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Abstract 
 

Barrier options are options that are either extinguished (“out”) or established 

(“in”), when the price of the underlying asset crosses a particular level 

(“barrier”). Common examples are “down-and-out,” “down-and-in,” 

“up-and-out” and “up-and-in” options, which can be calls or puts. An additional 

feature of some barrier options is that a rebate is paid when the option is 

extinguished or an additional premium is due when the option is established. 

Closed-form formulas for European barrier options are known in the literature. 

This is not the case for American barrier options, for which no closed-form 

formulas have been published. One has therefore had to resort to numerical 

methods. Using lattice models on binomial or trinomial trees for the valuation 

of barrier options is known to converge extremely slowly compared to plain 

vanilla options. In this thesis we show how to apply a simple, yet powerful, 

least-square Monte Carlo algorithm to approximate the value of American 

barrier options. 
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Chapter 1 

 

Introduction 

 

 There has been an explosive growth of financial derivatives markets during the 

last decades. The broad types of derivatives include equity, commodity, foreign 

exchange, and credit. Of particular interest are American options, which can be 

exercised at any time between the start of the contract and its maturity. The 

valuation of options with early-exercise features remains a difficult problem in 

many important settings, particularly for multifactor models. The major 

difficulty in handling the early-exercise features comes from the need to 

estimate the optimal exercise boundary. In contrast to the availability of 

closed-form solutions for European options, American options typically do not 

enjoy such formulas. Then we need numerical methods to overcome this pricing 

problem.  

The paper by Longstaff and Schwartz (2001) presents a simple yet powerful 

new approach for approximating the values of American options via simulation. 

Their least-squares Monte Carlo (LSM) algorithm estimates the price of an 

American option by stepping backward in time. At any exercise time, the holder 

of an American option optimally compares the payoff from immediate exercise 

with the expected payoff from continuation (i.e., not exercising it). The key to 
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this approach is that this conditional expectation can be estimated from the 

cross-sectional information in the simulation by using regression. The fitted 

value from this regression provides a direct estimate of the conditional 

expectation for each exercise time. By estimating this conditional expectation 

function for in-the-money paths and comparing it with the value for immediate 

exercise, the optimal exercise strategy along each path can be estimated well. 

Discounting back and averaging these values for all paths results in the present 

value of the option.  

Options whose payoff depends on whether asset’s price attains or fails to a 

given upper or lower level are called barrier options. Such contracts have 

become the most popular of exotic options. The main reason for their popularity 

is that although standard put or call options are useful risk management tools, 

they may not be suitable for hedging certain types of risks. For instance, the 

holder of a barrier option acquires option coverage on only a subset of risky 

outcomes for which a plain vanilla option pays off; this reduces the cost of the 

resulting coverage so that the barrier-option holder does not have to pay for the 

contingencies the holder thinks are unlikely to occur. Because of this flexibility, 

barrier options are widely used in currency markets (see Banks (1994) [1]). In 

addition, American barrier options offer the added flexibility of early exercise. 

No closed form solution for American barrier options exists in the literature. 

The techniques used to value American barrier options have therefore been 

numerically oriented. Lattice methods have been especially popular. Standard 

lattice methods have been shown to convergence extremely slowly.  Boyle and 

Lau (1994) and Ritchken (1995) develop a restricted binomial/trinomial method 

to overcome the problem. However, with these methods, it is still extremely 

difficult to achieve convergence when the barrier is close to the current price of 
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the underlying asset. Cheuk and Vorst (1996) develop a time-dependent shift for 

the trinomial tree, and Figlewski and Gao (1999) introduce an adaptive mesh 

model that grafts high-resolution lattices around points that cause the 

inaccuracies in the binomial tree. Gao, Huang, and Subrahmanyam (2000) use 

the decomposition technique to the valuation of American barrier options.  

In this thesis, we propose a least-squares Monte Carlo simulation to the 

valuation of American barrier options. This approach is easy to implement since 

nothing more than least squares is required. We use this technique to value the 

American barrier option.    

This work is organized as follows. We first briefly describe and apply the 

decomposition technique in the next Chapter. The LSM methodolody is covered 

in Chapter 3. Concluding remarks are given in Chapter 4.    
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Chapter 2 

 

The Decomposition Technique for American 

Options 

 
     In this chapter, we first obtain an analytic representation for American options 

using the decomposition technique. Before proceeding with the analysis, we 

first define our notations as follows: 

     :  the price of a vanilla European put option EP

     : the price of a vanilla American put option AP

     : the price of European up- and- out barrier put options E-uoP

A-uoP : the price of American up- and- out barrier put options 

  the early exercise boundary of American put options  

 rrier put options 

:  

P  

   

     2.1 Valuing American Puts 

Under the usual assumption of constant risk-free rate r, volatility σ, and a 

lognormal process for the underlying asset, and no dividend payment, Carr, 

tB :

uo-tB : the early exercise boundary of American up-and-out ba

P the premium of American put options  

uo : the premium of American up-and-out barrier put options 
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A E d S B tP S K P S K rKe N dt− −= + ∫

     where N(．) represents the cumulative standard normal function and 

       

Jarrow, and Myneni (1992), Jacka (1991), and Kim (1990) obtain the following 

formula for the price of an American put: 

T
[ ]2 00 0 0

( , , )( , ) ( , ) (1)t

( )

( ) ( )

2lo g (x /y)+ (r+σ /2 )t
1

2 1

d x , y , t =
σ t

d x , y , t = d x , y , t -σ t

 

    

The early exercise boundary [ ]{ }t tB = B : t < 0,T  is determined by the 

   (2)     

Once is obtained, the price of the American put can be calculated easily. 

 us

following integral equation: 

[ ]- ( - )
2- ( , , - )- ( , ) s

T r s t
t E t tt

d B B s tK B P B K rKe N ds= +∫
tB  Ju 

(1998) es the multi-piece exponential (MPE) method to handle this problem. 

Under this scheme, multiple exponential functions are used to approximate the 

exercise boundary, each of which is defined by two variables which are in turn 

determined by continuity and smoothing-pasting conditions. Assume 

bt
tB =Be for the interval [ ]1 2t ,t , where parameters B  and b  are to be 

d later. Under this s e, the premium become  

(
determine chem s 

    ) ( )1 1 2 1 1, , , , , , , , ,t tP S K B b t t K I S B b t t≈ × 2 (3)  

 Integration by parts then yields 
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∫

4)

                                       

with , 2x= (r b σ /2)− − − ( )y= ln S/B /σ−  and 2z= x +2r . 

If we define P1, P2, P3, as the approximate option values corresponding to 

approximating the early exercise boundary as a one-piece exponential function 

( 11t
11B e  ) , a two-piece exponential function ( ,  ), and a three-piece 

exponential function ( , ), respectively, then the Ps are 

given by 

22t
22B e 21t

21B e

31t
31B e 32t

32B e , 31t
31B e
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To determine B’s and b’s, we apply “an iterative root-finding algorithm”. For 

example, to determinate  and 22B 22b , applying an iterative root-finding 

algorithm at t＝0 yields 

1

22 22 22 22 22 22 21 21

22 22 22 22 22 21 21

( , , ) ( , , ,0, /2) ( , , , /2, ) (8
1 ( ( , , )) ( , , ,0, /2) ( , , , /2, ) (9)
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     The function Is (…) is defined by 

( ) ( )

( ) ( )

( ) ( )

1/ 2 1/ 2 1/ 2 1/ 2

1/ 2 1/ 2 1/ 2 1/ 2

1/ 2 1/ 2 1/ 2 1/ 2

1/

1 2

1 2
1 1 2 2

( )
2 2 1 1

( )
2 2 1 1

( )
2

1
( 1)

2
1

( 1)
2
1

( 1)
2

, , , ,

1

( )

( )

{
S

rt rt

y z x

y z x

y z x

x
e

z
x

e
z
x

e
z

II S B b t t
S

e N xt yt e N xt yt
S

z x N zt yt N zt yt

z x N zt yt N zt yt

n zt

σ
− −

− −

− −

− −

−

− +

−

+

+

∂
=
∂

= − + − +

⎡ ⎤+ − + − +⎣ ⎦

⎡ ⎤− − + − − −⎣ ⎦

+ ( ) ( )

( ) ( )

2 1/ 2 1/ 2 1/ 2

1/ 2 1/ 2 1/ 2 1/ 2

1/ 2 1/ 2
2 1 12 1

1/ 2 1/ 2( )
2 2 1 12 1

1
( 1)

2
} (10)y z xx

e
z

yt t n zt yt t

n zt yt t n zt yt t

− −

− −

− −

− −− +

⎡ ⎤+ − +⎣ ⎦

⎡ ⎤− − − − −⎣ ⎦

     , and( )y= ln S/B /σ− 2z= x +2r .                                                    

The B’s and b’s can be obtained by the two-dimensional Newton-Raphson 

method [12]. To find  and 11B 11b , the approximations of MacMillan (1986) 

and Barone-Adesi and Whaley (1987) provide a good initial estimate for  

and zero provides a good initial estimate for

11B

11b . Once  and 11B 11b  are found, 



 

they provide good initial estimates for finding and 21B 21b respectively. To find 

22B  and 21b ,  and 21B 21b  are good initial estimates.  

In this thesis, we recommend a three-point Richardson scheme to improve 

convergence. If P1, P2, and P3 are the values given in equations (5), (6), and (7), 

then the American put price is approximated by 

3 2 1
ˆ 4.5 4 0.5 (10)AP P P P= − +  

To illustrate the result, Table 1 reports the values of the early exercise option 

implied by the binomial tree (time steps equal to 5000) and the decomposition 

techniques. It is a set of contracts for comparison. The set consists of sixteen 

contracts that have different values of the underlying asset price St at valuation 

date t, the time-to-expiration T, and the volatility parameter σ. The strike value 

K is fixed at 45. The risk-free rate r is chosen to be 0.0488. In a set, St = (40; 

42:5; 45; 47:5), T = (0.5; 1.0), and σ = (0.2; 0.4). As a result, the set of contracts 

include out-of-the-money, at-the-money, and in-the-money options. The 

decomposition approximation is based on the observation that the early exercise 

premium does not depend on the exact values of the early exercise boundary 

critically. This insight allows us to approximate the early exercise boundary as 

a multi-piece exponential function. Because the resulting integral of the early 

exercise premium can be evaluated analytically, an accurate approximation is 

obtained. Table 1 shows that the approximation based on a three-point 

extrapolation scheme have the accuracy of a 5000-time-step binomial tree 

model. 
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Table 1 

   (1)      (2)      (3)        (4)         (5)          (6)        (7)  

St σ T European price

Benchmark 

tree  

(5000 time steps)

Decomposition Difference

40.0 0.2 0.50 4.8193 5.2073 5.2083 -0.0010 

40.0 0.2 1.00 4.9220 5.5375 5.5445 -0.0070 

42.5 0.2 0.50 3.2083 3.4132 3.4192 -0.0060 

42.5 0.2 1.00 3.5809 3.9570 3.9480 0.0090 

45.0 0.2 0.50 2.0009 2.1038 2.1118 -0.0080 

45.0 0.2 1.00 2.5308 2.7567 2.7717 -0.0150 

47.5 0.2 0.50 1.1701 1.2198 1.2078 0.0120 

47.5 0.2 1.00 1.7408 1.8758 1.8948 -0.0190 

40.0 0.4 0.50 6.9293 7.1193 7.1223 -0.0030 

40.0 0.4 1.00 8.0916 8.4580 8.4540 0.0040 

42.5 0.4 0.50 5.5992 5.7364 5.7344 0.0020 

42.5 0.4 1.00 6.9452 7.2344 7.2394 -0.0050 

45.0 0.4 0.50 4.4759 4.5737 4.5867 -0.0130 

45.0 0.4 1.00 5.9429 6.1701 6.1581 0.0120 

47.5 0.4 0.50 3.5432 3.6134 3.6214 -0.0080 

47.5 0.4 1.00 5.0721 5.2534 5.2784 -0.0250 

Comparison of the binomial method and the decomposition techniqe’s values for the early exercise 

option in an American put option on a share of stock. The early exercise value is the difference between 

the American and European put values. In this comparison, the strike price of the put is 45, the 

short-term interest rate is 0.0488, and the underlying stock price S, the volatility of returns σ, and the 

number of years until the final expiration of the option T are as indicated. The European option values 

are based on the closed-form Black-Scholes formula. Column 5 shows the numerical results of option 

values form the binomial method with at least 5,000 time steps (the benchmark). Column 6 shows the 

numerical results from an analytic approximation technique: the 3-step multi-piece exponential (MPE) 

approximation with Richardson extrapolation. 
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2.2 Valuing American Barrier Put Options 

In this section, we apply the decomposition technique to other nonstandard 

American options when the early exercise premium can be represented as 

integrals involving the cumulative normal function. One particular example is 

American barrier options. Gao, Huang, and Subrahmanyam (1996) have 

derived quasi-analytic formulas for American barrier options. The focus of this 

thesis is on the valuation of “up-and-out” barrier put options using LSM. The 

price of an American “up-and-out” barrier put option is given by 

 

    where  

( ) ( ) ( ) ( )2 2 2
0 0 0 0, , / / ,E uo E EP S K P S K H S P H S Kλ −

− = + (1 2 )

2

 

is the price of an European “up-and-out” barrier option,  is the 

Black-Scholes formula for standard European put options, H is the barrier, and 

EP

2( / 2) /rλ σ= + σ . The form of the above formula is very similar to that in 

equation (1); therefore the method of approximating the early exercise 

boundary as a multi-piece exponential function applies. 

The early exercise boundary [ ]{ }uo-t uo-tB = B : t < 0,T  is determined by the 

following integral equation: 
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Assume bt
uo-tB =Be  for the interval [t1, t2] where parameters B and b are to 

be determined later. Under this approximation, the premium becomes  

( ) ( ) ( ) ( )2 2 2
1 1 2 1 1 2 1 1 1 2, , , , , , , , , / / , , , , (14)uo t t t tP S K B b t t K I S B b t t K H S I H S B b t tλ−≈ × − × ×  

     where I is the same as in equation (4) 

     Suppose the exercise boundary is to be approximated by three pieces of 

exponential functions. The boundary is then specified by the set of parameters 

(B, b). Given the boundary, the option price can be determined as follow: 
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To determine B’s and b’s, each pair of (B, b) has to be determined by 

simultaneously solving two nonlinear equations: 
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   where Is is the same as in equation (10). 

     For American barrier options, we also recommend a three-point Richardson 

scheme to improve converge. If the P’s are the values given in equation (15), 

then the American “up-and out” barrier option price is approximated by 

3 2
ˆ 4.5 4 0.5AP P P P= − + . 

To illustrate the fact, Table 2 reports the values of the early exercise option 

implied by the decomposition techniques. It is a set of contracts for comparison. 

Each set consists of sixteen contracts that have different values of the 

underlying asset price St at valuation date t, the time-to-expiration T, and the 

volatility parameter σ. The barrier level H and the strike value K are fixed at 50 

and 45, respectively. The risk-free rate r is chosen to be 0.0488. In a set, St = 

(40; 42:5; 45; 47:5), T = (0.5; 1.0), and σ = (0.2; 0.4). As a fact, the set of 



 

contracts include out-of-the-money, at-the-money, and in-the-money options.  

In summary, Table 2 shows that the quasi-analytic pricing formula (11) is 

accurate [6]. Recently, Hansen and Jorgensen (2000) applied the 

quasi-analytical formula to the case of floating strike Asian options [7]. The 

quasi-analytical formula does not have the problem. In the next chapter, we will 

choose the decomposition technique’s values as our benchmarks. 
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Table 2 

   (1)      (2)      (3)        (4)         (5)          (6)        (7)  

St σ T European price

Benchmark: 

Ritchken’s trinomial 

tree(5000 time steps)

Decomposition Difference

40.0 0.2 0.50 4.7986 5.1828 5.1869 -0.0041 

40.0 0.2 1.00 4.7592 5.3797 5.3843 -0.0046 

42.5 0.2 0.50 3.1440 3.3443 3.3456 -0.0013 

42.5 0.2 1.00 3.2753 3.6403 3.6423 -0.0020 

45.0 0.2 0.50 1.8385 1.9331 1.9357 -0.0026 

45.0 0.2 1.00 2.0128 2.2111 2.2132 -0.0021 

47.5 0.2 0.50 0.8232 0.8609 0.8614 -0.0005 

47.5 0.2 1.00 0.9347 1.0215 1.0213 0.0002 

40.0 0.4 0.50 6.2435 6.4244 6.4260 -0.0016 

40.0 0.4 1.00 6.3540 6.7029 6.7032 -0.0003 

42.5 0.4 0.50 4.5514 4.6721 4.6737 -0.0016 

42.5 0.4 1.00 4.6727 4.9155 4.9169 -0.0014 

45.0 0.4 0.50 2.9602 3.0336 3.0352 -0.0016 

45.0 0.4 1.00 3.0586 3.2133 3.2131 0.0002 

47.5 0.4 0.50 1.4496 1.4846 1.4851 -0.0005 

47.5 0.4 1.00 1.5035 1.5781 1.5780 0.0001 

Comparison of the restricted binomial method and the decomposition technique’s values [6] for the 

early exercise option in an American” up-and-out” put options on non-dividend-paying stocks for one 

set of contracts computed using different methods. Set I includes 16 contracts, each of which has a 

different value of the parameter set (St; T; σ). The domain of this parameter set is St = (40; 42:5; 45; 

47:5), T = (0.5; 1.0), σ= (0.2; 0.4), the strike price of the put is 45, the barrier level is 50, and the 

short-term interest rate is 0.0488. Panels (a) shows the numerical results for contract set I, respectively. 

Columns 1 through 3 represent the values of the parameters, St (the time-t stock price), σ (volatility), 

and T (the time to expiration), respectively. Column 4 reports the European option values obtained 

using the analytic formula in (11). Columns 5 through 6 show the numerical results of option values 

from the Ritchken method with at least 5,000 time steps (the benchmark) [13], Columns 6 show the 

numerical result from an analytic approximation technique: the 3-step multi-piece exponential (MPE) 

approximation with Richardson’s extrapolation. 
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Chapter 3 
 

The LSM Methodology 

 
This chapter briefly reviews the LSM approach discussed in Longstaff and      

Schwartz (2001). For more details and a numerical illustration of the algorithm 

with the help of a simple example, the reader is referred to the original paper. 

 

3.1 The Valuation Framework 

Formally, the approach assumes an underlying complete probability space (Ω, F, 

P) and finite time horizon [0, T]. The probability space is a triple consisting of 

Ω, the set of all possible sample paths (ω), F, the sigma-algebra of events at 

time T and P, a probability measure defined on the elements of F. Let 

, ( ), : ,C s t Tω ω∈Ω , ( ),s t T∈  denote the path of option cash-flows, 

conditional on (i) the option being exercised after t and (ii) the option holder 

following the optimal stopping strategy at every time after t. The American 

option is approximated by its Bermuda counterpart, assuming that there are a 

finite number of exercise dates 1 10 Nt t t T< < < ⋅⋅⋅ < = . The continuation value 

is equal, under the no-arbitrage conditions, to the risk-neutral expectation of the 

future discounted cash flows ( ), : ,iC s t Tω ： 
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where  is the risk-free interest rate and  is the information set at 

time . The idea underlying the LSM algorithm is that this conditional 

expectation can be approximated by a least-squares regression for each exercise 

date. At time , it is assumed that 

(r ω,s tF

it

1Nt − ( )1, NF tω −  can be expressed as a linear 

combination of orthonormal basis functions. This procedure is repeated going 

back in time until the first exercise date.   

Intuitively, in pricing American options, because there exist several possible 

exercise dates, the holder of the option must decide, at each exercise time, 

whether to exercise the option or to wait. This decision depends on the 

comparison between (i) the amount of money that can be obtained if the option 

is exercised (the immediate exercise value) and (ii) the amount of money that 

can be obtained if the option is exercised at a future date (the continuation 

value). The optimal exercise decision, therefore, relies on the estimation of the 

continuation value. The LSM approach estimates this value by a least-squares 

regression jointly with the cross-sectional information provided by Monte Carlo 

simulation. The fitted values of these regressions are then taken as the expected 

continuation values. Comparing these estimated values with the immediate 

exercise, the LSM identifies the optimal stopping rule. This procedure is 

repeated recursively going back in time. Discounting the obtained cash flows to 

time zero, the price of the American option is found. 

 

3.2  Valuing American Puts 

In this section we present the application of the LSM algorithm to price 
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American put options. Assume that we are interested in pricing an American put 

option on a share of stock, where the risk-neutral stock price process follows 

the stochastic differential equation 

dS rSd t SdZσ (17 )= +  

where r and σ are constants, Z is a Brownian motion, and the stock does not pay 

ercise option 

ts per year. 

dividends. Further assume that the option is exercisable 50 times per year at a 

strike price of K up to and including the final expiration date T of the option. 

This type of discrete American exercise feature is sometimes termed a Bermuda 

exercise feature. As the set of basis functions, we use a constant and the first 

three Laguerre polynomials. Thus we regress discounted realized cash flows on 

a constant and three nonlinear functions of the stock price. Since we use linear 

regression to estimate the conditional expectation function, it is straightforward 

to add additional basis functions as explanatory variables in the regression if 

needed. Using more than three basis functions, however, does not materially 

change the numerical results; in other words, three basis functions are sufficient 

to obtain effective convergence of the algorithm in this example.  

To illustrate the results, Table 3 reports the values of the early ex

implied by both the decomposition and LSM techniques. The value of the early 

exercise option is the difference between the American put value and that of the 

European put. The European put value is given by the Black-Scholes formula. 

This thesis focuses primarily on the early exercise value since it is the most 

difficult component of an American option’s value to determine; the European 

component of an American option’s value is much easier to identify. 

The LSM estimates are based on 10,000 paths using 50 exercise poin

As shown, the differences between the decomposition and LSM algorithms are 
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typically very small. Of the 16 differences shown in Table 3, 13 are less than or 

equal to one cent in terms of absolute value. In addition, the differences can be 

both positive and negative. The results show that the LSM algorithm is able to 

approximate closely the decomposition value. On the other words, the LSM 

algorithm can verify it, e.g., the decomposition technique and that LSM is more 

flexible as it can be applied to other problems, like American barrier options. 
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Table 3 

   (1)      (2)      (3)        (4    (5)          (6)        (7)   

40 5.  

)       

St σ T European price Decomposition LSM Difference

.0 0.2 0.50 4.8193 5.2083 2069 0.0014 

40.0 0.2 1.00 4.9220 5.5445 5.5374 0.0071 

42.5 0.2 0.50 3.2083 3.4192 3.4152 0.0040 

42.5 0.2 1.00 3.5809 3.9480 3.9499 -0

-0

.0019 

45.0 0.2 0.50 2.0009 2.1118 2.1049 0.0069 

45.0 0.2 1.00 2.5308 2.7717 2.7643 0.0074 

47.5 0.2 0.50 1.1701 1.2078 1.2188 .0110 

47.5 0.2 1.00 1.7408 1.8948 1.8842 0.0106 

40.0 0.4 0.50 6.9293 7.1223 7.1202 0.0021 

40.0 0.4 1.00 8.0916 8.4540 8.4577 -0

-0

.0037 

42.5 0.4 0.50 5.5992 5.7344 5.7329 0.0015 

42.5 0.4 1.00 6.9452 7.2394 7.2312 0.0082 

45.0 0.4 0.50 4.4759 4.5867 4.5769 0.0098 

45.0 0.4 1.00 5.9429 6.1581 6.1599 .0018 

47.5 0.4 0.50 3.5432 3.6214 3.6155 0.0059 

47.5 0.4 1.00 5.0721 5.2784 5.2528 0.0256 

Com  of the position techniques an ulation val he early exercise option in an parison decom d sim ues for t

American put option on a share of stock, where the option is exercisable 50 times per year. The early 

exercise value is the difference between the American and European put values. In this comparison, the 

strike price of the put is 45, the short-term interest rate is 0.0488, and the underlying stock price S, the 

volatility of returns σ, and the number of years until the final expiration of the option T are as indicated. 

The European option values are based on the closed-form Black–Scholes formula. The LSM simulation 

is based on 10,000 paths for the stock-price process. An analytic approximation technique is the 3-step 

multi-piece exponential (MPE) approximation with Richardson extrapolation. 
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3.3 Valuing American Barrier Put Options 

tic path-dependent 

 a final 

      it not only has an American 

e 

 

In this section we apply the LSM algorithm to a more exo

option: the American “up-and-out” barrier put option, where the put option can 

be exercised at any time as long as the stock price has not hit the barrier. 

Define the current valuation date as time t, we assume that the option has

expiration date T= (0.5; 1) and that the option can be exercised at any time that 

the stock price has not hit the barrier H. The risk-neutral dynamics for stock 

price are the same as in the previous section.  

This option is particularly complex because

exercise feature, but the cash flow from exercise is path dependent as the stock 

price cannot have hit the barrier. In general, these types of problems are very 

difficult to solve using traditional binomial/trinomial methods. In this case, we 

can value the option by the LSM. Note that the path dependency of the option 

payoff does not pose any difficulties to the simulation-based LSM algorithm. 

Table 4 compares the numerical results from valuing this option by th

decomposition technique with those obtained by the LSM. The LSM results are 

based on 10,000 paths and use 50 exercisable points per year to approximate the 

continuous exercise feature of the option. As the set of basis functions, we use a 

constant and the first three Laguerre polynomials to evaluate discount cash flow. 

As shown in Table 4, differences between the decomposition technique and the 

LSM are small. The differences in the early exercise values are also small 

relative to the levels of the American and European option values. These 

differences would likely be well within the bid-ask spread or transaction cost. 
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Table 4 

   (1)      (2)      (3)        (4    (5)          (6)        (7)     

40 5.  

)       

St σ T European price Decomposition LSM Difference

.0 0.2 0.50 4.7986 5.1869 1817 0.0052 

40.0 0.2 1.00 4.7592 5.3843 5.3793 0.0050 

42.5 0.2 0.50 3.1440 3.3456 3.3408 0.0048 

42.5 0.2 1.00 3.2753 3.6423 3.6402 0.0021 

45.0 0.2 0.50 1.8385 1.9357 1.936 

2.  

-0.0003 

45.0 0.2 1.00 2.0128 2.2132 2041 0.0091 

47.5 0.2 0.50 0.8232 0.8614 0.8763 -0.0149 

47.5 0.2 1.00 0.9347 1.0213 1.0007 0.0206 

40.0 0.4 0.50 6.2435 6.4260 6.4239 0.0021 

40.0 0.4 1.00 6.3540 6.7032 6.6975 0.0057 

42.5 0.4 0.50 4.5514 4.6737 4.674 -0.0003 

42.5 0.4 1.00 4.6727 4.9169 4.  9114 0.0055 

45.0 0.4 0.50 2.9602 3.0352 3.0291 0.0061 

45.0 0.4 1.00 3.0586 3.2131 3.2088 0.0043 

47.5 0.4 0.50 1.4496 1.4851 1.4774 0.0077 

47.5 0.4 1.00 1.5035 1.5780 1.5248 0.0532 

Com of the decomposition techniqu d simulation val es for the early rcise optio  parison es [6] an u  exe n in

an American” up-and-out” put options on non-dividend-paying stocks for one set of contracts 

computed using different methods. Set I includes 16 contracts, each of which has a different value of 

the parameter set (St; T; σ). The domain of this parameter set is St = (40; 42.5; 45; 47.5), T = (0.5; 1.0), 

σ= (0.2; 0.4), the strike price of the put is 45, the barrier level is 50, and the short-term interest rate is 

0.0488. Panels (a) shows the numerical results for contract set I, respectively. Columns 1 through 3 

represent the values of the parameters, St (the time-t stock price), σ (volatility), and T (the time to 

expiration), respectively. Column 4 reports the European option values obtained using the analytic 

formula in (11). Columns 5 through 6 show the numerical results of option values from analytic 

approximation technique: the 3-step multi-piece exponential (MPE) approximation with Richardson 

extrapolation. Columns 6 show the numerical result from the LSM algorithm based on 10,000 paths for 

the stock-price process.  
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.3.1  The Homogeneous Property of American Barrier 

For Amer options with a strike level K and a barrier H, the optimal 

 )H t T

3

Options 
ican barrier 

exercise boundary has the following property called the homogeneity of degree 

one in strike and barrier prices [5]: 

 ( , ) (B K H B K, ) , 0, [0, ] (18uo t uo tλ λ λ− −= λ∀ > ∈  

e homogeneity property suggests that among all the contracts considered for 

 

ry, our numerical experiments show that the LSM produces results 

 
 

 

Th

American barrier options and among the contracts with the same proportional 

value of (K; H), only the boundary for one set of (K; H) needs to be calculated. 

We use the decomposition technique to price a (K;H) pair and then the LSM to

price the ( λ K; λ H ) pair. Then the LSM values should equal the 

decomposition values timesλ for the homogeneity property to hold. With λ=2, 

Table 5 confirms that indeed the decomposition results times 2 equal the LSM 

results.  

In summa

consistent with the homogeneity property and that the LSM produces results 

consistent with the decomposition technique.  

 

 

 
 
 

 23



 

 

Tab  5 

(1)      (2)      (3)        (4      (5)             (6)    

St σ T omposition LSM (λ=2) LSM/decomposition

40.0/ .0 0.2 0.50   5. 869 10.3 30 1.9979 

le

)       

  

 Dec

  

80 1 6

40.0/80.0 0.2 1.00   5.3843 10.7583 1.9981 

42.5/85.0 0.2 0.50   3.3456 6.6810 1.9970 

42.5/85.0 0.2 1.00   3.6423 7.2316 1.9854 

45.0/90.0 0.2 0.50   1.9357 3.8695 1.9990 

45.0/90.0 0.2 1.00   2.2132 4.4049 1.9903 

47.5/95.0 0.2 0.50   0.8614 1.7540 2.0362 

47.5/95.0 0.2 1.00   1.0213 1.9984 1.9567 

40.0/80.0 0.4 0.50   6.4260 12.8475 1.9993 

40.0/80.0 0.4 1.00   6.7032 13.3945 1.9982 

42.5/85.0 0.4 0.50   4.6737 9.3484 2.0002 

42.5/85.0 0.4 1.00   4.9169 9.8221 1.9976 

45.0/90.0 0.4 0.50   3.0352 6.0572 1.9957 

45.0/90.0 0.4 1.00   3.2131 6.4158 1.9968 

47.5/95.0 0.4 0.50   1.4851 2.9501 1.9865 

47.5/95.0 0.4 1.00   1.5780 3.0444 1.9293 

Set I i 32 c h nt value of rameter set (St; ). The 

.2  

I, respecti

 

ncludes ontracts, each of whic has a differe the pa  T; σ;λ

domain of the decomposition parameter set is St = (40; 42.5; 45; 47.5), T = (0.5; 1.0), σ= (0 ; 0.4), 

the strike price of the put is 45, the barrier level is 50 and the short-term interest rate is 0.0488. The 

domain of the LSM parameter set is St = (80; 85; 90; 95), T = (0.5; 1.0), σ= (0.2; 0.4), λ=2, the strike 

price of the put isλ*45, the barrier level isλ*50 and the short-term interest rate is 0.0488. Panels (a) 

shows the numerical results for contract set vely. Columns 1 through 3 represent the values of 

the parameters, St /λ*St, σ (volatility), and T (the time to expiration), respectively. Column 4 reports 

the American up and out barrier put options values obtained using the quasi-analytic approximation in 

(11) and Column 5 reports the American up and out barrier put options values obtained using the LSM 

withλ=2. Column 6 shows the ratios of the LSM values divided by the decomposition values. 
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Chapter 4 
 

   Conclusion  

 options are in widespread use today in the global 

s a simple technique, the LSM, to price American puts and 

 

Nonstandard or exotic

financial markets. Increasingly, over-the-counter options on many assets 

including equities, fixed income securities, foreign exchange and commodities 

have nonstandard characteristics such as the knock-in/knock-out feature, the 

averaging of the price of the underlying asset, and countless others. Often, due 

to the lack of liquid secondary markets for these products and in view of their 

custom-designed nature, an optimal exercise or American feature is 

incorporated into the design of the contract. It is well-known that even for 

standard options, the American feature causes problems for valuation because 

there is no closed-form solution for the prices in general. Therefore, most 

models of American option valuation are implemented using numerical 

procedures.  

This thesis applie

American barrier options. This approach is intuitive, accurate, and easy to apply. 

As a framework for valuing and risk managing derivatives, simulation has 

many important advantages. With the ability to value American options, the 

applicability of simulation techniques becomes much broader and more 

promising, particularly for models with multiple factors. 
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