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Abstract

The GARCH model has been successful in describing the volatility dynamics
of asset return series. However, tree-based GARCH option pricing algorithms
suffer from exponential running time, inaccuracy, or other problems. Lyuu
and Wu proved that the trinomial-tree option pricing algorithms of Ritchken
and Trevor (1999) and Cakici and Topyan (2000) explode exponentially when
the number of partitions per day, n, exceeds a threshold determined by the
GARCH parameters. The improved algorithm of Lyuu and Wu (2003) still
contains some problems. For example, the option prices suffer a trend to
deviate from true values as n increases. This thesis proposes a new method-
ology to further improve the Lyuu-Wu algorithm by addressing this problem.
We will confirm our algorithm’s efficiency and accuracy with numerical ex-
periments.

Keywords: GARCH model, trinomial tree, option pricing, cubic interpola-
tion
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Chapter 1

Introduction

Efficient numerical algorithms play a critical role in derivatives pricing be-
cause it is often imperative to obtain price first, particularly when prices
change quickly. In both theory and practice, computational efficiency is
measured by running time. The algorithms can be separated into two parts:
polynomial-time algorithms and exponential-time algorithms (Papadimitriou
(1995)). Because exponential function grows extremely fast, exponential-
time algorithms suffer from combinatorial explosion and should be avoided
wherever possible.

In the numerical pricing of derivatives, the continuous diffusion process
for the asset price is turned into a tree first. Derivatives are priced on the
tree by standard backward induction. The lognormal diffusion, for instance,
gives rise to the well-known CRR binomial tree of Cox, Ross, and Rubin-
stein (1979). Two critical features of the CRR tree, as well as its many
binomial and trinomial variants, stand out: It recombines and an N -period
tree contains only O(N2) node. As a result, simple derivatives such as vanilla
option, barrier options, and lookback options can be priced efficiently as sur-
veyed in Lyuu (2002). However, a polynomial-sized tree may still result in
an exponential-time pricing algorithm if the derivative’s payoff is complex.
The Asian option with a payoff depending on the arithmetic price average
fits the characterization. The large number of extra states needed by the
Asian option’s path-dependent feature make pricing on an N -period tree
take time exponential in N . Approximations are used for such derivatives
to regain efficiency. Of course, approximation algorithms must not sacrifice
accuracy. Important numerical techniques include the tree method with in-
terpolation such as Hull and White (1993), the PDE method such as Forsyth,
et al. (2002), and the linear-programming technique such as Dempster and
Richards (2000).

A more fundamental problem will emerge when the explosion arises from
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the model itself. If the model generates trees that do not recombine, pricing
becomes expensive even for the simplest of derivatives. For example, when
the volatility is not constant, such as the interest rate model of Cox, Ingersoll,
and Ross (1985), a brute-force discretization leads to exploding binomial
trees that do not recombine. The focus of this thesis, the huge influential
generalized autoregressive conditional heteroskedastic (GARCH) model, is
also bivariate.

Bollerslev (1986) and Taylor (1986) independently proposed the GARCH
process for modeling the stochastic volatility of asset return.Since then, the
model has been generalized and used extensively in the finance literature on
the modeling of financial time series; see Bollerslev et al. (1992) and Engle
and Patton (2001). As the model has received strong experimental support,
its application to option pricing draws a lot of attention. Duan (1995) was
the first to propose a GARCH option pricing model. The massive path de-
pendency of the pricing model initially favors Monte Carlo simulation over
trees. But the Monte Carlo estimate is probabilistic; furthermore, options
that can be exercised early, the so-called American options, can be accurately
priced only with simulation schemes that employ advanced techniques. The
appearance of the trinomial tree of Ritchken and Trevor (1999) addresses
these problems and makes a strong case for trees. Their algorithm is simple
and claims to be accurate and efficient. It is also general enough to work be-
yond GARCH models. GARCH option pricing techniques that are not based
on trees include the Markov chain approximation of Duan and Simonato
(2001), the Edgeworth tree approximation of Duan et al. (2002), and ana-
lytical approximations as in Heston and Nandi (2000). Among them, only
the Markov chain approximation approach is capable of handling American
options.

This thesis will build on the methodology of the Ritchken-Trevor algo-
rithm and its modified version by Cakici and Topyan (2000). From Lyuu and
Wu (2003), we know that the Ritchken-Trevor-Cakici-Topyan (RTCT) op-
tion pricing algorithm is efficient only if it is restricted to a small n. Raising n
to improve accuracy will quickly incur exponential slowdown. Worse, RTCT
cannot grow beyond a certain maturity when explosion happens, which makes
it useless for pricing derivatives with a longer maturity. Lyuu and Wu (2003)
propose a new trinomial-tree GARCH option pricing algorithm that solves
the above-mentioned weakness of RTCT. In the trinomial tree, the three
successor nodes of each node must be such that their stock prices match
the mean and variance of the model’s stock price asymptotically. The three
branches must carry valid branching probability. It is easy to know that the
higher the volatility the wider the nodes are spaced to meet the requirements.
The RTCT tree, like typical trinomial trees, takes a flat middle branch from
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each node as in Fig. 1.1(a). The new tree of Lyuu and Wu (2003) departs
from that by making the middle branch track the expected stock price as in
Fig. 1.1(b). They call it the mean-tracking (MT) algorithm. By tracking the
mean, the other two flanking branches are fanning out less in their attempt
to match the mean and variance of the next stock price. This in turn yields
more compact trees.

(a) (b) (c)

Figure 1.1: Trinomial tree.
(a) Three successor nodes follow each node. How widely the two flanking
branches fan out around the middle branch depends on the volatility. (b)
The middle branch may maintain a drift to minimize that width. (c) When
the vertical node spacing is a constant, the number of nodes at any time
t is 2t + 1. The total number of nodes of an N -period trinomial tree is∑N

t=0(2t + 1) = (N + 1)2 = O(N2), a quadratic growth in maturity N .

Although the MT tree addresses the weaknesses of RTCT, it is still no
problem free. When n increases, the computed option tend to drift from the
true option value of Monte Carlo simulation. In order to mitigate the speed
of this trend, we propose to use higher-order interpolation. Specifically, we
will adopt cubic interpolation in the logarithmic domain.

The thesis is organized as follow. The GARCH model is presented in
Section 2. Section 3 reviews the RTCT tree from which the MT tree derives.
Several differences between them will be pointed out in this section. Section
4 covers backward induction with interpolated volatilities, which is needed to
reduce the state space. In Section 5, we will present the MT option pricing
algorithm and our improved version. Section 6 compares the performance of
RTCT, the original MT tree and our improved MT tree. Section 7 concludes.
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Chapter 2

The GARCH Model

Let St denote the asset price at date t and ht the conditional volatility of
the return over the period [ t, t + 1 ] given the information at date t. Here,
“one day” is just a convenient term for any elapsed time ∆t. The following
risk-neutral process for the logarithmic price yt ≡ ln St is due to Duan (1995):

yt+1 = yt + r − h2
t

2
+ htεt+1 (2.1)

where

h2
t+1 = β0 + β1h

2
t + β2h

2
t (εt+1 − c)2, (2.2)

εt+1 ∼ N(0, 1) given information at date t,

r = daily riskless return,

c ≥ 0.

The model is bivariate as its state is described by (yt, h
2
t ). Updating rule

(2.2) for the squared volatility, due to Engle and Ng (1993), is also called
the nonlinear asymmetric GARCH or NGARCH for short. Other GARCH
models are surveyed in Duan (1997).

A positive c represents a negative correlation between the asset return
and the volatility. We assume β0, β1, β2 ≥ 0 to make the squared volatility
h2

t positive. We further impose β1 +β2 < 1 to make the model stationary. To
price option based on the continuous-state GARCH model, we turn to trees
with discrete states. But path dependence in the model will make the tree
exponentially. The trinomial-tree approximation by Ritchken and Trevor
relieves the explosion. Throughout the thesis, N will denote the maturity of
the tree in days, which is also the maturity of the option to be priced by the
tree.
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Chapter 3

The RTCT Tree

The RTCT trinomial tree approximates the continuous-state GARCH pro-
cess with discrete states as follow. Each state is represented as a node.
Partition a day into n periods. Three states follow each state (yt, h

2
t ) after a

period. As the trinomial tree recombines, 2n + 1 states at date t + 1 follow
each state at date t. Let γ = h0 and γn = γ/

√
n. (The MT algorithm of

Lyuu and Wu (2003) will choose a different γ.) The tree is laid over nodes
that are spaced by γn in their logarithmic prices as depicted in Fig. 3.1.
Consequently, the logarithmic price yt on each node equals y0 +kγn for some
integer k.

We next pick the jump size for state (yt, h
2
t ). The jump size determines

how much the state’s three successor states are spaced. As emphasized ear-
lier, the magnitude of the jump size depends on the volatility ht. By the
geometry of the tree, the jump size must be some integer multiple η of γn.
We call η the jump parameter. The jump parameter measures how much the
two flanking branches fan out around the middle branch. It must be large
enough for the three branches to match the mean and variance of yt+1. The
three nodes one period hence extend over 2η + 1 nodes (inclusively), and
inductively the 2n + 1 nodes from (yt, h

2
t ) at date t + 1 extend over 2nη + 1

nodes (inclusively). The larger the jump parameter η, the larger the tree
because it extends over more nodes. The middle branch of the RTCT tree
leaves the underlying asset’s price unchanged. In contrast, the MT tree of
Lyuu and Wu (2003) lets the middle branch track the mean of yt+1, i.e.,
yt + r − (h2

t /2). This idea will result in a smaller jump parameter η, thus
yielding a more compact tree. Figure 3.2 illustrates a 1-day trinomial tree
with each day partitioned into n = 3 periods.
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(yt, h
2
t )

6
?
γn

6

?

ηγn

-¾ 1 period

Figure 3.1: Jump parameter η and jump size ηγn.
The tree is laid over a lattice whose vertically adjacent nodes are spaced by
γn. The two flanking branches fan out around the middle branch to reach
the two nodes that are η nodes away from the center. Although 2(η − 1)
hollow nodes are not reached from the node on the left, they may be reached
from other nodes. Here η = 3.

The probabilities for the up, middle, and down branches are

pu =
h2

t

2η2γ2
+

r − (h2
t /2)

2ηγ
√

n
, (3.1)

pm = 1− h2
t

η2γ2
, (3.2)

pd =
h2

t

2η2γ2
− r − (h2

t /2)

2ηγ
√

n
. (3.3)

As the branching probabilities are picked to match the mean and variance
of yt+1 given (yt, h

2
t ) asymptotically, the tree converges to the continuous-

state model (2.1). From Eqs. (3.1)–(3.3), it is not hard to verify that valid
branching probabilities exist ( i.e., 0 ≤ pu, pm, pd ≤ 1) if and only if

| r − (h2
t /2) |

2ηγ
√

n
≤ h2

t

2η2γ2
≤ min

(
1− | r − (h2

t /2) |
2ηγ

√
n

,
1

2

)
. (3.4)

We can dispense with the intermediate nodes between to create a (2n+1)-
nomial tree (as shown in Fig. 3.3). The resulting model is multinomial with
2n+1 branches from any state (yt, h

2
t ). These 2n+1 successor nodes extend

over 2nη + 1 nodes (inclusively). This multinomial tree is the building block
of the RTCT tree.
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(yt, h
2
t )

6

?
ηγn

-¾1 period

-¾ 1 day

Figure 3.2: RTCT trinomial tree for daily logarithmic price yt for
the duration of one day.
A day is partitioned into n = 3 periods, and the jump size is ηγn. The 7
states at date t + 1 approximate the probability distribution of yt+1 given
(yt, h

2
t ).

Updating rule (2.2) must be modified to reflect the adoption of the
discrete-states tree model. State (yt, h

2
t ) at date t is now followed by state

(yt + `ηγn, h
2
t+1) at date t + 1, where

h2
t+1 = β0 + β1h

2
t + β2h

2
t (ε

′
t+1 − c)2, (3.5)

ε′t+1 =
`ηγn − (r − h2

t /2)

ht

,

` = 0,±1,±2, . . . ,±n.

We will call the resulting tree the full RTCT tree. For example,node A in
Fig. 3.3 contains state (yt+1, h

2
t+1), where

yt+1 = yt + (−2) ηγn,

h2
t+1 = β0 + β1h

2
t + β2h

2
t

{
(−2) ηγn − [ r − (h2

t /2) ]

h2
t

− c

}2

.

As part of a larger RTCT tree, node A may contain other states which reach
it from states other than (yt, h

2
t ).
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(yt, h
2
t )

A

6

?
ηγn

-¾ 1 day

Figure 3.3: RTCT multinomial tree for daily logarithmic price yt for
the duration of one day.
This heptanomial tree is the outcome of the trinomial tree in Fig. 3.2 after
removing its intraday nodes. Recall that n = 3. In general, there are 2nη+1
nodes at date t + 1 between the top and bottom nodes (inclusive) spaced
γn apart, but only 2n + 1 of which are reachable from (yt, h

2
t ) and drawn

above. The overwhelming majority of those 2n(η − 1) nodes not drawn are
reached from the root state.

From the underlying trinomial model, the transition from state (yt, h
2
t )

to state (yt + `ηγn, h2
t+1) happens with probability

P (`) ≡
∑

ju,jm,jd

n!

ju!jm!jd!
pju

u pjm
m pjd

d , (3.6)

where ju, jm, jd ≥ 0, n = ju + jm + jd, and ` = ju − jd. This seemingly
complicated formula for probability P (`) can be calculated very efficiently
with the simple generating-function technique in Lyuu (2002) as follows.
Note that

(pux + pm + pdx
−1)n =

n∑

`=−n

P (`) x`.

Therefore, we can multiply out (pux + pm + pdx
−1)n and then retrieve the

probability P (`) by reading off the coefficient of the power of x. The com-
putation takes O(n2) steps. Compared with the complex formula (5.2), the
generating function approach is straightforward and stable.
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As volatility ht changes through time, we may have to pick different jump
parameter η for different states so that all branching probability pu, pm, and
pd lie between 0 and 1. This entails varying jump sizes. As the necessary
requirement pm ≥ 0 implies

η ≥ ht/γ, (3.7)

RTCT goes through

η = dht/γe, dht/γe+ 1, dht/γe+ 2, . . . (3.8)

until valid probabilities are obtained or until their nonexistence is confirmed
by inequalities (3.4). The latter case means the tree cannot grow further.
When h2

t grows exponentially, the resulting tree must do likewise.
Every node at date t on the tree holds a different logarithmic price yt.

However, more than one path from the root state (y0, h
2
0) may lead to the

same node, each yielding a different squared volatility h2
t . The number of

possible values of h2
t at a node thus equals the number of paths reaching the

node. Each h2
t picks its own jump parameter η. Figure 3.4 uses n = 1 to

illustrate a three-day tree model. Node A and B each have one h2
t , whereas

node C has two. The h2
t at nodes A and B picks the same jump parameter

η = 2. Node C could pick multiple jump parameter η = 1, 2. The overall tree
structure will be irregular because of the varying jump parameter. Hollow
node in Fig. 3.4 are not occupied because they are unreachable from the root
state (y0, h

2
0). If these squared volatilities pick different jump parameters such

as those at node C and D, more than three branches will emanate from the
node. More branches makes more nodes reachable.
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(y0, h
2
0)

A

B

C

D

6

?
γn = γ1

-¾ 3 days

Figure 3.4: Geometry of a 3-day RTCT tree.
A day is partitioned into n = 1 period. Nodes A and B have a jump
parameter of 2. Nodes C with two h2

t and D with three h2
t have two jump

parameters: 1 and 2. All other nodes have a jump parameter of 1. Hollow
nodes are not reachable from the root state (y0, h

2
0).
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Chapter 4

Interpolated Volatilities and
Backward Induction

The number of possible volatilities ht at a node equals the number of paths
reaching it. Any algorithm that keeps all of these volatilities cannot be ef-
ficient as their count is exponential. Therefore, the full RTCT tree must be
approximated. The standard approximation methodology by Hull and White
(1993) and Ritchken, Sankarasubramanian, Vijh (1993) is adopted by both
RTCT and MT. The RTCT tree keeps only the maximum volatility hmax

and the minimum volatility hmin at each node. Then it creates K−2 volatil-
ities between hmin and hmax. We call these K − 2 volatilities interpolated
volatilities because they are not the results of actually applying updating
rule (3.5). Instead, they are artificial volatilities generated via interpolation.
Then there are K volatilities per node.

hmax ...
ht ...

hmin

...
ht+1

...

-

Figure 4.1: Case where maximum volatility follows an interpolated
volatility.
The maximum volatility ht+1 at the node on the right follows interpolated
volatility ht.
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At tree-building, RT calculates the hmin and hmax with these interpolated
volatilities taken into consideration. Every node at date i generates 2n + 1
volatilities for each of its K volatilities via the updating rule. The number
of volatilities generated per node is K(2n + 1). These volatilities at date i
with their associated branches determine the hmin and hmax of every node
at date i + 1. For RT, hmin and hmax may be artificial if they might be the
results of applying updating rule to interpolated volatilities of previous date
(see Fig. 4.1 for illustration). On the other hand, CT takes a different route
to calculate hmin and hmax at node. It calculates hmin and hmax in the tree-
building process without these interpolated volatilities. Every node at date
i generates 2n+1 volatilities for each of its two volatilities hmin and hmax via
the updating rule. The number of volatilities generated per node is hence
only 2(2n + 1). These volatilities at date i with their associated branches
determine the hmin and hmax of every node at date i + 1. But both CT and
RT use interpolated volatilities in backward induction.

In RTCT, the K squared volatilities at a node are equally spaced between
h2

min and h2
max:

h2
min + j

h2
max − h2

min

K − 1
, j = 0, 1, 2, . . . , K − 1.

It is called the linear interpolation scheme. A different distribution will
be used by MT algorithm in the tree-building process. To be specific, the
K logarithms of squared volatilities are equally spaced between ln h2

min and
ln h2

max in MT; they are

exp

[
ln h2

min + j
ln h2

max − ln h2
min

K − 1

]
, j = 0, 1, 2, . . . , K − 1.

Smaller volatilities are thus sampled more frequently than lager volatilities.
We call it the log-linear interpolation scheme.

After the tree is built, backward induction commences. For the volatility
ht+1 following state (yt, h

2
t ) via updating rule (3.5), RTCT will find the two

volatilities that bracket ht+1. The option price corresponding to ht+1 is then
interpolated linearly from the option price corresponding to the bracketing
volatilities. Figure 4.2 illustrates this procedure for one branch. After the
option price from all 2n + 1 branches are available, the option price of state
(yt, h

2
t ) is calculated as the average discounted value weighted by the branch-

ing probabilities. The above approximation is due to Hull and White (1993)
and Ritchken, Sandkarasubramanian, and Vijh (1993).

CT has a serious problem that is not shared by RT. CT maintains only
hmin and hmax at each node in growing the tree. The K − 2 interpolated
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hmax ...
ht ...

hmin

¾

...
ht+1

...

Figure 4.2: Backward induction.
Volatility ht+1 follows ht by the updating rule. Because ht+1 does not
match any interpolated volatility, its corresponding option value is found by
interpolating from the two option values whose volatilities bracket it.

volatilities at each node are not involved in the tree-building process. Only in
backward induction are these interpolated volatilities added to approximate
full RTCT tree. It is therefore possible that an interpolated volatility’s suc-
cessor volatility reaches a node which is not reached during the tree-building
process and thus has no option price at all. See Fig. 4.2 for illustration. If
ht+1 lies in a node not reached at tree-building, the node will not have option
values at all. Then backward induction cannot continue. Such rare situations
do arise when n and N are both large. In contrast, RT takes the interpolated
volatilities in building the tree and in backward induction. So RT does not
have such a problem. MT follows RT in using all K volatilities (including
hmin, hmax, and K− 2 interpolated volatilities) of a node in growing the tree.

It is common practice to arise accuracy by increasing n. Unfortunately,
the largest ht grows exponentially in t when n exceeds the threshold β1+β2 >
1 as shown by Lyuu and Wu (2003). When this happens, the value of η will
grows exponentially by relation (3.7). And when this happens, the RTCT
tree will explode. And when the RTCT tree explodes, it cannot grow beyond
a certain maturity.
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Chapter 5

The Mean-Tracking (MT) Tree

The RTCT tree has at least four weaknesses. First, it explodes exponentially
when n exceeds a threshold. Second, it is not known whether there is a simple
formula for the threshold n∗ so that the RTCT tree escapes explosion as long
as n ≤ n∗. Third, when explosion happens, the tree is cut short, making it
unable to price derivatives with a longer maturity date. Fourth, option prices
may fail to converge as n increases. The MT tree makes two changes to the
RTCT tree. The first is to replace linear interpolation scheme with log-linear
interpolation scheme. This addresses the convergence problem mentioned
earlier. The second is to let the middle branch of multinomial tree track the
mean of yt+1. This addresses the explosion problem and its consequence of
short maturity. This chapter will discuss variations of the MT tree to further
enhance its performance.

5.1 Volatility Interpolation Schemes

The distribution of the volatilities plays an important role in pricing accuracy.
RTCT assumes that the distribution is uniform: Interpolated volatilities are
equally spaced between hmin and hmax. It has been found that the actual
distribution is closer to a lognormal distribution than a uniform distribution
[25]. That means there are more interpolated volatilities located at lower
values than at higher values. This is the reason for MT to adopt the log-linear
interpolation scheme, in which the logarithmic volatilities are equally spaced.
The log-linear scheme is also used by the Markov chain approximation of
Duan and Simonato (2001) for the same numerical considerations. Similar
findings in the case of the Asian option exist. For example, Dai (2004) proved
that linear interpolation schemes result in overestimates, and Forsyth, et al.
(2002) demonstrated that linear interpolation schemes may not converge to
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the correct price.

5.2 Tree Building

At date t, let node A be the node closest to the mean of yt+1 given (yt, h
2
t ),

which equals yt + r − (h2
t /2). For convenience, we use µ to denote this

conditional mean minus the current logarithmic price:

µ ≡ r − h2
t

2

(see Fig. 5.1). By the geometry of the tree, node A’s logarithmic price equals
yt + aγn for some integer a. The criterion by which node A is chosen ensures
that

| aγn − µ | ≤ γn

2
. (5.1)

��γ

�

�γ

1 day

��� ��� 	


µ

�

Figure 5.1: The next middle node via mean tracking.
The cross identifies the true mean of yt+1. Two nodes, A and B, bracket
it. Between them, node A has a logarithmic price closer to the mean. The
number aγn denotes the difference between yt and node A’s logarithmic
price.
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To create the desired multinomial tree, make the middle branch of the
(2n + 1)-nomial tree line up with node A as in Fig. 5.2. Although a node
reaches only 2n + 1 nodes after day, the top and bottom node extend over

2nη + 1 (5.2)

nodes as in RTCT. The probabilities for the upward, middle, and downward
branches are

pu =
nh2

t + (aγn − µ)2

2n2η2γ2
n

− aγn − µ

2nηγn

,

pm = 1− nh2
t + (aγn − µ)2

n2η2γ2
n

,

pd =
nh2

t + (aγn − µ)2

2n2η2γ2
n

+
aγn − µ

2nηγn

.

As they match the mean and variance of the GARCH process at date t + 1
asymptotically, convergence in the limit is guaranteed. State (yt, h

2
t ) at date

t is followed by state (yt + `ηγn, h2
t+1) at date t + 1, where

h2
t+1 = β0 + β1h

2
t + β2h

2
t (ε

′′
t+1 − c)2, (5.3)

ε′′t+1 =
`ηγn + aγn − (r − h2

t /2)

ht

,

` = 0,±1,±2, . . . ,±n.

From the underlying trinomial model, this transition occurs with probability

∑
ju,jm,jd

n!

ju!jm!jd!
pju

u pjm
m pjd

d ,

where ju, jm, jd ≥ 0, n = ju + jm + jd, and ` = ju − jd.
The conditions for the probabilities to lie within 0 and 1, i.e., 0 ≤

pu, pm, pd ≤ 1, are

| aγn − µ |
2nηγn

≤ nh2
t + (aγn − µ)2

2n2η2γ2
n

, (5.4)

nh2
t + (aγn − µ)2

2n2η2γ2
n

≤ 1

2
, (5.5)

nh2
t + (aγn − µ)2

2n2η2γ2
n

≤ 1− | aγn − µ |
2nηγn

. (5.6)

Inequalities (5.4) -(5.5) are equivalent to
√

nh2
t + (aγn − µ)2

nγn

≤ η ≤ nh2
t + (aγn − µ)2

nγn| aγn − µ | (5.7)
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Figure 5.2: The MT multinomial tree for daily logarithmic price yt

for a duration of one day.
A day is partitioned into n = 3 periods, and the three jump sizes in each
period are (aγn/n) + ηγn (upward), aγn/n (middle), and (aγn/n) − ηγn

(downward). The central branch of the tree lines up with node A, the node
closest to the mean of yt+1 as stated in Fig. 5.1. The solid nodes are actually
used in pricing, but the gray nodes are for illustration only. This heptanomial
MT tree should be compared with the RTCT counterpart in Fig. 3.3.

Inequalities (5.1) and (5.5) together imply inequality (5.6) because

nh2
t + (aγn − µ)2

2n2η2γ2
n

+
|aγn − µ|
2nηγn

≤ 1

2
+

1

4nη
≤ 1.

Hence the probabilities are valid if and only if the much simpler inequalities
(5.7) hold.

MT can avoid the short-maturity problem of RTCT. Let H2
min ≡

min(h2
0, β0/(1 − β1)) to make H2

min ≤ h2
t for t ≥ 0. Now, a valid integer

η can always be found regardless of the value of n as long as γn is less than
some constant. More precisely, interval (5.7) contains positive integers for
the jump parameter η to take its value in when

γ2
n ≤ H2

min. (5.8)
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With the existence of η guaranteed, MT will never be cut short. Rather than
searching for an η to satisfy inequalities (5.7), MT simply sets

η =

⌈√
nh2

t + (aγn − µ)2

nγn

⌉
(5.9)

although other choices are clearly possible, this particular choice is amenable
to the analysis on the size of the MT tree.

We proceed to choose γ, hence γn as well because γn = γ/
√

n. If γ ≤
Hmin, the γn satisfies inequality (5.8) for all n. A smaller γ generally leads
to large trees, hence longer running times. On the other hand, a small γ
is expected to result in better accuracy because of finer gain. To strike an
overall balance between accuracy and convergence speed, we set γ = Hmin/2;
thus

γn =
Hmin

2
√

n
(5.10)

Now all the parameters of MT have been specified.

5.3 Backward Induction

Unlike RTCT, MT uses the log-linear interpolation scheme in backward in-
duction, in which the K logarithms of squared volatilities are equally spaced
between ln h2

min and ln h2
max:

exp

[
ln h2

min + j
ln h2

max − ln h2
min

K − 1

]
, j = 0, 1, 2, . . . , K − 1. (5.11)

Besides the simple log-linear scheme, MT can also adopt cubic interpolation
over ln h2

t . Linear interpolation is easy and quick, but it may not be very pre-
cise. For linear interpolation, we just fit a straight line between two points,
thus it will not catch any convexity/concavity of the underlying curve. We
can usually reduce these errors by adding information from the points out-
side the two-point interval such as cubic interpolation. Moreover, we take
the divided difference table method for cubic interpolation to maintain effi-
ciency. It is faster than Lagrange interpolation because the computed node
can be reused. The complexity of the divided difference table method is only
O(n2), where n is the number of nodes which the interpolation uses. For
convenience, we call MT using log-cubic interpolation MT-C and call MT
using log-linear interpolation MT-LL. MT-C is similar to log-linear interpo-
lation. The only difference is the way the volatilities are partitioned. In
log-linear interpolation, the K − 2 interpolated volatilities are linearly and
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Figure 5.3: Log-cubic interpolation.
Volatility ht+1 follows ht by the updating rule. Because ht+1 does not
match any interpolated volatility, its corresponding option value is found by
interpolating from the four option values whose volatilities bracket it.

equally spaced between ln h2
min and ln h2

max (see Eq. (5.11)). Then for the
volatility ht+1 following state (yt, h

2
t ) via updating rule (5.3), we find two

volatilities from these K logarithmic volatilities that bracket ht+1. The op-
tion price corresponding to ht+1 is interpolated log-linearly from the option
prices corresponding to the bracketing volatilities. In MT-C, we need four
volatilities to get the estimated option price at ht+1. Let the two volatilities
bracketing ht+1 be h1 and h2 with h1 ≤ h2. Besides h1 and h2, we need the
volatility right below h1 and the volatility right above h2. The procedure is
shown in Fig. 5.3. The option value corresponding to ht+1 is the result of
log-cubic interpolation from these four interpolated volatilities. Under some
circumstances, we cannot find four volatilities for use in cubic interpolation,
such as when h1 = hmin or h2 = hmax. When this happens, we replace
log-cubic interpolation with log-linear interpolation.
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Chapter 6

Comparison between MT-LL,
MT-C and RTCT

In this section, we will investigate the performance of MT-C and compare
it with other algorithms. For every n, we find that CT deviates from the
results of Monte Carlo simulation (see Table 2). MT-C attains the same level
of accuracy as MT-LL because the results produced by both are within the
95% confidence interval of Monte Carlo simulation of the full MT tree (5.3).
Furthermore, MT-C provides option values close to the true option prices
even with small n. Figure 6.1 is generated from Table 2. In Figure 6.1, CT
deviates from the true option and the speed of downward trend accelerates
when n increases. Compared with CT, the downward trend of MT-LL or
MT-C is less pronounced. When the maturity is short, such as 2 or 5 days,
the option prices of MT-C are the same as those produced by MT-LL. When
n and/or N increase, the option values start to decrease. But the downward
trend of MT-C is less than that of MT-LL as illustrated in Fig. 6.1. Hence
MT-C attains better convergence than MT-LL.

All numerical data up to now assume r = c = 0. In Table 3, we review
MT-C’s accuracy under the GARCH option pricing model with nonzero r
and c: r = 5% (annual) and c = 0.5 from Duan and Simonato (2001).
Although a few of the computed option prices are outsides the 95% confidence
interval, all option prices of MT-C are still close to the Monte Carlo estimates.
Furthermore, they are as good as the the best computed option values in
Table 3 of Duan and Simonato (2001) that are allowed the most computation
times. So MT-C maintains the same accuracy as MT-LL in pricing options.
From Tables 3 and 4, MT-C continues to enjoy better convergence than MT-
LL when r and c are both nonzero.
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N =10 days
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Figure 6.1: Select option prices from Table 2
. MC lower bound equals ∞L; MC upper bound equals ∞U .
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Chapter 7

Conclusions

GARCH option pricing is difficult because of the GARCH model’s bivariate
and path-dependent character. The Ritchken-Trevor-Cakici-Topyan (RTCT)
GARCH option pricing algorithm is inefficient as RTCT trees explode. Ca-
kici and Topyan (2000) claimed that RTCT is accurate with n = 1 for vanilla
options. Unfortunately, numerical data has demonstrated that both inaccu-
racy and explosion can result with such trees [25]. RTCT has been modified
by Lyuu and Wu to obtain the mean-tracking (MT) tree. The MT tree is
accurate and efficient when n does not exceed the simple threshold. This is
the fist tree-based GARCH option pricing algorithm that will not explode if
certain conditions are met. In the thesis, we modify MT to accelerate the
convergence. We adopt log-cubic interpolation in backward induction. The
methodology not only mitigates the trend to drift away from the true value
but also does not lose accuracy. So MT-C, like MT proposed by Lyuu and
Wu (2003), is an efficient algorithm for derivatives pricing under the GARCH
option pricing model.
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K 2 10 20 50 100 200
Option price 4.2301 4.2365 4.2267 4.2274 4.2265 4.2268

∞L 4.2714
∞U 4.3087

Table 1: Case where CT fails.
K denotes the number of volatilities per node. The option is a European
call with a strike price of 100 and a maturity of 100 days. ∞L and ∞U
form the 95% confidence interval for the true option price based on Monte
Carlo simulation of the continuous-state model (2.2) with 500,000 paths.
The parameters are S0 = 100, r = 0, h2

0 = 0.0001096, γ = h0 = 0.010469,
β0 = 0.000007, β1 = 0.9, β2 = 0.04, n = 1, and c = 0.

29



n CT MT-LL MT-C CT MT-LL MT-C CT MT-LL MT-C CT MT-LL MT-C
1 0.5888 0.5626 0.5626 0.9093* 0.9278 0.9278 1.3116 1.3126 1.3126 1.8565 1.8608 1.8608
2 0.5674 0.5799 0.5799 0.9091 0.9246 0.9246 1.3020 1.3107 1.3107 1.8511 1.8565 1.8565
3 0.5736 0.5833 0.5833 0.9284 0.9253 0.9253 1.3103 1.3104 1.3104 1.8532 1.8553 1.8555
4 0.5742 0.5845 0.5845 0.9214 0.9256 0.9256 1.3081 1.3103 1.3103 1.8492 1.8547 1.8549
5 0.5836 0.5851 0.5851 0.9273 0.9258 0.9258 1.3095 1.3102 1.3102 1.8454 1.8541 1.8545

10 0.5839 0.5864 0.5864 0.9257 0.9263 0.9263 1.3059 1.3099 1.3099
25 0.5877 0.5872 0.5872 0.9257 0.9265 0.9266 1.2867 1.3093 1.3095
50 0.5874 0.5874 0.5874 0.9238 0.9266 0.9266

100 0.5876 0.5876 0.5876 0.9202 0.9265 0.9266
150 0.5876 0.5876 0.5876 0.9189 0.9265 0.9265
�

L
�

U

n CT MT-LL MT-C CT MT-LL MT-C CT MT-LL MT-C
1 2.9415 2.9468 2.9469 3.6043 3.6105 3.6106 4.1647 4.1698 4.1715
2 2.9345 2.9410 2.9413 3.5976 3.6045 3.6052 4.1570 4.1640 4.1661
3 2.9193 2.9383 2.9397 3.5567 3.6009 3.6020
4 2.8784 2.9362 2.9372
�

L
�

U

1.3170 1.8620

4.1420

0.5920 0.9310

2.9440 4.1790
3.5730
3.6050

2.9180

50 75 100

Maturity of option (days)
2 5

0.5870 0.9230

10 20

1.3060 1.8460

Table 2: Comparison between CT, MT-LL, and MT-C.
∞DL and ∞DU form the 95% confidence interval for the true option price
based on Monte Carlo simulation of the full MT tree (5.3) with 500,000 paths.
None of the option prices of MT-LL and MT-C lie outside this confidence
interval. ∞L and ∞U form the 95% confidence interval for the true option
price based on Monte Carlo simulation of the continuous-state model (2.2)
with 500,000 paths. The parameters are S0 = 100, r = 0, h2

0 = 0.0001096,
γ = h0 = 0.010469, β0 = 0.000006575, β1 = 0.9, β2 = 0.04, K = 20, and
c = 0.
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n 5 10 20 50 100 5 10 20 50 100 5 10 20 50 100
1 4.8283 4.8276 4.8275 4.8275 4.8275 1.1030 1.1042 1.1044 1.1045 1.1045 0.0748 0.0745 0.0745 0.0744 0.0744
2 4.8374 4.8343 4.8340 4.8340 4.8340 1.0878 1.0949 1.0956 1.0955 1.0955 0.0783 0.0763 0.0760 0.0760 0.0760
3 4.8433 4.8373 4.8360 4.8359 4.8359 1.0729 1.0895 1.0925 1.0927 1.0927 0.0816 0.0775 0.0765 0.0765 0.0765
�L
�U
DS

n 5 10 20 50 100 5 10 20 50 100 5 10 20 50 100
1 4.9499 4.9517 4.9518 4.9520 4.9520 1.8306 1.8395 1.8397 1.8400   1.8400 0.4203 0.4217 0.4216 0.4217 0.4217
�L
�U
DS

0.4185
1.8197 0.40364.955

4.9587 1.8232

Maturity of option (days) = 30 
X=55 X=45

K

K
X=50

K

X=50 X=45X=55

4.8412 1.0898 0.0792
4.8377 1.0884 0.0715

K K

K

4.9505 1.8162 0.4131

Maturity of option (days) = 90 

4.8364 1.0862 0.0764

Table 3: Accuracy of MT-C with nonzero r and c.
The option is a European put with a strike price of X. ∞L and ∞U form the
95% confidence interval for the true option price based on Monte Carlo data
from Duan and Simonato (2001). DS lists the option prices from Duan and
Simonato (2001) given the most computational efforts. The table does not
compute prices for n > 1 when the maturity exceeds 30 days because the
tree explodes. All parameters are from Duan and Simonato (2001): S0 = 50,
r = 5% (annual), h2

0 = 0.0001096, β0 = 0.00001, β1 = 0.8, β2 = 0.1, and
c = 0.5.
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n 10 20 50 100 10 20 50 100 10 20 50 100
1 4.8278 4.8576 4.8275 4.8275 1.1038 1.1043 1.1045 1.1045 0.0746 0.0745 0.0744 0.0744
2 4.8350 4.8342 4.8340 4.8340 1.0931 1.0950 1.0955 1.0955 0.0767 0.0762 0.0761 0.0760
3 4.8386 4.8366 4.8360 4.8359 1.0864 1.0912 1.0926 1.0927 0.0780 0.0769 0.0765 0.0765
�

L
�

U
DS

n 10 20 50 100 10 20 50 100 10 20 50 100
1 4.9513 4.9519 4.9520 4.9520 1.8361 1.8393 1.8398 1.8399 0.4210 0.4215 0.4216 0.4216
�

L
�

U
DS 4.9550 1.8197 0.4036

Maturity of option (days) = 30 
X=55 X=50 X=45

K K K

4.8364 1.0862 0.0764

4.8412 1.0898 0.0792

Maturity of option (days) = 90 

0.07151.08844.8377

X=55 X=50 X=45
K K K

4.9505 1.8162 0.4131

4.9587 1.8232 0.4185

Table 4: Accuracy of MT-LL with nonzero r and c.
All parameter are the same as Table 3.
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