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Abstract

The trinomial-tree GARCH option pricing algorithms of Ritchken and

Trevor (1999) and Cakici and Topyan (2000) are claimed to be efficient and

accurate. However, this thesis proves that both algorithms generate trees that

explode exponentially when the number of partitions per day, n, exceeds a

typically small number determined by the model parameters. Worse, when

explosion happens, the tree cannot grow beyond a certain maturity, making it

useless for pricing derivatives with a longer maturity. Meanwhile, a small n has

accuracy problems and does not prevent explosion. This thesis then presents a

trinomial-tree GARCH option pricing algorithm that solves the above problems.

The algorithm provably does not have the short-maturity problem. Further-

more, the tree size is guaranteed to be quadratic if n is less than a threshold

easily determined by the model parameters. This result for the first time puts

a tree-based GARCH option pricing algorithm in the same complexity class as

binomial and trinomial trees under the Black-Scholes model. Extensive numer-

ical evaluation is conducted to confirm the analytical results and the accuracy

of the algorithm.

Keywords: GARCH model, trinomial tree, path dependency, option pric-

ing, computational complexity, Black-Scholes model
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1 Introduction

In the numerical pricing of derivatives, the continuous-time diffusion process for the

asset price is often discretized to yield a discrete-time tree first. Derivatives are then

priced on the tree by the standard backward-induction algorithm. The lognormal

diffusion, for instance, gives rise to the well-known CRR binomial tree of Cox, Ross,

and Rubinstein (1979). Two critical features of the CRR tree, as well as its many

trinomial variations, are that it recombines and that an m-period tree contains only

O(m2) nodes, a quadratic growth (see Fig. 1). As a consequence, simple derivatives

such as vanilla options, barrier options, and lookback options can be efficiently priced

as shown in Lyuu (2002). However, a polynomial-sized tree may still give rise to an

exponential-time pricing algorithm if the derivative itself is complex. (Exponential-

time algorithms are said to suffer from combinatorial explosion.) The Asian option

fits this characterization because the vast amount of extra states needed by its path-

dependent feature makes pricing on an m-period tree take time exponential in m.

Approximations are therefore mandatory.

A qualitatively more difficult problem emerges when the explosion arises from the

model itself. If the model generates trees that do not recombine, pricing is expensive

even for simple derivatives like vanilla options. For example, when the volatility is

not a constant, such as the interest rate model of Cox, Ingersoll, and Ross (1985),

a brute-force discretization leads to exploding binomial trees that do not recombine.

The problem may be rectified by the technique of Nelson and Ramaswamy (1990) to

transform the diffusion process into one with a constant volatility. But the method-

ology does not guarantee to do away with combinatorial explosion. This issue is

particularly relevant when the diffusion process is bivariate. As an example, Chien

(2003) demonstrates that the bivariate interest rate tree of Ritchken and Sankara-

subramanian (1995) gives rise to exponential-sized trees. The focus of the thesis

is also bivariate: the tremendously influential GARCH (generalized autoregressive
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conditional heteroskedastic) option pricing model.

Bollerslev (1986) and Taylor (1986) independently propose the GARCH process

for modeling the stochastic volatility of asset returns. Since then, the model has been

generalized and used extensively in the finance literature on the modeling of time

series; see Bollerslev et al. (1992) for a survey. As the model has received empirical

support, its application to options pricing becomes very important. Duan (1995) is

the first to propose a GARCH option pricing model. In terms of pricing algorithms,

the massive path dependency of the model favors Monte Carlo simulation over trees.

However, the Monte Carlo estimate is probabilistic, and options that can be exercised

early (the so-called American options) cannot be priced easily with this method.

The situation changes with the appearance of the trinomial tree of Ritchken and

Trevor (1999). Other GARCH option pricing techniques include the Markov chain

approximation of Duan and Simonato (2001), the Edgeworth tree approximation of

Duan et al. (2002), and analytical approximations as in Heston and Nandi (2000).

This thesis investigates the performance of the Ritchken-Trevor algorithm and

its modified version by Cakici and Topyan (2000). The results are negative, both

theoretically and numerically. It is shown that the Ritchken-Trevor-Cakici-Topyan

(RTCT) algorithm creates exponential-sized trees when the number of partitions per

day, n, exceeds a typically small number. The tree is hence not efficient unless n

is small. As a consequence, raising n as a way to improve accuracy can be very

costly. Unfortunately, a small n can result in inaccurate option prices; in fact,

even the smallest choice of n = 1 can result in explosion. In practice, one may be

willing to trade efficiency for accuracy by adopting a suitably large n. But it does

not work here because when explosion occurs, the RTCT tree cannot grow beyond

a certain maturity, making it useless for pricing derivatives with a longer maturity.

Therefore, when explosion occurs, even infinite computing resources may not help,

and the typical tradeoff between efficiency and accuracy is lost.

Because of the problems associated with the RTCT algorithm, this thesis then
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presents an efficient trinomial-tree GARCH option pricing algorithm that addresses

the shortcomings of the RTCT algorithm. The RTCT tree, like typical trinomial trees,

takes a flat middle branch from each node as shown in Fig. 2. Our key idea departs

from that by making the tree’s middle branch track the expected stock price as closely

as possible. Therefore, we call it the mean-tracking (MT) algorithm. By tracking the

mean, the two outer branches are expected to fan out less in their attempt to match

the conditional mean and variance. This in turn leads to more compact trees. The

effects are clearest for models with a stochastic volatility. The above argument is not

only intuitive but also provable, made possible by the MT tree’s simplicity.

The concept of mean tracking is not entirely new. It is explicit in Li et al.

(1995) and implicit in Hull and White (1993), both dealing with the calibration of

no-arbitrage interest rate models. However, the advantages of mean tracking have not

been systematically investigated in theory or practice in the literature until recently.

For example, Dai and Lyuu (2003) apply the mean-tracking idea to develop the first

exact trinomial-tree Asian option pricing algorithm which breaks the long-standing

3m bound with a provable running time of 3O(
√
m). Although still far from being

efficient, it represents a substantial step towards a polynomial-time exact pricing

algorithm for the Asian option.

The MT tree provably solves the short-maturity problem of the RTCT tree. Hence

it accepts any n without having to worry about the tree being cut short. The tradeoff

between efficiency and accuracy is hence restored. Note that an exponential-sized MT

tree is still useful (albeit costly). It is when a tree’s maturity is cut short, as in the

case of the exploding RTCT tree, that makes the tree far less applicable in practice.

Perhaps most unexpectedly, the MT tree’s size becomes polynomial in maturity if

n does not exceed a certain threshold. In fact, the tree size is only quadratic, giving

it the same complexity as the CRR tree under the Black-Scholes model. This level of

efficiency creates great opportunities for the practical use of the MT tree in pricing.

The MT tree is therefore the first tree-based GARCH option pricing algorithm that
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is provably efficient. Surprisingly, all these positive theoretical results can be proved

with only elementary techniques.

Numerical experiments will demonstrate that a small n gives accurate results.

They also confirm the quadratic node count. Because the Cakici-Topyan (CT) version

of the GARCH option pricing algorithm is slightly superior to the Ritchken-Trevor

(RT) version, we will compare the MT tree with the CT tree in the numerical valuation

of option prices.

The thesis is organized as follows. The GARCH model is presented in Section

2. Section 3 sketches the RTCT tree from which the MT tree derives. Differences

between the two will be pointed out along the way. Section 4 probes into the problems

with the RTCT algorithm. Section 5 presents the MT tree and its analysis. Section

6 evaluates the various GARCH option pricing algorithms numerically. Section 7

concludes.
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2 The GARCH model

Let St denote the asset price at date t and ht the conditional volatility of the return

over the (t+1)th day [ t, t+1 ]. The following risk-neutral process for the logarithmic

price yt ≡ lnSt is due to Duan (1995):

yt+1 = yt + r − h2
t

2
+ htεt+1, (1)

where

h2
t+1 = β0 + β1h

2
t + β2h

2
t (εt+1 − c)2, (2)

εt+1 ∼ N(0, 1) given information at date t,

r = daily riskless return,

c ≥ 0.

The model is bivariate as its state is described by (yt, h
2
t ). It is postulated that

β0, β1, β2 ≥ 0 to make the squared volatilities h2
t positive. We further impose β1 +

β2 < 1 to make the model stationary. A positive c represents a negative correlation

between the asset return and the volatility. Updating rule (2) for the square volatility,

due to Engle and Ng (1993), is also called the nonlinear asymmetric GARCH or

NGARCH for short. Throughout the paper, N will denote the maturity of the tree

(in days) and that of the option to be priced by the tree.
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3 Tree Building and Backward Induction

The RTCT trinomial tree approximates the continuous-state GARCH process with

discrete states as follows. Partition a day into n periods. Three successor states

follow each state (yt, h
2
t ) after a period. As the trinomial tree recombines within

one day, 2n + 1 states at date t + 1 follow each state at date t. We next pick the

jump size for state (yt, h
2
t ). Let γ = h0 and γn = γ/

√
n . (Later, the MT algorithm

will choose a different γ.) The tree is laid out in such a way that adjacent nodes at

the same time are spaced by γn in their logarithmic prices. The jump size will be

some integer multiple η of γn. We call η the jump parameter. The jump parameter

measures how much the two outer branches fan out around the middle branch as

depicted in Fig. 3. The middle branch leaves the underlying asset’s price unchanged.

(Later, the MT algorithm will let the middle branch track the mean of yt+1.) Figure

4 illustrates a 1-day trinomial tree, where each day is partitioned into n = 3 periods.

The probabilities for the up, middle, and down branches are

pu =
h2
t

2η2γ2
+
r − (h2

t/2)

2ηγ
√
n

, (3)

pm = 1− h2
t

η2γ2
, (4)

pd =
h2
t

2η2γ2
− r − (h2

t/2)

2ηγ
√
n

, (5)

picked to match the conditional mean and variance of yt+1 given (yt, h
2
t ) in the

limit. Therefore, the tree converges to the continuous-state model (2). Note that

from Eqs. (3)–(5), valid branching probabilities exist (i.e., 0 ≤ pu, pm, pd ≤ 1) if and

only if
| r − (h2

t/2) |
2ηγ
√
n

≤ h2
t

2η2γ2
≤ min(1− | r − (h2

t/2) |
2ηγ
√
n

,
1

2
). (6)

The intraday nodes are dispensed with to create a (2n+1)-nomial tree as in Fig. 5

to reduce the node count by a factor of n. The resulting model is multinomial with

2n+1 branches from any state (yt, h
2
t ). Updating rule (2) must be modified to reflect
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the adoption of the discrete-state tree model. State (yt, h
2
t ) at date t is followed by

state (yt + `ηγn, h
2
t+1) at date t+ 1, where

h2
t+1 = β0 + β1h

2
t + β2h

2
t (ε
′
t+1 − c)2, (7)

ε′t+1 =
`ηγn − (r − h2

t/2)

ht
.

` = 0,±1,±2, . . . ,±n.

This transition happens with probability

∑
ju,jm,jd

n!

ju! jm! jd!
pjuu p

jm
m pjdd ,

where ju, jm, jd ≥ 0, n = ju + jm + jd, and ` = ju − jd.
To ensure that the branching probabilities lie between 0 and 1, the RTCT tree may

have to pick different jump parameters η for different states. This implies varying

jump sizes for the tree. As the requirement pm ≥ 0 implies

η ≥ ht/γ, (8)

the RTCT algorithm goes through

η = dht/γ e, dht/γ e+ 1, dht/γ e+ 2, . . . (9)

until valid probabilities are obtained or until their nonexistence is confirmed by in-

equalities (6). The latter case means the tree cannot grow further. This search

procedure makes the theoretical analysis of the RTCT tree very difficult.

Each squared volatility h2
t picks its own jump parameter η. Figure 6 depicts a

3-day tree with n = 1. The number of possible values of h2
t at a node equals the

number of paths leading to the node, which can be exponentially many. For example,

nodes A and B each have one h2
t and both pick η = 2. On the other hand, the two

h2
t ’s at node C pick different jump sizes.

Instead of keeping track of all possible volatilities at every node, the RTCT algo-

rithm creates K volatilities between the maximum and minimum ht (inclusive) per
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node. Specifically, the squared volatilities are equally spaced; they are

h2
min + j

h2
max − h2

min

K − 1
, j = 0, 1, 2, . . . , K − 1,

where hmin and hmax denote the minimum and maximum volatilities at the node.

We call it the linear interpolation scheme. A different distribution will be used by the

MT algorithm. Specifically, the logarithms of squared volatilities are equally spaced

between lnh2
min and lnh2

max; they are

exp

[
lnh2

min + j
lnh2

max − lnh2
min

K − 1

]
, j = 0, 1, 2, . . . , K − 1. (10)

Smaller volatilities are thus sampled more finely than larger volatilities. We call it

the log-linear interpolation scheme.

The volatilities added between the minimum and maximum volatilities at a node

will be called interpolated volatilities. For the CT tree, the minimum and maximum

volatilities are indeed true volatilities generated by following updating rule (7) of

the discrete-state tree model, starting from beginning state (y0, h
2
0). Interpolated

volatilities are artifacts in the sense that they are not generated this way. For the

RT tree, however, even the minimum or maximum volatility may be the result of

applying the updating rule to an interpolated volatility of the previous date. Hence

they may be artifacts, too. See Fig. 7 for illustration.

After the tree is built, backward induction commences. For a volatility ht+1 fol-

lowing state (yt, h
2
t ) via updating rule (7), the algorithm finds the two volatilities that

bracket ht+1. Note that ht may be an interpolated volatility. The option price cor-

responding to ht+1 is then interpolated linearly from the option prices corresponding

to the bracketing volatilities. Figure 8 illustrates the procedure for a branch. After

the option prices from all 2n + 1 branches are available, the option price for state

(yt, h
2
t ) is finally calculated as their average discounted value based on the branching

probabilities. The above approximation paradigm is due to Hull and White (1993)

and Ritchken, Sankarasubramanian, and Vijh (1993).
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The CT algorithm conceals a serious problem not shared by the RT algorithm.

The CT algorithm keeps only the minimum and maximum volatilities at a node in

growing the tree. The K − 2 interpolated volatilities per node are created only after

the tree has been built but before the backward induction starts. But an interpolated

volatility’s successor volatility may reach an unreachable node, which has no option

prices at all! When this happens, backward induction cannot continue. Such rare

situations do arise when n and N are both large. Following the RT algorithm,

the MT algorithm uses all K volatilities of a node in growing the tree, not just the

minimum and maximum volatilities. The above-mentioned problem therefore never

arises as the interpolated volatilities’ branches have been followed through in the

tree-building process.

9



4 Problems with the RTCT Algorithm

4.1 Explosion and Shallowness

Pricing with the RTCT algorithm is claimed to be efficient and accurate. Unfortu-

nately, the RTCT algorithm explodes exponentially when n exceeds a certain thresh-

old. Worse, when explosion occurs, the tree is forced to be shallow. More specifically,

the RTCT tree will be cut short (or, short-dated). Even if one is willing to accept

long running time, the tree may not grow to the needed maturity. An exploding tree

is therefore of limited use in practice. In this section, we discuss the problems of

explosion and shallowness concealed in the RTCT algorithm.

4.1.1 Sufficient Conditions for Explosion

One typically increases n for better accuracy. Unfortunately, the largest value of ht

at date t grows exponentially in t if n exceeds a threshold. When this happens, the

value of η also grows exponentially by virtue of relation (8). Note that the 2n + 1

nodes reached from a state span 1 + 2nη nodes (recall Fig. 5). So when explosion

happens, the RTCT tree explodes. The RTCT tree must thus be restricted to small

n’s to have any hope of being efficient. However, a small n is no guarantee that the

tree will not explode, as will be been later.

We now provide the argument for the claimed exponential growth of the largest

value of ht at date t. Assume r = 0 and c = 0 first. Updating rule (7) is now

h2
t+1 = β0 + β1h

2
t + β2

[
`ηγn + (h2

t/2)
]2
, ` = 0,±1,±2, . . . ,±n.

To make h2
t+1 as large as possible, set ` = n. The updating rule becomes

h2
t+1 = β0 + β1h

2
t + β2

[√
n ηγ + (h2

t/2)
]2

because γn = γ/
√
n

≥ β0 + β1h
2
t + β2

[√
nht + (h2

t/2)
]2

because ηγ ≥ ht

≥ β0 + β1h
2
t + β2nh

2
t

= β0 + (β1 + β2n)h2
t .
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By induction,

h2
t+1 ≥ β0

t∑
i=0

(β1 + β2n)i + (β1 + β2n)t+1h2
0

=
β0

1− (β1 + β2n)
+ [h2

0 +
β0

(β1 + β2n)− 1
](β1 + β2n)t+1.

The above expression grows exponentially in t if

β1 + β2n > 1.

This inequality is reminiscent of the necessary condition β1 + β2 ≥ 1 for GARCH to

be nonstationary. When r 6= 0 or c 6= 0, the largest value of ht at date t still grows

exponentially in t as long as n is suitably large. The argument is more tedious but

essentially identical. We conclude that the RTCT tree grows exponentially if n is

large enough.

Ritchken and Trevor (1999) add extra volatilities between the maximum and min-

imum h2
t at each node in building the tree. Our proof depends entirely on showing

that the largest value of ht at date t grows exponentially. These additional volatil-

ities serve only to increase the largest value of ht. Hence the same conclusion for

exponential explosion stands for the Ritchken-Trevor version.

4.1.2 The Shallowness of an Exploding Tree

Can a large n be chosen to improve accuracy if we are willing to accept long running

times? Unfortunately, the RTCT tree does not admit such a tradeoff. The reason is

that there is a ceiling on volatility ht for valid branching probabilities to exist for

state (yt, h
2
t ). With the maximum value of ht growing exponentially, this ceiling will

quickly be breached at some nodes and the tree can grow no further! The choice of n

is thus capped even if infinite resources are available. We next derive the said upper

bound.
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Inequalities (6) imply

| (h2
t/2)− r |
2ηγ
√
n

≤ h2
t

2η2γ2
,

h2
t

2η2γ2
≤ 1

2
.

Hence

h2
t ≤ (ηγ)2 ≤

[
h2
t

√
n

| (h2
t/2)− r |

]2

,

which can be simplified to yield

[
(h2

t/2)− r ]2 ≤ nh2
t .

Finally, the above quadratic inequality (in h2
t ) is equivalent to

2(r + n)− 2
√

2rn+ n2 ≤ h2
t ≤ 2(r + n) + 2

√
2rn+ n2 .

We conclude that

h2
t ≤ 2(r + n) + 2

√
2rn+ n2 (11)

is necessary for the existence of valid branching probabilities. This condition does not

depend on the choice of γ because the identity γ = h0 did not enter the analysis.

This result may sound puzzling at first. Under the Black-Scholes model, valid

branching probabilities always exist if n is large enough. Why, one may ask, can’t

the same property hold here? The answer lies in the volatility process. The daily

volatility in the Black-Scholes model is a constant, which amounts to setting ht to

some fixed number. So every state solves the same Eqs. (3)–(5) for the probabili-

ties, and increasing n will eventually have inequality (11) satisfied for all states. In

contrast, the volatility under GARCH fluctuates. So each state (yt, h
2
t ) faces differ-

ent Eqs. (3)–(5) in solving for the probabilities. Increasing n makes inequality (11)

harder to satisfy for those states with a large h2
t , whose existence has been confirmed

earlier for GARCH.
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4.1.3 Numerical Evidence of Explosion and Shallowness

The following parameters from Ritchken and Trevor (1999) and Cakici and Topyan

(2000) will be assumed throughout the section unless stated otherwise: S0 = 100,

y0 = lnS0 = 4.60517, r = 0, h2
0 = 0.0001096, γ = 0.010469, β0 = 0.000006575,

β1 = 0.9, β2 = 0.04, and c = 0. As r = c = 0, combinatorial explosion occurs when

n >
1− β1

β2

=
1− 0.9

0.04
= 2.5.

Figure 9 picks n = 3, 4, 5 to demonstrate the exponential growth of the RTCT tree.

The rate of growth clearly increases with n. For comparison, the standard trinomial

tree contains only 2t+ 1 nodes at date t.

The number of nodes is critical because the running time is proportional to it. We

mention earlier that there may be nodes which are not reachable (recall Fig. 6). In

theory, if such nodes are numerous, the algorithm can potentially run more efficiently

by skipping them. Figure 10 shows that the proportion of unreachable nodes is small

for n = 3, 4, 5. We will see shortly that the same conclusion also holds for larger n’s.

As the overwhelming majority of nodes are reachable, clever programming techniques

to skip unreachable nodes will bring no substantial benefits.

Now suppose we pick n = 100 to seek very high accuracy at the expense of

efficiency. The theory predicts that the RTCT tree’s final maturity will be cut short.

Indeed, with r = 0, inequality (11) imposes the universal upper bound h2
t ≤ 4n =

400. This means that a node with ht > 20 cannot have valid branching probabilities

and thus cannot grow further. As this ceiling is breached somewhere at date 9 because

of the exponential growth of the largest value of ht, the tree stops growing then. Table

1 lists the final dates under various n’s exceeding the threshold of explosion. Observe

that the tree’s final maturity decreases rapidly as n increases. For example, it is 72

days when n = 5, 34 days when n = 10, and 12 days when n = 50. To be useful, n

cannot be so large as to make the tree’s final maturity fall short of the derivative’s. It

is therefore important not to pick too large an n for only trees of very short maturities
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will be generated otherwise. Table 1 also tabulates the total numbers of nodes and

unreachable ones among them. Again, the overwhelming majority of the nodes are

occupied as claimed earlier.

Some of the calculated option prices in Ritchken and Trevor (1999) use n as large

as 25 and option maturity dates as far as 200. These choices contradict our analysis

and data: Table 1 says that the RTCT tree with n = 25 stops growing as early as

date 18. Therefore, their prices must be viewed with caution.

Cakici and Topyan (2000) use n = 1 throughout their paper. Explosion is avoided

for their choice of parameters, which are also used in this section. Besides, Cakici and

Topyan (2000) suggest that accurate results are obtainable with n = 1. As this choice

of n typically does not lead to explosion, this claim, if true, would imply that the

GARCH option pricing with RTCT algorithm is likely to be efficient and accurate in

practice after all. Unfortunately, the RTCT algorithm can be inaccurate with n = 1;

furthermore, explosion can still happen with the smallest choice of n. To demonstrate

the first point, the option prices in Table 2 are based on parameters from Cakici and

Topyan (2000) except that β0 = 0.000007 instead of 0.000006575. One can see that

the RTCT algorithm deviates from the correct option price for K ≤ 200. Second,

explosion can still happen with n = 1: Suppose we use the same parameters as Fig. 9

except that c = 2 and n = 1. Then the RTCT tree explodes as plotted in Fig. 11.

Interestingly the tree’s final maturity date is only 54 days!

4.2 Failure to Converge with Increasing n

Does the RTCT algorithm converge with increasing n? Table 3 and Figure 12 show

that there is a downward trend in the calculated option prices except when N = 2.

Moreover, the downward trend accelerates as n increases. To rule out the possibil-

ity that the problem originates from the tree approximation of the continuous-state

model, Monte Carlo simulation on the RTCT tree model (7) is carried out. The

data in Table 3 show that the discrete-state tree model produces Monte Carlo esti-

14



mates generally consistent with those of the continuous-state model. Therefore, the

potential factors causing the RTCT algorithm to deviate numerically are the volatil-

ity interpolation scheme, the value of K, and the use of interpolation in backward

induction. We will see that the prime reason is the volatility interpolation scheme.
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5 The Mean-Tracking Tree

The RTCT tree has several weaknesses. First, it explodes exponentially when n

crosses a threshold. Second, it is not known whether the RTCT tree can escape

explosion as long as n does not exceed some threshold. Third, when explosion

happens, the tree’s maturity is cut short, making it unable to price derivatives with

a longer maturity. Fourth, option prices may fail to converge as n increases. We

next turn to the MT algorithm that addresses these problems. The MT tree makes

two changes to the RT tree. The first is to adopt the log-linear interpolation scheme.

This addresses the convergence problem mentioned earlier. The second is to let the

middle branch of the multinomial tree track the mean of yt+1. This addresses the

explosion problem and its consequence of shortened maturity.

5.1 Volatility Interpolation

The distribution of the volatilities reaching a node plays a key role in pricing ac-

curacy. The RTCT algorithm essentially assumes that the distribution is uniform:

Interpolated squared volatilities are equally spaced between the minimum and the

maximum ones. Figure 13, however, shows that the actual distribution is closer to

a lognormal distribution than a uniform one. It strongly suggests that there should

be more interpolated volatilities at the lower end than at the higher end. This is

the rationale for the MT algorithm’s adopting the log-linear interpolation scheme, in

which the logarithmic volatilities are equally spaced.

5.2 Tree Building

At date t, let node A be the node closest to the mean of yt+1 given (yt, h
2
t ), i.e.,

yt + r− (h2
t/2). For convenience, we use µ to denote this conditional mean minus the

current logarithmic price:

µ ≡ r − h2
t

2

16



(see Fig. 14). By the geometry of the tree, node A’s logarithmic price equals yt+aγn

for some integer a. The criterion by which node A is chosen makes sure that

| aγn − µ | ≤ γn
2
. (12)

To create the multinomial tree, make the middle branch of the (2n + 1)-nomial

tree line up with node A (see Fig. 15). Although a node reaches only 2n + 1 nodes

after one day, the top and bottom nodes span over

2nη + 1 (13)

nodes. The probabilities for the upward, middle, and downward branches are set to

pu =
nh2

t + (aγn − µ)2

2n2η2γ2
n

− aγn − µ
2nηγn

,

pm = 1− nh2
t + (aγn − µ)2

n2η2γ2
n

,

pd =
nh2

t + (aγn − µ)2

2n2η2γ2
n

+
aγn − µ
2nηγn

.

They match the conditional mean and variance of the GARCH process at date t+ 1

exactly; hence convergence is guaranteed. State (yt, h
2
t ) at date t is followed by state

(yt + `ηγn, h
2
t+1) at date t+ 1, where

h2
t+1 = β0 + β1h

2
t + β2h

2
t (ε
′′
t+1 − c)2, (14)

ε′′t+1 =
`ηγn + aγn − (r − h2

t/2)

ht
,

` = 0,±1,±2, . . . ,±n.

From the underlying trinomial model, this transition occurs with probability

∑
ju,jm,jd

n!

ju! jm! jd!
pjuu p

jm
m pjdd ,

where ju, jm, jd ≥ 0, n = ju + jm + jd, and ` = ju − jd.
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The conditions for the probabilities to lie within 0 and 1, i.e., 0 ≤ pu, pm, pd ≤ 1,

are

| aγn − µ |
2nηγn

≤ nh2
t + (aγn − µ)2

2n2η2γ2
n

, (15)

nh2
t + (aγn − µ)2

2n2η2γ2
n

≤ 1

2
, (16)

nh2
t + (aγn − µ)2

2n2η2γ2
n

≤ 1− | aγn − µ |
2nηγn

. (17)

Inequalities (15)–(16) are equivalent to
√
nh2

t + (aγn − µ)2

nγn
≤ η ≤ nh2

t + (aγn − µ)2

nγn| aγn − µ | . (18)

Inequalities (12) and (16) together imply inequality (17) because

nh2
t + (aγn − µ)2

2n2η2γ2
n

+
| aγn − µ |

2nηγn
≤ 1

2
+

1

4nη
≤ 1.

Hence the probabilities are valid if and only if the much simpler inequalities (18) hold.

Does interval (18) contain a positive integer for η to take its value on? It does if

certain conditions are met. Let H2
min ≡ min(h2

0, β0/(1− β1)) to make H2
min ≤ h2

t for

t ≥ 0 (see Appendix A for proof1). The sought-after condition is

γ2
n ≤ H2

min (19)

as proved in Appendix B.

The existence of a valid η guaranteed, the MT tree never stops growing beyond

a certain maturity. Hence it solves the short-maturity problem of the RTCT tree.

Rather than searching for an η to satisfy inequalities (18), the MT tree simply takes

η =

⌈ √
nh2

t + (aγn − µ)2

nγn

⌉
(20)

based on inequalities (18). Although other choices are clearly possible, this particular

choice is amenable to later analysis on the size of the MT tree.

1All the appendices are not available for public; please contact the author if interested (in private

via E-mail: r90723065@ms90.ntu.edu.tw).
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Finally, we discuss the choice of γ, hence γn as well because γn = γ/
√
n . If

γ ≤ Hmin, then γn satisfies inequality (19) for all n. We compare two reasonable

choices:

(a) γ = Hmin, and

(b) γ = Hmin/2.

A smaller γ generally leads to larger trees, hence longer running times. On the other

hand, a smaller γ results in better accuracy. Figure 16 demonstrates that, with

choice (b), the option prices fall within the 95% confidence interval of Monte Carlo

simulation of the continuous-state model (2) for all n > 1. Hence choice (b) is better

in terms of overall accuracy and convergence speed. With the choice of

γn =
Hmin

2
√
n
, (21)

all the parameters of the MT tree have been chosen.

5.3 Sufficient Condition for Nonexplosion

In practice, it may be critical to know a choice of n will not result in an exploding

tree before tree building is attempted. Without this knowledge, tree building may

take a long time if the tree explodes and may even end up with a tree not meeting

the required maturity if shortened maturity is a problem. In the case of the MT tree,

the criterion for nonexplosion is a very simple one: The MT tree does not explode if

n ≤
(√

1− β1

β2

− c
)2

. (22)

Furthermore, when the above relation holds, the tree size is only quadratic in maturity,

the same as the CRR tree. (See Appendix C for proof.) The MT tree is thus the first

tree-based GARCH option pricing algorithm that is provably efficient.

To check that this conclusion makes intuitive sense, observe that a trinomial tree

under the Black-Scholes model obtains by letting β1 = 0 and β2 → 0. In the limit,

19



relation (22) holds for any n, and the tree has quadratic size by our claim. This node

count agrees with the well-known fact about the trinomial tree’s quadratic size (recall

Fig. 2). The MT tree’s size is hence asymptotically optimal.

Earlier in section 4.1.1, we show that the RTCT tree size explodes if n exceeds

some threshold; in fact, the threshold is (1− β1)/β2 when c = 0. But nothing could

be concluded about the node count when that threshold is not breached. The positive

result (22) of the MT tree therefore fills the void because it says that the MT tree is

efficient if n does not exceed some threshold. Surprisingly, the sufficient condition

for nonexplosion reduces to n ≤ (1− β1)/β2 when c = 0. As this is the threshold of

explosion for the RTCT tree, our threshold is in some sense tight.
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6 Evaluation of the MT Tree

Table 2 shows that the CT algorithm can be inaccurate in options pricing with n = 1.

Table 4 expands on Table 2 by adding cases n = 2, 3, 4. It is clear that in every

combination of n and K, the CT algorithm deviates from the simulation results. On

the other hand, the MT algorithm produces prices within the 95% confidence interval

for K ≥ 2 with n = 1, K ≥ 10 with n = 2, and K ≥ 50 with n = 3, 4. Hence

the MT algorithm can succeed where the RTCT algorithm cannot. Observe that K

needs to be increased for a larger n because the resulting increase in the number

of volatilities per node demands more resolution. This phenomenon agrees with the

theoretical findings of Dai et al. (2002) in Asian option pricing, where it is shown

that K should grow at least with
√
n to guarantee convergence.

Next we benchmark the MT algorithm’s performance with increasing n. For this

purpose, we duplicate the settings in Table 3 for the RTCT algorithm to produce

Table 5 for the MT algorithm. Select prices are plotted in Fig. 17 for illustration.

Unlike the RTCT algorithm, all prices generated by the MT algorithm are within the

95% confidence interval of Monte Carlo simulation on the tree model (14). Obviously,

the MT algorithm is better than the RTCT algorithm not only in terms of accuracy

but also in terms of convergence speed. It provides results very close to the true

option price even with a small n.

All the numerical experiments up to now assume r = c = 0. Table 6 investigates

MT algorithm’s accuracy for options with various strike prices under a GARCH model

with nonzero r and c: r = 5% (annual) and c = 0.5. Although a few of the computed

option prices are outside the 95% confidence interval, they are nontheless quite close

to the Monte Carlo estimates. Furthermore, they are as good as the best computed

prices in Table 3 of Duan and Simonato (2001).

Relation (22) is a sufficient condition for the MT tree to be efficient in size. In this

case, the number of tree nodes grows linearly with time; thus the total node count
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becomes quadratic in maturity. We use two concrete cases to check the theoretical

result. The first setting adopts β1 = 0.8, β2 = 0.1, and c = 0. The tree should not

explode because

n = 1 <

(√
1− 0.8

0.1
− 0

)2

= 2.

Indeed, the tree size grows linearly with time as shown in Fig. 18. The total number

of nodes is therefore quadratic in maturity in complete agreement with the theoretical

analysis. Take another setting with β1 = 0.8, β2 = 0.1, and c = 0.9. Then relation

(22) is violated because

n = 1 >

(√
1− 0.8

0.1
− 0.9

)2

= 0.264416.

The tree also turns out to grow exponentially as shown in Fig. 19. Unlike the RTCT

tree, an exploding MT tree is still useful because it will not be cut short.

Because relation (22) is not a necessary condition for the MT tree not to explode,

its violation does not necessarily imply combinatorial explosion. Take the parameters

β1 = 0.8, β2 = 0.1, and c = 0.5 in Table 6 for example. The criterion for nonexplosion

is violated for all n ≥ 1. But in fact, the case n = 1 does not result in an exponential

size even though the tree size is more than quadratic. Exponential explosion sets in

for n > 1. This is why the table does not compute prices for n > 1 when the

maturity of the option exceeds 30. They simply take too much time.
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7 Conclusions

GARCH option pricing is difficult because of the GARCH model’s bivariate and path-

dependent nature. By modifying the well-known Ritchken-Trevor-Cakici-Topyan

(RTCT) tree, we have come up with a simple tree, the mean-tracking (MT) tree, that

is both accurate and provably efficient when n does not exceed a simple threshold.

Specifically, its tree size is quadratic in maturity if n does not exceed the threshold.

This is the first tree-based GARCH option pricing algorithm that provably does not

explode if certain conditions are met. Both the threshold and the quadratic size are

tight. The MT tree does not suffer from the short-maturity problem of the RTCT

tree. We conclude that the MT tree is a provably efficient tree for derivatives pricing

under the GARCH option pricing model. All our theoretical results are proved and

then backed up by extensive numerical experiments.
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Figure 1: Binomial tree.

Each node has two successor nodes. The number of nodes at any time t is t + 1,

a linear growth. The total number of nodes of an m-period binomial tree is thus

(m+ 2)(m+ 1)/2, a quadratic growth in maturity m.
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Figure 2: Trinomial tree.

Each node has three successor nodes. The number of nodes at any time t is 2t+ 1,

a linear growth. The total number of nodes of an m-period trinomial tree is thus

(m+1)2, a quadratic growth in maturity m. Note that the trinomial tree recombines

without exploding.
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Figure 3: Trinomial tree, jump parameter η, and jump size ηγn.

6

?

γn

6

?

ηγn

-� 1 period

Adjacent nodes at the same time are spaced by γn. The two outer branches fan out

around the middle branch to reach nodes that are η nodes away from the center.

Hollow nodes are not reached from the node on the left. Here η = 3.
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Figure 4: RTCT trinomial tree for logarithmic price.

(yt, h
2
t )

6

?

ηγn

-� 1 day

A day is partitioned into n = 3 periods, and the jump size is ηγn. The 7 values

on the right should approximate the distribution of yt+1 given (yt, h
2
t ). Recall from

Fig. 3 that there are η − 1 nodes, which are not drawn, between any two adjacent

nodes at the same time.
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Figure 5: RTCT multinomial tree for logarithmic price.

(yt, h
2
t )

6

?

ηγn

-� 1 day

This heptanomial tree is the outcome of the trinomial tree in Fig. 4 after its intraday

nodes are removed. Recall that n = 3. In general, we infer from Fig. 3 that there

are 1 + 2nη nodes at date t+ 1 between the top and bottom nodes (inclusive), only

2n+ 1 of which are reachable from (yt, h
2
t ) and are drawn above.
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Figure 6: Possible geometry of a 3-day RTCT tree.

(y0, h
2
0)

A

B

C

D

6

?

γn = γ1

-� 3 days

A day is partitioned into n = 1 period. Nodes A and B have a jump size of 2γ1.

Nodes C with two h2
t ’s and D with three h2

t ’s have two jump sizes: γ1 and 2γ1. All

other nodes have a jump size of γ1. Nodes that are not reachable are shown as hollow

nodes.
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Figure 7: Case where maximum volatility follows an interpolated volatility.

hmax ...
ht ...
hmin

...

ht+1

...

-

Maximum volatility ht+1 at the node on the right follows interpolated volatility ht

by the updating rule. Hence ht+1 is an artifact.
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Figure 8: Backward induction on the tree.

hmax ...
ht ...
hmin

�

...
ht+1

...

Volatility ht+1 follows ht by the updating rule. Because it does not match any

interpolated volatility, its corresponding option value is found by interpolating from

the two option values whose volatilities bracket ht+1.
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Figure 9: Exponential growth of the RTCT tree.

25 50 75 100 125 150 175
Date

5000

10000

15000

20000

25000

The parameters are S0 = 100, y0 = lnS0 = 4.60517, r = 0, h2
0 = 0.0001096, γ =

0.010469, β0 = 0.000006575, β1 = 0.9, β2 = 0.04, and c = 0. The dotted line is based

on n = 3, the dashed line on n = 4, and the solid line on n = 5. The standard

trinomial tree, in contrast, has only 2t+ 1 nodes at date t.
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Figure 10: The percent of unreachable nodes.

25 50 75 100 125 150 175
Date

0.5

1

1.5

The parameters are S0 = 100, y0 = lnS0 = 4.60517, r = 0, h2
0 = 0.0001096, γ =

0.010469, β0 = 0.000006575, β1 = 0.9, β2 = 0.04, and c = 0. The plots show the

percent of unreachable nodes among all nodes at each date. The dotted line is based

on n = 3, the dashed line on n = 4, and the solid line on n = 5. The number of

unreachable nodes is insignificant in all 3 lines.
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Table 1: Final maturity dates and sizes of exploding trees.

Total number of Total number of

n Final date (t) nodes unreachable nodes

3 182 1,017,327 5,565

4 100 499,205 3,028

5 72 368,523 947

10 34 222,935 42

25 18 286,844 6,925

50 12 305,113 448

100 9 578,710 3,961

150 8 795,309 2,011

200 7 652,808 1,596

250 7 1,747,758 20,291

300 7 2,929,508 11,510

350 6 1,179,157 3,151

The parameters are S0 = 100, y0 = lnS0 = 4.60517, r = 0, h2
0 = 0.0001096, γ =

0.010469, β0 = 0.000006575, β1 = 0.9, β2 = 0.04, and c = 0. With n > 2.5, all

RTCT trees in the table explode. The final maturity date of the tree shortens quickly

as n increases. The total number of nodes in each tree far exceeds the (t + 1)2 of

the standard trinomial tree. The overwhelming majority of nodes are reachable in all

trees.
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Table 2: Case where CT fails.

K 2 10 20 50 100 200

Option price 4.2301 4.2365 4.2267 4.2274 4.2265 4.2268

∞L 4.2714

∞U 4.3087

The parameters are S0 = 100, r = 0, h2
0 = 0.0001096, γ = h0 = 0.010469,

β0 = 0.000007, β1 = 0.9, β2 = 0.04, n = 1, and c = 0. K denotes the number

of interpolated volatilities per node used in backward induction. The option is a Eu-

ropean call with a strike price of 100 and a maturity of 100 days. ∞L and ∞U form

the 95% confidence interval for the true option price based on Monte Carlo simulation

on the continuous-state model (2) with 500,000 paths.
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Figure 11: Exponential growth of the Cakici-Topyan tree when n = 1.
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1000
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The parameters are S0 = 100, r = 0, h2
0 = 0.0001096, γ = 0.010469, β0 =

0.000006575, β1 = 0.9, β2 = 0.04, c = 2, and n = 1. Clearly, the Cakici-Topyan

tree explodes. The final maturity date of the tree is 54 days.
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Table 3: Cases where RTCT fails to converge.

n CT
�

DU
�

DL CT
�

DU
�

DL CT
�

DU
�

DL CT
�

DU
�

DL
1 0.5888 0.5903 0.5856 0.9093* 0.9023 0.8945 1.3116* 1.3400 1.3291 1.8565* 1.8765 1.8609
2 0.5674 0.5701 0.5652 0.9091 0.9132 0.9054 1.3020 1.3126 1.3016 1.8511 1.8604 1.8447
3 0.5736 0.5746 0.5697 0.9284 0.9319 0.9242 1.3103 1.3190 1.3080 1.8532 1.8604 1.8448
4 0.5742 0.5758 0.5709 0.9214 0.9289 0.9211 1.3081 1.3115 1.3006 1.8492 1.8540 1.8384
5 0.5836 0.5841 0.5793 0.9273 0.9322 0.9244 1.3095 1.3172 1.3062 1.8454 1.8605 1.8449
10 0.5839 0.5843 0.5795 0.9257 0.9298 0.9221 1.3059* 1.3174 1.3064 1.8026* 1.8623 1.8467
25 0.5877 0.5923 0.5875 0.9257 0.9310 0.9233 1.2867* 1.3175 1.3065 stopped
50 0.5874 0.5915 0.5866 0.9238* 0.9335 0.9258 1.2651* 1.3172 1.3062 stopped
100 0.5876 0.5886 0.5837 0.9202* 0.9314 0.9237 stopped stopped
150 0.5876 0.5899 0.5851 0.9189* 0.9304 0.9226 stopped stopped
200 0.5877 0.5897 0.5849 0.9179* 0.9308 0.9231 stopped stopped
�

L
�

U

n CT
�

DU
�

DL CT
�

DU
�

DL CT
�

DU
�

DL CT
�

DU
�

DL
1 2.9415 2.9626 2.9376 3.6043 3.6331 3.6021 4.1647 4.1964 4.1603 5.8926 5.9190 5.8667
2 2.9345 2.9464 2.9213 3.5976* 3.5947 3.5637 4.1570 4.1739 4.1379 5.8863 5.9096 5.8533
3 2.9193* 2.9536 2.9285 3.5567* 3.6240 3.5928 4.0794* 4.1874 4.1512 stopped
4 2.8784* 2.9482 2.9231 3.4499* 3.5967 3.5658 3.8945* 4.1789 4.1427 stopped
5 2.8168* 2.9473 2.9222 stopped stopped stopped
10 stopped stopped stopped stopped
25 stopped stopped stopped stopped
�

L
�

U
5.8620

1.3170 1.8620

5.9160
4.1420

200

0.5920 0.9310

2.9440 4.1790
3.5730
3.6050

2.9180

50 75 100

Maturity of Option (Days)
2 5

0.5870 0.9230

10 20

1.3060 1.8460

The parameters are S0 = 100, r = 0, h2
0 = 0.0001096, γ = h0 = 0.010469, β0 =

0.000006575, β1 = 0.9, β2 = 0.04, K = 20, and c = 0. The CT algorithm is used

here. The option is a European call with a strike price of 100. The CT tree may stop

growing before the required maturity if n crosses a threshold. ∞DL and ∞DU form

the 95% confidence interval for the option price based on Monte Carlo simulation of

the tree model (7) with 500,000 paths. Asterics mark option prices that lie outside

this interval. ∞L and ∞U form the 95% confidence interval for the true option price

based on Monte Carlo simulation of the continuous-state model (2) with 500,000

paths.
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Figure 12: Select option prices from Table 3.
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MC lower bound equals ∞L; MC upper bound equals ∞U .
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Figure 13: Volatility distribution.
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All parameters are from Table 3 with n = 10 and N = 10. Monte Carlo simulation on

the tree model (7) is used to record the volatilities at the middle node at maturity. Out

of 500,000 paths, about 10,000 reach the node. The recorded minimum and maximum

squared volatilities are 0.000085 and 0.000217, respectively. Squared volatilities h2
t

are multiplied by 1,000,000 for easy reading.
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Figure 14: Location of next middle node.
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The cross identifies the true mean of yt+1. Two nodes, A and B, bracket it. Between

them, node A has a logarithmic price closer to the mean. The number aγn denotes

the difference between yt and node A’s logarithmic price at date t+ 1.
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Figure 15: The MT trinomial tree for logarithmic price.
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A day is partitioned into n = 3 periods, and the three jump sizes in each period

are (aγn/n) + ηγn (upward), aγn/n (middle), and (aγn/n)− ηγn (downward). The

central branch of the tree lines up with node A, the node closest to the mean of yt+1

as stated in Fig. 14. The gray nodes are for illustration only; only the solid nodes

are actually used in pricing. Except for the drift, the actual tree is heptanomial as in

Fig. 5.
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Figure 16: Two choices of γ in MT.

����������������������������

�
�
	
���
�
	
���
�
	
���
�
	
��

�
�
	
���
�
	
���
�
	
���
�
	
��

�
�
	����
�
	����
�
	����
�
	���

�
�
	����
�
	����
�
	����
�
	���

�
�
	
���
�
	
���
�
	
���
�
	
��

�
�
	
���
�
	
���
�
	
���
�
	
��

���� 
�
�
�
� �������� 	�	�	�	� 
��
��
��
�� 
��
��
��
�� n

��������������������������������������������

����������������

������������������������

 !"#$%&'#(�) !"#$%&'#(�) !"#$%&'#(�) !"#$%&'#(�)

 !(**%&'#(�) !(**%&'#(�) !(**%&'#(�) !(**%&'#(�)

�����+,�����+,�����+,�����+,����



�
�-��

�
�-��

�
�-��

�
�-��



�
�	��

�
�	��

�
�	��

�
�	��



�
�	��

�
�	��

�
�	��

�
�	��



�

���

�

���

�

���

�

���



�

���

�

���

�

���

�

���



�


��

�


��

�


��

�


��



�


��

�


��

�


��

�


��



�

���

�

���

�

���

�

���

���� ���� 
�
�
�
� 
�
�
�
� �������� �������� 
�
�
�
� n

��������������������������������������������

����������������

������������������������

 !"#$%&'#(�) !"#$%&'#(�) !"#$%&'#(�) !"#$%&'#(�)

 !(**%&'#(�) !(**%&'#(�) !(**%&'#(�) !(**%&'#(�)

�����.,�����.,�����.,�����.,����

/
0
1233/
0
1233/
0
1233/
0
1233

/
0
1243/
0
1243/
0
1243/
0
1243

/
0
1533/
0
1533/
0
1533/
0
1533

/
0
1543/
0
1543/
0
1543/
0
1543

/
0
1633/
0
1633/
0
1633/
0
1633

/
0
1643/
0
1643/
0
1643/
0
1643

/
0
1433/
0
1433/
0
1433/
0
1433

/
0
1443/
0
1443/
0
1443/
0
1443

/
0
1733/
0
1733/
0
1733/
0
1733

/
0
1743/
0
1743/
0
1743/
0
1743

3333 2222 6666 7777 1111 /3/3/3/3 /2/2/2/2 n

��������������������������������������������

89:;89:;89:;89:;

89:;<=89:;<=89:;<=89:;<=

>?@ABCDEAF;G>?@ABCDEAF;G>?@ABCDEAF;G>?@ABCDEAF;G

>?FHHCDEAF;G>?FHHCDEAF;G>?FHHCDEAF;G>?FHHCDEAF;G

������,������,������,������,����

I
J
KLMMI
J
KLMMI
J
KLMMI
J
KLMM

I
J
KNMMI
J
KNMMI
J
KNMMI
J
KNMM

I
J
KOMMI
J
KOMMI
J
KOMMI
J
KOMM

I
J
OPMMI
J
OPMMI
J
OPMMI
J
OPMM

I
J
OQMMI
J
OQMMI
J
OQMMI
J
OQMM

I
J
OLMMI
J
OLMMI
J
OLMMI
J
OLMM

I
J
ONMMI
J
ONMMI
J
ONMMI
J
ONMM

MMMM PPPP IIII QQQQ RRRR LLLL SSSS n

TUVWXYZ[\]̂TUVWXYZ[\]̂TUVWXYZ[\]̂TUVWXYZ[\]̂

_̀ab_̀ab_̀ab_̀ab

_̀abcd_̀abcd_̀abcd_̀abcd

efghijklhmbnefghijklhmbnefghijklhmbnefghijklhmbn

efmoojklhmbnefmoojklhmbnefmoojklhmbnefmoojklhmbn

All parameters are from Table 3. Hmin means the option prices are obtained with

the choice γ = Hmin. Hmin/2 means the option prices are obtained with the choice

γ = Hmin/2. MC upper bound and MC lower bound form the 95% confidence interval

for the true option price based on Monte Carlo simulation of the continuous-state

model (2) with 500,000 paths.
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Table 4: Case where RTCT fails but MT succeeds.
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All parameters are from Table 2 except that n is varied. Although the RTCT tree

explodes with n ≥ 3, the cut-off maturity happens to exceed N = 100 days here.

Hence the option for n ≥ 3 can still be priced albeit with great difficulty. We stop

at n = 4 because the RTCT tree is cut short for n > 4 as proved in section 4.1.3.
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Table 5: Convergence of MT.
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All parameters are from Table 3. ∞DL and ∞DU form the 95% confidence interval

for the true option price based on Monte Carlo simulation of the tree model (14) with

500,000 paths. None of the option prices lie outside this confidence interval. ∞L and

∞U form the 95% confidence interval for the true option price based on Monte Carlo

simulation of the continuous-state model (2) with 500,000 paths.
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Figure 17: Select option prices from Table 5.
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MC lower bound equals ∞L; MC upper bound equals ∞U . The option prices under

the CT algorithm come from Fig. 12.
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Table 6: Accuracy of MT with nonzero r and c.
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All parameters are from Duan and Simonato (2001): S0 = 50, r = 5% (annual),

h2
0 = 0.0001096, β0 = 0.00001, β1 = 0.8, β2 = 0.1, and c = 0.5. The option

is a European put with a strike price of X. ∞L and ∞U form the 95% confidence

interval for the true option price based on Monte Carlo data from Duan and Simonato

(2001). DS lists the option prices from Duan and Simonato (2001) using the most

computational efforts.
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Figure 18: Linear growth of the MT tree.

10 20 30 40 50 60 70
t

100

200

300

400

The parameters are from Table 6 except for n = 1, c = 0, N = 74, and K = 20.

This set of parameters satisfy inequality (22). The number of nodes grows linearly

with date t. Hence the total number of nodes grows quadratically in maturity N .
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Figure 19: Exponential growth of the MT tree.

10 20 30 40 50 60 70
t

5000

10000

15000

20000

The parameters are identical to those in Fig. 18 except for c = 0.9. This set of

parameters violate inequality (22). The number of nodes grows exponentially with

date t.

51


