
Chapter 1

Introduction

In Taiwan’…nancial market, in order to adpat to ”Globalization” and satisfy
the demand of investors owning the knowledge and the training of modern
investment, there are many …nancial innovations which are created and issued
by securities companies, especially warrants, which are more popular than
other derivatives. In our thesis, we are forcus on the warrants whose strike
prices are related to the arithmetic moving average of the underlying stock
price. The most prominent examples are moving-average-reset and moving-
average-lookback warrants. A moving-average-reset warrant is struck at a
series of decreasing contract-speci…ed prices over a monitoring window based
on the moving average. With the moving-speci…ed-lookback condition the
warrant becomes more complicated, which is struck at the minmum moving
average of the underlying stock price over a monitoring window. There issues
a great portion of these combounded warrants in Taiwan.

Moving average is often considered as a technical measure for short-term
trends in stock prices. Hence, it is straightforward to associate the mov-
ing average with the strike price. The advantage is, …rst, it is too violently
changing as only considering the stock price as the reset date approaches and,
second, to provide an better way to determine the strike price of the options.
Recently, there has been a little research on the pricing of moving-average-
reset and moving-average-lookback options. In this thesis we will forcus on
the moving-average-lookback option (henceforth MAL), as the slightly sim-
pler moving-average-reset option can be handled similarly. Pricing moving-
average-style options is di¤ucult. Firs, letM 5

t be the 5-day movingg average
at the tth trading day, where t ¸ 4 and St denotes the stock price at day t.
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Then
M 5
t =

Pt
i=t¡ 4 Si
5

The moving average M 5
t+1 is related to not M 5

t but also M 5
t¡ 1; M 5

t¡ 2; :::;
M 5
t¡ 4: In pricingg arithmetic average MAL, we should solve the problem of the

nonnormality of the sum of lognormal distribution, and the non-Morkovian
propertymentioned above. These two issues combine to increase the di¢ culty
of pricing.

There are three major way to value derivatives. The …rst is to derive
closed-form solutions of derivatives by partial-di¤erential-equation (PDE) or
martingale method. We can value the option from PDE by …nite d¤erence
techniques by transforming the problem from a path-dependent one to a
Markovian problem. However, the PDE of arithmetic MAL has never been
derived and the strike based on all past moving-average term is very di¢ cult
to value by …nite di¤erence approach.The second, we can price American-
style derivatives on the tree algorithm, especially the CRR model (Cox, Ross,
and Rubinstein (1979)). The last is Least-Squares Monte-Carlo (henceforth
LSM) simulation approach we will forcus on, especailly used most e¤ectively
and powerful to not only price strongly path-denpendent and multifactor
derivatives, but also to solve the problem of early exercise of American-style
deratives on Monte-Carlo simulation before.

It is easy to solve the problem of path-dependence about the moving-
average term by Monte-Carlo simulation. There exists, nevertheless, a bot-
tleneck of pricing American-style derivatives on Monte-Carlo simulation ap-
proach all the time. The famous technology is introduced by Boyle, Broadie
& Glasserman (1997). Their approach is more closely related to the tree
method, and should produces an upward bias and a downward bias estimates
and average both to obtain the unbias value. Besides the method needs to
simulate several paths from each point to obtain an unbias estimator of the
American option price, which resulting in the curse of dimesionality that the
lattice methods also su¤ers from.

A new and simpler simulation based method to price American options
has recently been proposed by Longsta¤ & Schwartz (2001). The idea is to
estimate the conditional expectation of the payo¤ from continuing to keep the
option alive at each possible exercise point from a cross-sectional regression
using the simulated paths. Based on LSM methods, we can solve the problem
of determining the optimal early exercise strategy of American-style options.
We also consider the developed CRR model (Kao (2002)) as a benchmark



3

on pricing arithmetic MALs. It will be found that the LSM approach is very
close to the price calculated by the CRR model. With the LSM algorithm,
a detail analysis of American-style AMALs will be presented to understand
the properties of this derivatives. Besides we will …nd even if any changeable
and complicated derivatives, such as MALs discussed in this thesis, it is not
hard to price with the LSM method.

The remainder of this thesis is organized as follows. Chapter 2 reviews ba-
sic concepts and pricing technologies on simulation and tree model. Chapter
3 describes the underlying theoretical framework. Chapter 4 covers the pric-
ing of arithmetic MALs and numerical analysis of di¤erent arithmetic MALs.
Chapter 5 describes how to choose the number of regressors and alternative
family of basis funtions. Chapter 6 summarizes results and concludes.



4 CHAPTER 1. INTRODUCTION



Chapter 2

Preliminaries on Options
Pricing

In this chapter, we review fundamental concepts and pricing techniques used
in later chapters. The …rst, the Monte-Carlo simulation technique must be
introduced. The second, we will review the tree model.

2.1 Simulation and option pricing
There exists a major problem with numerical methods is that they are not
easily extended to more than one of stochastic factors. In the Tree Model,
the number of nodes grows exponentially as the number of stochastic factors
increases. In the Finite Di¤erence, it can only calculate less than three
stochastic factors generally. So it is possible method to solve the problem of
multidimensional by using simulation. Furthermore, time should be divided
into a number of segments in the simulation method. We get the next period
price by a random walk, and the number of nodes remains constant through
time. Besides there needs a large number M of simulated paths by Law of
Large Number for convergence. At last the estimator is gotten by the average
of the prices over the paths.

If we want to get the stochastic variables, such as stock prices, interest
rate, volatility, or dependence on multiple stock prices, which can be included
in the simulation. How many paths to use and how many steps to partition
time to expiration into should be decided on. In general the more simulated
paths , the more precise the estimator of stochastic factor is. In the same way,
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increasing the number of steps would con…rm that the estimator converges
to the exact true price.

We will show how to price options using simulation. The American option
is assumed to be exercisable at a …nite nubmer of equally spaced points in
time. We can specify the risk discrete exercise feature by using of Geometric
Brownian Motion (GBM). Finally, we describe how to price options using
the simulation.

2.1.1 Simulating from a Geometric Brownian Motion
To simulate a GBM by the stochastic Di¤erential Equation (SDE)

dS(t) = rS(t)dt+ ¾S(t)dW (t) (2:1)

whereW is a standard Wiener process and r and ¾ are assumed constant,
we use the well known solution to (1). Given a starting level of S(0) this is

S(t) = S(0) expf(r ¡ 1
2
¾ 2)t+ ¾W (t)g (2:2)

From the propeties of the Wiener process simulated value of S(t) at a a
single point in time can be obtained from the formula

S(t) = S(0) expf(r ¡ 1
2¾

2)t+ ¾
p
tZg (2:3)

where Z~N(0; 1). A sequence of values at discrete date 0 · t1 · t2 ·
:: · tN = T is obtained by setting

S(ti+1) = S(ti) expf(r ¡ 1
2
¾2)(ti+1 ¡ ti) + ¾

q
(ti+1 ¡ ti)Z(ti+1)g (2:4)

where Z(ti+1)~IIN (0;1).

2.1.2 Pricing European options using simulation
The price of European put option is the expectation under the risk neutral
measure of the present value of its payo¤ given as

p ´ p(S(0); T) = E[e¡ rT max(X ¡ S(T); 0)]
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And we can get an estimate of the price by the formula

P N=
1
N

NX

j=1
e¡ rT max(X ¡ Sj(T ); 0)

where N is the number of simulated paths and Sj(T) is the value of the
underlying stock at expiration of the option for path numbe j.

2.1.3 Pricing American options using simulation
The key of pricing American options with simulation is determining the op-
timal exercise strategy. We write the price of American put options as

P ´ P (S(0); T) = max
0<¿· T

E[e¡ rT max(X ¡ S(¿); 0)]

where the maximization is over stopping times ¿ · T adapted to …ltration
generated by the relevant stock price process S(t). The problem is that at
any possible exercise time, the holder of an American option should compare
the payo¤ from immediate exercise to the expected payo¤ from continuation.
The optimal decision is to exercise if the exercise value is positive and larger
than the expected payo¤ from continuation.Using next period values of the
underlying asset to determine the expected value along each path of contin-
uing to keep the option alive would lead to biased price estimates. The main
reason of making the estimator biased is to consider the expected payo¤ from
continuation as perfect forsight (see Broadie & Glasserman(1997)). Hence,
we can not simply estimate the price P by

P N=
1
N

NX

j=1
max
¿

[e¡ r¿ max(X ¡ Sj(¿); 0)]

Note that we want to prevent this bias, but the best way is to simulate
several paths from each possible exercise point thus resulting in multidimen-
sionality. However, Longsta¤ & Schwartz (2001) provide a very powful idea
to estimate the conditional expectation of the payo¤ from continuing to keep
the option alive, using the cross-sectional information in the simulation.

The main motivation of the LSM approach can be given in terms of
Hilbert Spaces, the space of square-integrable functions with the norm

hf(x); g(x)i =
Z
f (x)g(x)dx
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The theory of Hilber spaces tells us that any function G(xn) belonging
to this space can be represented as a countable linear combination of bases
for this vector space. We can write

G(xn) =
1X

k=0
akÁ k(xn) (2:5)

where fÁ k(x)g1k=1 form a basis (See Royden(1988)). In pratice we use a
…nite linear combination to approximate G(xn) which we denote GK(xn),
where K is the number of basis functions used. The simplest approximation
way is using least squares regression. when the coe¢ cients fakgKk=0 in (15)
are estimated, we have to simulate N paths s.t. N ¸ K + 1 ,i.e. there will
exist data points (yj; xj), j = 1; :::; N; by solving the minimization problem

min
fakgKk=0

NX

j=1
(a0Á0(xj) + a1Á1(xj) + :::+ aKÁK(xj) ¡ yj)2

With the parameter estimates fakgKk=0 we estimate GK(x) with

^
GK (x) =

KX

k=0

^ak Ák(x) (2:6)

In general,
^
GK (x) ! GK(x) as N ! 1. Letting G(x) = E [yjx], where

y is the payo¤ from continuing to keep the option alive, x represents the
current state, and fÁk(x)gKk=0 is a set of independent variables, the condi-
tional expectation function G(x) can be arbitrarily approximated as N and
K both tend to in…nitely. And the approximated G(x) is used to determine
the optimal exercise strategy.

2.2 Tree Models and Auxiliary State Vari-
able

In this Section, we review two usefule pricing techniques. The …rst, the CRR
model, is mainly used to solve American-style options. The second, auxil-
iary state varialbes approach, is a general method to price path-dependent
derivatives on the tree.
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2.2.1 The CRR model
The CRR model is one simplest but very powerful of tree models introduced
in Cox, Ross, and Rubinstein (1979).

Time to expiration is also divided into a number of segments, denote each
unit of time as 4t = T

n , where T is time to expiration and n is the number
of partitions. From Eq. (2.2), we can obtain the expected value of the stock
price change after a small time 4t is S0er4t and the variance of the stock
price change after 4t time is ¾24t. Now consider the discrete-time version
of Eq. (2.1) and change the normal di¤usion to a discrete random variable,
4W . It follows that

4St = rSt¡ 4t4t+ ¾St¡ 4t4W:

Assume 4W follows the Bernoulli distribution such that

St+4t =
(
Stu; with probability p,
Std; with probability 1 ¡ p,

where u and d are the proportional change of St in the up and the down
state. We let 4W satisfy the mean and variance function mentioned above.
This yields the following conditions,

er4t ¼ pu+ (1 ¡ p)d
¾ 24t ¼ pu2 + (1 ¡ p)d2 ¡ [pu+ (1 ¡ p)d]2
ud = 1

We obtain a possible solution :

p =
er4t ¡ d
u ¡ d

u = e¾4t

d = e¡ ¾4t

The stock price on node N (i; j) reachable from the root with j up and
i ¡ j down moves is

S(i; j) = S0ujdi¡ j
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and the value of derivatives C on node N(i; j) can be obtained by the
backward induction formula :

C(i; j) = e¡ r4t[pC(i +1; j + 1)+ (1 ¡ p)C(i + 1; j)] (2:5)

for i = 0; 1; :::; n and j = 0; 1; :::; i; where e¡ r4t[pC(i + 1; j + 1) + (1 ¡
p)C(i+1; j)] is called as the expected payo¤ from continuation on the CRR
model. When pricing American-style options, we change Eq. (2.5) into

C(i; j) = max(e¡ r4t[pC(i+1; j+1)+(1¡ p)C(i+1; j)]; S(i; j)¡ X) (2:6)

where X is the strike price of call option, and S(i; j) ¡ X is the value of
immediate exercise at node N(i; j). The option value emerges in C(0; 0):

2.2.2 Auxiliary State Variable
This section draws on Dai (1999), which provides a general method for pric-
ing path-dependent derivatives on tree Model. Auxiliary state varialbes are
memory space to record the past information needed in dealing with the
path dependency. Let C(i; j; k) denote the option value on node N(i; j). In
addition to i and j , which provide the information of time and the current
stock price, we need an additional k to record the information arising from
path dependency.

To apply backward induction, we have to allocate enough auxiliary state
variables for all the possible situations at each node.The size of auxiliary state
variables depends on the number of possible situations determined by path
dependency. This technique is not suitable for cases which need very large
sizes of auxiliary state variables such as Asian options. However, the auxil-
iary state varialbes approach is useful in pricing longer time path-dependent
derivatives, such as ”weekly”. When we allow approximation, the alleged
shortcoming of this approach no longer exists.



Chapter 3

The LSM Valuation Algorithm

We will describe the general LSM algorithm in theory later. The valuation
algorithm of LSM can be applied on the general derivative pricing paradigms,
such as Black and Scholes (1973), Merton(1973), Cox, Ingersoll, and Ross
(1985), Heath, and so on.We also present several convergence results for the
algorithm.

3.1 The LSM valuation framework
Assuming an underlying complete probability space (¤ ;F,P) and …nite time
[0; T ], where the state space ¤ is the set of all possible realizations of the
stochastic economy between time 0 and T and has typical element w repre-
senting a sample path, F is the sigma …eld of distinguishable events at tine
T , and P is a probability measure de…ned on the elements of F . We de…ne
F = fFt; t 2 [0; T ]g to be the augmented …ltration generated by the relevant
price processes for the securities in the economy, and assume that FT = F .
Consistent with the no-arbitrage paradigm, we assume the existence of an
equivalent martingale measure Q for this economy.

We restrict our attention to payo¤s that are elements of the space of
square-integrable (or …nite-variance) functions L2(¤ ; F;Q). The value of an
American option equals the maximum is taken over all stopping times with
respect to the …ltration F . We present the path of cash ‡ows generated by
the option , denoted as C(w; s; t; T) , conditional on the option not being
exercised at or before time t and on the optionholder following the optimal
stopping strategy for all s, t < s · T .

11
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The objective of the LSM algorithm is to provide a pathwise approxima-
tion to the optimal stopping rule that maximizes the value of the American
option. In practice, many American options are continuously exercisable;
the LSM algorithm can be used to approximate the value of these options by
taking the exercising times to be su¢ ciently large.

At the …nal expiration date (T ) of the option, the option is exercised
if it is in the money, or expire if out of money. At exercise time tM <
T , however, the holder of an American option must determine whether to
exercise immediately or to keep alive.

At time ti, the payo¤ from immediate exercise is known to the investor,
but the cash ‡ow from continuation are unknown. No-arbitrage valuation
theory, however, implies the expected payo¤ from continuation assuming
that it cannot be exercised until after tM , is given by taking the expectation
of the remaining discounted cash ‡ows C(w; s; t; T) with respect to the risk-
neutral pricing measure Q. Speci…cally, at time tm, the value of continuation
G(w; tm) can be represented as

G(w; tm) = EQ[exp(¡
Z ti
tm
r(w; s)ds)C(w; ti; tm; T)jFtm]

where r(w; t) is the riskfree rate, and the expectation is conditional on
the information set Ftm at time tm. With this representation, the problem of
optimal exercise reduces to comparing the immediate exercise value with this
conditional expectation, and then exercise as soon as the immediate exercise
value is positive and greater than and equal to the conditional expectation.

3.2 The LSM algorithm
The LSM approach uses least squares to approximate the conditional ex-
pectation function at tM¡ 1; tM¡ 2; :::; t1. We work backwards to generate the
cash ‡ows C(w; s; t; T ) recursively. At a special time tM¡ 1 we can repre-
sent the unknown G(w; tM¡ 1) as a linear combination of a countable set of
Ftm¡ 1-measurable basis functions.

When the conditional expectation is an element of the L2 space of square-
integerable functions. Since L2 is a Hilbert space, it has a countable ortho-
normal basis and the conditional expectation can be represented as a linear
function of the elements of the basis.
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As an example, assume that x(ti) is the value of the asset underlying the
option and that X follows a Markov process1. We choose the set of laguerre
polynomials as the basis functions (as Longsta¤ and Schwartz (2001)).

L0(X) = w(X)
L1(X) = w(X)(1 ¡ X)
L2(X) = w(X))(1 ¡ 2X +X 2=2)

Ln(X)) = w(X)e
X

n!
dn

dXn
(Xne¡ X)

where w(X) = exp(¡ X2 ):With this speci…cation, G(w;tM¡ 1) can be rep-
resented as

G(w; tM¡ 1) =
1X

k=0
akLj(X)

where the ak coe¢ cients are constants.
To implement the LSM approach, we approximate G(w; tM¡ 1) usingM <

1 basis functions mentioned above, and denote this approximation GM(w; tM¡ 1).
GM(w; tM¡ 1) is estimated by regressing the discounted values ofC(w; s; tM¡ 1; T)
on the basis functions across paths where the option is in the money. We use
only in-the-money paths in the estimation since the exercise decision is only
related with the in-the-money option. And we need a …nite number of basis
to obtain an accurate approximation to the conditional expectation function.
Since the basis functions are independently and identically distributed across
paths, the existence of moments of Theorem 3.5 of White (1984) shows that
the …tted value of this regression

^
GK (w; tM¡ 1) converges in mean square

and in probability to G(w; tM¡ 1) as the number N of paths goes to in…nity.
Furthermore, Theorem 1.2.1 of Amemiya (1985) implies that

^
GK (w; tM¡ 1) is

the best linear unbiased estimator of GK(w; tM¡ 1) based on a mean-squared
metric.

Once the conditional expectation function at time tM¡ 1 is estimated, we
can determine whether early exercise at time tM¡ 1 is optimal for in-the-money

1For Markovian problems, only current values of the state varialbes are necessary. For
non-Markovain problems, both current ans past realizations of the state varialbes can be
included in the basis functions and the regressions.
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path w by comparing the immediate exercise value with
^
G (w; tM¡ 1), and

repeating for each in-the-money path. Once exercise decision is indenti…ed,
the option payo¤ C(w; s; tM¡ 1; T) can be approximated based on cash ‡ows
along path w after the determination of optimal exercise strategy at time
tM¡ 1: The recursion process is rolling back and repeating until the exercise
decisions at each exercise time along each path have been determined. The
American option is then valued by strating at time 0, moving forward along
each path until the …rst stopping time occurs, discounting the payo¤ from
exercise back to time 0, and then averaging the payo¤ over all paths w.

When there are two state variables X and Y , the set of basis functions
should include terms in X and in Y , as well as cross-products term, XY .
Contrary to other methods with higher-dimensional problems, the number
of basis functions does not grows exponentially but grow a slower rate with
convergence result.

3.3 The LSM algorithm to pricing Amercian
option in mathematics

3.3.1 The presentation of pricing American call op-
tions

The following is the detail of implementation of LSM algorithm.

1. Simulation of stock paths:

Simulate a large number of paths (N) of asset prices using an exact formula
like (4), and choose the number of steps (M) su¢ ciently large to approximate
continuous exercise. Following (a) let Sj(ti) denote the asset price along path
j at time ti corresponding to step i, where j = 1; :::; N and i = 1; :::;M .

2. Calculation of the payo¤ matrix:

Let P (for payo¤) be a N £ M matrix, with typical element fj;i. At time
tM = T (the expiration date of the option) the payo¤ along each path is the
maximum between zero and the value of exercising the option. Hence, we
can de…ne the elements of the last column as
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fM;j = max(Sj(T) ¡ X; 0); 1 · j · N
OLS is used to estimate the conditional expectation of the payo¤ that the

option is kept alive (see (14)) by working backwards at each time ti; 0 < i <
M. First, the rule for choosing the paths is where the option is in-the-money
denoted as

~
N . For a put option we de…ne

~
N= fj : Sj(ti)¡ X(t) > 0; 1 · j ·

Ng. For any j 2 ~
N , the payo¤ from continuation is the payo¤ along the path

until expiration of the option discounted back using the risk-free interest rate

yj(ti) =
MX

k=i+1
e¡ r(tk¡ ti )fk;j

This is the dependent variables. We need to transform these dependent
variables to independent ones, such as Xj(ti) = h(xj(ti)); where h(xj(tj)) is
a transformation of the state variables. If the underlying asset is only one
stochastic factor, it is su¢ ce to explain variations in the dependent variable
as xj(ti) = Sj(tj): Following (c) we approximate the conditional expectation
G(xj(ti)) ´ E [yj(ti)jxj(ti)] as

^
G (x) =Xj(ti)¯ (ti)

where ¯ (ti) is a vector of coe¢ cients. This is the linear regression model
yi(ti) = Xj(ti)¯ (ti) + ui(ti), the parameters can be estimated by

^
¯ (ti) = (X(ti)0X(ti))¡ 1X(ti)0y(ti)

The …tted values
^y (ti) = X(ti)

^
¯ (ti), which corresponds to the estimated

conditional expectation of the payo¤ when the option is kept alive, are used
to determine if it is optimal to exercise the option at time ti.If the …tted
value is larger than the value of immediate exercise X ¡ Sj(ti), fi;j are set
equal to the value of immediate exercise X ¡ Sj(ti) and in all other values
fn;j i < n · N , are set to equal to zero. That is,

fi;j =
(
K ¡ Sj(ti) and fj;n = 0; i < n · N , X ¡ Sj(ti) >

^yj (ti)
0 , otherwise

; j 2
~
N .
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3. Calculating the value of the option:

When ti = 0 the value of the option is calculated from the payo¤ matrix by
discounting the payo¤s to period zero using the risk-free rate and averaging
across the simulated paths. Since there is at most one nonzero element along
each path in P this can be written as

PN= 1
N

PN
j=1

PM
i=0[e¡ rti max(fi;j;0)]

The neutral price process follows a GBM and the option has discrete
exercise features.

3.4 Convergence results
How well the LSM algorithm performs is using a realistic number of paths
and basis functions, it is useful to examine the theoretical convergence of the
algorithm to the true value G(X) of the American option.

First, we present the bias of the LSM algorithm when the American option
is continuously exercisable.

Proposition 1 For any …nite K,M , and vector µ 2 RK£ (M¡ 1) representing
the coe¢ cients for the K basis functions at each ofM¡ 1 early exercise dates,
let N denote the number of simulated paths, G(X) denote the true value of
the American-style option and LSM (w;M;K) denote the discounted cash
‡ow resulting from following the LSM rule of exercising when the immediate
exercise value is positive and greater than or equal to

^
GK (wi; tm) as de…ned

by µ. Then the following inequality holds almost surely,

G(X ) ¸ lim
N!1

1
N

NX

i=1
LSM(wi;K;M)

The LSM algorithm is considered as a stopping rule for an American-style
option. The value of an American-style option is based on the stopping rule
that maximizes the value of the option.

The result is particularly useful since it provides an objective criterion for
convergence, that is any result simulated by the LSM algorithm has a upper
bound. As a criterion example, we can increase K until the value implied
by the LSM algorithm no longer increases. It is very useful and important
property in the LSM algorithm.
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The following convergence result for the LSM algorithm is di¢ cult since
we need to consider limits as the number of exercisable dates M; the number
of basis functions K, the number of paths N go to in…nitely. Consider the
following proposition.

Proposition 2 Assume that the value of an American option depends on
a single state variable X with support on (0;1) which follows a Markov
processes. Assume further that the option can only be exercised at times
t1 and t2 , and that the conditional expectation function G(w;t1) is absolutely
continuous and

Z 1

0
e¡ XF 2(w; t1)dX <1

Z 1

0
e¡ XF 2

K(w; t1)dX <1

Then for any ² > 0, there exists an K <1 such that

lim
N!1

Pr[jG(X)¡ 1
N

NX

i=1
LSM(wi;K;M)j > ²] = 0

Intuitively this result means that when K is large enough and N ! 1,
the LSM algorithm results in a value for American option within ²of the true
value, where ² is selected arbitrarily.An important implication of this result
is that the number of basis functions result in a desired of accuracy need not
go to in…nity.
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Chapter 4

Pricing
Moving-Average-Lookback
options

There exists more than two variables, such as stock price , moving-average
term, and strike price, etc... in valuing Moving-Average-Lookback options
(MVALs), but it is easy to value with the LSM approach.In order to con…rm
that the value is almost approximate to the true value, the value of the
CRR model is taken as a benchmark compared with the LSM approach. (see
Kao (2002)). In Taiwan, the issued warrants are almost Arithmetic Moving-
Average options, so we will forcus on and price Arithmatic Moving-Average-
Lookback options (AMVALs). To the end, the empirical results about the
di¤erent contracts of American-style AMALs will be presented for you.

4.1 De…ning the AMVALs
Let 0 = t0 < t1 < t2 < ::: < tns · T; where ns is the number of trading days
before reset dates Ts, and ti be the time points when the moving average
is calculated. The ti are expected to correspond to trading dates as closing
prices. Assuming that the time interval between monitoring times are equal
and 4t = Ts=ns; i.e., ti = i4t. and n = T=4t. De…ne Si ´ Sti :, the stock
price at time i4t: The Arithmetic moving average at time ti equals

ma(i) ´
Pi
j=i¡ a+1 Si
a ; a ¡ 1 · i · ns:

19
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The minimum a-day Arithmetic moving average as of the reset date tns =
Ts is de…ned as

ma(k) ´ min
a¡ 1· t· k

Pt
i=t¡ a+1 Si
a

;a ¡ 1 · t · k; k = tk
4t

Note that time to expiration is divided into a number of periods, i.e., it
is evaluated at discrete times. The payo¤ function of the MAL at expiration
date ti is

fi =
(

max(Si ¡ X; 0);ns < i · n
max(Si ¡ Xi; 0); a ¡ 1 < i · ns (4:1)

Xi =
(

max(min(ma; UB); LB); ns < i · n
max(min(ma(i); UB); LB); a ¡ 1 < i · ns (4:2)

whereXs is the strike price of the option determined at reset date Ts: UB
is the upper bound of the strike price is set to S0; the initial stock price. The
change of UB may happen at times t between ta¡ 1 and Ts. LB, the lower
bound of the strike price, is determined by the contract and …xed. Eq. (4.2)
means that the strike price of the option, X, is struck at the minimum a-day
moving average but range between LB and UB.

4.2 Pricing American-Style AMALs
We will described the details how to prcing the American-Style AMALs (AA-
MALs) by using the LSM approach. There are two scenarios de…ned for
distinguishing the option is early exercised after reset date and before. We
denote the former as scenario 1 and the latter as scenario 2. Note that we
assume the strike price can be reset every day before Ts on scenario 2. The
improved CRR model for AAMALs will be introduced simply.

4.2.1 The LSM methods
Now, we describe how to price AAMALs with LSM. As in section 3.3, the
…rst step is to generate the stock price matix from t1 to T: Simulate a large
number of paths (M) of stock prices using the formula like (2.4). Ts is
denoted as the reset date. The time must be classi…ed into two parts, i.e.,
before the reset date and after the reset date, we set the former ns steps and
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the latter n0 steps. Note that n is equal to ns plus n0.
And we save the stock price matix S(i; j), where i refers to stop at time ti
and j represent the j-th paths. The strike vector M (i; j) is determined by
the rule of max(min(ma(i; j); UB); LB) before Ts.

After reset date, the strike vector is determined at the reset date, denoted
as Mns : Giving the expiration conditions, Sn;j ¡ Mns;j; we use a constant,
the …rst two Laguerre polynomials evaluated at the stock price, the …rst two
Laguerre polynomials evaluated at the strike price, and the cross products
of these Laguerre polynomials up to third-order terms. Thus we use a total
of eight basis functions in the regressions. Thus, least squares regression is
done on the following model after reset date Ts:

yi;j = ¯0 + ¯1LS + ¯2LMns + ¯3LSMns;j
+¯4LS(1 ¡ Si;j) + ¯5LMn0 (1 ¡ Mns ;j)
+¯6LSMns(Si;j ¡

1
2
S2i;jMns;j)

+¯7LSMns(Mns ;j ¡
1
2
M 2
ns;jSi;j) (4:2)

LS = exp(¡ Si;j
2

)

LMns = exp(¡ Mns;j
2

)

LSMns = exp(¡ Si;;jMns ;j
2

)

where yi;j is that the stock price vector of the j-th path after the time ti is
never early exercised at or before the time ti based on the optimal exercise
strategy of the LSM rule: To avoid any form of numerical over‡ow, and to get
as precise results as possible, both payo¤ yi;j and the stock price Si;j and the
strike Mns;j are normalized by dividing the initial stock price S0. Regressing
with Eq. (4.2), we obtain this conditional expected payo¤ function at time
i4t.

^
Ei (Ci;jjSi;j;Mns ;j) =

^y i;j=
^
¯ 0 +

^
¯ 1 LS+

^
¯2 LMns+

^
¯ 3 LSMn0

+
^
¯ 4 LS(1 ¡ Si;j)+

^
¯ 5 LMns(1 ¡ Mns ;j)

+
^
¯ 6 LSMn0 (Si;j ¡

1
2S

2
i;jMn0;j)
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+
^
¯7 LSMns(Mns ;j ¡

1
2
M 2
ns;jSi;j) (4:3)

where
^
¯ idenotes the OLS estimator of ¯i:Compare the exercise value,

Si;j ¡ Mns ;j , and the expected value of continuation, E(Ci;jjSi;j;Mns;j); to
determine the option value with respect to each path at time ti ¸ Ts as
follows :

fi;j =
(
Si;j ¡ Mns;j; if Si;j ¡ Mns ;j > Ei(Ci;jjSi;j;Mns ;j)
0 , otherwise (4:4)

After repeating the procedure in a backward fashion for i = n ¡ 1 to ns;
we can get the value of scenario 1 by discounting the value in C(ns; j) for all
j , averaging over all paths, and then discounting the value at time 0 with
e¡ rTs :

The value of scenario 2 is stated two steps di¤erent from scenario 1. The
…rt step is to replace Mi;j , 0 < i < ns into Mns;j in Equation (4.2), (4.3) and
(4.4). The second step is repeating the …rst step until the time 0, discounting
the value of all cash ‡ows to time 0 and averaging all discounted payo¤ over
all paths, which is the value of scenario 2.

4.2.2 The CRR Model

We proceed to price the American-style AMAL on the CRR model in this
section. Recall that ns is the number of trading days before the reset date.
Let L denote the number of periods between two adjacent monitoring time
points (which will coincide with daily closing times). By making 4t a day,
we make L the number of trading points per day. The number of trading
points before the reset date, N , is equal to nsL. We will build the binomial
tree up to the reset date.

In order to speed up the algorithm and becasue moving averages involes
only daily closing prices, we simplify the N-period tree based on ideas from
Ritchken and Trevor (1999). Although there are N periods before the reset
date, we only care about nodes on monitoring days, i.e., at times 0, 4t, 24t,
..., n4t. We therefore merge every L levels of the binomial tree into one,
creating an (L+ 1)-ary tree with n periods in the process. There are more
details introduced in Kao’s Master thesis (2002).
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4.3 Numerical Results

In this section, we do some empirical works and studies on the AAMALs with
the LSM method. There are …ve cases for di¤erent contracts of AAMALs
analysis, and we will take the value of scenario 1 on the CRR model on Kao
(2002) as a benchmark.

4.3.1 Case 1 : Stock Price v.s. Volatility

We use the LSM method to price 5-day the scenario 1 and scenario 2 AA-
MALs and European-Style AMALs, and use the CRR method to price 5-day
the scenario 1 AAMALs. Assume UB = 45, r = 3%; q = 0; T = 1; and
Ts = 1=12. We will vary St and ¾ in the experiment and …x L = 3 on the
CRR model. The results are tabulated in Table 4.1.

We obtain the following observation. First, the prices of senario 1 cal-
culated by the LSM method is not di¤erenet from those by the CRR model
within 0.08. Therefore, we can have the con…dence in the LSM algorithm.
Second, the option value increases with ¾. Third, if the stock price is less
than the UB at time 0; the special appearance is that the value of AAMALs
calculated by the LSM method is undervalued to one by the CRR model;
on the contraty, it is overestimated, which shows that there exists ”slight”
negative and positive bias in the LSM algorithm with the benchmark of the
CRR model. If the CRR model is very close to the true value, the value
calculated by LSM must be undervalued to one by the CRR model based
on proposition 1. We think that maybe the more simulated paths in more
complexed contract are needed to see the consistent result as proposition 1.

Next we check the relation between scenario 1 and scenario 2. Because
the reset date Ts is one month, it is too short to see their di¤erence. The
di¤erence between scenario 2 and scenario 1 only moves the highest up to
0.006. It means that when Ts is less than two months and the dividend
yield is very low, the possibility of early exercise before Ts for the AAMAL is
low. It is so interesting that the di¤erence between scenario 1 and European-
style is very close to each other, which means an American-style AMALs
call options will also not be exercised early with no dividend payment or low
dividend rate.



24CHAPTER 4. PRICING MOVING-AVERAGE-LOOKBACK OPTIONS

4.3.2 Case 2 : Stock Price v.s. LB
Assume UB = 50, r = 2%; q = 4%; ¾ = 50%; T = 1; and Ts = 1=12. Suppose
there are 22 trading days in a month, so ns = 22, and we set n0 = 50: We
will vary St and ¾ in the experiment and …x L = 3 on the CRR model. We
will vary St and LB in the experiment. The results are tabulated in Table
4.2.

We make the following observations. Fisrt, not surprisingly, the option
value decreases with LB, and increases with ¾ . Second, compared with the
tree algorithm, there also exists biases in the LSM method, but all of their
di¤erences are less than the highest 0.16, although a large proporsition of the
di¤erences are positive. Next, the di¤erences between scenario 1 and scenario
2 are also close to 0, due to the reset date is too short, and the option-holder
would not exercise early before Ts. Besides, the European MALs value are
similar to the value of scenario 1, too.

S0 ¾ Scenario1
CRR LSM Scenario2 European

40 0.3 5.0496 4.9931 4.9944 4.9511
(0.0002) (0.0002) (0.0005)

0.4 6.5839 6.5626 6.5651 6.5038
(0.0022) (0.0022) (0.0017)

0.5 8.1042 8.0247 8.0262 7.9423
(0.0002) (0.0002) (0.0004)

45 0.3 6.7462 6.7828 6.7844 6.72409
(0.0004) (0.0004) (0.0008)

0.4 8.5769 8.6568 8.6612 8.6044
(0.0030) (0.0030) (0.0028)

0.5 10.3431 10.4185 10.4219 10.3414
(0.0059) (0.0062) (0.0044)

50 0.3 9.3899 9.4242 9.4292 9.3691
(0.0048) (0.0045) (0.0013)

0.4 11.2034 11.2612 11.2642 11.1978
(0.0009) (0.0010) (0.0007)

0.5 13.0503 13.1141 13.1182 13.0427
(0.0044) (0.0043) (0.0027)

Table 4.1 : The parameters are UB = 45, LB = 40.5, r = 3%, ¾ = 0, T
= 1, T = 1 (n0=50), Ts = 1/12 (ns = 22), a = 5 and L = 3 for the CRR
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model. The numbers in parentheses are standard error of the price.In each
simulation a total of 50,000 antithetic paths.

S0 LB Scenario1
CRR LSM Scenario2 European

45 42.5 8.7468 8.6955 8.6975 8.4149
(0.0005) (0.0006) (0.0017)

55 12.7241 12.8498 12.9212 12.6029
(0.0050) (0.0039) (0.0047)

65 19.4002 19.5083 19.5400 18.9262
(0.0065) (0.0070) (0.0068)

45 45 8.1833 8.1394 8.1465 7.9350
(0.0013) (0.0014) (0.0019)

55 12.6691 12.8097 12.8606 12.5923
(0.0035) (0.0034) (0.0041)

65 19.3984 19.5575 19.6455 19.0297
(0.0071) (0.0076) (0.0089)

Table 4.2 : he parameters are UB = 50, r = 2%, q = 4%, ¾ = 50%, a =
5, T = 1 (n0=50), Ts = 1/12 (ns = 22), and L = 3 for the CRR model. The
numbers in parentheses are standard error of the price.In each simulation a
total of 50,000 antithetic paths.

4.3.3 Case 3 : Dividend Rate v.s. Reset Date
In order to examine the option values of the AGMAL between scenario 1 and
scenario 2 by the LSM method and the CRR method, the most important
factors q and Ts are varied. Assume UB = 50, r = 2%; ¾ = 30%; LB = 45;
T = 1; and a = 3. Suppose there are 22 trading days in a month, so ns = 22
for Ts = 1=12, ns = 44 for Ts = 2=12, and ns = 66 for Ts = 3=12 and we
set n0 = 50 for all, and …x L = 3 on the CRR model. The pricing results
by Monte Carlo simulation are based on 50,000 paths : 25,000 plus 25,000
antithetic, and the scenario 1 , scenario 2 and European-style by LSM are
based on the same sample paths.

Table 4.3 shows that the prices are senstive to Ts and q, respectivelly.
First, the option value incearses with Ts but decreases with q; and there
is little di¤erence when Ts is at most two months whatever the value of q
is: And even if Ts is three months long, the di¤erence is still insigni…cant.
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Second, compared with the tree algorithm, as q increases at the same reset
date Ts, the variations between the LSM and the CRR on sceanrio 1 raise
more. The second result shows that after the company of the underlying
stock pays the dividends, the original strike price UB must also be reset to
the same proportinal change as the proportional change of the stock price;
otherwise, as dividend rate increases, the stock price will drop o¤ much to
reach the LB quickly before the reset date Ts, especially relatively long reset
date, the probability of early exercise before Ts is large. Besides these results
also show that the probability of early exercise for AAMAL before Ts with a
relatively long reset period is larger than relatively short one.

Ts 1/12 2/12 3/12
q CRR LSM LSM2 CRR LSM LSM2 CRR LSM LSM2

2% 6.778 6.843 6.860 7.069 7.124 7.247 7.216 7.278 7.541
(0.001) (0.001) (0.001) (0.001) (0.001) (0.000)

4% 6.322 6.380 6.400 6.607 6.656 6.838 6.750 6.808 7.157
(0.002) (0.001) (0.001) (0.001) (0.000) (0.000)

6% 5.923 5.984 6.073 6.203 6.256 6.480 6.343 6.406 6.849
(0.000) (0.000) (0.002) (0.002) (0.000) (0.000)

Table 4.3 : CRR and LSM are calculated on Scenario 1, and LSM2 is
calculated on Scenario 2. The parameters are S0 = UB = 50, LB = 45, r =
2%, ¾ = 30%, T = 1 (n0=50), Ts = 1/12 (ns = 22), a = 3 and L = 3 for the
CRR model. The numbers in parentheses are standard error of the price.In
each simulation a total of 50,000 antithetic paths.

4.3.4 Case 4 : Reset Date v.s. Di¤ erent Reset Condi-
tion

In Taiwan, there are many various Moving-Average Options contract issued.
We want to know the ralation of these di¤erent contracts, so vary two im-
portant factors di¤erenct reset conditions and the length of reset date. Two
Moving-Average Reset Options are added. The …rst is that the AAMALs,
denoted as RS9. The second is that it would be reset to 98%, 96%, 94%,
92%, and 90% of the initial strike price if the 3-day average price of the stock
price would fall to 98%, 96%, 94%, 92%, and 90%, denoted as RS5. The
last is that it would be reset to 95% and 90% of the initial strike price if the
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3-day average price of the stock price would fall to 95% and 90%, denoted
as RS2.

Assume St = 50; UB = 50, r = 2%; q = 0; ¾ = 30%; T = 1; and a = 3.
Suppose there are 22 trading days in a month, so ns = 22 for Ts = 1=12,
ns = 44 for Ts = 2=12, and ns = 66 for Ts = 3=12 and we set n0 = 50 for
all, and …x L = 3 on the CRR model. The pricing results by Monte Carlo
simulation are based on 50,000 paths : 25,000 plus 25,000 antithetic, and the
scenario 1 , scenario 2 and European-style by LSM are based on the same
sample paths. The pricing results appear in Table 4.4.

We make the following observations. First, the higher reset frequency, the
more valuable the option value is, and we can …nd that the RS9 values are
the highest in the three di¤erent reset conditions. Second, as reset frequency
increases whatever the reset date Ts is, the premiums between scenario 2 and
scenario 1 are not drawn out a conclusion. These results show that as the
reset frequency become higher, the probability of Moving-Average options
being in-the-money is larger, i.e., the AMAL call option would become more
valuable.

4.3.5 Case 5 : Moving-Average Number v.s. Volatility

In Taiwan, the Securities often issue di¤erent moving-average number con-
tracts. We want to know how the di¤erent moving-average number would
a¤ect the option value. So the important factors a and ¾ are varied. Assume
St = 45; UB = 45, r = 3%; q = 0; ¾ = 30%; T = 1; and Ts = 1=12. The
pricing results by Monte Carlo simulation are based on 50,000 paths : 25,000
plus 25,000 antithetic, and the scenario 1 , scenario 2 and European-style by
LSM are based on the same sample paths. The pricing results are on Table
4.5.

We make the following observations. The option value decreases with a,
due to the strike price is reset smooth as a moves up. This result shows
that as the monitoring interval becomes longer, the AMAL call option would
become less valuable. Due to use a total of 100,000 antithetic paths more
than 50,000, the estimates on the value are almost undervalued to those on
the CRR model.
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Ts Contract Scenario 1
CRR LSM Scenario 2 European

1 RS9 7.4514 7.4410 7.4384 7.3802
(0.0021) (0.0022) (0.0037)

RS5 6.9787 6.9726 6.8802
(0.0014) (0.0012) (0.0019)

RS2 6.9198 6.9172 6.8307
(0.0029) (0.0029) (0.0026)

3 RS9 8.0087 7.9994 7.9237 7.8282
(0.0032) (0.0020) (0.0031)

RS5 7.1073 7.0064 6.9040
(0.0011) (0.0007) (0.0012)

RS2 7.0525 6.9518 6.8512
(0.0027) (0.0021) (0.0032)

Table 4.4:The parameters are S0 = UB = 50, LB = 45, r = 2%, q = 0,
¾ = 30%, T = 1, a = 3, T = 1 (n0=50), ns= 22 for Ts = 1/12 case and
ns = 66 for Ts = 3/12 case , and L = 3 for the CRR model. The numbers
in parentheses are standard error of the price.In each simulation a total of
50,000 antithetic paths.

a ¾ Scenario 1
CRR LSM Scenario 2 European

3 0:3 6.8329 6.9044 6.9071 6.8625
(0.0011) (0.0010) (0.0037)

0:4 8.6679 8.7378 8.7428 8.6802
(0.0022) (0.0012) (0.0019)

0:5 10.4341 10.5083 10.5129 10.4462
(0.0056) (0.0054) (0.0026)

6 0:3 6.7014 6.8197 6.8227 6.7212
(0.0006) (0.0006) (0.0031)

0:4 8.5285 8.6328 8.6356 8.5218
(0.0035) (0.0036) (0.0012)

0:5 10.2955 10.4100 10.4142 10.3062
(0.0039) (0.0028) (0.0032)

Table 4.5:The parameters are S0 = UB = 45, LB = 40.5, r = 3%, q = 0,
T = 1, a = 3, T = 1 (n0=50), Ts = 1/12 (ns= 22), and L = 3 for the CRR
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model. The numbers in parentheses are standard error of the price.In each
simulation a total of 150,000 antithetic paths.
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Chapter 5

What to choose the robustness
of LSM?

In the previous sections we we showed that it is possible to value AAMAL us-
ing LSM method and that the price estimates are not di¤erent from the CRR
method. We now examine alternative speci…cations of the cross-sectional re-
gressions models. What we are looking for is the best way to approximate
gK(x) in Eq. (2.6). To this end it is natural to work with members of di¤erent
families of polynomials, fÁ kg1k=0:

5.1 Altering the number of regressors
In LSM method, it is argued that increasing the number of regressors should
be able to obtain an accurate approximation, and it is suggested that the
number be increased until the option value implied by the LSM algorithm
no longer increases. In order to examine the practical use of this suggestion
we formulate the cross-sectional regressions of AAMALs as

y(ti) = ¯0 +
XK

k=1
[¯kw(Sti)LSk¡ 1+ ® kw(M(ti))LMk¡ 1]

+
XK

k=1
°kw(S(ti)M(ti))LSMk¡ 1 + u(ti) (5:1)

wherew(S(ti)) = exp(¡ ¡ S(ti )
2 ); w(M (ti)) = exp(¡ ¡ M(ti )

2 ); andw(S(ti)M(ti))

31
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= exp(¡ ¡ S(ti)M(ti)
2 ), LSk = eSti

k!
dk (sktie

Sti )
dSkti

; LMk = eMti
k!
dk(Mktie

Mti )
dMkti

; LSMk =
Pk
i=0

eStiMti
k!

@k(sktie
Sti
Mti )

@Siti@M
k¡ i
ti

and consider increasing K from one to three.
Penal A of Table 5.6 shows the result for four speci…cations in the scenario

1 contitional on both of St = 45 and 50 associated with ¾ = 0:3 and 0:4 from
Talbe 5.4. Changing the number K from one to two, the price estimate
increases by signi…cant amounts for all of the four speci…cations. And the
value of scenario 1 is, obviously, signi…cantly less than one of European-style
when K = 1, which means that losing the correlation between the stock price
and the strike price on the least square regreesion model would result in a
very great amount of bias. Increasin K to three does not have the same
large e¤ect, although all the estimates increase. Thus, depending on how the
suggestion in LS is interpreted we should choose K = 2 or 3.

5.2 Using alternative polynomial families
Even though the di¤erent elements of the family fLkg1k=0 have the property of
being mutually orthogonal with respect to the weighting function exp(¡ S2 ),
it is not clear why using them. If there exists more than two stochastic
factors, the number of regressors would increases with individual terms and
the cross product terms. In this section, we try to work the simplest family
of ordinary monomials Although they are not orthogonal, they produce very
close approximations. Furthermore, they are much simple compared to the
Laguerre polynomial. Thus, we formulate the cross-sectional regressions as

C(ti) = ¯0 +
XK

k=1
¯kSk(ti) +

XK

k=1
® kM k(ti)

+
XK¡ 1
k=2

Xk¡ 1
i=1
°kS i(ti)Mk¡ i(ti) + u(ti) (5:2)

and again we increase K from one to three.
Panel B of Table 5.6 shows the e¤ect of increasing K on the family of

monomials. There exsits an interesting result that compared with the family
of Laguerre polynomials, the option values with K = 1 are insigni…cantly
di¤erent from one with K = 2:When K = 1, we never add the interset term
into the regression model, i.e., StiMti but the values appear more similar to
those with K = 2 than the result of the family of Laguerre polynomials, but
the values are also less than the European-style value. The reason, we think,
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is that there exists some correlation between the stock price and the strike
price and the orthogonal work of both stochastic factors are not done on the
family of monomials, so although we regress the stock price and the strike
price without interset term, the model could still contribute their correlation
e¤ect from individual stock price and strike price. Therefore, comparing
the changes in the price when increasing K from two to three, the penal
B also shows that monomials may converge faster, as the price estimates
with K = 2 are signi…cant di¤erent from the CRR model.Thus, the rule of
suggestion of increasing one more K is less important when replacing the
Laguerre polynomials by ordinay monomials.

S0 ¾ CRR K = 1 K = 2 K = 3 European
45 0.3 6.7462 6.0481 6.7844 6.7435 6.7409

(0.0013) (0.0020) (0.0006) (0.0004)
0.5 10.3431 8.5768 10.4219 10.5622 10.3414

(0.0028) (0.0042) (0.0029) (0.0044)
50 0.3 9.3899 9.0532 9.4292 9.4839 9.3691

(0.0011) (0.0025) (0.0007) (0.0013)
0.5 13.0503 11.4582 13.1182 13.2399 13.0427

(0.0034) (0.0043) (0.0042) (0.0047)
Panel A : Di¤erent numbers of weighted Laguerre polynomials

S0 ¾ CRR K = 1 K = 2 K = 3 European
45 0.3 6.7462 6.7181 6.7629 6.7456 6.7409

(0.0009) (0.0012) (0.0012) (0.0004)
0.5 10.3431 10.3378 10.4447 10.3433 10.3414

(0.0056) (0.0051) (0.0054) (0.0044)
50 0.3 9.3899 9.2560 9.3814 9.3890 9.3691

(0.0007) (0.0013) (0.0011) (0.0013)
0.5 13.0503 12.8223 13.2527 13.0490 13.0427

(0.0044) (0.0043) (0.0042) (0.0047)
Penal B : Di¤erent numbers of Monomials

Table 5.6 : The parameters of scenario 1are UB = 45, LB = 40.5, r =
3%, q = 0, T = 1 (n0=50), Ts = 1/12 (ns= 22), and a = 3 , and L = 3 on
the CRR model, The numbers in parentheses are standard error of the price.
In each simulation a total of 100,000 antithetic paths.
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Chapter 6

Conclusion

This thesis presents a simple new technology for approximating the value
of the American-style AMALs on the LSM approach. It is not hard to …nd
that the LSM algorithm not only help solve the pricing of complex deriv-
atives, especially path-dependnce problem, and also disencumber the main
problem of early exercise of American-style derivatives on the simulation all
the time. We …nd, oh, My God, even if one does not learn any knowledge
of …nancial engenering and other technologies of …nancial computation, he
can only price any derivatives which is too complicated and hard to value
with the LSM algorithm. This approach is intuitive, accurate, easy to apply
and computationally e¢ cient. We illustrate this technique using a number
analyses of complicated derivatives AAMALs to let us know the properties
of this …nancial commodity popularly issued in Taiwan.

The family of basis functions of the cross-sectional regressions, i.e. the
Laguerre polynomials, is compared with the simple family of ordinary Monon-
ials, each of which leads to a trade-o¤ betwenn the time used to calculate a
price and the precision of that price. Comparing the method-speci…c trade-
o¤ reveals that the preferred basis functions usesK = 2 or 3 simple ordinary
polynomials instead of K = 3 Laguerre polynomials.

At last, we make the comment that with the ability to value American
options, the applicability of simulation techniques becomes much broader
and more promising, particularly in multiple factors, such as more than three
factors, the LSM method is much easier to extend than and superior to the
tree models.
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