
Interpolation and American
options pricing

Shi-hau Liao
Department of finanace

National Taiwan University

Contents

1 Introduction 1

2 Backrounds 3
2.1 Derivatives Basics . 3

2.1.1 Option Basics . 3
2.1.2 Payoffs on Standard Options 4

2.2 Pricing Methods . 5
2.2.1 The Balck-Scholes Formula . 5
2.2.2 Binomial Option Pricing Model 7

3 Polynomial and Cubic Spline Interpolation 9
3.1 Polynomial Interpolation . 9
3.2 Cubic Spline Interpolation . 10
3.3 Interpolation in Two or More Dimensions 13
3.4 Comparison Between Polynomial and Cubic Spline Interpolation . . . 18

3.4.1 Computational complexity . 18
3.4.2 Polynomial wiggle problem . 18

4 Numerical Results 22
4.1 Building table . 22
4.2 numerical results . 23

5 Conclusion 32

Bibliography 33

1

List of Figures

2.1 Profit/loss of Options. 4

3.1 dim3 . 14
3.2 di1 . 15
3.3 di2 . 16
3.4 di3 . 17
3.5 Polynomial wiggle problem . 20
3.6 The curve that give rise to P1, ..., P6. 21

2

Abstract

Pricing European and American options accurately and efficiently has been a main
concern in many studies. Although the closed-form solution of the European option
has already been derived by Fischer Black, Myron Scholes, and Robert Merton and
efficient numerical approximation algorithms are available, there are numerical meth-
ods that price such options with a much smaller cost and within acceptable error
bounds by use of some precomputation.

In the thesis, the method is proposed to build a look-up table for European and
American option values by precomputation. Once this is done, the requested option
value is then interpolated from the table via polynomial interpolation or cubic spline.
Though it takes time to build up the table, since the calculation is done off-line
and once and for all, the cost is fixed and can be amortized. More importantly, the
interpolated option value can be calculated very fast.

Chapter 1

Introduction

Introduction

TAIEX options and equity options have already been issued in recent years, and
received great attention from the investors, mutual funds, financial institutions, and
market makers. If the investors, mutual funds, and financial institutions cannot get
the correct prices of the options on time, they may not know the costs of hedging,
seize the arbitrage opportunities, or rebalance their portfolios. For market makers,
not being able to quote the accurate bid and ask price promptly means they may fail
to get the orders and consequently lose a potentially lucrative deal. Therefore, it is
very important for them to price the options fast and accurately.
The method in the thesis is proposed to build a look-up table for European and
American option values by precomputation. Once this is done, the requested option
value is then interpolated from the table via polynomial interpolation or cubic spline.
Though it takes time to build up the table, since the calculation is done off-line
and once and for all, the cost is fixed and can be amortized. More importantly, the
interpolated option value can be calculated very fast.

Previous work

The method of building a look-up table of the American option prices and calculating
our desired option prices by interpolation was first introduced by Broadie and De-
temple in Recent advances in numerical methods for pricing derivative securities and
was first implemented by Adriaan Joubert and L.C.G Rogers in Fast, Accurate and
Inelegant Valuation of American Options, in which they use polynomial interpolation
to maintain its accuracy.

1

Introduction 2

Structures of the Thesis

The structure of this thesis is as followed.Section 2 focuses on the definition of the
American and European options.Secton 3 introduces two interpolation skills: polyno-
mial interpolation and cubic spline.Section 4 describes the way to build the look-up
table.Section 5 displays the numerical results.

Chapter 2

Backrounds

2.1 Derivatives Basics

This section covers the definition and classification of the option and the method to
price them.

2.1.1 Option Basics

An option is the right to buy or sell a specified underlying asset at a specified price
within a specified period of time. Generally speaking, there are two basic types
of option :call options, put options. A call option is the right to buy a security
at a specified price (called the exercise or strike price) during a specified period of
time, while a put option is the right to sell a security at a specified price during a
specified period of time. The price which holder can buy or sell something is called
the exercise price or the strike price. The date which the contract expires is known
as the expiration date, exercise date or maturity.

The options can also be differentiated by the time period when they can be exer-
cised. An American option can be exercised at any time up to the expiration date,
whereas a European option can be exercised only at expiration. Thus, the price of
anAmerican option must be at least as much of that of aEuropean option with the
same exercise price and time to maturity because of its early exercise feature.

There are two positions an investor may take. One is ashort position, the other
is along position. An investor taking a long position on an option means he buys
the option, while an investor taking a short position on an option means he sells the
option. Taking a long position on the call options means the investor expects the
price of the underlying asset to rise, while taking a short position on the call option
means the investor expects the underlying asset to decline.

3

Backgrounds 4

S

Profit/loss

S

Profit/loss

S

Profit/loss

X

X

X

X

(a) (b)

(d)(c)

P

P

C

S

Profit/loss

Figure 2.1: Profit/loss of Options. (a) Long a call. (b) Short a call. (c) Long a
put. (d) Short a put.

2.1.2 Payoffs on Standard Options

Not obliging the option holder to exercise the right, an option will be exercised only
when its profit is maximized. Therefore, a call option will be exercised when the price
of the underlying asset is lower than its strike price; in contrast, a put option will be
exercised when the price of the underlying asset is higher than its strike price. To
define it more formally, we let the value of the underlying asset at maturity be S,
the strike price be X, and the premium of option be O. Then the payoff for the long
position at expiration is max(0, S−X) for European call options; and max(0, X−S)
for European put options. So the profit for a long position in call options is

max(0, S −X)−O

The profit for a long position in put options is

max(0, X − S)−O

The profit for a short position in call options is

−(max(0, S −X)−O) = min(0, X − S) + O

Backgrounds 5

while the profit for a short position in put options is

−(max(0, X − S)−O) = min(0, S −X) + O

Figure2.1 illustrates profit/loss graphically.

2.2 Pricing Methods

2.2.1 The Balck-Scholes Formula

In the early 1970s, Fischer Black and Myron Scholes made a major breakthrough in
the pricing of non dividend-paying derivative by deriving a well-known differential
equation. Solving the differential equation results in the closed form solution of
European call and European put option on stock, which is one of the most significant
tools for pricing options.

2.2.1.1 Assumptions

The assumptions used to derive the Black-Scholes differential equation are listed
below:

1. The value of the underlying assets follows the log-normal distribution.

2. The rate of return on stock, µ, and the volatility of stock price, σ, are constant
throughout the option’s life.

3. The short selling of securities with full use of proceeds is permitted.

4. The are no transaction costs or taxes. All securities are perfectly divisible.

5. No dividends are paid during the life of the derivative security.

6. No arbitrage opportunity.

7. Security trading is continuous.

8. The risk-free rate of interest, r, is constant and the same during the life of the
security.

2.2.1.2 The Black-Scholes Differential Equation

From assumptions 1 and 2 above, we know that

dS = µSdt + σSdz

Backgrounds 6

where dz follows N(0, dt), S denotes the stock price and dt denotes a very short time
interval. By the Ito’s formula

df = (
∂f

∂S
µS +

∂f

∂t
+

1

2
σ2S2 ∂2f

∂S2
)dt +

∂f

∂S
σSdz

where f is the price of a call option or other derivative contingent on S. We may
use S and f to form a portfolio without dz, the random source of the underlying
stochastic process, through a suitable choice of weights for each asset. Because the
portfolio is riskless, it earns the risk-free rate during the short time interval, dt. After
arranging the formula, the final equations emerges as

∂f

∂t
+ rS

∂f

∂S
+

1

2
σ2S2 ∂2f

∂S2
= rf (2.1)

where f is the price of a derivative security, S is the stock price, σ is the volatility of
the stock price, and r is the continuously compounded risk-free rate.

2.2.1.3 The Closed Form Solution for The Black-Scholes Formula

The closed form solutions for the price of European calls and puts by solving (2.1)
along with the boundary condition,

f = max(S −X, 0) for the European call option

f = max(X − S, 0) for the American call option

are

C = SN(d1)−Xe−rT N(d2)

P = Xe−rT N(−d2)− SN(−d1)

where

d1 =
ln(S/X) + (r + σ2/2)T

σ
√

T

d2 =
ln(S/X) + (r − σ2/2)T

σ
√

T
= d1 − σ

√
T

The notations for the above equation are described as below:
C denotes the call price
P denotes the put price
N(x) = Probability distribution function for standard normal distribution
σ2 = Annualized variance of the continuously compounded return on stocks
r = Continuously compounded risk-free rate
T = The time to maturity

Backgrounds 7

2.2.2 Binomial Option Pricing Model

First, we consider the single period binomial model, that is, the call option matures
at time one. Let S denote the stock price at time zero, X be the strike price, u and
d 1denote the percentage that stock price move up and down at time one respec-
tively,and Cu and Cd be the price of the call option when stock move up to Su and
Sd at time one respectively.Thus

Cu = max(0, Su−X)

Cd = max(0, Sd−X)

Now we want to set up a portfolio with h shares of stock and B dollars in the riskless
asset so that the payoff of the portfolio replicate that of the call, that is,

hSu + B = Cu

hSd + B = Cd

By solving the above equation we obtain

h =
Cu − Cd

Su− Sd

B =
uCd − dCu

(u− d)R

where R is the risk-free rate. Therefore,

hS + B =
(R−d

u−d
)Cu + (u−R

u−d
)Cd

R

which can be rewritten as

hS + B =
pCu + (1− p)Cd

R

where

p ≡ R− d

u− d

Likewise, in the two period model, the value of the call option at time two shall be

Cuu = max(0, Suu−X), Cud = max(0, Sud−X), Cdd = max(0, Sdd−X)

Applying the same logic in the one period model, we may get the value of the call
option at time one:

Cu =
pCuu + (1− p)Cud

R
, Cd =

pCud + (1− p)Cdd

R
1u and d reflect the volatility of the price of underlying asset, the most common choice of u and

d are eσdt0.5
and e−σdt0.5

.

Backgrounds 8

Therefore,

C = hS + B =
pCu + (1− p)Cd

R
=

p2Cuu + 2p(1− p)Cud + (1− p)2Cdd

R2

=
p2 max(0, Su2 −X) + 2p(1− p) max(0, Sud−X) + (1− p)2 max(0, Sd2 −X)

R2

To extend it more generally, we let S(i, j) denote the price of underlying asset with
i up and i− j down moves from the root, that is,

S(i, j) = S0u
jdi−j

and let C(i, j) and P (i, j) be the price of European call and European put option
when the price of the underlying asset is S(i, j) = S0u

jdi−j. Then, we may write
down the induction formula of the call option:

C(i, j) =
pC(i + 1, j + 1) + (1− p)C(i + 1, j)

R

for i = 0, 1, ..., n and j = 0, 1, ..., i, through which we may get the value of call option
in the n period model:

C(0, 0) =

∑n
j=0(

n
j)pj(1− p)n−j max(0, Sujdn−j −X)

Rn

Similarly, the value of a European put is

P (0, 0) =

∑n
j=0(

n
j)pj(1− p)n−j max(0, X − Sujdn−j)

Rn

For the American call and put options, the above equation should be modified because
it can be exercised at any time before expiration. The induction formula of American
call option turns out to be

C(i, j) = max(
pC(i + 1, j + 1) + (1− p)C(i + 1, j)

R
,S(i, j)−X)

and that of the American put option turn out to be

P (i, j) = max(
pP (i + 1, j + 1) + (1− p)P (i + 1, j)

R
,X − S(i, j))

Chapter 3

Polynomial and Cubic Spline
Interpolation

3.1 Polynomial Interpolation

The idea of polynomial interpolation is simple. Suppose we are given n + 1 points
P0(x0, y0), P1(x1, y1), ..., Pn(xn, yn), which we shall refer to as knots. No restrictions
are imposed on the yks. But we do assume that xks, which we shall refer to as nodes,
are distinct and in their natural order, that is, x0 < x1 < · · · < xk < xk+1 < · · · < xn.
The objective is to find polynomials that interpolate one or more of these knots.
To define it more generally, we let Pi be the value at x of the unique polynomial
of degree zero passing through the point (xi, yi) and let Pi,i+1 be the value at x of
the unique polynomial of degree one passing through both (xi, yi) and (xi+1, yi+1).
Similarly for higher-order polynomials, up to Pi,i+1,i+2,i+3....i+m. Let pk,k+m(x) denote
the polynomial passing through (m + 1) knots,Pk, Pk+1, ..., Pk+m, that is, pk,k+m(xi)
imposes m + 1 constraints pk,k+m(xi) = yi for i = k, k + 1, ..., k + m. This suggests
that pk,k+m has at most m + 1 coefficients, that is, pk,k+m(x) is of degree at most m.
For example, when m = 0, pk,k(x) is the zeroth-degree polynomial whose graph is
horizontal line through the one knot Pk(xk, yk), that is, pk,k(x) is a constant function.
When m = 1, pk,k+1(x) is the first-degree polynomial whose graph is the unique
straight line through Pk(xk, yk) and Pk(xk, yk+1), that is, pk,k+1(x) = yk + yk+1−yk

xk+1−xk
(x−

xk).
We can further express the polynomial in the Lagrange’s form.

pk,k+m(x) =
(x− xk) · · · (x− xi−1)(x− xi+1) · · · (x− xk+m)

(xi − xk) · · · (xi − xi−1)(xi − xi+1) · · · (xi − xk+m)
yi

+
(x− xk) · · · (x− xi)(x− xi+2) · · · (x− xk+m)

(xi+1 − xk) · · · (xi+1 − xi)(xi+1 − xi+2) · · · (xi+1 − xk+m)
yi+1

+ · · ·+ (x− xk)(x− xk+1) · · · (x− xk+m−1)

(xk+m − xk)(xk+m − xk+1) · · · (xk+m − xk+m−1)
yk+m

9

Polynomial and Cubic spline interpolation 10

There are m + 1 terms, each a polynomial of degree m and each constructed to be
zero at all of the xi i = k, k + 1, ..., k + m except one, at which it is constructed to be
yi i = k, k + 1, ..., k + m.
To implement the Lagrange formula efficiently, we may use the following relationship
between a ”daughter” P and its two ”parents,”

Pi,(i+1)...(i+m) =
(x− xi+m)Pi,(i+1)...(i+m−1) + (xi − x)P(i+1),(i+2)...(i+m)

xi − xi+m

(3.1)

This recurrence works because the two parents already agree at points xi+1, ..., xi+m−1.
The various Ps form a ”tableau” with ”ancestors” on the left leading to a single ”de-
scendant” at the extreme right. For example, with m = 4, i = 1

x1 : y1 = P1

P1,2

x2 : y2 = P2 P1,2,3

P2,3 P1,2,3,4

x3 : y3 = P3 P2,3,4

P3,4

x4 : y4 = P4

An improvement on the recurrence (3.1) is to keep track of the small differences
between parents and daughters, namely to define for m = 1, 2, ..., N − 1,

Cm,i ≡ Pi,...,(i+m) − Pi,...,(i+m−1) (3.2)

Dm,i ≡ Pi,...,(i+m) − P(i+1),...,(i+m) (3.3)

Then one can easily derive from (3.1.1) the relations

Dm+1,i =
(xi+m+1 − x)(Cm,i+1 −Dm,i)

xi − xi+m+1

(3.4)

Cm+1,i =
(xi − x)(Cm,i+1 −Dm,i)

xi − xi+m+1

(3.5)

At each level m, the C’s and D’s are the corrections that make the interpolation one
order higher. The final answer P1,...,N is equal to the sum of any yi plus a set of C’s
and/or D’s that form a path through the family tree to the rightmost daughter.

3.2 Cubic Spline Interpolation

Given tabulated function yi = y(xi), i = 1...N , we shall focus attention on one par-
ticular interval, between xj and xj+1. Linear interpolation in that interval gives the
interpolation formula

y = Ayi + Byi+1 (3.6)

Polynomial and Cubic spline interpolation 11

where

A ≡ xj+1 − x

xj+1 − xj

B ≡ 1− A =
x− xj

xj+1 − xj

(3.7)

Since it is (piecewise) linear, equation (3.6) is continuous and has zero second deriva-
tive in the interior of each interval, but is not well suited for interpolating smooth
(i.e., differentiable) functions. The goal of cubic spline interpolation is to get an inter-
polation formula that is smooth in the first derivative, and continuous in the second
derivative, both within an interval and at its boundaries.
To define it more formally, we let y(x) denote the piecewise cubic function on [x0, xn],
that is, there exists cubic q0(x), ..., qn(x) such that y(x) = qk(x) on [xk, xk+1]. Besides
y(x) interpolates y(x1), y(x2), ..., y(xn), therefore, qk(x) = y(x) on [xk, xk+1] must
satisfy

qk(xk) = yk and qk(xk+1) = yk+1 for k = 0, 1, ..., n− 1 (3.8)

because y(x) passes through y(x1), y(x2), ..., y(xn). Furthermore, we call y(x) a cubic
spline if the pieces qk(xk) have the same slope and same concavity at the knots where
they are joined, that is,

q′k−1(xk) = q′k(xk) = s′(xk) for k = 1, 2, ..., n− 1 (3.9)

q′′k−1(xk) = q′′(xk) = s(xk) for k = 1, 2, ..., n− 1 (3.10)

The 2n conditions in (3.8), along with the n−1 conditions in each of (3.9) and (3.10)
ensure that y(x) and both its first and second derivatives are continuous in [x0, xn].
If y(x) is piecewise cubic on [x0, xn], then its second derivative y′′(x) is piecewise
linear on [x1, xn]; in particular, by (3.10), q′′k(x) is linear and interpolates (xk, s

′′(xk))
and (xk+1, s

′′(xk+1)) in [xk, xk+1]. So

q′′k(x) = y′′(xk)(
x− xk+1

xk − xk+1

) + y′′k+1(
x− xk

xk+1 − xk

) for k = 0, 1, ..., n− 1 (3.11)

Integrating (3.11) twice with respect to x gives for k = 0, 1, ..., n− 1,

q′′k(x) =
y′′(xk)

xk+1 − xk

(xk+1 − x)3

6
+

y′′(xk+1)

xk+1 − xk

(x− xk)
3

6

+Ak(x− xk) + Bk(xk+1 − x) (3.12)

where Ak and Bk are arbitrarily constants. Because qk(x) must satisfy (3.8), we can
get for k = 0, 1, ..., n− 1,

yk =
y′′(xk)

6
(xk+1 − xk)

2 + Bk(xk+1 − xk)

Polynomial and Cubic spline interpolation 12

and

yk+1 =
y′′(xk)

6
(xk+1 − xk)

2 + Ak(xk+1 − xk)

After solving Ak and Bk and substituting in (3.12), we obtain

qk(x) =
y′′(xk)

6
[
(xk+1 − xk)

3

xk+1 − xk

− (xk+1 − x)(xk+1 − xk)] +
y′′(xk+1)

6
[
(x− xk)

3

xk+1 − xk

− (xk+1 − xk)(x− xk)]

+yk[
xk − x

xk+1 − xk

] + yk+1[
x− xk

xk+1 − xk

] for k = 0, 1, ..., n− 1 (3.13)

Once we know the value of y′′(xk) and y′′(xk+1), qk(x) is determined and can be used
to evaluate y(x) for xk < x < xk+1. Thus, we must find the second derivatives

y′′(x0), y
′′(x1), y

′′(x2), ..., y
′′(xn)

To this end, we impose (3.9) and differentiate (3.13), which gives

q′k(x) =
y′′(xk)

6
[
−3(xk+1 − x)2

xk+1 − xk

] +
y′′(xk+1)

6
[
3(x− xk)

2

xk − xk+1

] +
yk+1 − yk

xk+1 − xk

(3.14)

Hence for k = 0, 1, ..., n− 1,

q′k(xk) =
y′′(xk)

6
[−2(xk+1 − xk)] +

y′′(xk+1)

6
[−(xk+1 − xk)] +

yk+1 − yk

xk+1 − xk

(3.15)

q′k(xk+1) =
y′′(xk)

6
[(xk+1 − xk)] +

y′′(xk+1)

6
[2(xk+1 − xk)] +

yk+1 − yk

xk+1 − xk

(3.16)

Replacing k by k − 1 in (3.16) to get q′(xk), and equating to (3.15) gives

(xk − xk−1)y
′′(xk−1) + 2(xk+1 − xk−1)y

′′(xk) + (xk+1 − xk)y
′′(xk+1) =

6[
yk+1 − yk

xk+1 − xk

]− [
yk − yk−1

xk − xk−1

] for k = 1, , ..., n− 1

There are n+1 unknowns, y′′(x0), ..., y
′′(xn). However, since it has only n−1 equation,

it has infinitely many solutions. For a unique solution, we need to specify two further
conditions. The most common way of doing this are either

1. set one or both of y′′(x0) and y′′(xn) to zero, giving the so-called natural spline.

2. set either of y′′(x0) and y′′(xn) to values calculated from equation (3.14) so as
to make the first derivative of interpolating function have a specified value on
either or both boundaries.

Polynomial and Cubic spline interpolation 13

3.3 Interpolation in Two or More Dimensions

In two dimensions, we are given m points, x1, x2, ..., xm, in the x dimension, n points,
y1, y2, ..., yn, in the y dimension, and m ∗ n functional values, p(x1, y1), p(x1, y2)
, ..., p(x2, yn), ..., p(xm, yn) in the z dimension. Our goal is to estimate, by inter-
polation, the function p at some unknown point (x∗, y∗), where xi < x∗ < xi+1,
yj < y∗ < yj+1 for i = 1, 2, ..., m and j = 1, 2, ..., n. The basic idea is to break up the
problem into a succession of one-dimensional interpolations.

1. First, fixing y = yj, we do n one-dimensional interpolations in the x direc-
tion by use of the points,(xi, y1) for i = 1, 2, ..., m, (xi, y2) for i = 1, 2, ..., m,...,
and (xi, yn) for i = 1, 2, ...,m, respectively to get function values at the points
(x∗, yj) for j = 1, 2, ..., m.

2. Finally, we do a last interpolation in the y dimension to get the answer. Figure
3.1 illustrates our description graphically.

Three-dimension interpolation is analogous to two-dimensional interpolation in every
way. Because the four dimension graph cannot be shown, we only plot its domain.
Suppose we are given points, (xi, yj, zk) for i = 0, 1, 2, j = 0, 1, 2, 3, and k = 0, 1.

1. First, fixing y = yj and z = zk, we do 8 one-dimensional interpolations in
the x direction by use of the points,(xi, y0, z0) for i = 0, 1, 2, (xi, y1, z0) for
i = 0, 1, 2,..., and (xi, y3, z1) for i = 0, 1, 2, respectively to get function values
at the points (x∗, yj, zk) for j = 0, 1, 2, 3 and k = 0, 1. Figure 3.2 illustrates our
description graphically.

2. Second, fixing y = yj, we do 4 one-dimensional interpolations in the z direc-
tion by use of the points, (x∗, y0, zk) for k = 0, 1, (x∗, y1, zk) for k = 0, 1,...,
and (x∗, y3, zk) for k = 0, 1, respectively to get function values at the points
(x∗, yj, z

∗) for j = 0, 1, 2, 3. Figure 3.3 illustrates our description graphically.

3. Finally, we do a last interpolation in the y dimension to get the answer. Figure
3.4 illustrates our description graphically.

To define it more generally, suppose we are given m ∗ n ∗ o points, (xi, yj, zk) for i =
1, ..., m, j = 1, ..., n ,and k = 1, ..., o, and m∗n∗o functional values, p(x1, y1, z1), ..., p(xm, yn, zo).

Polynomial and Cubic spline interpolation 14

0

2

4

6

8

0

2

4

6

8
−1000

0

1000

2000

3000

4000

••

••

••

x

••
••

••

••

••

•← p
0
(x)•← p

0
(x)

••

•← p(x*,y*)

••

••

••

•← p
1
(x)•← p

1
(x)

••

••
••

y

•← p
2
(x)•← p

2
(x)

••

← q(y)← q(y)

•← p
3
(x)•← p

3
(x)

z

Figure 3.1: dim3

Our goal is to estimate, by interpolation, the function p at some unknown point
(x∗, y∗, z∗), where xi < x∗ < xi+1, yj < y∗ < yj+1 and zk < z∗ < zk+1.

1. First, fixing y = yj and z = zk, we do n ∗ o one-dimensional interpolations in
the y direction by use of the points,(xi, y1, z1) for i = 1, ..., m, (xi, y2, z1) for
i = 1, ..., m,..., and (xi, yn, zo) for i = 0, 1, 2, respectively to get function values
at the points (x∗, yj, zk) for j = 1, ..., n and k = 1, ..., o.

2. Second, fixing y = yj, we do n one-dimensional interpolations in the z direction
by use of the points, (x∗, y1, zk) for k = 1, ..., o, (x∗, y2, zk) for k = 1, ..., o,...,
and (x∗, yn, zk) for k = 1, ..., o, respectively to get function values at the points
(x∗, yj, z

∗) for j = 1, ..., n.

3. Finally, we do a last interpolation in the y dimension to get the answer.

Polynomial and Cubic spline interpolation 15

0

5

10

15

0
1

2
3

4
5

6
0

0.5

1

1.5

2

2.5

3

3.5

4

y
x

•← (x
2
,y

2
,z

0
)

•← (x
2
,y

3
,z

0
)

•← (x
0
,y

1
,z

0
)

•← (x
0
,y

2
,z

0
)

•← (x
0
,y

3
,z

0
)

•← (x
1
,y

3
,z

0
)

← a
2

← a
3

← a
4

•← (x
1
,y

0
,z

0
)

•← (x
1
,y

1
,z

0
)

•← (x
1
,y

2
,z

0
)

•← (x
0
,y

0
,z

0
)

•← (x
2
,y

1
,z

0
)

← a
1

•← (x
2
,y

0
,z

0
)

z

•← (x
0
,y

0
,z

1
)

← a
5•← (x

2
,y

2
,z

1
)

•← (x
1
,y

2
,z

1
)

•← (x
2
,y

0
,z

1
)

•← (x
0
,y

1
,z

1
)

•← (x
1
,y

1
,z

1
)

← a
6

•← (x
1
,y

3
,z

1
)

•← (x
0
,y

2
,z

1
)

•← (x
2
,y

1
,z

1
)

← a
7

•← (x
2
,y

3
,z

1
)

•← (x
0
,y

3
,z

1
)

← a
8

•← (x
1
,y

0
,z

1
)

Figure 3.2: di1

Polynomial and Cubic spline interpolation 16

0

5

10

15

0
1

2
3

4
5

6
0

1

2

3

4

5

6

7

← a
5

← a
1

x

← a
6

← a
2

← b
1

•← (x*,y
0
,z

0
)

•← (x*,y
0
,z

1
)

← a
7

← a
3

← b
2

•← (x*,y
0
,z

0
)

•← (x*,y
1
,z

1
)

← a
8

← a
4

y

•← (x*,y
0
,z

0
)

•← (x*,y
2
,z

1
)

← b
3

•← (x*,y
0
,z

0
)

•← (x*,y
3
,z

1
)

← b
4

z

Figure 3.3: di2

Polynomial and Cubic spline interpolation 17

2

2.5

3

3.5

4 0

2

4

6

80

1

2

3

4

5

6

7

8

y

← c
1

← b
4

•← (x*,y
3
,z*)

← b
3

•← (x*,y
2
,z*)

•← (x*,y*,z*)

← b
2

•← (x*,y
1
,z*)

x

← b
1

•← (x*,y
0
,z*)

z

Figure 3.4: di3

Polynomial and Cubic spline interpolation 18

3.4 Comparison Between Polynomial and Cubic

Spline Interpolation

3.4.1 Computational complexity

In one dimensional interpolation with m points in the x dimension, the computa-
tional complexity of polynomial interpolation is O(m2) while that of the cubic spline
interpolation is O(m + log(m)). For the cubic spline interpolation, we need O(m)
steps to calculate the second derivative, y′′(x0), ..., y

′′(xm), so that each piecewise cu-
bic is determined. Besides, searching two second derivative y′′(xk) and y′′(xk+1) to
determine our desired cubic, qk(x) takes O(log(m)) time steps. In two dimensional
interpolation with m points in the x dimension and n points in the y dimension, the
computational complexity of polynomial interpolation is O(n ∗m2 +n2) while that of
the cubic spline interpolation is O(n∗m+n∗ log(m)+n+ log(n)). This is because we
need to determine n polynomials or splines in the y direction by use of m points in the
x dimension each and get the interpolated value at (x∗, yj) for j = 1, 2, ..., m, which
takes O(n ∗m2) steps for the polynomial interpolation and O(n ∗m + n ∗ log(m)) for
the cubic spline interpolation. Then we need to determine one polynomial or spline
in the x direction by use of n points in the y dimension and the interpolated point
(x∗, y∗), which takes O(n2) steps for the polynomial interpolation and O(n + log(n))
steps. Adding computational complexity in the above steps may get our desired an-
swer. In three dimensional interpolation with m points in the x dimension, n points
in the y dimension and o points in the z dimension, the computational complexity of
polynomial interpolation is O(o ∗ n ∗m2 + n ∗ o2 + n2) while that of the cubic spline
interpolation is O(o ∗ n ∗m + o ∗ n ∗ log(m) + o ∗ n + n ∗ log(o) + n + log(n)). This is
because we need to determine o∗n polynomials or splines in the y direction by use of
m ∗ o points in the x− z dimension each and get the interpolated value at (x∗, yj, zk)
for j = 1, ..., n and k = 1, ..., o, which takes O(o ∗ n ∗ m2) steps for the polynomial
interpolation and O(o∗n∗m+o∗n∗ log(m)) for the cubic spline interpolation. Then
we need to determine n polynomials or splines in the z direction by use of n points
in the y − z dimension and the interpolated point (x∗, yj, z

∗) for j = 1, ..., n, which
takes O(n ∗ o2) steps for the polynomial interpolation and O(o ∗n + n ∗ log(o)) steps.
Finally, we need to determine one polynomial or spline in the x direction by use of n
points in the y dimension and the interpolated point (x∗, y∗, z∗), which takes O(n2)
steps for the polynomial interpolation and O(n+log(n)) steps. Adding computational
complexity in the above steps may get our desired answer.

3.4.2 Polynomial wiggle problem

For a smooth nonpolynomial curve, cubic splines interpolation is better than polyno-
mial interpolation because polynomial interpolation is prone to wiggle between knots,
which is the well-known polynomial wiggle problem:

Polynomial and Cubic spline interpolation 19

Table 3.1: Computational complexity

dimension Polynomial interpolation Cubic spline interpolation
1− dim O(m2) O(m + logm)
2− dim O(n ∗m2 + n2) O(n ∗m + n ∗ logm + n + logn)
3− dim O(o ∗ n ∗m2 + n ∗ o2 + n2) O(o ∗ n ∗m + o ∗ n ∗ logm + o ∗ n + n ∗ logo + n + logn)

If points P1, P2, ..., Pm do not actually comes from a polynomial curve, then an at-
tempt to let a polynomial p(x) go through them will cause p(x) to have oscillations
between successive P ′

ks. These oscillations get larger as the degree of p(x) is allowed
to increase.

For example, having points P1, ..., P6, coming form y = 10e−
2
x − 4, we want to

find a polynomial passing through them. Figure 3.1 illustrates the Polynomial wiggle
problem and figure 3.6 is the true curve passing through them. We can see that curve
in figure 3.5 oscillates greatly and bears no resemblance to the true curve in figure
3.6.
The recursive formula of the American put option,

P (i, j) = max(
pP (i + 1, j + 1) + (1− p)P (i + 1, j)

R
,X − S0u

jdi−j)

where
u = eσdt0.5

, d = e−σdt0.5

, R = erdt,

is a smooth nonpolynomial function before the exercise boundary. Therefore, since
the the value of an American put option is a function of eσ and er , interpolating
more points in the σ and r dimension may not only fail to increase the accuracy but
also cause tremendous error in the polynomial interpolation. However, interpolating
more points in Cubic spline interpolation will improve its accuracy. The numerical
results will be shown in the next chapter.

Polynomial and Cubic spline interpolation 20

0 2 4 6 8 10 12 14 16
0

5

10

15

20

25

x

y

•P
1

•P
2

•P
3

•P
4

•P
5

•P
6

Figure 3.5: Polynomial wiggle problem

Polynomial and Cubic spline interpolation 21

0 2 4 6 8 10 12 14 16 18
0

2

4

6

8

10

12

14

16

18

20

x

y

•P
1

•P
2

•P
3

•P
4

•P
5

•P
6

Figure 3.6: The curve that give rise to P1, ..., P6.

Chapter 4

Numerical Results

4.1 Building table

Before we want to get the price of an American option fast and accurately, we need
to build the table storing the precomputed results of American options first. This
section describes how we build this table.
To build the look-up table of option prices, first we need to consider the parametri-
sation we used. An American put option is a function of underlying stock price(St),
exercise price(K), risk-free interest rate(r), volatility of underlying stock price(σ),
and time to maturity(T), which can be expressed as,

P (St, K, r, σ, T).

Because the exercise price is fixed and tomorrow’s time to maturity is known, we
only have to partition and build a table in three dimensions, stock price(S0), risk-free
interest rate(r), and volatility of underlying stock price(σ). We let the number of
partition in S0, r, and σ dimension be m,n, and o, respectively and the ranges in
each dimension we choose to partition are

St−1 : [1.07xSt−1, 0.93xSt−1] r : [0.1, 0] σ2 : [2xσ2, 0.5xσ2]

We use relative error and absolute error to evaluate the accuracy of interpolation.
Relative error is defined as

RE =
p− p̂

p

, and absolute error is defined as

AE = |p− p̂

p
|

where p is 100-step Binomial price and p̂ is look-up table price.

22

Numerical Results 23

4.2 numerical results

This section introduces the results of interpolating the price of an American option
in the table we built in the prior section by the method of polynomial and cubic
spline interpolation. Table (4.1) and (4.2) shows the general cases in interpolating
an American option based on polynomial and cubic spline interpolation, respectively.
Table (4.3) and (4.5) shows the polynomial wiggle problem arising from interpolating
a nonpolynomial function with a polynomial function. Table (4.4) and (4.6) shows
that the results of cubic spline interpolation are still acceptable no matter how fine
we partition. Table (4.7) and (4.8) shows the results of interpolating the price of an
American option straddling the exercise boundary. Table (4.9) and (4.10) shows the
results after we partition the grid finer so as to lower the error causing by interpolating
the price of an American option straddling the exercise boundary.

Numerical Results 24

Table 4.1: Polynomial interpolation
K S T σ2 r Binomial Look-Up Rel. Err. Abs. Err.

5000 4800 0.5 20 2 363.322 364.464 -0.003144 1.142460
5000 4850 0.5 20 2 334.678 334.144 0.001595 0.533864
5000 4900 0.5 20 2 308.873 308.82 0.000171 0.052936
5000 4950 0.5 20 2 284.213 284.342 -0.000454 0.129088
5000 5000 0.5 20 2 259.715 259.715 0.000002 0.000458
5000 5050 0.5 20 2 238.83 238.945 -0.000481 0.114774
5000 5100 0.5 20 2 218.277 218.231 0.000209 0.045603
5000 5150 0.5 20 2 198.202 197.901 0.001517 0.300750
5000 5200 0.5 20 2 181.331 182.398 -0.005885 1.067120
5000 5000 0.5 20 1 269.989 270.011 -0.000083 0.0224928
5000 5000 0.5 20 2 259.715 259.715 0.000002 0.000457825
5000 5000 0.5 20 3 250.098 250.096 0.000009 0.00223362
5000 5000 0.5 20 4 241.03 241.03 -0.000001 0.000139438
5000 5000 0.5 20 5 232.46 232.46 0.000002 0.000479013
5000 5000 0.5 20 6 224.337 224.337 -0.000001 0.000211508
5000 5000 0.5 20 7 216.627 216.627 0.000001 0.000261474
5000 5000 0.5 20 8 209.284 209.284 0.000002 0.000359369
5000 5000 0.5 20 9 202.31 202.291 0.000094 0.0190052
5000 5000 0.5 15 2 190.211 190.212 -0.000006 0.001107
5000 5000 0.5 20 2 259.715 259.715 0.000002 0.000458
5000 5000 0.5 25 2 329.283 329.283 -0.000001 0.000351
5000 5000 0.5 30 2 398.822 398.822 0.000000 0.000013
5000 5000 0.5 35 2 468.277 468.277 0.000001 0.000420

Means square error(1
n
Σ(pi − p̂i))=-0.000280389

Root mean square error(
√

1
n
Σ(pi − p̂i)2)=0.001472845

Mean absolute relative error(1
n

∑ |pi − p̂i|)=0.149349637

Maximum relative error(max (pi−p̂i)
pi

)=0.00588493

Maximum absolute error(max|pi − p̂i|)=1.142460
St−1 = 5000 and S is tomorrow’s stock price
m = 21, n = 16, and o = 16

Numerical Results 25

Table 4.2: Cubic spline interpolation
K S T σ2 r Binomial Look-Up Rel. Err. Abs. Err.

5000 4800 0.5 20 2 363.322 363.348 -0.000072 0.0261708
5000 4850 0.5 20 2 334.678 334.496 0.000542 0.181521
5000 4900 0.5 20 2 308.873 308.893 -0.000064 0.0197189
5000 4950 0.5 20 2 284.213 284.256 -0.000152 0.0430896
5000 5000 0.5 20 2 259.715 259.715 0.000002 0.000457825
5000 5050 0.5 20 2 238.83 238.86 -0.000125 0.0298431
5000 5100 0.5 20 2 218.277 218.303 -0.000118 0.0257643
5000 5150 0.5 20 2 198.202 198.239 -0.000189 0.037442
5000 5200 0.5 20 2 181.331 181.331 0.000001 0.000238648
5000 5000 0.5 20 1 269.989 269.979 0.000035 0.00950098
5000 5000 0.5 20 2 259.715 259.715 0.000002 0.000457825
5000 5000 0.5 20 3 250.098 250.097 0.000005 0.00129289
5000 5000 0.5 20 4 241.03 241.03 -0.000001 0.000139438
5000 5000 0.5 20 5 232.46 232.459 0.000002 0.000524934
5000 5000 0.5 20 6 224.337 224.337 -0.000001 0.000211508
5000 5000 0.5 20 7 216.627 216.626 0.000005 0.00101464
5000 5000 0.5 20 8 209.284 209.284 0.000002 0.000359369
5000 5000 0.5 20 9 202.31 202.307 0.000014 0.0028402
5000 5000 0.5 15 2 190.211 190.212 -0.000007 0.001417
5000 5000 0.5 20 2 259.715 259.715 0.000002 0.000458
5000 5000 0.5 25 2 329.283 329.283 -0.000001 0.000373
5000 5000 0.5 30 2 398.822 398.822 0.000000 0.000013
5000 5000 0.5 35 2 468.277 468.277 0.000000 0.000081

Means square error(1
n
Σ(pi − p̂i))=-0.000005

Root mean square error(
√

1
n
Σ(pi − p̂i)2)=0.000130753

Mean absolute relative error(1
n

∑ |pi − p̂i|)=0.01664915

Maximum relative error(max (pi−p̂i)
pi

)=0.000542

Maximum absolute error(max|pi − p̂i|)=0.181521
St−1 = 5000 and S is tomorrow’s stock price
m = 21, n = 16, and o = 16
Table (4.1) and (4.2) are the results of interpolating 21 points in the S dimension, 16
points in the σ2 dimension, and 16 points in r dimension based on polynomial and
cubic spline interpolation. We can see that holding other parameters the same as
tomorrow’s stock price is more away from today’s stock price, 5000, the error tends
to become larger in both interpolation method, which is just coincidence. If the error
is not acceptable, the most simple way we can do is to increase the node we partition
in S dimension. We can also see that holding other parameters the same, to change
tomorrow’s σ2 or r causes very small error. Likewise, we can increase the partition
for smaller error.

Numerical Results 26

Table 4.3: Polynomial interpolation with wiggle problem in the r dimension
K S T σ2 r Binomial Look-Up Rel. Err. Abs. Err.

5000 4800 0.5 20 2 363.322 2040.7 -4.61679 1677.38
5000 4850 0.5 20 2 334.678 194.062 0.420152 140.616
5000 4900 0.5 20 2 308.873 -1242.58 5.02295 1551.45
5000 4950 0.5 20 2 284.213 270.965 0.0466145 13.2485
5000 5000 0.5 20 2 259.715 -490.134 2.8872 749.849
5000 5050 0.5 20 2 238.83 -1085.29 5.5442 1324.12
5000 5100 0.5 20 2 218.277 1322.85 -5.0604 1104.57
5000 5150 0.5 20 2 198.202 -14.7026 1.07418 212.905
5000 5200 0.5 20 2 181.331 1942.79 -9.71403 1761.46

Means square error(1
n
Σ(pi − p̂i))=-0.488435944

Root mean square error(
√

1
n
Σ(pi − p̂i)2)=4.794921438

Mean absolute relative error(1
n

∑ |pi − p̂i|)=948.3998333

Maximum relative error(max (pi−p̂i)
pi

)=9.71403

Maximum absolute error(max|pi − p̂i|)=1761.46
St−1 = 5000 and S is tomorrow’s stock price
m = 21, n = 16, and o = 100

Table 4.4: Cubic spline interpolation without wiggle problem in the r di-
mension

K S T σ2 r Binomial Look-Up Rel. Err. Abs. Err.
5000 4800 0.5 20 2 363.322 363.349 -0.000074 0.026723
5000 4850 0.5 20 2 334.678 334.496 0.000543 0.181572
5000 4900 0.5 20 2 308.873 308.893 -0.000064 0.0197623
5000 4950 0.5 20 2 284.213 284.256 -0.000152 0.0431654
5000 5000 0.5 20 2 259.715 259.714 0.000002 0.000619204
5000 5050 0.5 20 2 238.83 238.86 -0.000125 0.0298814
5000 5100 0.5 20 2 218.277 218.303 -0.000119 0.0258755
5000 5150 0.5 20 2 198.202 198.24 -0.000190 0.0375936
5000 5200 0.5 20 2 181.331 181.331 0.000002 0.000324378

Means square error(1
n
Σ(pi − p̂i))=-0.000020

Root mean square error(
√

1
n
Σ(pi − p̂i)2)=2.088586E-04

Mean absolute relative error(1
n

∑ |pi − p̂i|)=0.040613

Maximum relative error(max (pi−p̂i)
pi

)=0.000543

Maximum absolute error(max|pi − p̂i|)=0.181572
St−1 = 5000 and S is tomorrow’s stock price
m = 21, n = 16, and o = 100

Numerical Results 27

Table 4.5: Polynomial interpolation with wiggle problem in the σ2 dimension
K S T σ2 r Binomial Look-Up Rel. Err. Abs. Err.

5000 4800 0.5 20 2 363.322 1727.57 -3.75492 1364.24
5000 4850 0.5 20 2 334.678 468.981 -0.40129 134.303
5000 4900 0.5 20 2 308.873 418.244 -0.354099 109.371
5000 4950 0.5 20 2 284.213 156.844 0.448145 127.369
5000 5000 0.5 20 2 259.715 268.458 -0.0336627 8.7427
5000 5050 0.5 20 2 238.83 308.644 -0.292315 69.8135
5000 5100 0.5 20 2 218.277 120.177 0.44943 98.1002
5000 5150 0.5 20 2 198.202 -1317.77 7.64861 1515.97
5000 5200 0.5 20 2 181.331 -6207.71 35.2341 6389.04

Means square error(1
n
Σ(pi − p̂i))=4.327110922

Root mean square error(
√

1
n
Σ(pi − p̂i)2)=12.0868077

Mean absolute relative error(1
n

∑ |pi − p̂i|)=1090.772156

Maximum relative error(max (pi−p̂i)
pi

)=35.2341

Maximum absolute error(max|pi − p̂i|)=6389.04
St−1 = 5000 and S is tomorrow’s stock price
m = 21, n = 260, and o = 16

Numerical Results 28

Table 4.6: Cubic spline interpolation without wiggle problem in the σ2 di-
mension

K S T σ2 r Binomial Look-Up Rel. Err. Abs. Err.
5000 4800 0.5 20 2 363.322 363.348 -0.000073 0.026415
5000 4850 0.5 20 2 334.678 334.495 0.000546 0.182720
5000 4900 0.5 20 2 308.873 308.893 -0.000064 0.019845
5000 4950 0.5 20 2 284.213 284.256 -0.000151 0.043022
5000 5000 0.5 20 2 259.715 259.715 0.000002 0.000458
5000 5050 0.5 20 2 238.83 238.86 -0.000125 0.029844
5000 5100 0.5 20 2 218.277 218.303 -0.000118 0.025763
5000 5150 0.5 20 2 198.202 198.239 -0.000189 0.037427
5000 5200 0.5 20 2 181.331 181.331 0.000001 0.000253

Means square error(1
n
Σ(pi − p̂i))=-0.000019

Root mean square error(
√

1
n
Σ(pi − p̂i)2)=0.000209658

Mean absolute relative error(1
n

∑ |pi − p̂i|)=0.040638655

Maximum relative error(max (pi−p̂i)
pi

)=0.000545959

Maximum absolute error(max|pi − p̂i|)=0.182720
St−1 = 5000 and S is tomorrow’s stock price
m = 21, n = 260, and o = 16
However, If we try to increase the partition in the σ2 or the r dimension, for example,
we increase the points in r dimension in table (4.3) and (4.4) to 100 and σ2 dimension
in table (4.5) and (4.6)to 260 , respectively. In table (4.3) and (4.5) we can see the
polynomial wiggle problem occurs and the results are completely unacceptable, while
in table (4.4) and (4.6) we can see that interpolating more points in the closed interval
by cubic spline still makes the error acceptable, though it does not improve accuracy.
Therefore, it is very important to optimize the number of points partitioned to prevent
polynomial wiggle problem for polynomial interpolation. Cubic spline interpolation is
more preferable in this respect because we can partition these three dimensions as
finer as we want. The reason why table (4.4) and (4.6) does not improve the accuracy
compared with table (4.2) lies in that the majority of the error comes form the S
dimension.

Numerical Results 29

Table 4.7: Polynomial interpolation straddling the exercise boundary
K S T σ2 r Binomial Look-Up Rel. Err. Abs. Err.

5000 4178 0.25 20 2 822 822.019 -0.000024 0.019499
5000 4180 0.25 20 2 820 820.027 -0.000033 0.026761
5000 4182 0.25 20 2 818 818.035 -0.000043 0.035476
5000 4182.5 0.25 20 2 817.5 817.538 -0.000046 0.037898
5000 4183 0.25 20 2 817.0022 817.04 -0.000047 0.038222
5000 4184 0.25 20 2 816.011 816.046 -4.26E-05 0.0347828
5000 4186 0.25 20 2 814.03 814.058 -3.42E-05 0.0278103

Means square error(1
n
Σ(pi − p̂i))=-0.000039

Root mean square error(
√

1
n
Σ(pi − p̂i)2)=0.000039

Mean absolute relative error(1
n

∑ |pi − p̂i|)=0.031492671

Maximum relative error(max (pi−p̂i)
pi

)=0.000047

Maximum absolute error(max|pi − p̂i|)=0.220449
St−1 = 4000 and S is tomorrow’s stock price
m = 21, n = 16, and o = 16

Table 4.8: Cubic spline interpolation straddling the exercise boundary
K S T σ2 r Binomial Look-Up Rel. Err. Abs. Err.

5000 4178 0.25 20 2 822 822.026 -0.000031 0.025683
5000 4180 0.25 20 2 820 820.034 -0.000041 0.033825
5000 4182 0.25 20 2 818 818.043 -0.000053 0.043135
5000 4182.5 0.25 20 2 817.5 817.546 -0.000056 0.045654
5000 4183 0.25 20 2 817.0022 817.048 -0.000056 0.046051
5000 4184 0.25 20 2 816.011 816.054 -0.000052 0.042686
5000 4186 0.25 20 2 814.03 814.066 -0.000044 0.035549

Means square error(1
n
Σ(pi − p̂i))=-0.000048

Root mean square error(
√

1
n
Σ(pi − p̂i)2)=0.000048

Mean absolute relative error(1
n

∑ |pi − p̂i|)=0.038940

Maximum relative error(max (pi−p̂i)
pi

)=0.000056

Maximum absolute error(max|pi − p̂i|)=0.046051
St−1 = 4000 and S is tomorrow’s stock price
m = 21, n = 16, and o = 16

Numerical Results 30

Table 4.9: Polynomial interpolation with finer grid
K S T σ2 r Binomial Look-Up Rel. Err. Abs. Err.

5000 4178 0.25 20 2 822 822 0.000000 0.000036
5000 4180 0.25 20 2 820 820 0.000000 0.000118
5000 4182 0.25 20 2 818 818 0.000000 0.000000
5000 4182.5 0.25 20 2 817.5 817.501 -0.000001 0.001095
5000 4183 0.25 20 2 817.0022 817.003 -0.000001 0.001080
5000 4184 0.25 20 2 816.011 816.011 0.000000 0.000091
5000 4186 0.25 20 2 814.03 814.03 0.000000 0.000038

Means square error(1
n
Σ(pi − p̂i))=-0.0000004

Root mean square error(
√

1
n
Σ(pi − p̂i)2)=0.000001

Mean absolute relative error(1
n

∑ |pi − p̂i|)=0.000351136

Maximum relative error(max (pi−p̂i)
pi

)=0.000001

Maximum absolute error(max|pi − p̂i|)=0.001095
St−1 = 4000 and S is tomorrow’s stock price
m = 21, n = 16, and o = 16

Numerical Results 31

Table 4.10: Cubic spline interpolation with finer grid
K S T σ2 r Binomial Look-Up Rel. Err. Abs. Err.

5000 4178 0.25 20 2 822 822 0.000000 0.000007
5000 4180 0.25 20 2 820 820 0.000000 0.000090
5000 4182 0.25 20 2 818 818 0.000000 0.000000
5000 4182.5 0.25 20 2 817.5 817.501 -0.000001 0.001174
5000 4183 0.25 20 2 817.0022 817.003 -0.000001 0.001142
5000 4184 0.25 20 2 816.011 816.011 0.000000 0.000087
5000 4186 0.25 20 2 814.03 814.03 0.000000 0.000088

Means square error(1
n
Σ(pi − p̂i))=-0.0000004

Root mean square error(
√

1
n
Σ(pi − p̂i)2)=0.000001

Mean absolute relative error(1
n

∑ |pi − p̂i|)=0.000370

Maximum relative error(max (pi−p̂i)
pi

)=0.000001

Maximum absolute error(max|pi − p̂i|)=0.001174
St−1 = 4000 and S is tomorrow’s stock price
m = 21, n = 16, and o = 16
Interpolating in cubes that straddle the exercise boundary causes larger error as we
can see in table (4.7) and (4.8). Our remedy for this problem is to keep track of
the cubes straddling the exercise boundary and partition them finer. In table (4.9)
and (4.10) we can see that the error becomes smaller. However, we should be careful
that polynomial wiggle problem may happen because of finer grid for the polynomial
interpolation.

Chapter 5

Conclusion

The results in this thesis presents the method of look-up table to price American op-
tions. Polynomial interpolation and cubic spline interpolation are used to maintain
its accuracy. One key factor in maintaining its accuracy depends on the number of
partitions chosen. For the polynomial interpolation we should choose the number of
partition properly so as to prevent the polynomial wiggle problem. Therefore, cubic
spline interpolation is preferable because it becomes more accurate as the grid turns
finer. The other key factor lies in that price function changes very rapidly at the exer-
cise boundary. Therefore, keeping track of the cubes straddling the exercise boundary
and partitioning the cubes finer are required to lower the error of interpolation.

32

Bibliography

[1] Lee W. Johnson and R. Dean Riess. Numerical Analysis. Addison-Wesley,
1982.

[2] Melvin J. and Maron. Numerical Analysis: A Pratical Approach. Macmillan,
1982.

[3] William H. Press., Saul A. Teukolsky, William T. Vetterling, and
Brian P. Flannery Numerical Recipes in C. Cambridge, 1992.

[4] L.C.G.Rogers and D. Taylay. Numerical Methods in Finance. Prentice-Hall,
2000.

[5] Hull, John. Options, Futures, and Other Derivatives. 4th edition. Cambridge,
1997.

[6] Yuh-Dauh Lyuu “Financial Engineering and Computation.” Cambridge, 2002.

33

