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Abstract 

     Cheuk and Vorst’s method [1996a] can be applied to price barrier options using 

one-factor interest rate models when recombining trees are available. For the 

Hull-White model, barriers on bonds or swap rates are transformed to time-dependent 

barriers on the short rate and we use a time-dependent shift to position the tree 

optimally with respect to the barrier. Comparison with barrier options on bonds or 

swaps when the observation frequency is discrete confirms that the method is faster 

than the Monte Carlo method. Unlike other methods which are only applicable in the 

continuously observed case, the lattice methods can be used in both the continuously 

and discretely observed cases. We illustrate the methodology by applying it to value 

single-barrier swaption and single-barrier bond options. Moreover, we extend Cheuk 

and Vorst’s idea [1996b] to double-barrier swaption pricing. 
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Chapter 1 
Introduction 
1.1 Setting the Ground 

     The financial world has witnessed an explosive growth in the trading of 

derivative securities since the opening of the first options exchange in Chicago in 

1973. The growth in derivatives markets has not only been that of volume but also of 

complexity. Many of these more complex derivative contracts are not exchange traded, 

but are traded “over-the-counter.” Over-the-counter contracts provide tailor made 

products to reduce financial risks for clients.  

     Interest rate derivatives are instruments whose payoffs are dependent in some 

way on the level of interest rates. In the 1980s and 1990s, the volume of trading in 

interest rate derivatives in both the over-the-counter and exchange-traded markets 

increased very quickly. Interest rate derivatives have become most popular products in 

all derivatives markets. Exhibits 1 and 3 show the amount of interest rate derivatives 

in the OTC and exchange-traded markets (also plotted in Exhibits 2 and 4). Moreover, 

many new products have been developed to meet particular needs of end-users. A key 

challenge for derivatives traders is to find better and more robust procedures for 

pricing and hedging these contracts. 
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EXHIBIT 1  

OTC DERIVATIVES: AMOUNT OUTSTANDING 

Global market, by instruments, in billion of US dollars 

 1998 1999 2000 2001 2002 2003 

Interest rate derivatives 50015 60091 64668 77568 101658 141991

Forward rate agreements 5756 6775 6423 7737 8792 10769

Interest rate swaps 36262 43936 48768 58897 79120 111209

Interest options 7997 9380 9476 10933 13746 20012

Other derivatives 30303 28111 30531 33610 40021 55186

Source: Bank of International Settlements. 

EXHIBIT 2  

OTC DERIVATIVES GRAPH 
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EXHIBIT 3  

EXCHANGE-TRADED DERIVATIVES: AMOUNTS OUTSTANDING 

Notional principal in billions of US dollars  

 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003

Interest rate derivatives 7304 8431 8618 9257 11227 12655 11681 12642 21758 21711 33933

Interest rate futures 4943 5808 5876 5979 7587 8031 7925 7908 9265 9951 13132

Interest rate options 2361 2623 2742 3278 3640 4624 3756 4734 12493 11760 20801

Other derivatives 453 467 664 761 1180 1280 1909 1616 2002 2099 2818

Source: Bank of International Settlements. 

EXHIBIT 4  

EXCHANGE-TRADED DERIVATIVES GRAPH 

 
     Interest rate derivatives are more difficult to value than equity and foreign 
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exchange derivatives. Reasons include 

1. The behavior of interest rate is harder to capture than that of a stock price or 

an exchange rate, so many models are introduced to approach it. 

2. For the valuation of many products, it is necessary to develop a model 

describing the behavior of the entire zero-coupon yield curve, but it is not 

easy to depict the curve exactly. 

3. The volatilities of different points on the yield curve are different. 

4. Interest rates are considered as variables for discounting as well as for 

defining the payoff form the derivative. 

     In this thesis we focus on interest rate options with barriers. Barrier options are 

options where the payoff depends on whether the underlying asset’s price/level 

reaches a certain threshold during a certain period of time. A number of different types 

of barrier options are regularly traded in the over-the counter market. They are 

attractive to some market participants because they are less expensive than the 

standard options. These barrier options can be classified as either knock-out or 

knock-in types. A knock-out option ceases to exist when the underlying asset’s price 

hits a certain barrier; a knock-in option comes into existence only when the 

underlying asset’s price or level hits a barrier. 

      Interest rate barrier options usually involve one or two time-dependent 

boundaries affecting the option prices, and exact closed-form solutions are not 

available for most interest rate models.  

 It is well-known that for barrier options, the positions of nodes in the tree with 

respect to the barrier value are critical. Cheuk and Vorst [1996b] proposed a trinomial 

tree model for barrier options. It uses a time-dependent shift to position the tree 

optimally with respect to the barrier. The model they constructed is flexible and can 

be used to price options with time-varying barrier structures such as interest rate 
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derivatives. 

     For now, we will focus our attention on down-and-out swaptions and down-and 

-out bond options. The single-barrier down-and-out swaption and the single-barrier 

down-and-out bond options are priced using the methodology of Cheuk and Vorst 

[1996a]. The double-barrier down-and-out swaption is priced by extending the idea of 

Cheuk and Vorst [1996a]. Other interest rate barrier options can be priced using 

similar ideas. 

 

 

1.2 Survey of Literature 

     Valuation approaches have largely focused on equity barrier options, where in 

certain instances analytical expressions may be available. Works on interest rate 

barrier options pricing are relatively rare. Accurate and efficient valuation techniques 

are required since barrier options have become very popular in recent years as useful 

hedging instruments for risk management strategies.  

     Several researches address the pricing of interest rate barrier options. Cheuk 

and Vorst [1996a] extended Ritchken’s method by introducing a time-dependent shift 

in trinomial lattice. The Hull-White model is selected and single-barrier swaptions are 

priced in both the continuously and discretely observed cases. Kuan and Webber 

[2003] use one-factor interest rate models including the Hull-White model and the 

swap market model to value barrier knock-in bond options and barrier knock-in 

swaptions. A numerical integration method is used to price interest barrier options 

when the transition distribution function of underlying rate is known but explicit 

pricing formulas are not available. Although the convergence is fast, the drawback is 

that the valuation only can be applied to the continuously observed case. Monte Carlo 
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simulation is known for its high flexibility. However, in the case of barrier option it 

produces biased results for options, which depend on the continuously monitored 

sample path of some stochastic variable. Barone-Adesi and Sorwar [2003] price 

continuously observed barrier bond options in the corrected Monte-Carlo simulation 

of the CKLS diffusion process: 

                                             (1.1) ( )dr ar dt r dzγθ σ= − +

Using the results of Baldi et al [1999], they set up a Monte-Carlo scheme to value 

interest rate barrier options which takes into account the possibility of breaching the 

barrier between successive intervals of time. It has enough flexibility to price all kinds 

of continuously observed interest rate barrier options. This procedure then provides an 

almost unbiased Monte Carlo estimator. However, the speed of convergence is still 

very slow and need many paths of the underlying interest rate process to obtain 

accurate results. 

 

1.3 Thesis Structure 

The remainder of this thesis will be organized as follows. Chapter 2 reviews the 

Black’s model pricing technologies and explains how to calibrate Hull-White model 

with the Black’s model consistently. Chapter 3 covers the pricing of single-barrier 

swaptions and bond options. The pricing of double-barrier swaptions is presented in 

Chapter 4. Chapter 5 concludes. 
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Chapter 2 
Preliminaries 
     First, define the following variables: 

0T : Current time, 

T : Time to maturity of the option, 

( ),P t T : Price at time  of a zero-coupon bond paying $1 at timeT , t

( ,y t T ) : the (T )-period interest rate (annualized) at time .  t− t

2.1 General Framework 

Vanilla European contingent claims such as caps, floors, bond options, and 

swaptions are priced correctly using the simple model developed by Black [1973]. 

This model makes several simplifying assumptions which allow closed-form 

valuation formulae to be possible. Svoboda [2004] referred the class of vanilla 

contingent claims as first-generation products. 

     Second- and third-generation derivatives, such as path-dependent and barrier 

options, provide exposure to the relative levels and correlated movements of various 

portions of the yield curve, and the market prices of these first-generation instruments 

are taken as given. This does not necessarily imply a belief in the intrinsic correctness 

of the Black model. Distributional assumptions which are not included in the Black 

model, such as mean reverting and skewness, are incorporated by adjusting the 

implied volatility input. 

     More sophisticated models allow the pricing of instruments dependent on the 

changing level and slope of the yield curve. A crucial factor is that these models must 

price the exotic derivatives in a manner that is consistent with the pricing of vanilla 

instruments. When assessing the correctness of any more sophisticated model, its 
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ability to reproduce the Black prices of vanilla instruments is vital. Svoboda [2004] 

remarked that it is not a model’s a priori assumptions but rather the correctness of its 

hedging performance that plays a pivotal role in its market acceptance. 

     The calibration of a model is an integral part of its specification. So the 

usefulness of a model cannot be assessed without considering the reliability and 

robustness of any parameter estimation scheme. 

 

2.2 The Standard Market Models 
2.2.1 Black’s Model  
     We will show how the Black’s model for valuing vanilla European interest rate 

options is derived. The market price will be given, and the parameters of more 

complex models can be valued by minimizing deviations from market prices.  

Black’s model is used to value options on foreign exchanges, options on indices, 

and options on future contracts. Traders have become very comfortable with both the 

lognormal assumption that underlies the model and the volatility measure that 

describes uncertainty. It is no surprise that there have been attempts to extend the 

model so that it covers interest rate derivatives.  

     In the following we will discuss three of the most popular interest rate 

derivatives (bond options, interest rate caps, and swap options) and describe how the 

lognormal assumption underlying the Black-Scholes model can be used to value these 

instruments. Now we use Black’s model to price European options. 

Consider a European call option  on a variable whose value is . Define g V

T : Time to maturity of the option, 

F : Forward price of  for a contract with maturity , V T

0F : Value of  F  at time , 0T

K : Strike price of the option, 
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TV : Value of  at time T , V

σ : Volatility of . F

Black’s model calculates the expected payoff from the option assuming: 

1.  has a lognormal distribution with the standard deviation of  equal to TV ln TV

Tσ . 

2. The expected value of  is . TV 0F

3. The world is forward risk neutral with respect to ( ),P t T ; i.e., ( ),
tg
P t T  is a 

martingale in the world.  

So the value of the option at time  is T ( )max ,0TV K−  and the lognormal 

assumption implies that the expected payoff is 

                    ( ) ( ) ( )1T 2E V N d KN d− ,                         (2.1)   

where ( )TE V  is the expected value of  and TV

                

( ) 2

1

2 1

ln 2
TE V T

K
d

T
d d T

σ

σ
σ

⎛ ⎞ +⎜ ⎟
⎝ ⎠=

= −

. 

Because ( ),
tg
P t T  is a martingale with respect to ( ),P t T , it follows that  

                
( ) ( ) ( )0

0 , ,
T

T
g g

T TE E g
P T T P T T

⎛ ⎞
= =⎜ ⎟⎜ ⎟

⎝ ⎠
.                   (2.2) 

Besides, we are assuming that ( ) 0TE V F=  and the validity of discounting at the 

risk-free rate, so the value of the option is given by (2.1) and (2.2) 

                ( ) ( ) ( )0 0 0 1 2,g P T T F N d KN d= −⎡ ⎤⎣ ⎦ ,                    (2.3) 

where           

2
0

1

2 1

ln 2
F T

K
d

T
d d T

σ

σ
σ

⎛ ⎞ +⎜ ⎟
⎝ ⎠=

= −

. 
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2.2.2 Bond Options 
A bond option is an option to long or short a particular bond by a certain date 

for a particular price. Consider a zero-coupon bond ( )0 ,P T T ∗  and we assume the 

world is forward risk-neutral with respect to a zero-coupon bond maturing at timeT  

( ). So the price of a call option with strike price  and maturity T  (years) 

on a bond 

T T ∗≤ K

( )0 ,P T T ∗  is 

                ( ) ( )( )*
0c=P T ,T max , ,0TE P T T K⎡ ⎤−⎣ ⎦ ,                 (2.4) 

where TE  denotes expected value in a world that is forward risk neutral with respect 

to a zero-coupon bond maturing at time . It implies that  T

                        ( )( ) 0,TE P T T F∗ = , 

where  is the forward price of 0F ( ),P T T ∗  at time . 0T

Assuming the bond price is lognormal with the standard deviation of the 

logarithm of the bond price equal to Tσ , the equation (2.3) becomes: 

                ( )[ ]0 0 1 2c= , ( ) ( )P T T F N d KN d− ,                       (2.5) 

where 

                [ ] 2
0

1

ln /  + / 2
d =

T
F K Tσ

σ
 

                2 1d d Tσ= − . 

This reduces to Black’s model. We have shown that we can use today’s -year 

maturity interest rate for discounting provided that we also set the expected bond 

price equal to the forward bond price. 

T

 
2.2.3 Interest Rate Caps 

A popular interest rate option offered by financial institutions in the 

over-the-counter market is the interest rate cap. Consider a cap with a total life of , T

 14



a principal of , and a cap rate of . Suppose that the reset dates are  

and define . Define 

C K 1 2 ,  ,..., nT T T  

T1  nT + = ( )1,k ky T T +  as the simply compounded interest rate for 

the period between times  and kT 1kT +  observed at time (1 )kT k n≤ ≤ : 

( )
( )

1
1

1

1 ,
( , )

,
k k

k k
k k

P T T
y T T

P T Tδ
−

−
−

−
= .                      (2.6) 

 The caplet corresponding to the rate observed at time  provides a payoff at 

time  of 

kT

1 kT +

                , ( )( )1max , ,0k k kC y T T Kδ + −

where 1k kT Tkδ += − . If the rate ( )1,k ky T T +  is assumed to be lognormal with 

volatility kσ , the value of the caplet is  

                ( )[ ]0 1 1 2, ( ) (k k kcaplet C P T T F N d KN dδ += )− ,             (2.7) 

where             

                [ ] 2

1
k

ln /  + / 2
d = k K k k

k

F R T
T
σ

σ
 

                2 1d d k Tσ= − k  

and  is the forward rate for the period between time  and . Note that kF kT 1kT +

( )1,k ky T T +  and  are expressed with a compounding frequency equal to frequency 

of resets in these equations. 

kF

     The cap is a portfolio of  such options and the formula also reduces to a 

summation of Black-like formulas. 

n

 

2.2.4 European Swap Options  

Swap options, or swaptions, are options on swap rates and are a very popular 

type of interest rate option. They give the holder the right to enter a certain interest 
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rate swap that pays a fixed rate, the strike rate, and receives a floating interest rate at a 

certain time in the future. 

Consider a swaption which gives the right to pay a rate  and receive K

( )1,k ky T T−  on s swap settled in arrears at time , 1,...,kT T k k nδ= + =  with a notional 

principal . Suppose that the swap rate for an n-payments swap at the maturity of 

the swap option is . Assume the relevant swap rate at the maturity of the option is 

lognormal. By comparing the cash flows on a swap where the fixed rate is . The 

total value of the swaption is 

C

Ts

K

                ,                    (2.8) ( )[0 0 1 2
1

, ( ) (
n

i
i

C P T T s N d KN dδ
=

−∑ ])

where 

                         [ ] 2
0

1

ln /  / 2s K T
d

t
σ

σ
+

=  

                        2 1d d Tσ= −  

and  is the forward swap rate starting at time  and will be introduced below.  0s T

Forward swap rate 

The forward swap rate ( )0 ,T T nκ  at time T can also be determined using the 

formula (Brace and Musiela 1997) that makes the value of the forward swap zero, i.e., 

     ( ) ( ) ( )

( )
0 0

0

0
1

, ,
,

,
T n

j

P T T P T T n
T n

P T T n

δ
κ

δ δ
=

− +
=

+∑
.                        (2.9) 

 
2.2.5 Generalizations 

We have presented three versions of Black’s model: one for bond options, one 

for caps, and one for swaptions. Each of the models is internally consistent with each 

other, but they are not consistent with each other. For example, when future bond 

prices are lognormal, future zero rates and swap rates can not be, and when future 

zero rates are lognormal, future bond prices and swap rates can not be. 
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With the market price by Black’s formula we now proceed to introduce how to 

calibrate more complex models. 

2.3 Hull-White Model 
2.3.1 Model Formulation 

We will use the short rate model to price barrier options in the thesis. Hull and 

White proposed an extension to the Vasicek model of the one-factor form: 

( )( )dr t ar dt dzθ σ= − + ,                                      (2.10) 

where  is a time-dependent reversion level chosen so that the spot yield rate 

curve implied by the model matches the yield curve observed initially,  is the 

speed of mean reversion, and 

( )tθ

a

σ  is a known constant.   

It provides enough degrees of freedom to fit the current interest rate term 

structure. The process describing the evolution of the short rate can be deduced from 

the observed term structure of interest rates and interest rate volatilities. 

     We will value the European call option on a zero coupon bond and describe 

how to use the information from observed term structure of interest rate and 

volatilities. We then go on to make sure that the model is consistent with market 

prices by calibrating the Hull-White model for constant mean reversion and volatility 

parameter. After finishing all work above the more complicated interest rate 

derivatives, barrier options, will be investigated in the next chapter. 

 
2.3.2 Pricing Bond Options within the Hull-White Framework 

Let ( ),P t T  be the time  price of a discount bond maturing at time . The 

bond price formula is shown in Hull and White [1990, 1994a] to be 

t T

                  ( ) ( ) ( ),, , B t T rP t T A t T e−= ,                          (2.11) 

where ( ),P t T  is the price at time t of a zero-coupon bond maturing at time . T
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Furthermore, ( ),A t T  and ( ),B t T  are functions only of  and T , and r is the short 

rate at time t. The function 

t

( ),A t T  is determined from the initial values of discount 

bonds  as (0,P T )

( ) ( )
( )

( ) ( ) ( ) ( )
( )

22 2, 0, , 10,
, exp

0,

atB t T F t B t T eP T
A t T aP t

σ −⎡ ⎤− −
= ⎢ ⎥

⎢ ⎥⎣ ⎦
4       (2.12) 

( )
( )( )1

,
a T te

B t T a

− −−
= ,                                      (2.13)  

(0, )F t  is the instantaneous forward rate that applies to time  as observed at time 

zero. It can be computed from the initial price of discount bond as     

t

( ) ( )log 0,
0,

P t
F t

t
∂ ⎡ ⎤⎣= −

∂
⎦ .                                     (2.14) 

By Ito’s Lemma we have: 

           ( )( )

( )

2

2

2 2

2 2

1
2

1    
2

1    
2

Br Br

t

P P PdP dt dr drdr
t r r
P dt ABe t ar dt dz AB e dt
t

Pdt BP t ar dt BP dz B P dt

θ σ

θ σ σ

− −

∂ ∂ ∂
= + +
∂ ∂ ∂
∂ ⎡ ⎤= − − + +⎣ ⎦∂

= − − − +⎡ ⎤⎣ ⎦

σ      (2.15) 

Hence the price process of the discount bond is described by the stochastic equation: 

( )( ) 2 21
2tdP P BP t ar B P dt PB dzθ σ⎡= − − + −⎢⎣ ⎦

σ⎤
⎥ .            (2.16) 

The relative volatility of  is ( ), ,P r t T ( ),B t T σ . Since it is independent of r, the 

distribution of the bond price at any time , conditional on its value at an earlier 

time , must be lognormally distributed. 

*t

t

Consider a European option on this discount bond. This option has the 

following characteristics: 

        : exercise price, K
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        T : option expiry time, 

        T : bond maturity time, ∗

        : current (valuation) time, where 0T 0T T T ∗≤ ≤ . 

Since  is lognormally distributed and represents the forward bond price, the 

Black’s formula can be used to price the discount bond option: 

( ,P T T ∗ )

     ( ) ( ) ( ) ( )*
0 0, , pC P T T N h KP T T N h σ∗= − − ,                       (2.17) 

where 

( )
( )( )

0

0

,
ln

, 1
2 p

p

P T T
KP T T

h σ
σ

∗

∗

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠= +  

     and ( ) ( )( )0

22
22

3 1 1
2

a T T a T T
p e e

a
σσ

∗− − − −⎛ ⎞= − −⎜ ⎟
⎝ ⎠

. 

 
2.3.3 Calibrating the Hull-White Model 

Having considered the model formulation that allows us to incorporate 

observed term structure data into the pricing formula, we explain how actual data are 

used in the calibration exercise. 

Cubic spline interpolation 

An interpolation technique must be applied to term structure so that values for 

any maturity term maybe extracted. Cubic spline interpolation was favored for the 

smoothness of curve it produces. Cubic spline interpolation is a type of piecewise 

polynomial approximation that uses a cubic polynomial between successive pairs of 

nodes. At each of nodes across which the cubic spline is fitted, the following hold: 

•The values of the fitted splines equal the values of the original function at the node 

points. 

•The first and the second derivatives of the fitted splines are continuous. 

The algorithm is presented in Appendix A. 
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Using the market data 

For each day, the continuously compounded rate of interest and historical 

volatility are available for a discrete set of node points corresponding to terms to 

maturity, ,  where it 1,...,i = N 1
1

365t =  year and  Nt =  . T

     •The interest rate with term to maturity 1 day and its corresponding historical 

volatility are taken as proxies for the instantaneous short-term interest rate 

 and its volatility ( )0r T ( )0,r r Tσ . 

     • ( )0 ,B T T  is calculated using ( ) ( )
0

1
,

aTe
B T T a

−−
= . Applying the initial 

term structure of interest rates ( )0 , iy T t , we determine the time  discount 

bond prices as 

0T

( ) ( )0 ,
0 , y T T TP T T e−= . 

     •Apply ( )0 , iB T t  and ( )0 , iP T t  to find ( )0 , iA T t . 

Calibration methodology 

Calibration of the model to the observed market prices involves retrieving 

values of σ  and a  such that these market prices may be recovered from the model. 

The reversion speed a and the associated volatility parameter σ  should give rise to 

the smallest pricing error. That is, we want the  and a σ  such that  

                      ,  ( )( )2

1

,
n

model market
i

p a pσ
=

−∑

is minimized for several different maturities  , it 1,...,i n=  and (2.17) is used to 

calculate ( ),modelp a σ . 

Time-dependent mean reversion level ( )tθ  

     As shown by Hull and White (1993), the time-dependent mean reversion level 

 is determined at the initial time  as  ( )tθ 0T
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       ( ) ( ) ( ) ( )( 0

2
20

0

,
, 1

2
a t TF T t

t aF T t e
t a

σθ − −∂
= + + −

∂ ) .                   (2.18) 

Thereafter, our model can be consistent with market prices, and exotic options pricing 

will be followed under the calibration parameters  and a σ .   
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Chapter 3   
Cheuk and Vorst’s Method 
     First, define the following variables: 

0T : current time, 

T : option maturity, 

( ,w t n) : the spot swap rate at time  which makes the value of the swap 

( n payments) zero, 

t

β : the barrier swap rate fixed at the spot swap rate ( )0 ,w T n  minus the same fixed 

rate throughout (for example, 25 basis points), 

ih : the barrier short rate at time  is found by setting the value of the swap at the 

fixed rate 

it

β  zero, 

iφ : the barrier -period rate (annualized) at time  that corresponds to , tΔ it ih

( ),T t nκ : the at-the-money forward swap rate at time T which makes the value of 

forward swap zero. 

     In our tree, we define three variables at node ( ),i j : 

( , )R i j : the -period interest rate at time  that is associated with node , tΔ it ( ),i j

( ,r i j ) : the short rate that is associated with node ( ),i j , 

( ,s i j ) : the swap rate at time  that is associated with nodeit ( ),i j . 
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3.1 Single-Barrier Swaptions 
3.1.1 Definitions  

With a down-and-out swaption the holder can choose to enter into a swap 

starting in the swaption’s maturity or choose not to exercise the swaption if the swap 

rate at the swaption’s maturity is less than the strike rate. However, if the 

corresponding swap rate falls below a certain barrier value before the swaption’s 

maturity, the swaption expires worthless.  

 
3.1.2 Time-Dependent Barrier  

For the Hull-White model, barriers are transformed to smooth time-dependent 

barriers on the short rate. We position the nodes optimally on the time-varying barrier 

that enables us to price barrier options efficiently. 

Since the short rate is the only state variable, the time-dependent barrier can be 

transformed to the equivalent time-dependent barrier on short rate, . The short rate 

 can be found through Newton-Raphson iteration or any other iterative scheme to 

be detailed later. The determination of  can be done before constructing the tree. 

ih

ih

ih

Interest rate swap 

     Consider a payer swap on principal C settled in arrears at times 

0 , 1,...,jT T j j nδ= + = . The floating rate ( )1,j jy T T−  received at time jT  is set at 

time 1jT − . 

The swap cash flows at times jT , 1,...,j n= , are 1( , )j jC y T T δ−⋅  (the floating leg) 

and Ckδ−  (the fixed leg), where k is the fixed rate determined at . Hence the value 

of the swap is (Brace and Musiela 1997): 

0T
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( ) ( )( )
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C d P T T
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=

=

=

⎛ ⎞
−⎜ ⎟

⎝ ⎠

= −

⎛ ⎞
= −⎜ ⎟

⎝ ⎠

∑

∑

∑

 .                   (3.1) 

where jd kδ=  for 1,..., 1j n= −  and 1nd kδ= + . 

The identity of (3.1) is explained as follows. The swap can be viewed as a 

portfolio of a zero coupon bond and a coupon bearing bond. It receives interest at a 

floating rate on a notional principal , and the value of the notional principal at time 

 is C . It pays interest at a fixed rate on the notional principal . Its value thus 

equals 

C

0T C

n  zero coupon bonds with notional principals jCd  for 1,...,j n=  maturing 

at time jT . Therefore, the value is 

                               . ( )0
1

,
n

j j
j

C d P T T
=
∑

Swap rate 

The spot swap rate  at time  is that value of the fixed rate  

which makes the value of the swap zero, i.e., 

( 0 ,w T n)

)

0T ( )0 ,w T n

               .      (3.2) ( ) ( ) ( ) (0 0 0 0 0
1

, , * , * ,
n

j n
j

C P T T w T n C P T T C P T Tδ
=

= −∑

The left expression is fixed payment value at  and the right expression is floating 

reception value at . Using equation (3.2), we find that  

0T

0T

               ( ) ( )

( )
0

0

0
1

1 ,
,

,

n
n

j
j

P T T
w T n

P T Tδ
=

−
=

∑
.                             (3.3) 

Barrier swap rate and barrier short rate  

Suppose the contractual barrier swap rate β  is fixed at the spot swap rate 
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( 0 ,w T n)  minus the same fixed rateλ  throughout (for example, 25 basis points) and 

the swaption knocks out if the swap rate for ( )0 option maturityiT t T≤ ≤  is less than 

or equal toβ . So the barrier short rate  can be found by setting the value of the 

swap at the fixed rate 

ih

β  zero for 0 iT t T≤ ≤ , i.e., we want to make: 

( )

( )
1

1 ,
0

,

i i
n

i i
j

P t t n

P t t j

δ
β

δ δ
=

− +
− =

+∑
.                       (3.4) 

We can approximate the value  through Newton-Raphson iteration given the bond 

price formula 

ih

( ) ( ) ( ),, , i iB t T h
i iP t T A t T e−= . 

 
3.1.3 Initial Hull-White Tree 
Barrier -period rate tΔ

Let iφ  be the -period barrier interest rate (annualized) at time  that 

corresponds to the short rate . We can find 

tΔ it

ih iφ  by using the bond price formula 

with short rate : ih

          ( ) ( ),, i i ii B t t t ht
i ie A t t t eφ − +Δ− Δ = + Δ .                              (3.5) 

So 

          
( ) ( )( ), log ,i i i i i

i

B t t t h A t t t
t

φ
+ Δ − + Δ

=
Δ

.                       (3.6) 

A swaption is at-the-money when the strike rate equals the forward swap rate 

at swaption’s maturity. We illustrate the results using the example of a continuously 

observed at-the-money knockout swaption on a five-year swap with a principal of 100 

and the fixed leg paying annually. The option maturity is 2 months from now, and the 

barrier swap rate is fixed at the spot swap rate at time  minus 70 basis points. The 

zero yield curve is given by

0T

( ) 0.18
0 , 0.08 0.05 ty T t e−= − , the parameter  in the a
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Hull-White model equals 0.1, andσ  equals 0.015. We build the Hull-White model 

with four time steps, and the results are shown in Exhibit 5. 

EXHIBIT 5 

A TRINOMIAL TREE FOR A BARRIER SWAPTION 

Forward swap rate :                          6.20%  
Spot swap rate:                              6.03% 
Barrier swap rate:                            5.33% (=6.03%− 0.70%) 

Time          1          2          3          4 it

ih           2.17%      2.19%      2.21%      2.24% 
iφ           2.21%      2.23%      2.25%      2.27% 

 

By the Hull-White model, we first construct a tree that has the form shown in 

Exhibit 6. We just reveal the first three out of a total of four steps for brevity. The 

starting nodes ( )0,0R  and the step size rΔ  can be determined according to Hull 

and White (1993): 

             ( ) ( )0 00,0 ,R y T T t= + Δ  

             
( )2 21

3
2

a te
r

a
σ −−

Δ = . 

The three nodes that can be reached by the branches emanating from any given 

node  are   ,( , )i j ( 1, 1)i j+ + ( 1, )i j+ , and ( 1, 1)i j+ − . The nodes ( , )R i j  in the 

tree are constructed by: 

( ) ( ), 0,0R i j R j r= + Δ . 
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EXHIBIT 6 

THE INITIAL TREE 

3.04% 

Original central nodes 
Barrier rates 
 
Barrier nodes 

3.04% 3.04% 3.04%

3.57%

4.63%

4.10%

2.51%

1.45%

1.98% 

2.21% 2.23% 2.25%

A 

J 

B

E 

C

D

I 

F 

G 

H N

K

L

M

O

P

 
 
3.1.4 Adjusted Hull-White Tree  

The second stage in the construction of the tree involves central node 

adjustments. As remarked above, it is important that the barrier tΔ -period rate lies on 

one of the nodes. The best positioning depends on whether observation of the barrier 

is continuous or discrete. For continuously observed barriers, it is preferred that the 

barrier lies exactly on one of the nodes. For discretely observed barriers, it is best to 

let the barrier fall exactly half way between two nodes. To unify the treatment for 
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continuous and discrete barrier observations, we introduce a new variable iφ
∧

. If the 

barrier is observed continuously: 

                 i iφ φ
∧

= .                                          (3.7) 

If the barrier  rate is below the spot tΔ tΔ  rate at time  for discrete 

observations: 

0T

                 
2i i
rφ φ

∧ Δ
= − .                                      (3.8) 

If the barrier  rate is above the spot tΔ tΔ  rate at time  for discrete 

observations: 

0T

                 
2i i
rφ φ

∧ Δ
= + .                                     (3.9) 

We want to construct a tree that aligns iφ
∧

 on a tree node for all  and then 

adjust the tree according to the following procedure:  The node 

1 i n≤ ≤

( ),i j  with a value 

( , )R i j  closest to iφ
∧

 sets the value of ( ),R i j  equal to iφ
∧

. 

Let iα  be the -period interest rate at time  that is associated with the 

adjusted central node at time . The first one equals the current spot yield rate 

maturing at : 

tΔ it

it

0t t+ Δ

              .                             (3.10) (0 0 0,y T T tα = + )Δ

Integers  for ie 1 i n≤ ≤ can be calculated to ensure that barrier rates are an integer 

number of steps (with step size rΔ ) away from central rates iα : 

                  1 1
2

i i
ie

r
φ α
∧

−
⎡ ⎤−⎢=
⎢ Δ
⎣ ⎦

⎥+
⎥

,                             (3.11) 

where [ ]x  is the largest integer less than or equal to x .  The adjusted central rates 

iα  can be found with  thus: ie
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ii ie rα φ
∧

= − Δ .                               (3.12) 

The adjusted interest rate at node ( ),i j  is then given by  

                  ( ), iR i j j rα= + Δ .                               (3.13) 

The final result is shown in Exhibit 7. 

EXHIBIT 7  

THE ADJUSTED TREE 

3.11% 

Adjusted central nodes 
Barrier rates 
 
Barrier nodes 

3.11% 3.29% 3.31%

2.21% 2.23% 2.25%

2.78%

1.72%

3.84%

4.37%

4.90%

A C 

B 

D 

I 

H 

G 

F 

E 

P

O

N

M

L

K

J 
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3.1.5 Calculating Prices 
     Suppose that the tree has already been constructed up to time  so that it can 

match the barrier. A value of 

T

(i tθ )Δ  for 0 i n≤ ≤  must be chosen so that the tree is 

consistent with . The procedure is explained by Hull and White [1993], and 

we give the details in Appendix C.  

( 0 2, iy T t + )

) )     Let  be the short rate that is associated with node . It can be 

calculated by bond price formula (2.11) from

( ,r i j ( ,i j

( ),R i j . Once  has been 

determined, the corresponding probabilities to nodes 

(i tθ Δ )

( ),i j  can be determined by 

matching the mean ( ) ( ) ( )(,r i j i t ar i j tθ+ Δ − Δ),  and variance 
( )2 21

2

a te
a

σ − Δ−
 of 

the short rate to the continuous-time interest rate model and the condition that the sum 

of the probabilities equals 1. By the Lindeberg-Feller theorem (see, for example, 

Billingsley (1986)), a tree constructed in the way will converge to the underlying 

continuous-time Hull-White model. The probabilities are: 

                      

( )

( )

( )

2

2 2

2

2 2

2

2 2

,
2 2 2

, 1

,
2 2 2

u

m

d

VP i j
r r r
VP i j
r r

VP i j
r r r

η η

η

η η

= + +
Δ Δ Δ

= − −
Δ Δ

= + −
Δ Δ Δ

                  (3.14) 

with  

( ) ( )( ) 1, i ii t ar i j tη θ α α += Δ − Δ + −                                   

and 

    
( )2 21

2

a te
V

a
σ −−

= . 

Exhibit 8 illustrates the results calculated form Exhibit 7. 
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EXHIBIT 8 

TRINOMIAL TREE FOR EXHIBIT 7 

 

First, the short rates  at nodes ( ,r i j ) ( ),i j , where 4i = , is computed using 

the bond price formula (2.11) with rates ( ),R i j . With the short rates  given, 

the swap rates 

( ,r i j )

( ),s i j  at nodes ( ),i j , where 4i = , are found using the swap rate 

formula (3.3) and therefore the payoff ( ),V i j  at nodes ( ),i j , where , at 

maturity  is determined: 

4i =

T

           ( ) ( ) ( ) ( )(
5

0
1

, , max , ,T
i

V i j C P T T i s i j T n ),0δ κ
=

= + −∑ δ .        (3.15) 

Exhibit 9 shows  the calculations required to compute the payoff at the option 

maturity, two months from now.  
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EXHIBIT 9 

OPTION PAYOFF AT TERMINAL NODES (i=4)  

 

Finally, Exhibit 10 shows the discounting of the option value back through the 

tree. If the node ( ),i j  is touched, the value ( ),V i j  is set to zero—if not,  

is calculated using 

( ),V i j

( )
( ) ( ) ( ) ( )
( ) ( )

( )(
, 1, 1 , 1,

, e
, 1,

u m

d

P i j V i j P i j V i j
V i j R i j t

P i j V i j

+ + + +⎛ ⎞
= −⎜ ⎟⎜ ⎟+ +⎝ ⎠

)xp , Δ .   (3.16) 
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EXHIBIT 10 

DISCOUNTING THE OPTION PRICE BACK THROUGH THE TREE 

 

 
 
3.1.6 Numerical Results 

We first consider a six-month at-the-money payer’s swaption with a notional 

value of 100 and a barrier fixed at the spot swap rate minus 25 basis points. The 

underlying is a five-year swap with fixed payments made annually. The zero yield 

curve is given by , the parameter a  in the Hull-White 

model equals 0.1, and 

( ) 0.18
0 , 0.08 0.05 ty T t e−= −

σ  equals 0.015. 

Exhibits 11 and 12 give the price for such a single-barrier option, when 

continuously observed, for different numbers of steps in the trinomial tree. It can be 

seen that convergence is fast due to our specially constructed tree. Exhibit 11 shows 

that the method gives very accurate answers with as little as 30 steps, and Exhibit 12 

shows how fast and smoothly the method converges. 
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EXHIBIT 11 

CONTINUOUSLY OBSERVED SINGLE-BARRIER SWAPTION PRICES 

Product At-the-money single-barrier 
knockout swaption on five-year swap 
with the principal 100 and fixed 
payments made annually 

Barrier Spot swap rate minus 25 basis points 
Option maturity  0.5 year 
Steps Prices Time (sec) 
2 1.270025 0.015 
5 1.021106  0.031 
10 0.986277 0.062 
30 0.965275  0.172 
100 0.963571 0.547 
200 0.963272 1.157 
500 0.963417 3.125 
1000 0.963320 5.813 
Note: Calculations were made in Dev C++ on Window XP system with Inter(R) 
Pentium(R) 4 CPU 2.40GHz.  
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EXHIBIT 12 

CONVERGENCE OF CONTINUOUSLY OBSERVED SINGLE-BARRIER 

SWAPTION PRICES 

 
More time steps are needed for a swaption whose barrier is checked at discrete 

intervals. For example, if the barrier is checked daily and two periods between 

subsequent observations are allocated, 250 steps are needed for a maturity of 

six-months (125 days). The speed of convergence is related to the number of periods 

between observations. So the higher the frequency we observe, the more steps we 

need to calculate for the same accuracy. While 1250 ( )125 10×  steps are needed 

daily monitoring, only 60  steps are needed for the same accuracy (10 steps 

between observations) for monthly monitoring. As can be seen from Exhibits 13 and 

14, the speed of convergence is very good. The prices generally converge with only 

10 periods between observations and are very close to Monte Carlo results when our 

(6 10× )
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method is applied with only 50 periods between observations.        

EXHIBIT 13   

DISCRETELY OBSERVED SINGLE-BARRIER SWAPTION PRICES 

 Number of periods between observations 
Observation 
Frequency 

2 5 10 20 50 100 
Monte Carlo 
 

Semi-annually 
(Time (sec)) 

1.415429  

(0.016) 

1.471626

(0.031) 

1.396712

(0.047) 

1.436232

(0.078)  

1.424825

(0.219) 

1.428639 

(0.438) 

1.42821 

(1141.423) 

Quarterly 
(Time (sec)) 

1.465117 

(0.016) 

1.376347

(0.063) 

1.408221

(0.094) 

1.404073

(0.204)  

1.399401

(0.547) 

1.398472 

(1.125) 

1.39813 

(1015.674) 

Monthly 
(Time (sec)) 

1.318001 

(0.063)  

1.297323 

(0.125) 

1.292777

(0.266) 

1.289523

(0.531) 

1.287248

(1.392) 

1.286702 

(3.047) 

1.28654 

(798.811) 

Weekly 
(Time (sec)) 

1.178672 

(0.218)  

1.160131

(0.562) 

1.154721

(1.188) 

1.151438

(2.562) 

1.149227

(7.953) 

1.148500 

(18.341) 

1.14856 

(891.615) 

Daily 
(Time (sec)) 

0.704829 

(2.226) 

0.690894

(3.156) 

1.061978 

(7.484) 

1.059989

(15.383) 

1.058798

(48.312) 

1.058396 

(108.120) 

1.0586 

(899.254) 

Note 1. For the Monte-Carlo method (5000,000 paths and about 200 time steps), the     

process is ( ( ) )dr t ar dt dZθ σ= − +  and the discount rate ( )exp it r−Δ ∑  is 

calculated using Simpson’s method. 
Note 2. For example, 250 (125 days ×  2 ) steps are needed for daily observed 
swaptions and the number of periods between observations is 2. 
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EXHIBIT 14 

CONVERGENCE OF DISCRETELY OBSERVED SINGLE-BARRIER 

SWAPTION PRICES 

 
 

3.2 Single-Barrier Bond Options 
3.2.1 Definition  

An up-and-out bond option is one type of knock-out bond option. It is a 

standard option but it ceases to exist if the bond price reaches a certain barrier level, 

. H

 
3.2.2 Time-Dependent Barrier 

The lattice method can also be applied to price single-barrier bond options. 

Since the short rate is the only state variable, the time-dependent barrier can be 

transformed to an equivalent time-dependent barrier on short rate  and the ih
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determination of  can be done before constructing the tree. ih

As shown in Hull and White [1990, 1994a]: 

    ( ) ( ) ( ),, , iB t T h
i iP t T A t T e−= .                                 (3.17) 

Let the barrier bond price be fixed. The barrier short rate  can be calculated for 

all  by  

H ih

( )0 option maturityit T≤ ≤

( ) ( ),, i iB t T h
iH A t T e−=                                           (3.18) 

so that  

( )( )
( )

log , /
,

i
i

i

A t T H
h

B t T
= .                                         (3.19) 

After finding the barrier short rates, all the remaining procedure follows that for 

single-barrier swaptions earlier.  

    
3.2.3 Numerical Results 

A six-month barrier bond option with a notional value of 100 and strike price 

0.85 is considered. We fix the barrier price at 0.91. The zero yield curve is given 

by , the parameter  in the Hull-White model equals 0.1, 

and 

( ) 0.18
0 , 0.08 0.05 ty T t e−= − a

σ  equals 0.015. 

Exhibits 15 and 16 give the price for such a barrier option, when continuously 

observed, for different numbers of steps in the trinomial tree. It can be seen that 

convergence is faster than barrier swaptions because barrier swaption wasted some 

time in short rates calculation with Newton-Raphson iteration. Exhibit 15 shows the 

method gives very accurate answers with as little as 100 steps and Exhibit 16 shows 

how fast and smoothly the method converges. 
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EXHIBIT 15  

CONTINUOUSLY OBSERVED SINGLE-BARRIER BOND OPTION 

PRICES 

Product Single knock-out call options on 
three-year discount bond with 
principal 100  

Barrier price 0.91 
Strike price 0.85 
Option maturity  0.5 year 
Steps Prices Time (sec) 
2 1.641741 0.000 
5 1.912776 0.000 
10 1.967791 0.000 
30 2.006969 0.000 
100 2.020153 0.015 
200 2.023302 0.063 
500 2.024933 0.36 
1000 2.025322 1.531 

1500 2.025501 3.359 
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EXHIBIT 16  

CONVERGENCE OF CONTINUOUSLY OBSERVED SINGLE-BARRIER 

BOND OPTION PRICES 

 
More time steps are needed for a bond option whose barrier is checked at 

discrete intervals. As can be seen from Exhibits 17 and 18, the speed of convergence 

is also very good. The prices generally converge with only 10 periods between 

observations and are very close to Monte-Carlo results, with only 50 periods between 

observations.   
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EXHIBIT 17  

DISCRETELY OBSERVED SINGLE-BARRIER BOND OPTION PRICES 

 Number of periods between observations 
Observation 
Frequency 

2 5 10 20 50 100 150 200 
Monte 
Carlo 
 

Semiannually 
(Time (sec)) 

2.04100 

(0.000) 

2.15258

(0.000) 

2.17812

(0.000)

2.16727

(0.000)

2.17103

(0.000)

2.17033

(0.016)

2.16944

(0.047)

2.16981

(0.062) 

2.1698 

(892.344) 

Quarterly 
(Time (sec)) 

2.14913 

(0.000) 

2.17597 

(0.000) 

2.16427

(0.000)

2.16761

(0.000) 

2.16689

(0.016)

2.16629

(0.063)

2.16628 

(0.140)

2.16589 

(0.250) 

2.1661 

(1093.132)

Monthly 
(Time (sec)) 

2.15467 

(0.000) 

2.14355 

(0.000) 

2.14117

(0.000)

2.13852

(0.015)

2.13804

(0.140)

2.13763

(0.578)

2.13742 

(1.312)

2.13743 

(2.359) 

2.13777 

(879.516) 

Weekly 
(Time (sec)) 

2.10666 

(0.016) 

2.09808

(0.016) 

2.09542

(0.109)

2.09413

(0.422)

2.09334

(2.718)

2.09315

(11.063)

2.09310 

(24.39)

2.09307 

(43.359) 

2.09271 

(798.812) 

Daily 
(Time (sec)) 

2.06718 

(0.110) 

2.06298 

(0.609) 

2.06146

(2.500)

2.06080

(10.172)

2.06037

(62.437)

2.06023

(250.859)

2.06019 

(562.062)

2.06016 

(1008.250) 

2.06016 

(977.311) 
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EXHIBIT 18  

CONVERGENCE OF DISCRETELY OBSERVED SINGLE-BARRIER 

BOND OPTION PRICES 
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Chapter 4  
Extending Cheuk and Vorst’s Method   

4.1 Double-Barrier Swaptions 
4.1.1 Moving Barriers  

It has shown how a time-dependent barrier can be matched, and here we explain 

how a second barrier can be matched by extending Cheuk and Vorst’s method 

[1996b]. 

To distinguish the two barriers, we will refer to an upper and a lower barrier. 

The adjectives “upper” and “lower” describe the locations of the barriers relative to 

each other. Double-barrier knock-out swaptions pricing is covered, and the same 

method is applicable to other types of interest options including barrier bond options 

and interest barrier caps, etc. 

Trinomial models can be constructed so that nodes are always situated on the 

two barriers. Our method is to change  to match two barriers for . idr 1,...,i n=

We first unify the treatment of continuous and discrete observation barriers and 

variables   and  are introduced for 
u

ih
∧ d

ih
∧

1,...,i n= : 

    =   
u

ih
∧

u
ih

     
d

d
i ih h
∧

=

for continuously observed barriers, and: 

    
2

u
u i

i i
drh h

∧

= +  

    
2

d
d i

i i
drh h

∧

= −  

for discretely observed barriers, where  is the upper barrier and  is the lower 

barrier. 

u
ih d

ih
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Then we define the distance as 

      
u d

i i iM h h
∧ ∧

= −  

To begin with, we choose a  close to idr 3V  that satisfies  

           i i ix dr M=  

for continuously observed barriers, and: 

           ( ) ( )1 u d
i i i ix dr h h− = −  

for discretely observed barriers, where ix  is an integer. That is, ix  is chosen as  

           1
2

i
i

i

Mx
dr

⎡ ⎤
= +⎢ ⎥
⎣ ⎦

. 

When ix  is known,  follows from the equation above. idr

     After determining the , we match the lower barrier by shifting the central 

nodes 

idr

iα  we have explained earlier. As the distance between the two barriers is fixed 

for , matching the lower implies that the upper barrier is matched also, 

given . 

1,...,i = n

idr

     All formulas earlier can be used by treating dr  as . The resulting 

probabilities also match the mean and variance of the short rate in the continuous-time 

interest rate model. 

idr
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4.1.2 Numerical Results 
We consider a six-month at-the-money payer’s swaption with a notional value 

of 100. A lower-barrier is fixed at the spot swap rate minus 25 basis points and a 

upper-barrier is fixed at the spot rate plus 200 basis points. The underlying is a 

five-year swap with fixed payments made annually. The zero yield curve is given 

by , the parameter  in the Hull-White model equals 0.1, 

and 

( ) 0.18
0 , 0.08 0.05 ty T t e−= − a

σ  equals 0.015. 

Double-barrier swaptions require more time than single-barrier option in 

pricing because 
u

ih
∧

and  are calculated simultaneously. Besides, the speed of 

convergence is also slower than single-barrier option because  changes with the 

time . But we can still get very accurate answer with as little as 200 steps. 

d

ih
∧

idr

it

Exhibits 19 and 20 give the price for such a barrier option, when continuously 

observed, for different numbers of steps in the trinomial tree. It can be seen that 

convergence is fast due to our specially constructed tree. Exhibit 19 shows the method 

gets an accurate answer in a short time, and Exhibit 20 shows how fast and smoothly 

the method converges. 
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EXHIBIT 19  

CONTINUOUSLY OBSERVED DOUBLE-BARRIER SWAPTIONS 

PRICES 

Product At-the-money double-barrier 
knockout swaptions on five-year 
swap with the principal 100 and 
fixed payments made annually 

Lower barrier 
Upper barrier 

Spot swap rate minus 25 basis points 
Spot swap rate plus 200 basis points 

Option maturity  0.5 year 
Steps Prices Time (sec) 
2 0.495313 0.015 
5 0.475678   0.031 
10 0.554802 0.062 
30 0.569651   0.266 
100 0.578415 0.847 
200 0.580903  1.782 
500 0.582516 4.734 
1000 0.582964 10.281 
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EXHIBIT 20 

CONVERGENCE OF CONTINUOUSLY OBSERVED DOUBLE-BARRIER 

SWAPTION PRICES 

 
More time steps are still needed for a swaption whose barrier is checked at 

discrete intervals. As can be seen from Exhibits 21 and 22, the speed of convergence 

is very good. The prices generally converge with only 20 periods between 

observations and are very close to Monte-Carlo results when our method is used with 

only 50 periods between observations.        
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EXHIBIT 21   

DISCRETELY OBSERVED DOUBLE-BARRIER SWAPTION PRICES 

 Number of periods between observations 
Observation 
Frequency 

2 5 10 20 50 100 
Monte Carlo 
 

Semi-annually 
(Time (sec)) 

1.090210 

(0.016) 

1.155344

(0.047) 

1.122846

(0.075) 

1.121167

(0.188)  

1.113194

(0.419) 

1.115203 

(0.875) 

 1.112772 

(1134.31) 

Quarterly 
(Time (sec)) 

1.166872 

(0.016) 

1.098719

(0.094) 

1.091995

(0.172) 

1.087980 

(0.344)  

1.083037

(0.875) 

1.081246 

(1.766) 

 1.080515 

(1124.674) 

Monthly 
(Time (sec)) 

0.987741 

(0.110)  

0.963259 

(0.266) 

0.953694

(0.532) 

0.951150

(1.062) 

0.948474

(2.345) 

0.947544 

(5.127) 

0.946642 

(937.118) 

Weekly 
(Time (sec)) 

0.818323 

(0.432)  

0.798535

(1.125) 

0.792114

(2.328) 

0.788520

(4.732) 

0.785881 

(13.672) 

0.785205 

(38.86) 

0.784679 

(1291.615) 

Daily 
(Time (sec)) 

0.704829 

(2.159) 

0.690894

(7.015) 

0.686753 

(15.487) 

0.684701

(36.979) 

0.683409

(48.312) 

0.682989 

(432.563) 

0.682474 

(1189.254) 
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EXHIBIT 22 

CONVERGENCE OF DISCRETELY OBSERVED DOUBLE-BARRIER 

SWAPTION PRICES 
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Chapter 5 
Conclusions 
     We have described computing procedures that implement the barrier 

methodology in Cheuk and Vorst [1996a] to value single-barrier swaptions under the 

Hull-White interest rate model. We have also applied the same idea to price 

single-barrier bond options. The prices of discretely observed single-barrier swaptions 

and bond options are very close to those computed by the Monte-Carlo method, and 

the rate of convergence of our method is excellent. A second time-dependent barrier 

can be accommodated using the parameter  and two barriers are completely 

matched. The price of discretely observed double-barrier swaptions computed by our 

method is close to that derived by the Monte-Carlo method, and the rate of 

convergence of our method is also excellent. 

idr

     Both continuously and discretely observed barriers have been considered. It is 

no surprise accuracy is highly sensitive to the number of periods in tree in the 

continuously observed case but not in the discretely observed case. Our results show 

that the observation frequency is a very important determinant of barrier options 

prices.  

     We have presented a novel idea that can deal with all kinds of interest rate 

options with barriers. The extensive applicability of our methodology makes it 

extremely useful in practice. 
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APPENDIX A Calculating Time-Dependent Level  ( )tθ

     In this appendix, it is assumed that the tree has been constructed up to time  i tΔ

and it is shown how  is obtained. Define (i tθ Δ ) ( ),Q i j  as the value of a security 

that pays off  if node (  is reached and zero otherwise. It is assumed that 

 is calculated as the tree is being constructed using the relationship: 

$1 )

)

,i j

( ,Q i j

                       ( ) ( ) ( ) ( )*

*

1,* *, 1, , r i j t

j

Q i j Q i j q j j e− − Δ
= −∑ , 

where  is the probability of moving from node ( *,q j j ) ( )*1,i j−  to node . ( ),i j

     The value as seen at node ( ),i j  of a bond maturing at time ( )2i + Δt  is  

                          ( ) ( ) ( ) ( ), 1 | ,r i j t r i te E e r i r i j− Δ − + Δ⎡ ⎤=⎣ ⎦  

where E  is the risk-neutral expectations operator and ( )r i  is the value of 

instantaneous rate at time . The value at time zero of a discount bond maturing at 

time  is therefore given by: 

i tΔ

( )2i + Δt

,            ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 , 1, |i y i t r i j t r i t

j

e Q i j e E e r i r i j− + + Δ − Δ − + Δ⎡ ⎤= =⎣ ⎦∑ . 

The value of  is known analytically: ( ) ( ) ( )1 |r i tE e r i r i j− + Δ⎡ =⎣ , ⎤
⎦

           ( ) ( ) ( ) ( ) ( ) ( )( ) 2, / 21 ,| , i t ar i j V tr i t r i j tE e r i r i j e e θ− Δ + + Δ− + Δ − Δ⎡ ⎤= =⎣ ⎦  

so that this leads to 
           

( ) ( ) ( ) ( ) ( ) ( ) 22 , ,
2

1 12 2 log ,
2

r i j t ar i j t

j

Vi t i yield i Q i j e
t t

θ − Δ + Δ= + + + +
Δ Δ ∑

 

and , ,  are calculated with ( ),uP i j ( ),mP i j ( ,dP i j ) ( )i tθ Δ . Therefore ( )i tθ Δ   

for  can be determined recursively with0 i n≤ ≤ ( ),Q i j and 
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( )1,uP i j− , , . ( )1,mP i j− ( )1,dP i j−
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