(mn1.5 lg(m
√

n)).
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Proof: Now we consider the ain/k(x) part, in step 6, deg aj−1(x) = O(nm/k)
and deg p(x) = O(m), thus its running time is O((nm/k) lg m) by Lemma 2.
Since the loop of step 5 is executed n/k times, the total execution time of
step 6 is

O
(

nm

k
lg m ·

n

k
· k

)

= O

(

n2

k
m lg m

)

For the bin/k(x) part, in step 9, deg bin/k(x) = O(nm) and deg[ p(x) ]n/k =
O(mn/k); thus its running time is O(mn lg(mn/k)) by Lemma 2. The total
execution time of step 9 is

O
(

mn lg
(

mn

k

)

· k
)

= O
(

mnk lg
(

mn

k

))

Now we set k =
√

n, then the execution time of the ain/k(x) part be-
comes O(mn1.5 lg m) and the execution time of the bin/k(x) part becomes
O(mn1.5 lg(m

√
n)). 2

4.2 The Final Algorithm

Observe step 5–8 of the algorithm in Figure 4.1, we use these instructions to
compute a(i+1)n/k(x) from ain/k(x). The problem of computing a(i+1)n/k(x)
from ain/k(x) can be seen as a miniature of the original problem, which
computes the final probability distribution from q0(x). The method we use
in step 5–8 is exactly the basic algorithm in Figure 3.4. Now instead of using
the basic algorithm, we use the improved algorithm recursively to compute
a(i+1)n/k(x). We have the final algorithm in Figure 4.2.

Theorem 2 The algorithm in Figure 4.2 solves the problem of pricing Euro-

pean barrier options with n monitoring days under the binomial tree model,

and its running time is O(mn1+1/d lg(mn(d−1)/d)).

Proof: Let Fm(n, d) be the time complexity of the final algorithm with the
following arguments: FINAL ALGORITHM(q0(x), n,m, d) where deg q0(x) =
O(mn). The most exhaustive steps of the algorithm are step 7 and step 14.
The running time of step 7 is

Fm(n/k, d − 1)

by definition. Thus the total time complexity of step 7 is

Fm(n/k, d − 1) · k

18



FINAL ALGORITHM(q(x), n,m, d)

1: Let q0(x) := q(x)
2: Let k := n1/d

3: Calculate [ p(x) ]n/k for later computation.
4: for i := 0 to k do

5: Divide qin/k(x) into two parts ain/k(x) and bin/k(x).
6: if d > 2 then

7: a(i+1)n/k(x) :=FINAL ALGORITHM(ain/k(x), n/k,m, d − 1)
8: else

9: for j := in/k + 1 to (i + 1)n/k do

10: aj(x) := aj−1(x)p(x)
11: Set the coefficients of xh to 0 with h ≥ (m/2)j + L
12: end for

13: end if

14: b(i+1)n/k(x) := bin/k(x)[ p(x) ]n/k

15: q(i+1)n/k(x) := a(i+1)n/k(x) + b(i+1)n/k(x)
16: end for

17: Output the coefficients of qn(x)

Figure 4.2: The final algorithm. To execute the algorithm, we set q(x) =
q0(x) and p(x) =

∑m
i=0 Cm

i piqm−ixi as initial arguments.

19



since the loop is executed k times. By Lemma 2, since deg bin/k(x) = O(mn)
and deg[ p(x) ]n/k = O(mn/k), the running time of step 14 is

O(mn lg(mn/k))

. The total time complexity of step 14 is

O(mn lg(mn/k) · k)

since the loop is executed k times. We have the recursive function

Fm(n, d) = Fm(n/k, d − 1)k + O(mn lg(mn/k)k) + c

for some constant c.
We use mathematical induction to complete the proof. For d = 2, the

algorithm is exactly the same algorithm in Figure 4.1, and its performance
is

Fm(n, 2) = O(mn1+1/2 lg(mn1/2))

by Theorem 1. Now suppose for d = r, the running time of the final algorithm
is

Fm(n, r) = O(mn1+1/r lg(mnr−1/r))

For d = r + 1, the total time complexity of step 7 is

Fm(n/k, r) · k

= O
(

m
(

n
n1/(r+1)

)1+1/r
lg(mn1−1/r) · (n1/(r+1))

)

= O
(

mn1+1/(r+1) lg(mn(r−1)/r)
)

by assumption on d = r and k = n1/(r+1). For the bin/k(x) part, in step 14,
since deg bin/k(x) = O(mn) and deg[ p(x) ]n/k = O(mn/k) = O(mnr/(r+1)),
the total complexity of step 14 is

O
(

mn lg(mnr/(r+1)) · n1/(r+1)
)

= O
(

mn1+1/(r+1) lg(mnr/(r+1))
)

Thus the running time of the whole algorithm when d = r + 1 becomes

Fm(n, r + 1)
= Fm(n/k, r)k + mn lg(mn/k)k + c

= O
(

mn1+1/(r+1) lg(mn(r−1)/r)
)

+ O
(

mn1+1/(r+1) lg(mnr/(r+1))
)

+ c

= O
(

mn1+1/(r+1) lg(mnr/(r+1))
)

. By mathematical induction, we know that the running time of the algorithm
is

O
(

mn1+1/d lg(mn(d−1)/d)
)

for all integer d > 1. 2

By tuning the value of d, we have the following Corollary.
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Corollary 1 European barrier options with n monitoring days under the

binomial tree model can be priced in time O(mn1+ǫ lg(mn1−ǫ)) for all ǫ > 0.

Proof: For all ǫ > 0, there exists an integer d such that 1/d ≤ ǫ. By
Theorem 2, the running time of the algorithm in Figure 4.2 is

O(mn1+1/d lg(mn(d−1)/d))

which is also in
O(mn1+ǫ lg(mn1−ǫ))

2
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Chapter 5

Conclusion

In previous chapters, we consider only binomial tree models for the problem.
However, in most situations, the trinomial tree pricing model has better accu-
racy and faster than binomial ones. The intuition of treating the probability
distribution of a time step as a generating function works well on the trino-
mial model, too. Under the trinomial tree model, the current stock price can
go up with probability pu, go down with probability pd and be fixed with
probability pm = 1− pu − pd. We can change the generating function p(x) to
be

(pux
2 + pmx + pd)

m

and the remaining computation and analysis are the same on both models.
Though Corollary 1 gives a theoretical upper bound of the problem, Im-

plementation issues remain. First of all, the fast Fourier transform is hard to
implement, and it requires that the degree of the polynomials be the power
of 2. Since the algorithm recursively calls itself for a lot of times, the upper
bound is meaningful only when n is very large, perhaps larger than practical
use. However, there is an alternative, Karatsuba’s algorithm for polynomial
multiplication. Since Karatsuba’s method is easier to implement, it might
be a substitution in practice, but its theoretical time complexity will not be
as good as the FFT method.
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