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Chapter 1

Introduction

Most term structure models exist for pricing interest-rate contingent claims. The

popular one presented by Heath, Jarrow, and Morton (HJM) (1992) is a powerful

model. In the HJM model, the only inputs needed to construct the term structure

are the initial yield curve and the volatility structure for all forward rates. Its ad-

vantage is that risk preference assumptions and estimation of the drift term are not

needed. Because of fewer inputs required of the model, the stochastic process of the

model could cover general classes of stochastic processes. Due to fewer restrictions on

the term structure, the HJM model may be non-Markovian, and contingent claims

are difficult to price with the lattice method. This is because when pricing derivatives

of non-Markovian processes with the lattice method, it is needed to preserve all the

information on whole paths, and since evolving nodes usually do not combine, the

lattice grows exponentially with the number of time periods. The algorithm with

exponentially growth rate would suffer in both time and memory resources. To solve

this problem and make values of contingent claims computable under the HJM model,

some conditions and new parameters would be imposed. Based on the HJM mod-

els, Ritchken and Sankarasubramanian (RS) develop a family of models for pricing

American options on interest rate derivatives. In the RS model, the term structure is

described by a two-state Markovian process, and for this sake the volatility structure
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Introduction 2

has to be restricted. The restrictions on the volatility structure are on forward rates

instead of spot rates. It still allows general classes of volatility structures. The algo-

rithms developed by Ritchken and Sankarasubramanian (1995) for the RS model are

more efficient than the original HJM model. Because of the Markovian property for

the RS model, forward induction can move further with only the information at the

time rather than the past whole information. Although the algorithm is more efficient

in practice, it still faces the problem of increased computational complexity with in-

creasing number of time periods. In fact, the algorithm still grows exponentially for

small time partition ∆t, as we will show in the thesis.

The purpose of this thesis is to illustrate how the lattice of the RS algorithm

grows with the number of time periods under the proportional RS model with a

flat forward rate curve. Our finding is that the RS algorithm grows exponentially

under particular assumptions for small time partition ∆t, or, equivalently, large n.

In the paper of Cakici and Zhu (2001), the algorithm based on the RS algorithm

is simplified without “mean tracking.” We mean that the tree’s growth is centered

around its mean. The thesis shows how their algorithm explodes exponentially too.

After showing the growth rate of the lattice by the mathematical approach, this thesis

will provide numerical examples on the RS algorithm and compare the numerical

results with our theoretical results. The numerical results confirm the theoretical

results that the lattice explodes exponentially for sufficiently large n. For example,

under parameters σ = 0.25, T = 5, κ = 0.02, and r0 = 0.04 (to be defined later), the

algorithm works fine for about n ≤ 310. Once n is larger, the total number of nodes

will grow exponentially large beyond computer memory capacity.

The thesis proceeds as follows. Chapter 2 describes the HJM and RS models. In

chapter 3, our theoretical results on the RS algorithm will be presented. In chapter 4,

we will give some numerical results and check if our assumptions made in theoretical

results are sustainable. Then chapter 5 summarizes the thesis.



Chapter 2

Some Backgrounds

2.1 The HJM Model

In the HJM model, f(t, T ) denotes the forward rate at time t for instantaneous and

riskless rate at time T . The forward rate f(t, T ) follows the stochastic process

df(t, T ) = µf (t, T )dt + σf (t, T )dω(t),

where µf (t, T ) and σf (t, T ) are the drift and volatility terms which may depend on

the past history of the Wiener processes ω(t). In particular, the short rate r(t) equals

f(t, t). The volatility term σf (t, T ) could be chosen arbitrarily and once it is chosen,

the drift term µf (t, T ) is uniquely determined by

µf (t, T ) = σf (t, T )
∫ T

t
σf (t, s)ds.

The price of a pure discount bond P (t, T ) at time t with maturity date T equals

P (t, T ) = e−
∫ T

t
f(t,s)ds.

Let g(0) denote the value of a European claim at date 0 with payoff at date s. The

fair price of the claim is

g(0) = E0[e
−

∫ s

0
r(t)dtg(s)].

3
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An arbitrary selection of the volatility term σf (t, T ) makes the model include

various term structure models as special cases. But this generality leads to problems

on pricing in practice, and no efficient numerical methods exist for the HJM model.

Ritchken and Sankarasubramanian place particular restrictions on the volatility term

and eliminate some pricing problems.

2.2 The RS Model

The restriction on the volatility term σf (t, T ) is given by

σf (t, T ) = σf (t, t)k(t, T ),

where

k(t, T ) = e−
∫ T

t
κ(x)dx,

σf (t, t) is volatility of the short rate r(t), and κ(x) is a deterministic function given

exogenously. No particular restrictions are imposed on the short rate volatility σf (t, t).

The restriction on σf (t, T ) does sacrifice some freedom for the volatility term, but

it turns out that the term structure can be represented by a two-state Markovian

model. Define φ(t) to represent the accumulated variance for the forward rate up to

date t and it equals

φ(t) =
∫ t

0
σ2

f (u, t)du =
∫ t

0
σ2

f (u, u)k2(u, t)du.

Then the two-state Markovian model for the RS model follows

dr(t) = µ(r, φ, t)dt + σf (t, t)dω(t),

dφ(t) = [σ2
f (t, t)− 2κ(t)φ(t)]dt,

where

µ(r, φ, t) = κ[f(0, t)− r(t)] + φ(t) +
d

dt
f(0, t)
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Under the RS model, the value of pure discount bond and contingent claim on

the term structure turns out to be

P (t, T ) = (
P (0, T )

P (0, t)
)e−β(t,T )(r(t)−f(0,t))− 1

2
β2(t,T )φ(t),

g(0) = Er,φ[e
∫ s

0
r(t)dtg(s)],

where

β(t, T ) =
∫ T

t
k(t, u)du.

2.3 The RS Algorithm

In this section, we introduce the RS algorithm for the proportional model with flat

forward rate curve. One family of the RS model is given by setting

σf (t, t) = σ[r(t)]γ

as the volatility term for constants σ, γ ≥ 0. Particularly, γ = 1 is the proportional

model. In the next step, we use another transformation Y (t) in order to form a

constant volatility process by Nelson and Ramaswamy (1990),

Y (t) =
∫ 1

σr(t)
dr(t) = ln[r(t)]/σ.

That is

r(t) = eσY (t).

And the process Y (t) follows

dY (t) = m(Y, φ, t)dt + dω(t),

where

m(Y, φ, t) =
1

σ
[ν(Y, φ, t)− 1

2
σ2],

and

ν(Y, φ, t) =
κ

eσY (t)
[f(0, t)− eσY (t)] +

φ(t)

eσY (t)
.
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Let κ(t) be a constant κ. The process of Y (t) is then with constant volatility 1

and drift m(Y, φ, t). After introduction to the settings of the model, we begin the

procedure to establish the lattice of the RS algorithm.

The tree begins at time 0 with a pair of data (y0, φ0) with parameters r0, κ, σ

and φ0. At each time i, assume a node with data of (yi, φi) which includes its past

information up to time 0. In the next time i + 1, (yi, φi) moves up to (y+
i+1, φ

+
i+1) or

down to (y−i+1, φ
−
i+1) given by

y+
i+1 = yi + (Ji + 1)

√
∆t,

y−i+1 = yi + (Ji − 1)
√

∆t,

and

φ+
i+1 = φ−i+1 = φi + (σ2r2

i − 2κφi)∆t,

where Ji is an integer satisfying

mi

√
∆t + 1 ≥ Ji ≥ mi

√
∆t− 1,

where

mi =
κ(r0 − ri) + φi

σri

− σ

2
.

Figure 2.1 shows that the evolving nodes at time i+1 of the RS algorithm are centered

at Ji steps from yi, and the up node y+
i+1 and the down node y−i+1 are Ji +1 and Ji−1

steps from yi, respectively.

Let pi = p(yi, φi) be the branching probability of the up jump for the node. Then

p must satisfy

pi(y
+
i+1 − yi) + (1− p)(yi − y−i+1) = mi∆t,

or

pi =
mi∆t + (yi − y−i+1)

(y+
i+1 − y−i+1)
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Figure 2.1: Evolving nodes for the RS algorithm.

to ensure that the mean of Y (t) matches the true drift m(t). For probability to lie

between 0 and 1, Ji is chosen to satisfy

0 ≤ mi∆t + (yi − y−i+1)

(y+
i+1 − y−i+1)

≤ 1,

0 ≤ mi∆t + (1− Ji)
√

∆t

2
√

∆t
≤ 1,

−mi∆t ≤ (1− Ji)
√

∆t ≤ 2
√

∆t−mi∆t,

−mi

√
∆t− 1 ≤ −Ji ≤ 1−mi

√
∆t,

mi

√
∆t− 1 ≤ Ji ≤ mi

√
∆t + 1.

At any time t, there may be many different φ values corresponding to the same

value of y since every φ value has its unique path to y. We only keep track of two

paths which yield maximum and minimum values of φ without keeping all values of φ

and replace original φ values with linear interpolation method. For example, a node

at time i is with the same value of yi but different values of φi. We only keep its

maximum and minimum values denoted by φmax
i and φmin

i . Then we partition the
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node into m equally divided points with φi(k), k = 1, 2, . . . , m as

φmax
i = φi(1) > φi(2) > · · · > φi(m) = φmin

i .

Every node with a value of yi and m different values of φi(k) generates 2m results

for the time i+1 since a pair of (yi, φi) moves either up or down. 2m new paths move

into different nodes at the time i + 1 and the same process proceeds for the nodes

till time to maturity. The example is shown in Figure 2.2. Path 1 of an up move

from (yi, φi(1)) yields neither maximum nor minimum φ value at node y+
i+1 and the

φ value is ignored. Path 2 of a down move from (yi, φi(1)) yields maximum φ value

at the node y−i+1 and the value will be preserved as φmax
i+1 = φi+1(1) for the node y−i+1.

Path 3 of an up move from (yi, φi(m)) yields minimum φ value at the node y+
i+1 and

the value will be preserved as φmin
i+1 = φi+1(m) for the node y+

i+1.
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Figure 2.2: Partitions of Φ values.
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2.4 The Cakici-Zhu Algorithm

In the Cakici-Zhu algorithm, the process of Y is simplified to

y+
i+1 = yi + J

√
∆t

y−i+1 = yi − J
√

∆t,

where J is chosen to have probability value

pi =
mi∆t + (yi − y−i+1)

(y+
i+1 − y−i+1)

=
mi∆t + J

√
∆t

2J
√

∆t

with [0, 1]. Procedure for the lattice is the same with the RS algorithm. Figure

2.3 shows that the evolving nodes for the Cakici-Zhu algorithm are centered to the

original node yi and equally expand with Ji steps up to y+
i+1 and Ji steps down to

y−i+1.
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Figure 2.3: Evolving nodes for the Cakici-Zhu algorithm.



Chapter 3

Theoretical Results

3.1 The Explosion of Cakici-Zhu Algorithm

Let (yi, Φi) denote a node at time i, which depends on the path reaching the node.

Every node generates m values of mi respect to pairs of (yi, φi(k)), k = 1, . . . , m, to

determine (yi+1, Φi+1) in the next time increment. Given (yi, φi),

y+
i+1 = yi + Ji

√
∆t, (3.1)

y−i+1 = yi − Ji

√
∆t, (3.2)

φi+1 = φi + [σ2r2
i − 2κφi]∆t, (3.3)

where ri = eσyi and Ji is chosen to satisfy the valid probability value p(yi, φi),

p(yi, φi) = pi =
mi∆t + Ji

√
∆t

2Ji

√
∆t

,

where

mi =
κ(r0 − ri) + φi

σri

− σ

2
.

Steps to obtain yi+1 are:

1. Use (yi, φi) to compute mi.

2. Use mi to compute Ji under the restriction 0 ≤ pi ≤ 1.

10
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3. Use equations (3.1) and (3.2) to derive yi+1.

From equation (3.3),

φi+1 = φi + [σ2r2
i − 2κφi]∆t

= [1− 2κ∆t]φi + σ2r2
i ∆t.

Let a = 1− 2κ∆t > 0 and φ0 = 0. Then

φi+1 = aφi + σ2r2
i ∆t

= a(aφi−1 + σ2r2
i−1∆t) + σ2r2

i ∆t

= a2φi−1 + aσ2r2
i−1∆t + σ2r2

i ∆t

= ai+1φ0 +
i∑

j=0

ai−jr2
jσ

2∆t

=
i∑

j=0

ai−jr2
jσ

2∆t.

We assume a path with i − 1 up moves and 1 down move from (y0, φ0). We will

show that the path grows exponentially in order to satisfy the valid probability. Hence

the Cakici-Zhu tree will explode with the path. Now,

ri−1 = ri−2e
Ji−2σ

√
∆t ≥ ri−2e

σ
√

∆t ≥ r0e
(i−1)σ

√
∆t

and

ri = ri−1e
−Ji−1σ

√
∆t ≤ ri−1e

−σ
√

∆t

since Jj ≥ 1 for any time j. Hence probability pi must satisfy

pi =
(κ(r0−ri)+φi

σri
− σ

2
)∆t + Ji

√
∆t

2Ji

√
∆t

≥ ( φi

σri
− κ

σ
− σ

2
)∆t

2Ji

√
∆t

+
1

2

=
∆t

2Ji

√
∆t

(
σ∆t

∑i−1
j=0 ai−1−jr2

j

ri

)− ∆t(κ
σ
− σ

2
)

2J
√

∆t
+

1

2

≥
√

∆t

2Ji

(
σ∆tr2

i−1

ri

)− ∆t(κ
σ
− σ

2
)

2Ji

√
∆t

+
1

2
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=

√
∆t

2Ji

(
σ∆tri−1

ri/ri−1

)− ∆t(κ
σ
− σ

2
)

2Ji

√
∆t

+
1

2

≥
√

∆t

2Ji

(σr0∆teiσ
√

∆t)−
√

∆t(κ
σ
− σ

2
)

2J
+

1

2

=

√
∆t

2Ji

[σr0∆teiσ
√

∆t − (
κ

σ
− σ

2
)] +

1

2
.

For pi ≤ 1,

Ji ≥ σ(∆t)1.5r0e
iσ
√

∆t −
√

∆t(
κ

σ
− σ

2
).

This means at time i + 1, the distance of the top node from the root is at least

σ(∆t)1.5r0e
iσ
√

∆t −
√

∆t(
κ

σ
− σ

2
)

and since all the nodes are located within, the size of the tree grows exponentially in

i.

3.2 The Explosion of the RS Algorithm

In the RS algorithm, yi+1 follows the mean mi of (yi, φi) presented by

y+
i+1 = yi + (Ji + 1)

√
∆t,

y−i+1 = yi + (Ji − 1)
√

∆t,

where Ji is an integer satisfying

mi

√
∆t + 1 ≥ Ji ≥ mi

√
∆t− 1

for ri = eσyi and

mi =
κ(r0 − ri) + φi

σri

− σ

2
.

For φi+1, the equation follows the previous section,

φi+1 = φi + [σ2r2
i − 2κφi]∆t =

i∑

j=0

ai−jr2
jσ

2∆t.
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In this section, we show that under some conditions the RS tree will grow ex-

ponentially. After showing the growth rate of the RS tree, we will show that the

conditions can be achieved if n is large enough. Suppose the path with i up moves

satisfies the following conditions: (1) There exists a large number N , N ≤ n, such

that for n ≥ i ≥ N ,
∑i

j=0 Jj > 0, and (2) we claim parameters κ and σ satisfy

(
κ

σ
+

σ

2
)
√

∆t < 1.

Then

mi

√
∆t = (

κ(r0 − ri) + φi

σri

− σ

2
)
√

∆t ≥ (−κ

σ
− σ

2
)
√

∆t > −1,

and Ji ≥ 0 if we choose Ji = b(mi

√
∆t)c. The second condition can be true with

increasing n. Because σ and κ are given constants, we let c = (κ
σ

+ σ
2
) in the later

derivation for convenience. The value of mi for the path at time i satisfies

mi =
κ(r0 − ri) + φi

σri

− σ

2

≥ φi

σri

− (
σ

2
+

κ

σ
)

=
aφi−1

σri

− c +
σ∆tr2

i−1

ri

≥ σ∆tri−1

ri/ri−1

− c

=
r0σ∆teσ

∑i−2

j=0
(Jj+1)

√
∆t

eσ(Ji−1+1)
√

∆t
− c

= r0σ∆teσ(i−2+
∑i−2

j=0
Jj−Ji−1)

√
∆t − c.

If
∑i−2

j=0 Jj − Ji−1 ≥ 0 for any i, then mi > r0σ∆te(i−2)σ
√

∆t − c. And hence

yi+1 = y0 +
i∑

j=0

(Jj + 1)
√

∆t ≥ (Ji + 1)
√

∆t ≥ mi∆t > r0σ(∆t)2eσ(i−2)
√

∆t − c∆t

grows exponentially in i. Otherwise, if
∑i−1

j=0 Jj − Ji ≤ 0 in some time interval N ≤
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i ≤ b,1 we have

Jb ≥
b−1∑

j=0

Jj =
b−2∑

j=0

Jj + Jb−1 ≥
b−2∑

j=0

Jj +
b−2∑

j=0

Jj = 2
b−2∑

j=0

Jj

= 2
b−3∑

j=0

Jj + 2Jb−2 ≥ 4
b−3∑

j=0

Jj ≥ · · · ≥ 2(b−N−1)
N∑

j=0

Jj.

Then

yb+1 = y0 + (
b∑

j=0

Jj + 1)
√

∆t = y0 + (
b−1∑

j=0

Jj + 1)
√

∆t + Jb

√
∆t ≥ 2(b−N−1)(

N∑

j=0

Jj)
√

∆t.

Since
∑N

j=0 Jj > 0 is given at time N and can be considered as a constant after time

N , yb grows exponentially from time N .

The next question is if the number N exists. For N to exist, there must be at

least one Ji and Ji ≥ 1 in the path to satisfy
∑i

j=0 Jj > 0. If there is no such Ji that

all Ji = 0 in the path, from

mi > r0σ∆te(i−2+
∑i−2

j=0
Jj−Ji−1)σ

√
∆t − c = r0σ∆te(i−2)σ

√
∆t − c,

mi is bounded below. Let n be an even number and take N = n/2. The above

inequality implies

mN > r0σ∆te(n/2−2)σ
√

∆t − c,

which shows that there exists an mN

√
∆t ≥ 1 with increasing n and thus

∑N
j=0 Jj > 0.

We conclude that if n is sufficiently large, there exists a number N and for i ≥ N , the

tree grows exponentially. Particularly, we take N = n and derive the number n ≡ n∗

to satisfy the inequality

mN

√
∆t > (r0σ∆te(n∗−2)σ

√
∆t − c)

√
∆t ≥ 1.

1Here we claim b could extend to maturity date with the property
∑i−1

j=0 Jj − Ji ≤ 0. If not that

at the inequality does not sustain at some time t∗, we use the result of case
∑i−2

j=0 Jj −Ji−1 ≥ 0 and

yt∗ will be exponentially large in t∗.
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The RS tree will grow exponentially for some time if time periods n is larger than

n∗. To simplify the inequality, let ∆t < 1 and modify the inequality subject to our

requirements mN

√
∆t ≥ 1. The inequality is then

r0σ(∆t)1.5enσ
√

∆t > (1 + c),

e(σ
√

T )
√

n > [
(1 + c)

r0σT 1.5
]n1.5.

Let both sides of inequality take logarithm and we have

(σ
√

T )
√

n− 1.5 ln(n) > λ,

where λ = ln[ (1+c)
r0σT 1.5 ]. In the inequality (σ

√
T )
√

n−1.5 ln(n) > λ, although the terms

σ and T are also in λ, the coefficient of
√

n, σ
√

T , seems to have the most important

effect about the value of n that if the value of σ
√

T is larger, a smaller n is required

to satisfy the inequality and thus the tree will explode for smaller n. We will examine

this conjecture in the next chapter.



Chapter 4

Numerical Results

In the previous chapter, we show that the process of Y grows exponentially with

sufficiently large n. In this chapter, the numerical results will be presented to examine

the growth rate of the lattice. Under the parameter values illustrated in RS’s paper,

the tree seems to grow linearly for small n. For larger n, the tree grows linearly in

the early time periods but the nodes increase in tremendous speed in the rest of the

time, and the tree explodes soon as time goes on.

The lattice is established by the nodes in the form of (yi, φi) for 0 ≤ i ≤ n, and

the value of each yi equals y0 + (Z)
√

∆t for some integer Z from

y+
i+1 = yi + (Ji + 1)

√
∆t,

y−i+1 = yi + (Ji − 1)
√

∆t,

for integer J . At a particular time i, there will be maximum value and minimum

value of yi for all possible paths from bottom node to top node. Maximum value and

minimum value of yi are represented separately by ymax
i and ymin

i . Since yi only takes

value on y0 +(Z)
√

∆t for integers Z, the total number of different values of yi at time

i is at most (ymax
i − ymin

i )/
√

∆t + 1. We call the number (ymax
i − ymin

i )/
√

∆t + 1 the

total number of nodes at time i. Note that all possible nodes from ymin
i to ymax

i are

enumerated step by step in the lattice regardless of the existence of the corresponding

16
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path. For example, letting i = 0 and J0 = 0, since there is only one node at time 0,

we have

ymax
1 = y+

1 = y0 +
√

∆t > y0 −
√

∆t = y−1 = ymin
1 ,

so the total number of nodes at time 1 is 3. We illustrate the example in Figure

4.1 that three nodes are enumerated. But the nodes are not all reached. The node

of y1 = y0 + 0
√

∆t, the middle node in the figure, is never reached by any of the

paths, and the number of reachable nodes in the example is 2. Although all nodes

from ymin
i to ymax

i are enumerated, only reachable nodes proceed to evolve next nodes

for the time i + 1, and the other nodes except the reachable ones are skipped. Our

measurement of the growth rate of the lattice is to see the total number of nodes with

increasing time i. Since J is an integer satisfying

mi

√
∆t + 1 ≥ J ≥ mi

√
∆t− 1,

one choice of Ji = b(mi

√
∆t)c is made in our algorithm.

Y
 0


Y

1


Y
 1


Y

1


max


min


+


_


We list the node but no path

will pass by this node.


Figure 4.1: Total number of nodes and the number of reachable nodes.

In the following example, we use different n’s to compare the number of nodes

with increasing time i between small n and large n with other parameters unchanged.
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Other parameters needed are given as r0 = 0.04, σ = 0.3, m = 10, κ = 0.02 and time

to maturity T = 5. Figure 4.2 uses n = 100, and the total number of nodes seems

to increase linearly with the forward direction of time. We check the values of Ji in

the path with all up moves from the beginning time and find that the values of Ji

are all 0. From theoretical results, we know that the tree with sufficiently large n

yields Ji > 0 for some node at time i and the tree will grow exponentially. In the

first example of n = 100, it seems that the condition to generate exponentially many

nodes does not happen, and the number n = 100 may be too small to yield an N in

theoretical results. So we try to increase time periods n. If n rises to a larger number,

say n = 200, in Figure 4.3, the lattice grows very fast after 170th time point. We

show the total number of nodes from the 170th to the nth time points in Figure 4.4

and the logarithm value of the total number of nodes in Figure 4.5. It is obvious that

the tree expands so fast during the time before the end of the process that the total

number of nodes is nearly explosive even after the number takes logarithm. Again,

we check the process of Ji from the path with all up moves. The value of Ji equals 1

from time i = 163 and the value is nondecreasing after the node. This means that the

163th time point can be considered as a choice of the number N in theoretical results,

and the tree indeed grows exponentially after that in numerical results. Furthermore,

if the number of time periods n is larger than 210, the tree grows with too many

nodes and runs out of memory before the end of the nth time period.

We present another example of different parameter values of r0 = 0.04, σ = 0.25,

m = 10, κ = 0.02 and time to maturity T = 5 in Figures 4.6 and 4.7 with n = 200 and

n = 300, and only the parameter σ changes to 0.25 in this example as a comparison

with the previous example. The graphs of this example are similar to previous ones.

We still see that the tree grows almost linearly for n = 200 and grows exponentially

for n = 300 although the number of n is larger than the example of σ = 0.3 for the

tree to grow exponentially. The time i for Ji ≥ 1 of the path with all up moves in the

case of n = 200 is 196 and in the case of n = 300, the time i is 252. So our theoretical
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results are verified to be consistent with the numerical results, that if the number of

time periods n continues to increase, the RS tree will grow exponentially large.

The Table 4.1 shows the value of n for the lattice to run beyond memory capacity

with different values of σ and time to maturity T . The results from the table are as

follows. If volatility parameter σ becomes larger with other parameter unchanged, the

tree explodes sooner than with a small σ. If time to maturity T extends to a farther

date, the tree also explodes sooner. From the inequality (σ
√

T )
√

n − 1.5 ln(n) > λ

in theoretical results, numerical results also support the conjecture that if values of

σ and T are larger, the tree can only work under relatively smaller n.

n σ = 0.15 σ = 0.2 σ = 0.25 σ = 0.3 σ = 0.4

T = 3 2160 1090 650 420 220

T = 5 1060 530 310 220 110

T = 10 390 200 120 80 50

Table 4.1 Different values of σ and T relative to n for the algorithm

out of memory with r0 = 0.04, m = 10 and κ = 0.02.

We go on to test the effects on the tree with different values of mean reversion

parameter κ. In Figure 4.8 and Figure 4.9, we use the parameter κ = 0.10 and

0.30 respectively, and compare it with Figure 4.7 with κ = 0.02. We find that the

larger value of κ indeed lowers the growth rate of the tree, but the tree still grows

exponentially if n increase further in Figure 4.10.

Another question is the difference between the total number of nodes and the

number of reachable nodes. Table 4.2 shows that if number of partitions m for

Φ value increases, the total number of nodes seems unchanged but the number of

reachable nodes increases and the difference between the two numbers decreases. So

our claim that the total number of nodes grows exponentially can extend to that the

number of reachable nodes grows exponentially.
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Number of partitions of Φ m = 50 m = 10 m = 2

The total number of nodes 793 793 793

The number of reachable nodes 781 714 681

Table 4.2 The total number of nodes and the number of reachable

nodes relative to number of partitions of Φ at maturity date

i = n = 200 for r0 = 0.04, σ = 0.3, m = 10, T = 5 and κ = 0.02.
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Figure 4.2: The number of nodes for n = 100, T = 5, r0 = 0.04, σ = 0.3,

m = 10 and κ = 0.02.
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Figure 4.3: The number of nodes for n = 200, T = 5, r0 = 0.04, σ = 0.3,

m = 10 and κ = 0.02.
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Figure 4.4: The number of nodes for n = 200 ,T = 5, r0 = 0.04, σ = 0.3,

m = 10 and κ = 0.02 (Part of the tree with exponential growth rate).
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Figure 4.5: Logarithm value of total number of nodes for n = 200, T = 5,

r0 = 0.04, σ = 0.3, m = 10 and κ = 0.02.
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Figure 4.6: The number of nodes for n = 200, T = 5, r0 = 0.04, σ = 0.25,

m = 10 and κ = 0.02 .
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Figure 4.7: The number of nodes for n = 300, T = 5, r0 = 0.04, σ = 0.25,

m = 10 and κ = 0.02 .
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Figure 4.8: The number of nodes for n = 300, T = 5, r0 = 0.04, σ = 0.25,

m = 10 and κ = 0.10.
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Figure 4.9: The number of nodes for n = 300, T = 5, r0 = 0.04, σ = 0.25,

m = 10 and κ = 0.30.
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Figure 4.10: The number of nodes for n = 320, T = 5, r0 = 0.04, σ = 0.25,

m = 10 and κ = 0.30.



Chapter 5

Conclusions

The HJM model is a powerful model that it can include many models as special

cases. If there also exists an efficient and accurate algorithm to evolve the lattice of

the HJM model, we will be able to value the derivatives on the term structure with

various applications of the HJM model. The RS model avoids some difficulties of

the HJM model that non-Markovian process is hard to be established with lattice

method. However, our thesis shows that the RS algorithm on the RS model still has

limitations. From theoretical results, we know that the RS tree grows exponentially

under some conditions. If n is sufficiently large, the conditions finally kick in, and the

RS tree grows exponentially. Numerical results also reveal similar results, and further,

once the conditions are satisfied, the tree size explodes beyond memory capacity in a

short time. Although the RS algorithm is more efficient that the tree can be linear

for some time periods, it is still limited in how small the time partition ∆t is. We

conclude that the RS algorithm on the RS model does not solve the fundamental

problem that the lattice of the HJM model suffer from exponential explosion.
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