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Chapter 1 

Introduction 

1.1 Introduction 

The volatility smile is frequently observed in options prices. But in the pure 

Black-Scholes world, there should not be any smile as the volatility should be 

constant across the strike price and time. Although the Black-Scholes formula has 

been successfully used in pricing stock option prices, it does have known biases. This 

is not surprising since the Black-Scholes model makes the strong assumption that 

stock returns are normally distributed with known variance, but the constant variance 

assumption is somewhat simplisitc. 

Pricing models with stochastic volatility have been addressed in the literature by 

many authors (see Scott [1987,1991], Hull and White [1987], and Wiggins [1987)); 

they generalize the Black-Scholes model to allow stochastic volatility. However, 

these models all assume zero correlation between volatility and price. Heston [1993] 

provides a closed-form solution for European options when the stochastic volatility is 

correlated with the spot asset. 

The bivariate binomial framework presented by Hilliard and Schwartz [1996] not 

only allows non-zero correlation between the volatility and the underlying process but 

can also be used to value American options. It uses a simple recombining binomial 

tree with a set of four joint, but possibly non-independent, probabilities. The node 

probabilities, , can be determined by simple calculations. ijP

Although the underlying process has stochastic volatility, it is still driven by the 

usual Brownian motion. The stochastic volatility process is driven by Brownian 

motion except that the drift term can be quite general; for example, it can be 

mean-reverting. 
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Hilliard and Schwartz [1996] present an efficient method to calculate option prices 

on the bivariate binomial model. But, strangely, they do not use the tree method to 

derive the values in their paper; instead, they only use simulation to obtain the 

numbers. In other words, the tree does not seem to have been implemented. This 

thesis fills that gap by implementing the bivariate binomial tree method to price 

options. It then uses Monte-Carlo simulation to compare the accuracy of the tree 

method. 

 

1.2 Structures of the Thesis 

  There are four chapters in this thesis. The first chapter introduces stochastic 

volatility model. The second chapter covers the bivariate binomial model which is 

developed by Hilliard and Schwartz [1996]. The third chapter presents the numerical 

results using the bivariate binomial model. The fourth chapter concludes this thesis. 
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Chapter 2 

Mathematical Models 

2.1 Stochastic-Volatility Model 

We consider continues-time risk-neutral diffusion process of the form 

  ( ) ( )
  

S

V V

dS m dt f S h V dZ
dV m dt bVdZ

S= +
= +

                  (2.1) 

where S is the spot asset, V is the stochastic volatility,  and  are Wiener 

processes with correlation 

SdZ VdZ

Corr( ,  )  S V SVdZ dZ ρ= , and ( ) ( )f S h V  is typically of 

the form S Vθ α . 

 

2.2 Constructing the Lattice 

  We follow the tree method of Hilliard and Schwartz [1996]. Consider first the 

volatility transformation. The transformation is 

 ln( )  VY
b

= , 

which yields a process with unit volatility (see Appendix A for the proof of Eq. (2.2)): 

   (   )   
2

         

V
V

y V

m bdY dt dZ
bV

m dt dZ

= − +

= +
                   (2.2) 

where ym  is the drift term of Y. 

Since the coefficient of is a constant, the lattice in Y recombines as required. 

But the transformation of S to constant volatility is not straightforward because the 

volatility of S includes both random variables S and V. 

VdZ

  We use a two-step transformation. First, we consider a transformation H of the 

form 

 1( , ) ( )
( )

S dSH H S V h V
f S

−= = ∫ , 

and the diffusion process is  
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2 21   [ 2
2

      ( ) ( )     

S V SS SV VV

S S V V h

dH H dS H dV H dS H dSdV H dV

H f S h V dZ H bVdZ m dt

= + + + +

= + +

]

V

)

 

where  is the drift term of H and depends on , and second-order partials. hm ,  Sm m

  The second transformation of H to Q is 

1  ( ) ln(     SV hQ b bHα α ρ−= − σ+  

where 

 2 2 21 2h SVbH b Hσ α ρ α= − + , 

and the diffusion is of the form 

    q hdQ m dt dZ= + . 

The diffusion for Q has unit volatility now, as required. 

By Ito’s theorem, we can get the drift terms of H and Q as follows (see Appendix B 

and C for the proofs of Eqs. (2.3) and (2.4)): 

21 1        (1  )   
( ) 2 2

S V
h S

m m Hm f V H
f S V V

α
α SVb bα α α α= − − + + − ρ   (2.3) 

and 

 
2 2(  1     

2
h SV

q
h h

m b bm α ρ α
σ σ

−
= +

)H

Y

             (2.4) 

Since both Y and Q have unit volatility, the bivariate binomial grid can be easily 

constructed on the  space. Y Q×

  The values of V and S variables are given by the inverse transformation (see 

Appendix D for the proof of Eq. (2.5)): 

  exp( )V b=  
22   (1  ) exp( )  exp( )  

2
SV SVr r abQ abQH

ab
− − × − +

=      (2.5) 

 
1

1[ (1  ) ] ,  1  
exp( ( ) ),         1

a qV q H qS
h V H q

−
⎧⎪ − ≠= ⎨
⎪ =⎩

 

Under these transformations, the increments  and  have correlation VdZ hdZ
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 (   Corr( ,  )   SV
V h

h

bHdZ dZ )ρ α
σ
−

=  

and . Corr( ,  )  Corr( ,  )V hdY dQ dZ dZ=

 

2.3 Binomial Jumps and Probabilities 

  As in the standard univariate model with unit volatility, the binomial jumps for the 

transformation process Y and Q are given by: 

 1 0   Y Y± t= ± Δ  

and 

 1 0   Q Q± t= ± Δ   

where  is the size of time step. The associated probabilities for upward jumps for 

Y and Q are, respectively: 

tΔ

  0.5(1  )yp m t= + Δ  

and 

  0.5(1   )qq m t= + Δ  

  Joint probabilities are defined by: 

 

11 1 1

12 1 1

21 1 1

22 1 1

  prob( , )
  prob( , )

  prob( , )
  prob( , )

P Q
P Q

P Q
P Q

Y
Y

Y
Y

+ −

+ +

− −

− +

=

=

=

=

 

When  and  are independent, joint probabilities are easily derived by 

multiplication. For example, 

VdZ hdZ

 . 11 12 21 22  (1 ),    ,    (1 )(1 ),    (1 )P q p P pq P q p P p q= − = = − − = −

When they are dependent, the joint probabilities are given by: 
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11

12

21

22

  (1 )  Corr( , )
    Corr( , )
  (1 )(1 )  Corr( , )
  (1 )  Corr( , )

P q p dY dQ
P pq dY dQ
P q p dY d
P p q dY dQ

Q

κ
κ

κ
κ

= − −
= +
= − − +
= − −

 

where  (1 ) (1 )p p q qκ = − − . 
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Chapter 3 

Numerical Results 

3.1 Bivariate Binomial Option Pricing 

  We consider a special diffusion processes examined by Hull and White [1987]: 

    
  

S

V

dS rSdt S V dZ
dV bVdZ

= +

=
 

that is ,   sm r= S ( ) ( )  f S h V S V= , and 0vm =  in Eq. (2.1). The resulting 

transformations from Q and Y back to the original variables V and S are given by 

equations illustrated in section 2.2 with 1θ =  and 0.5α = . 

  We first calculate the values of Q and Y at each node by a bivariate binomial tree. 

We can also calculate the values of V and S at the expiration day. Then we can get the 

value of option price by backward induction. 

We notice that the probabilities of upward jumps p and q are determined by ym  of 

Eq. (B) and  of Eq. (D), respectively. These two values should be calculated by 

the initial values of each variable involved in the equations in section 2.2. 

qm

 

3.2 Evaluating European Put Options 

The following is an example of the effect of stochastic volatility on the prices of 

European put options when the volatility is uncorrelated with the underlying asset 

price. 

  Exhibit 1 shows the value of a European put with stochastic volatility parameter b 

= 25% and zero correlation between volatility and price. The bivariate binomial 

values with 270 time steps are compared with the values generated by Hilliard and 

Schwartz [1996], the Hull-White stochastic volatility model [1987], and the standard 

Black-Sholes model [1973] which the volatility is fixed and equal to the initial 
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volatility. 

  The simulation values are from Hilliard and Schwartz [1996]. Observe that the 

simulation values are almost indistinguishable from the Black-Scholes and 

Hull-White values. Recall that Hilliard and Schwartz do not use the bivariate 

binomial tree method to obtain the values of European puts. This thesis uses the 

bivariate binomial tree method to get the values of European options, in contrast. 

Observe that our values are close to the Black-Scholes, Hull-White, and Hilliard and 

Schwartz’s values. In fact, the difference of bivariate binomial tree method from the 

other three methods is less than 0.1. We also use Monte Carlo simulation to get the 

values of European puts with 100,000, 1,000,000, and 10,000,000 sample paths. The 

values by Monte Carlo simulation also match the above values. In fact, the difference 

of Monte Carlo simulation from Black-Scholes, Hull-White, and Hilliard and 

Schwartz’s simulation values is less than 0.01. 

  Exhibit 2 shows the convergence of put prices as the number of time steps varies. 

The exercise prices are 80, 100, and 120. The parameters are identical to those in 

Exhibit 1 except the numbers of time steps. We first set the number of time steps to be 

6 and calculate the put values. After this, we set the number of time steps to be 7 and 

recalculate again. And we keep increase the number of time steps and calculate the 

put values until the number of time steps reaches 358.  

In Exhibit 2, we can see that the prices change a lot when the number of time steps 

is less than 25 and they converge to a level when the number of time steps exceeds 

200. 
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Exhibit 1 

Effect of Stochastic Volatility on European Put Prices 
S/X 
X=100 

Black- 
Scholes 

Hull-White Simulation  
values (H&S)

Bivariate 
Binomial 

Monte Carlo
N=100,000 

0.80 17.643 17.645 17.646 17.6781 17.6432 
0.84 13.876 13.878 13.878 13.9317 13.8900 
0.88 10.398 10.397 10.397 10.4597 10.3868 
0.92 7.365 7.362 7.361 7.4094 7.3654 
0.96 4.903 4.898 4.898 4.9042 4.8937 
1.00 3.058 3.053 3.054 3.0155 3.0529 
1.04 1.784 1.782 1.782 1.7408 1.7698 
1.08 0.975 0.975 0.975 0.9501 0.9753 
1.12 0.500 0.501 0.501 0.4772 0.5008 
1.16 0.241 0.244 0.243 0.2291 0.2485 
1.20 0.110 0.112 0.112 0.1091 0.1182 
S/X 
X=100 

Monte Carlo 
N=1,000,000 

Monte Carlo 
N=10,000,000

0.80 17.6476 17.6479 
0.84 13.8799 13.8786 
0.88 10.4004 10.3993 
0.92 7.3524 7.3570 
0.96 4.8864 4.8898 
1.00 3.0409 3.0401 
1.04 1.7754 1.7746 
1.08 0.9726 0.9743 
1.12 0.5044 0.5038 
1.16 0.2484 0.2488 
1.20 0.1172 0.1168 
Bivariate binomial is a stochastic volatility model with 270 time steps. The volatility 
parameter of the volatility diffusion (dV) is b = 25%. There is zero correlation 
between price and volatility. European puts are priced with the parameters: risk-free 
rate = 5%, time to maturity = 0.5 year, stock volatility = 15%, and exercise price = 

$100. For stochastic volatility models, the initial volatility, 0V , is equal to 15%, the 

stock volatility. There are no dividends. N is the number of sample paths. 
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Exhibit 2 
The Convergence of Put Prices 

S0=80  Price=17.676
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Exhibit 3 is the distribution of stock at maturity and the initial stock price is 100 

with all parameters equal to Exhibit 1 except time steps are 100. There would be 

101*101 stock prices after we use bivariate binomial tree method. We sort these 

values from small to large and then add their probabilities every 100 stock prices, so 

we can get 102 stock prices with their probabilities. The horizontal axis is the 

logarithm stock price at maturity. The vertical axis is the probability of the stock price. 

Some logarithm stock prices less than 1.7 and more than 2.3 with almost zero 

probability are cut. 

In Exhibit 3, we can find that the distribution of the logarithm stock prices at 

maturity is like a normal distribution. 

 

 

Exhibit 3 
The Distribution of the Stock Price at Maturity 
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The volatility smile is a widely accepted phenomenon. The smile describes the 

convex shape of the implied volatility with respect to moneyness (S/X) computed via 
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the Black-Scholes formula. Hull and White [1998] use Monte Carlo simulation to 

evaluate the effects of stochastic volatility and correlations on option prices. Their 

results are consistent with the smile when implied volatilities are computed by 

matching Black-Scholes prices to theoretically correct values. 

  Similarly, the bivariate binomial model also reveals significant convexities. Exhibit 

4 graphs the implied volatility when the initial stock volatility is 15%, the risk-free 

rate is 5%, the time to maturity is 0.5 year, and the volatility drift rate is zero. There is 

indeed a smile across the initial stock prices. All points below the implied volatility of 

15% represent overpricing by Black-Scholes. 
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Exhibit 4 
Black-Scholes Implied Volatility Smile 
S/X Implied Volatility 
0.80 15.736432 

0.84 15.563522 

0.88 15.376780 

0.92 15.192946 

0.96 15.002478 

1.00 14.842511 

1.04 14.814724 

1.08 14.863096 

1.12 14.818848 

1.16 14.845893 

1.20 14.984344 

 

Volatiliy Smile

14

15

16

0.80 0.84 0.88 0.92 0.96 1.00 1.04 1.08 1.12 1.16 1.20

S/X

Im
pl

ie
d 

Si
gm

a

 

European puts are priced by the bivariate binomial model with 270 time steps. The 
exercise price is $100, the risk-free rate is 5%, the time to maturity is 0.5 year, the 
volatility drift is zero, and the stock volatility is 15%. The volatility parameter of the 

diffusion process (dV) is b = 25%. The initial volatility, 0V , is equal to15%, the 

stock volatility. 
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Exhibit 5 is another illustration of the effects of stochastic volatility on European 

put options with a long maturity. We let the volatility be correlated with the 

underlying asset price. 

Exhibit 5 shows the value of a European put with stochastic volatility parameter b 

= 1.00 and the correlation between volatility and price being −0.5, −0.25, 0, 0.25, and 

0.5, respectively. The bivariate binomial model with stochastic volatility uses 1000 

time steps. 

Some values calculated by the tree method are close to the simulation values, but 

others are different from the simulation values. We can see the convergence of the put 

prices when the number of time steps varies in Exhibit 6. The convergence pattern is 

not clear even when the number of time steps exceeds 300. So the tree method for 

pricing long-maturity options is not without problems, and we should let the time 

steps be large to achieve convergence. 

  Compared with the values calculated by Black-Scholes which the volatility is 

constant and equal to the initial volatility, we find that the Black-Scholes model 

overprices in-the-money puts when there is negative correlation as well as 

out-of-money when there is positive correlation. 
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Exhibit 5 
Effect of Stochastic Volatility on European Put Prices (Long Maturities) 

ρSV = -0.50 ρSV = -0.25 S/X 
X=100 

 
Black-Scholes 

 
Simulation

(H&S) 
Bivariate 

Simulation
(H&S) 

Bivariate 

0.80 15.716 14.267 15.7476 14.735 15.9531
0.85 12.848 11.465 12.5868 11.816 13.1262
0.90 10.393 9.217 9.9550 9.424 10.4335
0.95 8.325 7.451 7.9368 7.512 8.0610
1.00 6.611 6.073 6.3011 6.014 6.4325
1.05 5.208 4.999 4.9053 4.849 5.1444
1.10 4.074 4.159 3.8004 3.945 3.9978
1.15 3.167 3.495 2.9870 3.240 2.9660
1.20 2.449 2.965 2.3760 2.689 2.2606

ρSV = 0 ρSV = 0.25 ρSV = 0.50 S/X 
X=100 Simulation

(H&S) 
Bivariate 

Simulation
(H&S) 

Bivariate 
Simulation

(H&S) 
Bivariate 

0.80 15.145 15.8232 15.499 15.8975 15.796 15.7668
0.85 12.110 13.0572 12.351 12.7745 12.538 12.7522
0.90 9.581 10.6938 9.683 10.4086 9.721 10.0662
0.95 7.518 8.3190 7.464 8.2786 7.338 7.8827
1.00 5.890 6.0560 5.694 6.2737 5.409 6.1161
1.05 4.626 5.0036 4.319 4.6571 3.905 4.5511
1.10 3.655 4.0464 3.274 3.7122 2.775 3.2651
1.15 2.910 3.1141 2.492 2.9329 1.961 2.3614
1.20 2.340 2.1989 1.912 2.2015 1.385 1.8019
Bivariate binomial model with stochastic volatility uses 1000 time steps. The 
volatility parameter of the volatility diffusion (dV) is b = 1.00. European puts are 
priced with the parameters: risk-free rate = 5%, time to maturity = 2.0 years, stock 
volatility = 20%, and exercise price = $100. For stochastic volatility models, the 

initial volatility, 0V , is equal to 20%, the stock volatility. There are no dividends. 
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Exhibit 6 
The Convergence of Put Prices 
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3.3 Evaluating American Put Options 

The bivariate binomial model is more general than the other methods because it 

can evaluate American options with stochastic volatility. The following is an example 

for pricing American put options when the volatility is correlated with the underlying 

asset price. 

  Because the Black-Scholes formula can not evaluate American options, and Monte 

Carlo simulation is not appropriate for the evaluation of the early exercise premium 

found in American options, we use the CRR binomial tree to serve as a benchmark for 

the bivariate binomial model. At each node, a comparison of the early exercise value 

and the continuation value of the option is made. The maximum of these two values is 

then retained. 

  Exhibit 7 shows the value of an American put with stochastic volatility parameter b 

= 1 and correlation between volatility and price being -0.5, −0.25, 0, 0.25, and 0.5. 

The bivariate binomial values are estimated with 500 time steps. 

  In Exhibit 7, we find that the values calculated by the bivaviate binomial tree 

method are close to the values given by Hilliard and Schwartz [1996]. Comparing 

with the values calculated by CRR binomial tree, we find that the CRR binomial tree 

(fixed volatility) overprices in-the-money puts when there is negative correlation as 

well as out-of-money when there is positive correlation. 
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Exhibit 7 
Effect of Correlation and Moneyness on Univariate and Bivariate American Put 
Prices 

ρSV = -0.50 ρSV = -0.25 S/X 
X=100 

CRR 
Binomial 

Tree 
Simulation

(H&S) 
Bivariate 

Simulation
(H&S) 

Bivariate 

0.80 20.000 20.000 20.0000 20.000 20.0000 
0.85 15.020 15.000 15.0000 15.000 15.0000 
0.90 10.668 10.429 10.3857 10.550 10.4973 
0.95 7.226 6.992 6.8253 7.081 6.8686 
1.00 4.649 4.566 4.3683 4.570 4.2006 
1.05 2.864 2.935 2.7325 2.865 2.6736 
1.10 1.675 1.872 1.6576 1.763 1.6107 
1.15 0.927 1.193 0.9961 1.076 0.8882 
1.20 0.500 0.765 0.6010 0.656 0.5251 

ρSV = 0 ρSV = 0.25 ρSV = 0.50 S/X 
X=100 Simulation

(H&S) 
Bivariate 

Simulation
(H&S) 

Bivariate 
Simulation

(H&S) 
Bivariate 

0.80 20.000 20.0000 20.000 20.0000 20.000 20.0000 
0.85 15.037 15.0000 15.092 15.0000 15.158 15.0241 
0.90 10.663 10.4441 10.767 10.4747 10.863 10.6131 
0.95 7.160 7.1005 7.228 7.0672 7.285 7.0577 
1.00 4.565 3.8554 4.549 4.1369 4.523 4.3217 
1.05 2.785 2.6226 2.689 2.4743 2.581 2.4127 
1.10 1.642 1.6898 1.504 1.5935 1.352 1.3547 
1.15 0.946 0.7821 0.806 0.8500 0.651 0.7843 
1.20 0.539 0.4703 0.419 0.4233 0.293 0.4088 
American put prices computed by the univariate and bivariate binomial models. Both 
models use 500 time steps. The volatility parameter of the volatility diffusion (dV) is 
b = 1.00. European puts are priced with the parameters: risk-free rate = 5%, time to 
maturity = 0.5 year, stock volatility = 20%, and exercise price = $100. For stochastic 

volatility models, the initial volatility, 0V , is equal to 20%, the stock volatility. There 

are no dividends. 
 
 
 
 

 - 20 -



Chapter 4 

Conclusions 

  In the paper by Hilliard and Schwartz [1996], they develop a stochastic volatility 

model that is simple and accurate. The basis of the model is a lattice formed from a 

possibly correlated volatility process and an underlying price process. These 

processes are then transformed to form a recombining bivariate binomial tree with 

attractive convergence properties. 

However, they do not seem to implement the method they develop. Instead, they 

only use simulation to get the prices. In this thesis, we use the model they develop 

and get the numbers by bivariate binomial tree method. The numbers show that the 

values given by the bivariate binomial tree method are almost identical to those in 

Hull and White [1987] and Hilliard and Schwartz [1996]. Unlike the Hull-White 

model, the methods in this thesis are also appropriate for non-zero correlations. In 

addition, they are effective for value American options. 
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Appendix A The Derivation of the Process of Y 

  The transformation of Y is defined by: 

ln( )VY
b

=  

21
2V VVdY Y dV Y dV∴ = +  

From Eq. (2.3): 

V VdV m dt bVdZ= + ,  

so we can get 

2 2 2dV b V dt=  

2 2
2

1 1 1( ) ( )(
2

       (   )   
2

V V

V
V

dY m dt bVdZ b V dt
bV bV
m b dt dZ
bV

)∴ = + + −

= − +
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Appendix B The Derivation of  hm

The transformation ( , )H H S V=  is defined by: 

1( , ) ( )
( )

S dSH H S V h V
f S

−= = ∫  

With ( )h V V α= , the derivatives are given by: 

2

2 2

1 ,  
( )

( ) ( ) (1 ),  

( )

S
S SS

V VV

SV

fH H
f S V f V

H V HH HVH H
V V

H
f S V V

α α

α

αα α

V
α α α

α

= = −

− − − − +
= − = =

= −

 

2 2

2 2 2 2

1 [ 2 ]
2

       ( ( ) ( ) ) ( )
1          [ ( ) 2 ( ) ]
2

       ( )

S V SS SV VV

S S S V V v

SS SV SV VV

S S V v h

dH H dS H dV H dS H dSdV H dV

H m dt f S h V dZ H m dt bVdZ

H f S V dt H bf S V V dt H b V dt

H f S V dZ H bVdZ m dt

α α

α

ρ

∴ = + + + +

= + + +

+ + +

= + +

            (B.1) 

2 2 2 2

2 2 2
2 2

2

1 1( ) ( )
2 2

( )1 1      [ ( ) ]
( ) 2 ( ) 2

1 1      (1 )
( ) 2 2

h S S V V SS SV SV VV

S V S SV

S V
S SV

m H m H m H f S V H bf S V V H b V

m m H f bf S V V H 2(1 )f S V b V
f S V V f V f S V V V

m m H f V H b b
f S V V

α α

α
α
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Appendix C The Derivation of  qm

  The transformation  is defined by: ( )Q Q H=

1( ) ( ) ln(     )SV hQ Q H b bHα α ρ−= = − + σ ,  

where 2 2 21 2h SVbH b Hσ α ρ α= − + . The derivatives are given by: 
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From Eq. (B.1): 

  . ( )h S S VdH m dt H f S V dZ H bVdZα= + + v

2 2
hσ=

So we can get 
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Appendix D The Derivation of H from Q (Proof of Eq. (2.5)) 

  The transformation of  is defined by: ( )Q Q H=

1 1( ) ln( ) ( ) ln( 1 2SV h SV SVQ b bH b bH bH b Hα α ρ σ α α ρ α ρ α− −= − + = − + − + 2 2 2 )  
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