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Abstract

We consider families of two-person strategic games parameterized by a pos-

itive integer n. We assume that each of the players, the row player and the

column player, has 2n strategies to choose from and can take mixed strate-

gies. We also assume that the games are not too “risky” in that the payoffs

are at most polynomial in n in absolute value. The row player is said to

guarantee an expected payoff of t ∈ R against all column players of a certain

class when his expected payoff is at least t against all column players of that

class. This thesis studies the expected payoff the row player could guarantee

against all column players of a certain computational power. In our main re-

sult we consider the case where the row player is informed of how the column

player chooses his action but is not allowed to see the internal coin tosses of

the column player. Roughly speaking, we show that when the computational

power of the column player shrinks polynomially, the row player can have his

number of pure strategies shrunk exponentially without harming his guar-

anteed expected payoff too much. We obtain several corollaries regarding

the computational power needed by the row player to guarantee a good ex-

pected payoff against computationally bounded column players in situations

where the row player is aware of the output strategy of the column player,

the mixed strategy of the column player, or only O(log n) bits of information

about the column player.



Chapter 1

Introduction

1.1 Two-Person Strategic Games

In a two-person strategic game there are two players, the row player and the

column player. Each player has several pure strategies to choose from. There

is a payoff function mapping each combination of the players’ pure strategies

to their payoffs. Each player can also adopt a mixed strategy, that is, a

probability distribution over pure strategies. In a two-person game, a pair of

mixed strategies (α1, α2) is a mixed strategy Nash Equilibrium if no player i

has a strategy yielding an expected payoff higher than when he chooses αi,

given that the other player j chooses αj. The expectation is over the mixed

strategies adopted by both players. If the payoffs of the two players sum to

0, the game is said to be zero-sum. For a zero-sum game, the expected payoff

for the row player when a mixed strategy Nash equilibrium is played is called

a game value under mixed strategies. The game value thus defined is unique

[OR94]. For a precise definition of these and some other terms please refer

to Section 2.1.
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1.2 Our Results

We consider families of two-person strategic games parameterized by a pos-

itive integer n. In the game parameterized by n, each player is given input

1n and oracle access to the payoff function mapping each combination of

the players’ pure strategies to their payoffs. The payoffs are assumed to be

bounded by nk in absolute value for some constant k. For technical reasons

we will sometimes need to assume that the payoffs can be represented in bi-

nary using polynomially many bits (in n). Each player has {0, 1}n as his set

of pure strategies and can take mixed strategies. The row player is said to

guarantee an expected payoff of t ∈ R against all column players of a certain

class if his expected payoff is at least t against all column players of that

class. This thesis considers the case where the row player is informed of how

the column player chooses his action but is not allowed to see the internal

coin tosses of the column player. In this case, therefore, the row player is said

to guarantee an expected payoff of t against all column players of a certain

class if, against each column player of that class, the row player can take

some strategy to force an expected payoff of at least t. In particular, the

row player is interested in the expected payoff he could guarantee against all

column players being randomized circuits (with oracle gates for the players’

payoff functions) of a certain size s. This thesis shows that when s shrinks

polynomially (in n), the row player could have his number of pure strate-

gies shrunk exponentially (in n) without harming his guaranteed expected

payoff too much. We obtain several corollaries regarding the computational

power needed by the row player to guarantee a good expected payoff against

randomized circuits (acting as the column player) of a certain size, in situ-

ations where the row player is informed of the action taken by the column

player, the mixed strategy of the column player, or only some O(log n) bits
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of information about the column player.

1.3 Related Works

The computational power of players in games is a topic being actively re-

searched. We briefly describe several results in this area. For the definitions

of standard complexity classes please refer to the complexity zoo [AK]. In

this section when a game is given to an algorithm, it is given by explicitly

specifying the payoffs for both players given each combination of pure strate-

gies being adopted by the players, unless otherwise specified. It is well-known

that for a two-person zero-sum game, a mixed strategy Nash equilibrium, and

hence the game value, can be found in polynomial time by linear program-

ming [Kha79, Owe82]. It is also known that given a two-person zero-sum

game and a number v, computing whether the game value equals v is P-hard

[FIKU05]. Given a polynomial-size circuit that computes the payoff func-

tion of a two-person zero-sum game and a number v, computing whether

the game value equals v is known to be EXP-complete [FKS95]. A mixed

strategy α in a two-person zero-sum game is said to be ε-optimal if, when the

corresponding player uses α, his least possible expected payoff (against arbi-

trarily malicious players) is at most ε lower than that when a mixed strategy

Nash equilibrium is played. Newman has shown that in any two-person zero-

sum game with payoffs in [ 0, 1 ], each player has an ε-optimal strategy which

chooses uniformly from a multiset of O(log N/ε2) pure strategies, where N is

the number of pure strategies of the other player [New91]. Finding ε-optimal

strategies can be done efficiently in parallel [GK92, GK95, LN93, PST95],

as well as sequentially in sublinear time by a randomized algorithm [GK95].

Given a polynomial-size circuit that computes the payoff function of a two-
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person zero-sum game, approximating the game value to within an additive

factor is complete for the class promise-Sp
2 [FIKU05], and a pair of ε-optimal

strategies can be constructed by a ZPPNP algorithm [FIKU05]. After a

series of exciting developments initiated by Daskalakis, Goldberg, and Pa-

padimitriou [DGP05], Cheng and Deng [CD06] recently show that computing

a mixed strategy Nash equilibrium is PPAD-complete for two-person games.

The rest of the thesis is organized as follows. Chapter 2 presents the

necessary background knowledge and some conventions. Chapter 3 shows

how to extract a small number of strategies good against players of a certain

computational power using an idea similar to that in [FPS03]. Chapter 4

applies the result to analyze the computational power needed by a player to

guarantee a certain expected payoff in several cases.
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Chapter 2

Preliminaries

2.1 Basic Terms in Game Theory

A finite N -person game G in strategic form consists of players 1, . . . , N ,

N finite sets A1, A2, . . . , AN , and for i = 1, . . . , N , a payoff function Mi :

A1 × A2 × · · · × AN → R. For i = 1, . . . , N , Ai is the finite set of pure

strategies player i can take, and Mi maps the players’ pure strategies to the

payoff for player i.

Player i can adopt a probability distribution over Ai as his strategy. In

this case we say that player i takes a mixed strategy. A mixed strategy αi

of player i is also used alternatively to represent a random variable whose

distribution is specified by αi as the ambiguity will not arise. A pure strategy

is obviously a degenerate mixed strategy.

Now suppose αi is the mixed strategy of player i and α1, . . . , αN are

independent. We say that αi is a best response to ×1≤k≤N,k 6=iαk if for every

mixed strategy αi
′ of player i,

E[Mi(α1, . . . , αi−1, αi
′, αi+1, , . . . , αN)]

≤ E[Mi(α1, . . . , αi−1, αi, αi+1, . . . , αN)].
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The randomness in the first expectation comes from α1, . . . , αi−1, αi
′, αi+1, . . . , αN ,

that of the second expectation comes from α1, . . . , αN . We say that (α1, . . . , αN)

is a mixed strategy Nash equilibrium for G if for each i, αi is a best response

to ×1≤k≤N,k 6=iαk. A celebrated theorem due to Nash states that every fi-

nite N -person game in strategic form has a mixed strategy Nash equilibrium

[Nas51]. The following fact is well-known.

Fact 1. ([OR94]) Let α1, . . . , αN be mixed strategies for players 1, . . . , N in

a finite N-person game in strategic form. For 1 ≤ i ≤ N , there is a pure

strategy for the ith player which is a best response to ×1≤k≤N,k 6=iαk.

When there are only two players, player 1 is called the row player and

player 2 the column player. The corresponding payoff functions will be de-

noted Mrow : Arow × Acol → R and Mcol : Arow × Acol → R, respectively. For

convenience, we will sometimes combine Mrow and Mcol into a single function

M(·) = (Mrow(·), Mcol(·)). Mrow, Mcol, and M will be referred to as the payoff

function for the row player, the payoff function for the column player, and

simply the payoff function, respectively. When a two-person game satisfies

Mrow = −Mcol, the game is said to be zero-sum. Whenever (αrow, αcol) is

a mixed strategy Nash equilibrium in a two-person zero-sum game, we say

that E[Mrow(αrow, αcol)] is a value for that game under mixed strategies. The

game value thus defined is known to be unique [OR94]. The set of all distri-

butions over the pure strategies of the row player, or equivalently, the set of

all mixed strategies of the row player, will be denoted Prow. Pcol is defined

similarly.
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2.2 Randomized Circuits

Let o : {0, 1}l → {0, 1}m be a function. A randomized o-oracle circuit C

is a collection of gates with ordered input and output pins, and directed

wires going from output pins to input pins, together with a specification of

several distinct ordered output pins p1, . . . , pn as the output bits of the whole

circuit. Cycles are not permitted. That is, we cannot start from some gate,

keep traveling along outgoing wires and finally reach the gate we started with.

The set of gates is Ginp ∪ Grand ∪ Gstd ∪ Goracle, where Ginp = {ω1, . . . , ωt}

is the set of input gates, Grand the set of random gates, Gstd the set of

standard gates, and Goracle the set of oracle gates. Each non-oracle gate has

exactly one output pin. Each input pin should receive exactly one incoming

wire. The indegree of a gate is the number of its incoming wires. Each

input or random gate has indegree zero, each standard gate has indegree

zero, one, or two, and each oracle gate has indegree l. The output pin of

each standard gate of indegree zero is labeled either by the constant 0 or

by the constant 1. The output pin of each standard gate of indegree one

is labeled by the negation function NOT : {0, 1} → {0, 1}, which maps 0

to 1 and 1 to 0. The output pin of each standard gate of indegree two is

labeled either by the conjuction AND : {0, 1}2 → {0, 1} or by the disjunction

OR : {0, 1}2 → {0, 1}. The AND function outputs a 1 when its inputs are

both 1 and a 0 otherwise. The OR function outputs a 0 when its inputs are

both 0 and a 1 otherwise. Each oracle gate has m output pins labeled with

functions pin1 : {0, 1}l → {0, 1}, . . . , pinm : {0, 1}l → {0, 1}. The function

pini is the ith output bit of o.

The wires in C carry Boolean values 0 and 1. For any assignment of

Boolean values to the input gates, we compute the outputs of C by first

labeling independently and equiprobably a constant 0 or 1 for each output
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pin of a random gate. We then proceed by propagating values along the

wires and computing the functions labeled with the respective pins until the

output bits of C are obtained. The size of a randomized o-oracle circuit is

defined to be the number of its gates. A randomized circuit is a randomized

o-oracle circuit without oracle gates. A circuit is deterministic if it has no

random gates.

A well-known counting technique due to Shannon can be adapted to

bound the number of randomized o-oracle circuits of size s with n output

bits.

Lemma 1. ([Sha49]) Fix a Boolean function o : {0, 1}l → {0, 1}m. For

each s ∈ N+, there are fewer than 2O(ls log(sm)+n log(sm)) randomized o-oracle

circuits of size s with n output bits.

Proof. The input gates are ω1, . . . , ωt, for some 1 ≤ t ≤ s. Each gate, except

the input gates, is one of seven kinds. Each gate receives at most max(l, 2)

incoming wires, each coming from some output pin of another gate. Finally,

there are at most (sm)n ways to select the output bits in order. To sum

up, the number of such circuits is at most s7s((sm)max(l,2))s(sm)n. A direct

computation completes the proof.

We will need a well-known circuit called a multiplexer.

Lemma 2. ([KB04]) There is an O((m + n)2m)-size deterministic circuit

that, on Boolean input values bi,j, 1 ≤ i ≤ 2m, 1 ≤ j ≤ n and an integer

1 ≤ g ≤ 2m in binary, outputs bg,j, 1 ≤ j ≤ n.

Proof. For 1 ≤ i ≤ 2m, an O(m)-size circuit computes whether g = i. Having

computed whether g = i for 1 ≤ i ≤ 2m, each output bit bg,j can be computed

by an O(2m)-size deterministic circuit.
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2.3 Tail Inequalities

We will need two results regarding tail probabilities. The first is the famous

Chernoff bound.

Fact 2. ([Che52]) Let X1, X2, . . . , Xn be independent 0-1 random variables

such that for 1 ≤ i ≤ n, Pr[Xi = 1] = pi. Then, for any δ > 0,

Pr

[
Σn

i=1Xi

n
> (1 + δ)

Σn
i=1pi

n

]
<

(
eδ

(1 + δ)1+δ

)Σn
i=1pi

.

The next famous bound is Hoeffding’s inequality.

Fact 3. ([Hoe63]) Let X1, X2, . . . , Xn be n independent random variables

with the same probability distribution, each ranging over the (real) interval

[ a, b ], and let µ denote the expected value of each of these variables. Then,

for every ε > 0,

Pr

[ ∣∣∣∣Σn
i=1Xi

n
− µ

∣∣∣∣ > ε

]
< 2e

− 2ε2n
(b−a)2 .

2.4 Conventions and Assumptions

We consider families of two-person games in strategic form, parameterized

by a positive integer n. In the game parameterized by n, each player is given

a parameter 1n and has {0, 1}n as his set of pure strategies. For each player,

we use either {0, 1}n or numbers 0 to 2n − 1 to represent his pure strategies.

The payoff functions Mrow, Mcol, and M for the game parameterized by n will

be written as M
(n)
row, M

(n)
col , and M (n), respectively. We assume ‖M (n)

row‖∞ ≤ nk

and ‖M (n)
col ‖∞ ≤ nk for some positive constant k, where for every real-valued,
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continuous, bounded function f , its supremum norm ‖f‖∞ is the supremum

of the image of | f | [Rud76]. Whenever M (n) is used as an oracle, both its

output components, M
(n)
row and M

(n)
col , are in binary.

The players may be either computationally unbounded, time-bounded

Turing machines, or polynomial-size (in n) randomized M (n)-oracle circuits.

Using the tableau method, randomized polynomial-size M (n)-oracle circuits

can be simulated by randomized polynomial-time Turing machines with poly-

nomial advice and an M (n)-oracle, and vice versa [Sip05]. The set of random-

ized M (n)-oracle circuits of size s with n output bits is denoted SIZEM(n)

s,n , or

simply SIZEM
s when the value of n is clear from the text. Similarly, the set

of randomized circuits (without oracle gates) of size s with n output bits is

SIZEs,n, or SIZEs when the value of n is clear from the text. Throughout

this thesis, we say that a (deterministic or nondeterministic) Turing machine

runs in polynomial time (resp. logarithmic space) if its time (resp. space)

complexity is polynomial (resp. logarithmic) in its input length, which is n

in the game parameterized by n.

We abuse our notation slightly by using M
(n)
row(R,C) to denote the pay-

off of the row player when the row player is R and the column player is C,

and E[M
(n)
row(R,C)] its expected value. The expectation is over the random

coin flips of R and C. If C always uses pure strategy j, we also denote

M
(n)
row(R,C) by M

(n)
row(R, j). The same convention is adopted for M

(n)
col . Simi-

larly, M (n)(R,C) denotes (M
(n)
row(R,C), M

(n)
col (R,C)), and M (n)(R, j) denotes

(M
(n)
row(R, j), M

(n)
col (R, j)).

10



Chapter 3

Extraction of Small Numbers of

Good Strategies

In this chapter, we will often encounter a function ε : N+ → (0, 1). For

convenience, we will write ε(n) simply as ε when the value of n is clear from

the context. We first prove the following theorem.

Theorem 1. Let k > 0, d ≥ 1, and c > d + k + 1 be constants. Con-

sider a family of two-person strategic games parameterized by n ∈ N+. Let

M (n) : {0, 1}n × {0, 1}n → [−nk, nk]2 be the payoff function for the game

parameterized by n. Let ε : N+ → (0, 1) be a function. We assume that

the binary representation of each number in the range of M
(n)
row and M

(n)
col is

of length polynomial in n. For each n, there is a set S ⊆ {0, 1}n of size

O((nk+d+1 log n)/ε) such that

min
C∈SIZEM

nd

max
i∈S

E[M (n)
row(i, C)] > min

C∈SIZEM
nc log(1/ε)/ε

max
i∈{0,1}n

E[M (n)
row(i, C)]− ε

The symmetric statement, with the roles of players exchanged, holds.

Here is the interpretation of Theorem 1. Suppose the row player is in-

formed of the mixed strategy of the column player. For each column player
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C, the row player chooses a best response and obtains an expected payoff of

max
α∈Prow

E[M (n)
row(α, C)] = max

i∈{0,1}n
E[M (n)

row(i, C)].

The equality is from Fact 1. The first expectation is over α and the coin

flips of C and the second is over the coin flips of C. The expected payoff

the row player could guarantee against all randomized M (n)-oracle circuits

of size nc log(1/ε)/ε is therefore

min
C∈SIZEM

nc log(1/ε)/ε

max
i∈{0,1}n

E[M (n)
row(i, C)].

Similarly,

min
C∈SIZEM

nd

max
i∈S

E[M (n)
row(i, C)]

is the expected payoff the row player could guarantee by using only strategies

in S against all randomized M (n)-oracle column players of size nd, provided

that the row player is informed of the mixed strategy of the column player.

For ε not too small, Theorem 1 shows that when the circuit size of the column

player shrinks polynomially (from nc log(1/ε)/ε to nd), the set of strategies

of the row player could shrink exponentially (from 2n to O((nk+d+1) log n)/ε)

without affecting the guaranteed expected payoff of the row player too much.

Proof of Theorem 1. We will always assume n is sufficiently large whenever

needed since the requirement on the size of S contains a big-O and the

theorem is therefore immediately true for small values of n.

Denote

t = min
C∈SIZEM

nc log(1/ε)/ε

max
i∈{0,1}n

E[M (n)
row(i, C)]

for convenience. We say that a pure row strategy i is good against a ran-

domized nd-size M (n)-oracle circuit C if E[M
(n)
row(i, C)] > t− ε.
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S will be formed in stages. We keep a set of survivors which is initially

the set of all randomized nd-size M (n)-oracle circuits with n output bits. In

each stage we put one pure row strategy into S and kill the survivors against

which this strategy is good. We do so until there are no survivors left. If the

number of stages is O((nk+d+1 log n)/ε), then we are done.

Let Survivorsi denote the set of circuits that have not been killed after

stage i. Initially, Survivors0 consists of all randomized nd-size M (n)-oracle

circuits with n output bits. According to Shannon’s counting argument

(Lemma 1 with nd assigned to s, 2n assigned to l and poly(n) assigned

to m),

| Survivors0 | ≤ 2O(nd+1 log n). (3.1)

Given Survivorsi, we now show how to obtain Survivorsi+1. Let T be the

smallest power of 2 not less than (nk+1 log n)/ε. Hence (nk+1 log n)/ε ≤

T ≤ 2(nk+1 log n)/ε. Consider any collection of T circuits in Survivorsi,

possibly with repetitions: C1, C2, . . . , CT . We construct a randomized M (n)-

oracle circuit C that feeds independent random inputs to C1, C2, . . . , CT and

chooses equiprobably one of the n-bit outputs of C1, C2, . . . , CT as the output

of C. Summing up the sizes of C1, C2, . . . , CT and including a multiplexer

(Lemma 2 with T assigned to 2m), we see that C is of size

O
(
(nk+1 log n)/ε · nd + (nk+1 log n)/ε · (log((nk+1 log n)/ε) + n)

)
< nc log(1/ε)/ε (3.2)

for sufficiently large n. Inequality (3.2) and the definition of t show that

there is an i∗ with E[M
(n)
row(i∗, C)] ≥ t. This is equivalent to saying

E[M
(n)
row(i∗, C1)] + · · ·+ E[M

(n)
row(i∗, CT )]

T
≥ t. (3.3)
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Let f be the fraction of values above t− ε among

E[M (n)
row(i∗, C1)], E[M (n)

row(i∗, C2)], . . . , E[M (n)
row(i∗, CT )].

Since ‖M (n)
row‖∞ ≤ nk, it is clear that

E[M
(n)
row(i∗, C1)] + · · ·+ E[M

(n)
row(i∗, CT )]

T

≤ fnk + (1− f)(t− ε). (3.4)

Inequalities (3.3) and (3.4) imply that t ≤ fnk + (1 − f)(t − ε), or that

f ≥ ε/(nk− t+ ε). This and the fact that ε ∈ (0, 1) and | t | ≤ ‖Mn
row‖∞ ≤ nk

result in

f > ε/(3nk)

for sufficiently large n. That is, i∗ is good against more than a ε/(3nk)

fraction of players among C1, C2, . . . , CT for sufficiently large n.

Next suppose we actually pick each of C1, C2, . . . , CT independently and

uniformly from Survivorsi. Fix arbitrarily, if any, a pure row strategy i′ good

against less than an ε/(4nk) fraction of Survivorsi. Let fi′ ε/(3n
k) be the

fraction of players in Survivorsi against which i′ is good. By the choice of

i′, we have fi′ < 3/4. The Chernoff bound (Fact 2 with Xj = 1 if i′ is good

against Cj and 0 otherwise, pj = fi′ ε/(3n
k), T assigned to n and −1 + 1/fi′

assigned to δ) gives

Pr
[
i′ is good against more than an ε/(3nk) fraction of C1, . . . , CT

]
< (fi′e

1−fi′ )Tε/(3nk) ≤ e−Ω(n log n).

The probability is over the picking of C1, . . . , CT . The last inequality is true

because the function xe1−x has positive derivative on (0, 1) and (3/4)e1−3/4 <

1. By summing over i′ ∈ {0, 1}n, the probability is at most 2ne−Ω(n log n)
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that some pure row strategy good against less than an ε/(4nk) fraction

of Survivorsi is good against more than an ε/(3nk) fraction of randomly

picked C1, C2, . . . , CT . Since 2ne−Ω(n log n) < 1 for sufficiently large n, a

probabilistic argument shows that there is a choice of C1, C2, . . . , CT such

that every pure row strategy good against more than an ε/(3nk) fraction of

C1, C2, . . . , CT must be good against at least an ε/(4nk) fraction of Survivorsi.

We have seen in the last paragraph that for this (in fact, every) choice of

C1, C2, . . . , CT , there is an i∗ good against more than an ε/(3nk) fraction of

C1, C2, . . . , CT . This i∗ must therefore be good against at least an ε/(4nk)

fraction of Survivorsi. We add this i∗ to S and obtain

| Survivorsi+1 | ≤ (1− ε/(4nk))| Survivorsi |.

From this and inequality (3.1), after O((nk+d+1 log n)/ε) stages the number

of survivors will be less than one. At that time, there must be no survivors

left.

The same theorem holds for circuits without oracle gates.

Corollary 1. Let k > 0, d ≥ 1 and c > d + k + 1 be constants. Consider

a family of two-person strategic games parameterized by n ∈ N+. Let M (n) :

{0, 1}n × {0, 1}n → [−nk, nk]2 be the payoff function for the game. Let ε :

N+ → (0, 1) be a function. We assume that the binary representation of each

number in the range of M
(n)
row and M

(n)
col is of length polynomial in n. For each

n, there is a set S ⊆ {0, 1}n of size O((nk+d+1 log n)/ε) such that

min
C∈SIZE

nd

max
i∈S

E[M (n)
row(i, C)]

> min
C∈SIZEnc log(1/ε)/ε

max
i∈{0,1}n

E[M (n)
row(i, C)]− ε

The symmetric statement, with the roles of players exchanged, holds.
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Proof. The proof is the same as that of Theorem 1 but with each occurrence

of “randomized M (n)-oracle circuit” replaced with “randomized circuit.”

As have been pointed out in [FKS95], Newman’s result implies the fol-

lowing, which is relevant to our work [New91].

Lemma 3. ([New91]) Consider a family of two-person zero-sum strategic

games parameterized by n ∈ N+. Let M
(n)
row : {0, 1}n × {0, 1}n → [−nk, nk]

be the payoff function for the row player. Let v be the game value under

mixed strategies for the game parameterized by n, and ε : N+ → (0, 1) be a

function. For every T ≥ 2n2k+1/ε2 there is a multiset of T pure row strategies

such that if the row player selects equiprobably one of these strategies, his

expected payoff is at least v− ε against any mixed strategy in Pcol adopted by

the column player. Similarly, there is a multiset of T pure column strategies

such that if the column player selects equiprobably one of these strategies, his

expected payoff is at least −v − ε against any mixed strategy in Prow adopted

by the row player.

Proof. Let T ≥ 2n2k+1/ε2. Let each of the independent random variables

α1, α2, . . ., αT be distributed identically as the mixed strategy of the row

player in a mixed strategy Nash equilibrium. For an arbitrary pure column

strategy j, we have E[M
(n)
row(αi, j)] ≥ v, i = 1, . . . , T , by the definition of the

game value under mixed strategies. From Hoeffding’s inequality (Fact 3 with

[ a, b ] = [−nk, nk], M
(n)
row(αi, j) assigned to Xi and T assigned to n), we have

Pr

[
M

(n)
row(α1, j) + · · ·+ M

(n)
row(αT , j)

T
< v − ε

]
< 2e−n.

So with probability at most 2n2e−n < 1, there exists a j with

M
(n)
row(α1, j) + · · ·+ M

(n)
row(αT , j)

T
< v − ε.
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Hence there exist pure strategies i1, i2, . . . , iT for the row player with

M
(n)
row(i1, j) + · · ·+ M

(n)
row(iT , j)

T
≥ v − ε, ∀j.

By selecting equiprobably from among i1, i2, . . ., iT , the row player can

guarantee an expected payoff of at least v − ε against any mixed strategy

of the column player. The second part of this corollary can be proved by

observing that by exchanging the roles of the two players, the game value

becomes −v.

We now consider the effects of Lemma 3 on Theorem 1.

Corollary 2. Let k > 0 and c > 2k + 2 be constants. Consider a family of

two-person strategic games parameterized by n ∈ N+. Let M (n) : {0, 1}n ×

{0, 1}n → [−nk, nk]2 be the payoff function for the game Gn. Let ε : N+ →

(0, 1) be a function. There is a multiset S ⊆ {0, 1}n of size O(n2k+1/ε2) such

that the row player RS who plays each strategy in S equiprobably guarantees

min
β∈Pcol

E[M (n)
row(RS, β)] > min

C∈SIZEM
nc log(1/ε)/ε2

max
i∈{0,1}n

E[M (n)
row(i, C)]− ε

for sufficiently large n.

Proof. We may define a zero-sum game G′
n with the payoff function −M

(n)
row

for the column player and M
(n)
row for the row player. Let v′ be the value of

G′
n under mixed strategies. Let T be the smallest power of 2 not less than

2n2k+1/ε2. Using Lemma 3 on G′
n, we see that there is a multiset S ′ of size

T such that, for the column player CS′ choosing equiprobably a strategy in

S ′,

∀α ∈ Prow, E[M (n)
row(α, CS′)] ≤ v′ + ε/3. (3.5)

The same holds in the original game Gn because the games Gn and G′
n adopt

the same payoff function for the row player and CS′ makes no queries. CS′

17



could be implemented as a circuit by hardwiring S ′, adding random gates,

and including a multiplexer. From Lemma 2 with T assigned to 2m, such a

circuit is of size

O
(
n2k+1/ε2 · n + n2k+1/ε2 · (log(n2k+1/ε2) + n)

)
< nc log(1/ε)/ε2, (3.6)

for sufficiently large n. Denote

t = min
C∈SIZEM

nc log(1/ε)/ε2

max
i∈{0,1}n

E[M (n)
row(i, C)].

Inequalities (3.5), (3.6), and our definition of t gives t ≤ v′+ε/3 for sufficiently

large n, or, equivalently,

v′ ≥ t− ε/3, (3.7)

for sufficiently large n. Applying Lemma 3 to G′
n, we see that by selecting

equiprobably from among some T strategies S, the row player can guarantee

an expected payoff of at least v′ − ε/3 against every mixed strategy of the

column player. Again, this must also be true in Gn. Inequality (3.7) implies

v′ − ε/3 ≥ t− 2ε/3 > t− ε and completes the proof.

Since

∀β ∈ Pcol, E[M (n)
row(RS, β)] ≤ max

i∈S
E[M (n)

row(i, β)],

a direct computation on the sizes of S and the circuit sizes in Theorem 1 and

Corollary 2 shows that Theorem 1 with d = k + 3 and ε > 1/n is implied by

Corollary 2 , and hence by Lemma 3. It is not known if Theorem 1 is implied

by Lemma 3, however.
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Chapter 4

Implications on the Power of

Players

We use Theorem 1 to investigate the computational resource needed for a

player to guarantee a good expected payoff against computationally-bounded

players. A naive player performs exponentially (in n) many queries to M (n)

to determine an optimal strategy, pure or mixed, but we show how a player

could run in less than exponential time without degrading his payoff too

much.

Corollary 3. Let k > 0, d ≥ 1, c > k + d + 1, and 0 < ε < 1 be

constants. Consider a family of two-person strategic games parameterized

by a positive integer n. Let M (n) : {0, 1}n × {0, 1}n → [−nk, nk]2 be the

payoff function. We assume that the binary representation of each num-

ber in the range of M
(n)
row and M

(n)
col is of length polynomial in n. Denote

t = minC∈SIZEM
nc log(1/ε)/ε

maxi∈{0,1}n E[M
(n)
row(i, C)]. The following statements

are true.

(i) If R is informed of the circuit computing C, then he needs only poly-

nomial time with polynomial advice (in n), private fair coin flips, and
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an M (n)-oracle to guarantee that E[M
(n)
row(R,C)] > t− ε for every ran-

domized nd-size M (n)-oracle C.

(ii) Assume R is allowed to produce his output after he sees the output

strategy of C. If the language {i, j, k, n| the kth bit in the binary rep-

resentation of M
(n)
row(i, j) is a 1 } is in NL/poly, then there is a non-

deterministic logarithmic-space row player R with polynomial advice

that always has a unique accepting branch, and E[M
(n)
row(R,C)] > t− ε

holds for every randomized nd-size M (n)-oracle C. Here the output of

R is defined to be the string it leaves on its output tape on the unique

accepting branch.

(iii) If R is required to determine his output strategy simultaneously with C

(which is unknown to R), and if he obtains an additional O(log n) bits of

information about C, then he needs only deterministic polynomial time

with polynomial advice (in n) to guarantee that E[M
(n)
row(R,C)] > t− ε

holds for every randomized nd-size M (n)-oracle circuit C.

Here is the interpretation of Corollary 3. Assuming that R is informed

of the mixed strategy (or the circuit) of the column player, the value t is the

expected payoff R could guarantee against all randomized M (n)-oracle col-

umn players of size nc log(1/ε)/ε. Item (i) states that with polynomial advice

and oracle access to M (n), a polynomial-time R suffices to guarantee a t− ε

payoff against all randomized nd-size M (n)-oracle column players. Item (ii)

further assumes that R chooses his output strategy after the column player

does, and M (n) is computed by a nondeterministic logarithmic-space Turing

machine with polynomial advice. Under these assumptions, the polynomial-

time Turing machine R in item (i) can be further reduced to an unambiguous

logarithmic-space one. The guaranteed expected payoff is still at least t− ε
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against randomized nd-size M (n)-oracle column players. Item (iii) suggests

that, even if R knows only some O(log n) bits of information about the col-

umn player (of size nd), his guaranteed expected payoff is almost as if he is

informed of the whole circuit of the column player (of size nc log(1/ε)/ε).

Proof of Corollary 3. We have seen in Theorem 1 that there is a set S of size

polynomial in n such that, for every randomized nd-size M (n)-oracle column

player C, there is a strategy i ∈ S with E[M
(n)
row(i, C)] > t− ε/2. We give S

as the advice to R in all the following cases.

Proof of (i). Let C be an arbitrary randomized M (n)-oracle circuit of size nd

with n output bits. Being informed of the circuit computing C, R could simu-

late C independently 50n2k+1/ε2 times and obtains outputs O1, . . . , O50n2k+1/ε2 .

For each i ∈ S, he computes M
(n)
row(i, Oj), 1 ≤ j ≤ O50n2k+1/ε2 . Hoeffding’s

inequality (Fact 3 with M
(n)
row(i, Oj) assigned to Xj, 50n2k+1/ε2 assigned to n,

ε/5 assigned to ε and [a, b] = [−nk, nk]) yields

Pr

[ ∣∣∣∣∣Σ
50n2k+1/ε2

j=1 M
(n)
row(i, Oj)

50n2k+1/ε2
− E[M (n)

row(i, C)]

∣∣∣∣∣ > ε/5

]
< 2e−n, (4.1)

where the probability is over the coin tosses of R. For each i ∈ S, R estimates

E[M
(n)
row(i, C)] as

Ẽ[M (n)
row(i, C)]

≡
M

(n)
row(i, O1) + · · ·+ M

(n)
row(i, O50n2k+1/ε2)

50n2k+1/ε2
.

Note that the random variable Ẽ[M
(n)
row(i, C)] depends solely on the random

coin tosses of R, and not those of C. Using inequality (4.1), we see that

Pr
[
∃i ∈ S,

∣∣∣Ẽ[M (n)
row(i, C)]− E[M (n)

row(i, C)]
∣∣∣ > ε/5

]
< |S|2e−n, (4.2)
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where the probability is over the random coin tosses of R. The selection of

S guarantees

max
i∈S

E[M (n)
row(i, C)] > t− ε/2. (4.3)

Consider the row player R outputting an i ∈ S with the largest Ẽ[M
(n)
row(i, C)].

Let i∗ be the output of R. From inequality (4.2), with probability more than

1− |S|2e−n

E[M (n)
row(i∗, C)]

≥ Ẽ[M (n)
row(i∗, C)]− ε/5

= max
i∈S

Ẽ[M (n)
row(i, C)]− ε/5

≥ max
i∈S

E[M (n)
row(i, C)]− 2ε/5

> t− 9ε/10. (4.4)

The last inequality is from inequality (4.3). Since R and C use independent

coin tosses, and since ‖M (n)
row‖ ≤ nk,

E[M (n)
row(R,C)]

> (1− |S|2e−n)(t− 9ε/10) + |S|2e−n(−nk)

> t− ε

for sufficiently large n, as required. For smaller values of n so that the last

inequality does not hold, item (i) is immediately true because a polynomial

time Turing machine could use every strategy in {0, 1}n.

Proof of (ii). In this case R himself evaluates M
(n)
row on C’s output strategy

and each strategy in S. He chooses the best strategy in S for output.

Since the Immerman-Szelepcsenyi theorem [Imm88] can be directly ex-

tended to say that NL/poly = coNL/poly, our assumption implies that
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asking if the kth bit of M
(n)
row(i, j) is 0 is also in NL/poly. We will also use

the fact that NL/poly = UL/poly from [RA97].

Let C’s output strategy be j and denote S = {i1, . . . , i|S|}. The row

player computes M
(n)
row(it, j) for t = 1, . . . , |S|. When computing M

(n)
row(it, j),

he guesses its first bit using a nondeterministic branch and verifies it in unam-

biguous logarithmic space. This can be done since NL/poly = coNL/poly =

UL/poly. He then does the same for the second, third bit and so on.

It is clear that only one branch guesses completely correctly and survives.

Others are rejected. In this manner R proceeds by computing M
(n)
row(it, j),

t = 1, . . . , |S|, one by one. Instead of saving all these values, which takes

space polynomial in n, he needs only store the best strategy he has eval-

uated so far. The corresponding M
(n)
row-value can be computed on the fly

whenever it is needed. These observations yield that R runs in unambiguous

logarithmic space (in n).

For an arbitrary randomized nd-size M (n)-oracle player C, let i ∈ S be

such that E[M
(n)
row(i, C)] > t− ε. Since whatever strategy C takes, R always

chooses a strategy no worse than i, we must have E[M
(n)
row(R,C)] > t− ε.

Proof of (iii). In this case R just needs to know which i ∈ S makes E[M
(n)
row(i, C)] >

t− ε. This information takes O(log n) bits.
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Appendix A

Complexity Classes

A brief definition of several complexity classes are given. For detailed defini-

tions, please refer to [AK].

1. P is the class of languages decidable in polynomial time.

2. P-hard is the class of languages logarithmic-space reducible from all

languages in P.

3. EXP is the class of languages decidable in exponential time.

4. EXP-hard is the class of languages polynomial-time reducible from all

languages in EXP.

5. EXP-complete = EXP ∩ EXP-hard.

6. promise-SP
2 is the class of languages L such that there are disjoint sets

Π+, Π− with Π+ ⊆ L, Π− ∩ L = ∅ and there is a polynomial-time

computable predicate R(x, y, z) for |y| = |z| = poly(|x|) satisfying the

following: ∀x ∈ Π+, ∃y∀zR(x, y, z) = 1 and ∀x ∈ Π−, ∃z∀yR(x, y, z) =

0.
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7. RP is the class of languages L such that there is a nondeterministic

polynomial time Turing machine which on input x ∈ L accepts on at

least 1/2 of its computation paths and on input x /∈ L rejects on every

computation path.

8. coRP is the class of languages whose complement is in RP.

9. ZPP = RP ∩ coRP

10. NP is the class of languages L such that there is a nondeterministic

polynomial-time Turing machine which on input x accepts on at least

one computation path if and only if x ∈ L.

11. PPAD is the class of function problems of the following form. Given a

polynomial time algorithm P that, on any input x, implicitly defines a

directed graph G(x) with nodes Σp(|x|) by outputting for each y ∈ Σp(|x|)

the vertices pointing to or from y, where p is a polynomial and Σ is

some constant size alphabet. The graph G(x) is restricted to be one

in which each vertex has indegree and outdegree at most one. Given

a source of G(x) (i.e., one with indegree zero), the problem is to find

another source or sink.

12. PPAD-complete is the class of function problems in PPAD reducible

from every function problem in PPAD.

13. NL/poly is the class of languages L such that there is a nondeterminis-

tic logarithmic-space Turing machine and a sequence of polynomially-

long (in n) advices {an}n∈N such that on inputs x and a|x|, the Turing

machine has an accepting computation path if and only if x ∈ L.

14. UL/poly is the same as NL/poly except the logarithmic-space Turing
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machine must have exactly one computation path whatever input it is

given.

15. coNL/poly is the class of languages whose complement is in NL/poly.
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