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Abstract

This thesis investigates computational methods for pricing complex path-dependent

derivative securities, especially geometric- and arithmetic-moving-average-lookback

options. The latter security was �rst issued by Polaris Securities in 1999. Our method-

ology can be easily modi�ed to price similarly structured options issued by other

securities �rms. The moving-average-lookback option is a call option struck at the

minimummoving average of underlying asset price. We consider both geometric aver-

aging and the much harder arithmetic averaging used by Polaris. The pricing results

show that our algorithms on the CRR model converge quickly to the correct value.

We also �nd that the price di�erence between geometric averaging and arithmetic

averaging is slight. As it takes much less time to price the geometric-moving-average

version, it serves as a good approximation to the arithmetic-moving-average version.

The least-squares simulation, introduced by Longsta� and Schwartz (2001), can be

applied to price American-style moving-average-lookback options. Compared with

our algorithms, the least-squares approach systematically undervalues the options.

When applied to the two arithmetic-moving-average-lookback options issued by Po-

laris Securities in 1999, our algorithm prices them almost exactly. The numerical

delta and gamma of the options are also investigated.



Chapter 1

Introduction

In Taiwan's warrants1 market, some securities companies have issued warrants whose

strike prices are related to the arithmetic moving average of the underlying stock

price. The list of �rms consists of all major players in the marketplace: Grand

Cathay Securities (capital 10.5 billion NTD2), Yuanta Securities (capital 11.7 billion

NTD), National Securities (capital 8 billion NTD), Fubon Securities (capital 10.5

billion NTD), Capital Securities (capital 9.2 billion NTD), and Polaris Securities

(capital 6 billion NTD). (The capitals are based on 1999 �lings.) The most prominent

examples are moving-average-reset warrants and moving-average-lookback warrants.

A moving-average-reset warrant is struck at a series of decreasing contract-speci�ed

prices over a monitoring window based on the moving average. A moving-average-

lookback warrant is slightly more complicated. It is struck at the minimum moving

average of the underlying stock price over a monitoring window. Moving-average-style

warrants made up a signi�cant portion of the warrants market in the most recent bull

market. In 1999, 12 moving-average-style warrants were issued. The total premium

amount stood at 2.864 billion NTD, which was more than 21% of the warrants market

(see Table 1.1).

In practice, moving average is a popular technical measure for short-term trends

in stock prices. Hence, it is straightforward to associate the moving average with

the strike price. The advantage is, �rst, to avoid manipulation of the stock price as

the reset date approaches and, second, to provide an objective way to determine the

strike price of the options. Surprisingly, there has been scant research on the pricing

of moving-average-reset and moving-average-lookback options. Lee (2001) discusses

moving-average-reset options, but he considers moving average in continuous time.

This thesis, in contrast, focuses on discretely sampled moving average, which is used

in practice. We will concentrate on the moving-average-lookback option (MAL, here-

after), as the slightly simpler moving-average-reset option can be handled similarly.

1Options in Taiwan are called warrants.
2New Taiwan dollars.
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Name Type Issue Date Maturity No. Shares Premium

(Year) (Thousands) (Millions NTD)

GC 06 Reset 28-Apr 1 10,700 216.68

GC 07 Reset 27-May 1 17,500 239.40

GC 08 Reset 09-Jun 1 10,000 248.30

GC 09 Reset 14-Jun 1 13,600 206.86

GC 10 Reset 20-Oct 1 12,000 262.44

YT 07 Reset 23-Nov 1 22,000 226.64

NS 02 Reset 16-Jun 1 10,000 200.00

FB 01 Reset 08-Jul 1 20,000 220.00

FB 02 Reset 18-Aug 1 18,000 306.00

CS 04 Reset 04-Sep 1 11,700 216.74

PL 06 Lookback 21-Aug 1 10,000 269.80

PL 07 Lookback 27-Aug 1 15,000 251.40

Table 1.1: Moving-Average-Style Warrants Issued in 1999 on the Taipei

Stock Exchange. To put the numbers in perspective, the total amount of warrants

issued in 1999 was 13,381.70 million NTD. GC: Grand Cathay Securities; YT: Yuanta

Securities; NS: National Securities; FB: Fubon Securities; CS: Capital Securities; PL:

Polaris Securities.

Pricing moving-average-style options is diÆcult. First, the moving-average process

is non-Markovian. Let M6
t be the 6-day moving average at the tth trading day, where

t � 5 and St denotes the stock price at day t. Then

M6
t =

Pt
i=t�5 Si

6
:

The moving average M6
t+1 is related to not just M6

t but also M6
t�1; : : : ;M

6
t�4, in other

words, St; St�1; : : : ; St�4. In contrast, the average process denoted by

At =

Pt
i=0 Si

t+ 1

is Markovian because At+1 is a function of At:

At+1 =
At(t+ 1) + St+1

t + 2
:

It stands to reason that potentially more states are needed to record past information

than, say, Asian options. Particularly in pricing MAL with arithmetic averages, we

face not only the combinatorial explosion because of the nonnormality of the sum
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of lognormal distributions, but also the non-Markovian property mentioned above.

These two issues combine to increase the diÆculty of pricing.

There are three major ways to the pricing of derivative securities. The �rst is to

derive closed-form (or analytical) solutions of derivatives by the partial-di�erential-

equation (PDE) or martingale method. The second, thanks to Cox, Ross, and Rubin-

stein (1979), is the tree approach used especially to price American-style derivatives.

The last is Monte Carlo simulation approach used most e�ectively to price strongly

path-dependent and multifactor derivatives.

We will use the martingale approach to derive an analytical solution to the MAL

with geometric averaging. We then develop an algorithm based on the CRR model to

value the American-style MAL whether averaging is geometric or the more diÆcult

arithmetic. We also adopt the Monte Carlo simulation and least-squares simulation,

which can be used to value American-style options in Longsta� and Schwartz (2001),

to verify the prices based on the CRR model. It will be found that our algorithms

converge quickly to the correct value. The price di�erence between the geometric and

the arithmetic MAL is very small. As it takes much less time to price the geometric

MAL, it is a good approximation to the arithmetic MAL. We also �nd that the pricing

results from the least-squares simulation are systematically undervalued; however,

there is no suÆcient evidence to reject the results.

The remainder of this thesis is organized as follows. Chapter 2 reviews basic

concepts and pricing technologies. Chapter 3 covers the pricing of geometric MALs.

Chapter 4 covers the pricing of arithmetic MALs and empirical studies of two MALs

issued in Taiwan. Chapter 5 discusses numerical delta and gamma of MALs. Finally

Chapter 6 summarizes results and points to future research.



Chapter 2

A Primer on Derivatives Pricing

In this chapter, we review fundamental concepts and pricing techniques used in later

chapters.

2.1 The Martingale Pricing Approach

The foundation of the martingale pricing approach is laid in Harrison and Kreps

(1979) and Harrison and Pliska (1981). This section relies on Pelsser (2000) in intro-

ducing this approach.

2.1.1 Basic Settings

Consider a continuous trading economy with the uncertainty modeled by the prob-

ability space (
;F ; P ). In this notation, 
 denotes a sample space. F denotes a

�-algebra on 
, and P denotes a probability measure on (
;F).

Throughout this thesis, we work in the Black-Scholes framework. Hence there are

two basic securities in the economy. The �rst is a risky asset, stock, the price of which

is denoted by St and follows geometric Browning motion,

dSt = �St dt+ �St dZ
P
t : (2.1)

Above, � is the expected instantaneous rate of return, � is the volatility of the in-

stantaneous rate of return and fZP
t : t 2 <+g is the Wiener process under measure

P . The second security is the risk-free money-market account, the price of which is

denoted by Bt with B0=1. Bt follows

dBt = rBt dt: (2.2)

4
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The money-market account is assumed to earn a constant interest rate r. From

Eqs. (2.1) and (2.2), we can obtain

St = S0 exp

"
(��

�2

2
) t+ �ZP

t

#
(2.3)

and

Bt = ert: (2.4)

2.1.2 Girsanov's Theorem and Itô's Lemma

Girsanov's Theorem and Itô's Lemma are two key results in the martingale pricing

approach. We state them below without proof.

Theorem 1 (Girsanov's Theorem) For any random process �(t) such thatZ t

0
�(s)2ds <1

with probability one, consider the Radon-Nikodym derivative dQ=dP = �(t) given by

�(t) = exp

�
�

Z t

0
�(s) dZP

s �
1

2

Z t

0
�(s)2 ds

�
:

Then

Z
Q
t = ZP

t +

Z t

0
�(s) ds;

where t 2 <+
, is a Wiener process under measure Q.

Lemma 1 (Itô's Lemma) Suppose the stochastic process x follows the stochastic

di�erential equation dx = �(t; !) dt + �(t; !) dZ and function f(t; x) is suÆciently

di�erentiable. Then f satis�es

df =

 
@f(t; x)

@t
+ �(t; !)

@f(t; x)

@x
+
1

2
�(t; !)2

@2f(t; x)

@2x

!
dt+ �(t; !)

@f(t; x)

@x
dZ:

The price of the money market account is strictly positive and can be used as a

numeraire. Hence, relative price S�t = St=Bt can be obtained. By Itô's lemma, the

relative price follows

dS�t = (�� r)S�t dt+ �S�t dZ
P
t :

Apply Girsanov's theorem and let �(t) = (�� r)=�. The process S�t follows

dS�t = (�� r)S�t dt+ �S�t

�
dZ

Q
t �

�� r

�

�
= �S�t dZ

Q
t ; (2.5)

which is a martingale under the new measure Q.
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2.1.3 Equivalent Martingale Measure

Suppose the marketed asset V1 is a numeraire and V �n = Vn=V1 denote the relative

price processes of another marketed asset V1. Let (
;F ; P ) be the probability space

earlier. Consider the set that contains all probability measures P � such that:

1. P � is equivalent to P ; i.e., measures P � and P have the same null set.

2. The relative price processes V �n are martingales under measure P � for all n; i.e.,

we have EP �

t (V �n (T )) = V �n (t) for t � T .

Then we say the measures P � are equivalent martingale measures associated with P .

Theorem 2 (The Unique Equivalent Martingale Measure) A continuous econ-

omy is without arbitrage opportunities and every derivative security is attainable if

there exists a unique equivalent martingale measure for every choice of numeraire

such that relative price processes are martingales.

Equation (2.5) implies that the discount process, the price process with the price

of money-market account as the numeraire, of the stock is a martingale under the new

measure Q. Therefore, the measure Q is an equivalent martingale measure associated

with P . Besides, because of its uniqueness by the theorem above, we can conclude

that the Black-Scholes economy is arbitrage-free and complete. Under the measure

Q, the stock price process follows

dSt = rSt dt+ �St dZ
Q
t (2.6)

or, equivalently

d lnSt = (r �
1

2
�2) dt+ � dZ

Q
t : (2.7)

Di�erent from Eq. (2.3), the solution of the above stochastic di�erential equation is

St = S0 exp

"
(r �

�2

2
) t+ �Z

Q
t

#
: (2.8)

The martingale property reects mathematically the fact that it is impossible to

outperform the market systematically in an arbitrage-free economy. From the result

above, it follows that for a given numeraire Mt with unique equivalent martingale

measure PM , the relative value of a self-�nancing strategy f �t (Æ)=ft(Æ)=Mt is a P
M -

martingale. Hence, for a replicating strategy ÆC that duplicates the derivative security

whose payo� is CT at expiration T , we obtain

EM
t

�
CT

MT

�
= EM

t

 
fT (ÆC)

MT

!
=
ft(ÆC)

Mt

: (2.9)
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The last equality results from the de�nition of a martingale. Rearranging Eq. (2.9)

yields

ft(ÆC) =MtE
M
t

�
CT

MT

�
: (2.10)

Equation (2.10), the key result of the martingale pricing approach, can be used to

determine the price of any derivative security CT at time t < T . Replacing M with

B and combining Eq. (2.4), we obtain the familiar equation

Ct = e�r(T�t)E
Q
t (CT ): (2.11)

2.1.4 The Change of Numeraire Theorem

The next theorem relates measure with numeraire.

Theorem 3 (Change of Numeraire) Let PN
be the equivalent martingale mea-

sure with respect to numeraire Nt and P
M

be the equivalent martingale measure with

respect to numeraire Mt. The Radon-Nikodym derivative that changes the equivalent

martingale measure PM
into PN

is given by

dPN

dPM
=

NT=Nt

MT =Mt

Proof. From Eq. (2.10), which is feasible to any choice of numeraire and associated

probability measure, it follows that

NtE
N
t

�
CT

NT

�
= MtE

M
t

�
CT

MT

�
:

This expression can be rewritten as

EN
t (GT ) = EM

t

 
GT

NT=NT

MT=Mt

!
;

where GT = CT=NT . The theorem holds for all random variable G and all numeraires

N and M . 4

Applying the change of numeraire theorem in the Black-Scholes economy, we ob-

tain

BtE
Q
t

�
CT

BT

�
= StE

R
t

�
CT

ST

�
;

where R is the equivalent martingale measure with respect to numeraire St, and

ER
t (GT ) = E

Q
t (�TGT );
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where �T is the Radon-Nikodym derivative that changes the equivalent martingale

measure Q into R. By the change of numeraire theorem,

�T =
ST

St
e�r(T�t) = exp

"
�(Z

Q
T � Z

Q
t )�

�2

2
(T � t)

#
: (2.12)

Mapping to Girsanov's theorem, one can �nd �(s) = �� and hence

ZR
t = Z

Q
t � �t;

where t 2 <+, is the Wiener process under measure R. Furthermore, the dynamics

of the stock price becomes

d lnSt = (r +
1

2
�2) dt+ � dZR

t ;

which di�er from Eq. (2.7).

The martingale pricing approach is the foundation of option pricing. We can cal-

culate the price and other hedge parameters most eÆciently via closed-form solutions

resulting from this pricing approach. However, most derivatives in the markets are

American-style. To price them, we will introduce the tree model in the next section.

2.2 Tree Models and Auxiliary State Variables

In this section, we review two useful pricing techniques. The �rst, the tree model,

is mainly used to solve American-style options. The second, auxiliary state variables

approach, is a general method to price path-dependent derivatives on the tree.

2.2.1 Tree Models

There are many kinds of tree models. Here we focus on the simplest but very powerful

one, the CRR model, introduced in Cox, Ross, and Rubinstein (1979).

From Eq. (2.8), we can derive out, under the measure Q, or risk-neutral valuation,

the expected value of the stock price after a small interval time �t is S0e
r�t and the

variance of the proportional stock price change after �t time is �2�t. Now consider

the discrete-time version of Eq. (2.6) and change the normal di�usion to a discrete

random variable, �B. It follows that

�St = rSt��t�t + �St��t�Bt:

Assume �B follows the Bernoulli distribution such that

St+�t =

(
Stu; with probability p ;

Std; with probability (1� p) ;
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where u and d are the proportional change of St in the up and the down state. In order

to describe the stock price process properly in discrete time, we let �B satisfy the

mean and variance function mentioned above. This yields the following conditions,

er�t � pu+ (1� p)d

�2�t � pu2 + (1� p)d2 � [pu+ (1� pd)]2:

With a third condition ud = 1, we obtain a possible solution:

p =
er�t � d

u� d
;

u = e�
p
�t;

d = e��
p
�t:

Thereafter, we can use p, u, and d above to describe the stock price process in discrete

time. Let T denote expiration date, n denote the number of partitions, and �t = T=n.

The stock price on node N(i; j) reachable from the root with j up and i � j down

moves is

S(i; j) = S0u
jdi�j;

and the value of derivatives C on node N(i; j) can be obtained by the backward-

induction formula:

C(i; j) = [ pC(i+ 1; j + 1) + (1� p)C(i+ 1; j) ] e�r�t; (2.13)

for i = 0; 1; : : : ; n and j = 0; 1; : : : ; i. When pricing American-style options, we change

Eq. (2.13) into

C(i; j) = max([ pC(i+ 1; j + 1) + (1� p)C(i+ 1; j) ] e�r�t; exercise value):

In either case, the answer emerges in C(0; 0; 0). We will apply the CRR model to

price American-style MALs.

2.2.2 Auxiliary State Variables

This section draws on Dai (1999), which provides a general method for pricing path-

dependent derivatives on CRR tree. Auxiliary state variables are memory space to

record the past information needed in handling the path dependency. Let C(i; j; k)

denote the option value on node N(i; j). In addition to i and j, which provide the

information of time and the current stock price, we need an additional k to record

the information arising from path dependency.

To apply backward induction without using approximation, we have to allocate

enough auxiliary state variables for all the possible situations at each node. The size
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of auxiliary state variables therefore depends on the number of possible situations as

determined by path dependency. This technique is not suitable for cases which need

huge sizes of auxiliary state variables such as Asian options. However, the auxiliary

state variables approach is useful in pricing \weakly" path-dependent derivatives.

We remark that the alleged shortcoming of this approach no longer holds if we allow

approximations.

Next we present two examples to illustrate the auxiliary-state-variables approach

based on the CRR model.

Example 1 (Lookback Option) The payo� function of the lookback option at ex-

piration date T is

max(ST �MT ; 0);

where

MT = min
t=0;1;:::;n

St:

At time i�t, the possible minimum stock prices belong in the set

fS0u
�i; S0u

�i+1; : : : ; S0g:

Because 0 � i � n, we have to allocate up to n + 1 auxiliary state variables in each

node, each denoting a particular minimum price. Let C(i; j; k) denote the value of

the lookback option on node N(i; j) and k be the power index of the minimum stock

price S0u
k until time i�t. For example, k = �1 means the minimum stock price until

i�t is S0u
�1, and k = �2 means the minimal stock price until i�t is S0u

�2, and so

on. The backward-induction formula is

C(i; j; k) = [ pC(i+ 1; j + 1; ku) + (1� p)C(i + 1; j; kd) ] e
�r�t;

where

ku = k;

kd = min(k; 2(j + 1)� (i+ 1)):

After plugging in the terminal conditions, with backward induction we obtain the

value of the lookback option in C(0; 0; 0).

Example 2 (Geometric Asian Option) The payo� function of the geometric Asian

option at expiration date T is

max(ST � AT ; 0);

where

AT = (
nY
t=0

St)
1=(n+1):
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At time i�t, the possible products of the stock prices belong in the set

fSi+10 u
i(i+1)

2 ; Si+10 u
i(i+1)

2
�2; : : : ; Si+10 u�

i(i+1)
2

+2; Si+10 u�
i(i+1)

2 g:

We have to allocate
n(n+1)

2
+ 1 auxiliary state variables at each node. Let C(i; j; k)

denote the value of the geometric Asian option on node N(i; j) and k be the power

index of the product of the stock prices until i�t. For example, k = 1 means the

product is Si+10 u, and k = 3 means the product is Si+10 u3, and so on. The backward-

induction formula is

C(i; j; k) = [ pC(i+ 1; j + 1; ku) + (1� p)C(i + 1; j; kd) ] e
�r�t;

where

ku = k + 2(j + 1)� (i+ 1);

kd = k + 2j � (i+ 1):

After plugging in the terminal conditions, with backward induction we obtain the

value of the lookback option in C(0; 0; 0).

The algorithm above uses O(n2) space and O(n3) time for the lookback option,

and space O(n3) and time O(n4) for the geometric Asian option. Optimization is

possible. For more eÆcient algorithms, we refer the reader to Lyuu (2002) for the

geometric Asian option and Babbs (2000) and Cheuk et al. (1997) for the lookback

option.

2.3 Least-Squares Simulation

The simulation approach, �rst introduced in Boyle (1977), is very e�ective in pricing

derivatives with strong path dependency, multiple factors, or non-Markovian features.

However, a serious weakness of the simulation approach is that it cannot deal with

the problem of early exercise. Unfortunately, American-style options are popular in

practice. To overcome this diÆculty, we review a simple approach, named LSM by

Longsta� and Schwartz (2001) for approximating the value of American-style options

by simulation. The key feature is the application of the ordinary least squares (OLS)

to estimate the conditional expected payo� in deciding whether to exercise the option

or not. Below, we repeat the numerical example on pp. 115{120 of Longsta� and

Schwartz (2001) in pricing American-style puts.

Consider an American-style put option struck at 1.10 and exercisable at times 1,

2, 3, where time 3 is the expiration date. The risk-free rate is 6% (the discount factor

is hence 0.94176) and eight paths are used. These sample paths are generated by

Eq. (2.8) and tabulated below in a matrix called the stock price matrix.
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Path t = 0 t = 1 t = 2 t = 3

1 1.00 1.09 1.08 1.34

2 1.00 1.16 1.26 1.54

3 1.00 1.22 1.07 1.03

4 1.00 0.93 0.97 0.92

5 1.00 1.11 1.56 1.52

6 1.00 0.76 0.77 0.90

7 1.00 0.92 0.84 1.01

8 1.00 0.88 1.22 1.34

The option values with for each path at time 3 are tabulated below.

Path t = 1 t = 2 t = 3

1 - - 0.00

2 - - 0.00

3 - - 0.07

4 - - 0.18

5 - - 0.00

6 - - 0.20

7 - - 0.09

8 - - 0.00

Now consider the �ve paths which are in the money at time 2. Let X denote the

stock prices with respect to these �ve paths at time 2 and Y the discounted option

value of these �ve paths. The arrays X and Y are tabulated below.

Path Y X

1 0.00 � 0.94176 1.08

2 - -

3 0.07 � 0.94176 1.07

4 0.18 � 0.94176 0.97

5 - -

6 0.20 � 0.94176 0.77

7 0.09 � 0.94176 0.84

8 - -

By regressing Y on a constant, X, and X2, we obtain the conditional expected

payo� function at time 2,

E(Y jX) = �1:070 + 2:983X � 1:813X2:

E(Y jX) means the expected option value of continuation given X. The exercise

values and expected values of continuation at time 2 are as follows.
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Path Exercise Continuation

Value Value E(Y jX)

1 0.02 0.0369

2 - -

3 0.03 0.0461

4 0.13 0.1176

5 - -

6 0.33 0.1520

7 0.26 0.1565

8 - -

If the exercise value is greater than the expected value of continuation, the option

value is set to the exercise value; otherwise, the option value is set to the discounted

option value from time 3. Consequently, the option values with respect to each path

at time 2 are as follows.

Path t = 1 t = 2

1 - 0.00

2 - 0.00

3 - 0.94176 � 0.07

4 - 0.13

5 - 0.00

6 - 0.33

7 - 0.26

8 - 0.00

Repeat the procedure until time 0 when the option value can be determined by

averaging the values of the eight paths. See Longsta� and Schwartz (2001) for the

reasons only in-the-money paths are considered.

The valuing procedure of the LSM algorithm can be summarized as follows.

1: Generate the stock price matrix.

2: Determine the boundary conditions.

3: Determine the function form of E(Y jX), named by basis function. Longsta� and

Schwartz (2001) o�er many types of basis functions with the polynomials being

the simplest one.

4: Determine the order of the basis function such as quadratic, cubic or higher. If

the option is path-dependent, the relevant variables such as average or minimum

stock price should be included in regressors.

5: For the in-the-money paths, regress corresponded discounted option values on the

regressors determined in Step 4.
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6: Compare the exercise values and the expected values of continuation to determine

the option values with respect to each path at that time.

7: Go to Step 5 and repeat the procedure until time 0.

We cite Proposition 1 in Longsta� and Schwartz (2001) below without proof.

Proposition 1 For any �nite choice ofM , K, and vector � 2 IRM�(K�1)
representing

the coeÆcients for the M basis functions at each of the K � 1 early exercise dates,

let N denote the number of in-the-money paths, V (X) denote the true value of the

American-style option and LSM(!;M;K) denote the discounted cash ow resulting

from following the LSM rule of exercising when the immediate exercise value is positive

and greater than or equal to
dE(Y jX) as de�ned by �. Then the following inequality

holds almost surely,

V (X) � lim
N!1

NX
i=1

LSM(!i;M;K):

Here, ! denotes an in-the-money path, and !i denotes the ith such path.

Longsta� and Schwartz (2001) claim that when given the order of the basis func-

tion and the number of the exercisable dates, the option value calculated by the LSM

algorithm will converge to the real value when the number of in-the-money paths goes

to in�nity. Regarding the choice of M , we refer to Proposition 2 in Longsta� and

Schwartz (2001). It claims that the order of basis function needed to obtain a desired

level of accuracy need not go to in�nity as N ! 1. However, this proposition is

limited to one-dimensional settings. Longsta� and Schwartz (2001) conjecture that

similar results can be obtained for higher-dimensional problems by �nding conditions

under which uniform convergence occurs.

The LSM algorithm provides a simple yet powerful way to price American options

by simulation. However, the LSM algorithm is very time-consuming, especially in the

multifactor and non-Markovian cases which make the regression procedure become a

burden of the LSM algorithm.



Chapter 3

Pricing Geometric-Moving-

Average-Lookback

Options

This chapter investigates the pricing of moving-average-lookback options. Because of

the normality of the geometric average of stock prices modeled by geometric Browning

motion, we begin by pricing geometric-moving-average-lookback options (GMALs).

This serves as the benchmark against which the tree approach will be compared. Once

we are satis�ed with the tree model's accuracy, we will go on to price the arithmetic

version in the next chapter using a similar tree method.

3.1 De�ning the GMAL

Let 0 = t0 < t1 < t2 < � � � < tn = Ts � T , where n is the number of trading days

before reset date Ts, and ti be the time points when the moving average is calculated;

however, our result is more general than this. The ti are expected to coincide with

trading dates as closing prices are used in moving averages. Suppose the time interval

between monitor times are equal and �t = Ts=n, i.e., ti = i�t. De�ne Si � Si�t, the

stock price at time i�t, for ease of notation. When calculating a moving average, a

stock prices will be involved. The geometric moving average at time ti equals

ma(i) �

0@ iY
j=i�a+1

Sj

1A1=a

; a� 1 � i � n:

The minimum a-day geometric moving average as of the reset date tn = Ts is

15
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de�ned as

ma = min
a�1�i�n

ma(i) = min

264 a�1Y
i=0

Si

!1=a

;

 
aY
i=1

Si

!1=a

; : : : ;

0@ nY
i=n�a+1

Si

1A1=a
375 : (3.1)

Note that it is evaluated at discrete times. The payo� function of the GMAL at

expiration date T is

CT = max(ST �X; 0);

X = max(min(ma;UB);LB): (3.2)

Here, the strike price of the option, X, is determined at reset date Ts. The upper

bound on the strike price, UB, is initially set to S0 by the contract. As the time

goes by, if the prevailing minimum moving average is lower than the current UB, the

prevailing minimum moving average becomes the new UB. The change of UB may

happen at times t between ta�1 and Ts. LB, the lower bound of the strike price, is

determined by the contract and will never be changed. Equation (3.2) means that

the strike price of the option, X, is struck at the minimum a-day moving average but

banded between LB and UB.

3.2 An Analytical Solution to GMAL

In this section, we apply the approach mentioned in Section 2.1 to derive an analytical

solution to GMALs. For simplicity, we drop LB and UB from Eq. (3.2); hence M =

ma, which is de�ned in Eq. (3.1). By Eq. (2.11), the desired price equals

e�rTEQ[(ST �ma)1(ST>ma)];

where

ma = min
a�1�i�n

ma(i):

With the Radon-Nikodym derivative in Eq. (2.12), we obtain price

S0

�
ER

h
1(ST>ma)

i
� ER

�
ma

ST
1(ST>ma)

��
� V1 � V2:

Let Yi � ln
ma(i)

ST
. Now,

V1 = S0E
R[ 1(ST>ma) ]

= S0E
R

�
1
[min(ln

ma(a�1)
ST

;ln
ma(a)
ST

;:::;ln
ma(n)
ST

)<0]

�
= S0E

R
n
1[min(Ya�1;Ya;:::;Yn)<0]

o
= S0

nX
k=a�1

ER
h
1(Yk<Ya�1;Yk<Ya;:::;Yk<Yk�1;Yk<0;Yk<Yk+1;Yk<Yn)

i
:
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Let random variable

Xk
i =

(
Yk � Yi; if k 6= i;

Yk; otherwise

for i = a� 1; a; : : : ; n. De�ne V1k � S0E
R
h
1(Xk

a�1<0;X
k
a<0;:::;X

k
n<0)

i
. Then,

V1 =
nX

k=a�1

V1k:

Similarly, by de�ning V2k � S0E
R
h
eX

k

k1(Xk

a�1<0;X
k
a<0;:::;X

k
n<0)

i
, we can show that

V2 =
nX

k=a�1

V2k:

Apply a theorem in Chen et al. (2002) to obtain

V1k = S0Nn�a+2

�
d1;a�1; d1;a; : : : ; d1;n; �

k
�
; (3.3)

V2k = S0e
ER(Xk

k
)+ 1

2
V R(Xk

k
)Nn�a+2

�
d2;a�1; d2;a; : : : ; d2;n; �

k
�
; (3.4)

where

d1;i �
�ER(Xk

i )q
V R(Xk

i )
;

d2;i �
�[ER(Xk

i ) + CovR(Xk
a�1; X

k
k )]q

V R(Xk
i )

:

Here, Nd(x1; x2; : : : ; xd; �) denotes the cumulative density function (CDF) of the stan-

dard d-dimensional normal distribution with correlation matrix �. In particular, �k

denotes the correlation matrix of the random vector Xk = [Xk
a�1; X

k
a ; : : : ; X

k
n]
0. The

proof of Eq. (3.3), Eq. (3.4) and the formulas of the various moments of Xk are in

the appendix.

The price of the GMAL is associated with the CDF of the multidimensional normal

distribution. To be practical, there must exist an eÆcient and suÆciently accurate

algorithm to calculate the CDF of the d-dimensional normal distribution with d � 20

because, in practice, n � 20. Unfortunately, this seems still unsolvable, computation-

ally. We have implemented the analytical solution with Monte Carlo simulation for

the CDF; however, the standard error is greater than that generated by the crude

Monte Carlo method over the stock prices.
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3.3 Pricing European-Style GMALs on the CRR

Model

In this section, we proceed to price the European-style GMAL (EGMAL) on the CRR

model. By the law of iterated expectation, it is easy to verify that the price of the

EGMAL equals

e�rTsEQ[BScall(STs;M; T � Ts)]:

Therefore, when pricing the EGMAL, we only need to build a tree up to the reset

date and then plug in the Black-Scholes call formula on the terminal nodes.

The de�nitions of terms will be slightly di�erent from the earlier ones because we

are now dealing with discrete time points 0; 1; 2; : : :. A period refers to the period

of time between two adjacent time points. Recall that n is the number of trading

days before the reset date. Let L denote the number of periods between two adjacent

monitoring time points (which will coincide with daily closing times). By making

�t a day, we make L the number of trading points per day. The number of trading

points before the reset date, N , is equal to nL. We will build the binomial tree up

to the reset date. The tree hence covers N periods and contains � N2=2 = O((nL)2)

nodes.

In order to speed up the algorithm and because moving averages involve only daily

closing prices, we will simplify the N -period tree based on ideas from Ritchken and

Trevor (1999). (For more general cases, one can refer to Dai and Lyuu (2002).) So

although there are N periods before the reset date, we actually only care about nodes

on monitoring days, i.e., at times 0;�t; 2�t; : : : ; n�t. And there are only n periods,

each period now lasting for one full day �t. We therefore merge every L levels of the

binomial tree into one, creating an (L+1)-ary tree with n periods in the process. For

example, when L=2, a trinomial tree is created (see Fig. 3.1). Each node N(i; j) has

L + 1 successor nodes

N(i; j); N(i; j + 1); : : : ; N(i; j + L):

The probability of the state moving from node N(i; j) to node N(i; j + `) equals

p(`) =
�
L
`

�
p`(1� p)L�`;

where p is upward-moving probability in the CRR model. The stock price associated

with node N(i; j) is

S(i; j) = S0u
2j�iL

for i = 0; 1; : : : ; n and j = 0; 1; : : : ; iL. The new tree has O(Ln2) nodes, a reduction

of order L from the original binomial tree.
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(a) (b)

Figure 3.1: Turning a Binomial Tree into an (L + 1)-ary Tree. (a) A 2-period

binomial tree. (b) A 1-period trinomial tree. Both trees cover the same time period

except that a period for the trinomial tree is twice as long as that for the binomial

tree.

After building the (L+1)-ary tree, we have to determine the size of the auxiliary

state variables on the nodes. Di�erent from the simple examples in Section 2.2.2,

they are no longer arrays but matrices. De�ne

kUB =

2666
a ln UB

S0

lnu

3777 ;
kLB =

6664a ln LB
S0

lnu

7775 :
Note that kUB = 0 if UB = S0. Let C(i; j; k; b) denote the option price on node

N(i; j). The k in C(i; j; k; b) has the property that the minimum a-day moving

product of the stock prices until time i�t is Sa0u
k, where kLB � k � kUB. It is in

e�ect the power index of of the product. In order to speed up the calculation, we

apply forward induction to determine the minimum and maximum k, denoted by

minki;j and max ki;j, respectively, for each node N(i; j) before applying backward

induction.

The b in C(i; j; k; b) provides information of the current moving average of the

stock prices. It is easy to see that 0 � b � bmax, where bmax = (L + 1)a�1 � 1. It

is important to understand the role played by b. Consider the case with a = 3 and

L = 2: Each node has three branches. Suppose 0, 1, and 2 mean down, at, and up

movement, respectively. Then b encodes the 2-day movements as following.
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b Price Movement

0 0 0

1 0 1

2 0 2

3 1 0

4 1 1

5 1 2

6 2 0

7 2 1

8 2 2

It basically encode them with the tertiary number system.

For example, starting from node N(i; j), b = 5 means that the state at prior time

(i� 2)�t is node N(i� 2; j � 3) and state at time (i� 1)�t was node N(i� 1; j� 2).

The current moving product is

Sa0u
MS � Sa0u

[ 6j�3L(i�1)�10 ];

where MS denotes moving product's power index. The current geometric moving

average is S0u
MS=a. It is possible that S0u

MS=a may lie outside the tree.

The terminal conditions are given by the Black-Scholes formula for all combina-

tions of S(n; j) and S0u
k=a, where min ki;j � k � max ki;j with � = T � Ts, volatility

�, risk-free rate r, and dividend yield q. (Options in Taiwan are dividend-protected;

hence there is no need to consider dividends.) Then we use the backward-induction

formula:

C(i; j; k; b) = e�r�t
LX
`=0

p(`)C(i+ 1; j + `; k(`); b(`));

where

k(`) =

8><>:
k; if k � MS(b(`))

ms(b(`))); if kLB � ms(b(`))) < k

kLB; if MS(b(`)) < kLB

b(`) = (b(L+ 1)) mod (L + 1)a�1 + `: (3.5)

MS(b(`)) is moving product's power index with respect to the path from node N(i; j)

to node N(i + 1; j + `). The function k(`) selects the index associated with the

minimum moving product sum in successor nodes.

We use a simple example to illustrate how the function b(`) works. Suppose a = 3

and L = 2. The following table shows that when the state move forward by one day,

it drops the earliest movement, achieved by shifting the number to the left.
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b Past Movement Future Moment b(`)

0 0 0 0 ` 0� 3 + `

1 0 1 1 ` 1� 3 + `

2 0 2 2 ` 2� 3 + `

3 1 0 0 ` 0� 3 + `

4 1 1 1 ` 1� 3 + `

5 1 2 2 ` 2� 3 + `

6 2 0 0 ` 0� 3 + `

7 2 1 1 ` 1� 3 + `

8 2 2 2 ` 2� 3 + `

Comparing the second column with the de�nition of b, we derive the third column.

The intention of Eq. (3.5) should be clear by now. The �rst term on the right hand

side of Eq. (3.5) describes the action of keeping necessary information regarding past

movements, and the second term describes the new movement. The answer appears

in C(0; 0; 0; 0). The algorithm for the EGMAL runs in space O((L+ 1)a+3) and time

O((L+ 1)a+3)

3.4 Pricing American-Style GMALs

There is one detail regarding American-style GMALs (AGMALs) that needs to be

straightened out before we proceed. We may assume that the option holder can

exercise the option only on or after the reset date (Scenario one). Note that after

the reset date, when the strike price is set, the option is like an ordinary vanilla

American-style option. Or we may assume that the option holder can exercise it on

or after the (a � 1)th trading date. Our tree algorithm for the AGMAL can deal

with both assumptions without loss of eÆciency. However, because the least-squares

simulation method becomes less eÆcient for Scenario two, we will focus on Scenario

one.

3.4.1 The CRR Model

Under Scenario one, the tree model for pricing the AGMAL is identical to its European

counterpart except for terminal conditions. All we need to to is to replace the Black-

Scholes formula with an algorithm on the CRR model to price an American-style call

. Let n0 denote the number of periods on this tree before reset date Ts and expiration

T . Under Scenario two, on the other hand, we further consider early exercise when

applying backward induction on the n-period original tree.
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3.4.2 The Least-Squares Simulation Method

Now, we state how to price AGMAL with least-squares simulation. As in Section 2.3,

the �rst step is to generate the stock price matrix. But now we only preserve the stock

price matrix S(i; j) after Ts. Here i refers to time Ts+ i�t0, where �t0 = (T �Ts)=n
0,

and j signi�es the jth path. The strike price vector M(j) is determined by the stock

price process before Ts. After giving the terminal conditions, Sn0;j �Mj, we pick the

following basis function:

e�r�t
0

Ci+1;j = �0 + �1Si;j + �2S
2
i;j + �3Si;jMj + �4Mj + �5M

2
j : (3.6)

Regressing with Eq. (3.6), we obtain this conditional expected payo� function at time

Ts + i�t0:

Ei(Ci;jjSi;j;Mj) =
c�0 + c�1Si;j + c�2S2

i;j +
c�3Si;jMj +

c�4Mj +
c�5M2

j ;

where c�i denotes the OLS estimator of �i. Compare the exercise value, Si;j�Mj , and

the expected value of continuation, Ei(Ci;jjSi;j;Mj), to determine the option value

with respect to each path at time Ts + i�t0 as follows:

Ci;j =

(
Si;j �Mj; if Si;j �Mj > Ei(Ci;jjSi;j;Mj)

e�r�t
0

Ci+1;j; otherwise
:

After repeating the procedure in a backward fashion for i = n0 � 1 to 0 (or time Ts),

we can now price the option by discounting the value in C(0; j) for all j with e�rTs

and averaging over all paths.

We are now able to explain why we do not use the LSM algorithm for options which

can be exercised before Ts (Scenario two). Equation (3.6) contains 6 regressors for

just 2 variables Si;j and Mj). The number grows fast with the number of variables,

which happens under Scenario two. The reason is the non-Markovian property of

the moving average. Consider an AGMAL with 3-day moving average for example.

The basis function needs a constant term, the current stock price, the stock price one

period and two periods earlier, the minimum moving average until now, their squares,

and the cross terms. There are at least 15 regressors in the basis function, and all this

just for 3-day moving average. When Ts is less than two months and the dividend

yield is not too high, the possibility of early exercise before Ts for the AGMAL is very

low anyway.

3.5 Numerical Results

3.5.1 The European-Style Case: EGMAL

We use the CRR model and Monte Carlo simulation to price the 3-day and 5-day

EGMAL. Assume S0 = UB = 50, r = 2%, q = 4%, T = 1, and Ts = 1=12. Suppose
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a = 3 a = 5

LB � CRR MC Std. CRR MC Std.

0.3 6.1689 6.1712 (0.0019) 6.0769 6.0745 (0.0019)

45 0.4 8.1916 8.1942 (0.0029) 8.0924 8.0871 (0.0028)

0.5 10.1367 10.1392 (0.0039) 10.0360 10.0339 (0.0038)

0.3 6.2694 6.2723 (0.0018) 6.1566 6.1521 (0.0018)

40 0.4 8.4219 8.4242 (0.0026) 8.2832 8.2797 (0.0027)

0.5 10.4953 10.4992 (0.0036) 10.3402 10.3332 (0.0036)

0.3 6.2714 6.2731 (0.0018) 6.1579 6.1551 (0.0018)

35 0.4 8.4414 8.4460 (0.0026) 8.2970 8.2922 (0.0026)

0.5 10.5581 10.5604 (0.0035) 10.3882 10.3836 (0.0035)

Table 3.1: Pricing EGMAL. The parameters are S0 = UB = 50, r = 2%, q = 4%,

T = 1, Ts = 1=12 (n = 22), L = 8 for the a = 3 cases, and L = 3 for the a = 5 cases.

\Std." is the sample standard deviation of Monte Carlo simulations (MC).

there are 22 trading days in a month, so n = 22. We will vary LB, �, and the

moving-average period a in the experiments. Fix L=8 for the 3-day cases (a = 3) and

L=3 for the 5-day cases (a = 5). The pricing results by Monte Carlo simulation are

based on 1,000,000 paths: 500,000 plus 500,000 antithetic. The results are tabulated

in Table 3.1. We make the following observations. First, the prices calculated by our

algorithm are within two times the standard deviations generated by Monte Carlo

simulation. Our algorithm is therefore basically correct. Second, not surprisingly, the

option value decreases with the moving-average period a and LB, but increases with

�.

Next we check the convergence of the pricing. Figure 3.2 shows the price converges

quickly, up to two decimal places when L � 3. The pattern of convergence oscillates.

Speci�cally, the odd-L points and the even-L ones each converge monotonically. This

immediately suggests Richardson's extrapolation: 2Vi � Vi�2, where i � 3, and it

indeed leads to tighter option prices. The pattern of overvaluation and undervaluation

in Figure 3.2 also carries over to Table 3.1.

3.5.2 The American-Style Case: AGMAL

We use both the CRR model and the LSM algorithm to price the 3-day and 5-day

AGMALs. Assume S0 = UB = 50, r = 2%, q = 4%, T = 1, Ts = 1=12, and n0 = 50.

Let L=8 for the 3-day cases, and L=3 for the 5-day cases. The pricing results by

LSM are based on 100,000 paths: 50,000 plus 50,000 antithetic. The results are shown

in Table 3.2 and Figure 3.3. We make the following observations. First, compared

with the tree algorithm, the prices calculated by the LSM method are systematically
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Figure 3.2: Convergence of EGMAL. The parameters are S0 = UB = 50, � =

40%, r = 2%, q = 4%, T = 1, Ts = 1=12 (n = 22), and a = 3. EG* and MC represent

the price obtained by Richardson's extrapolation and the Monte Carlo simulation

(MC), respectively. Here, MC gives a vlaue of 8.1942 with a sample standard deviation

of 0.0029. A band with a width of 2 times the standard deviation above and below

MC is plotted for reference.
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a = 3 a = 5

LB � CRR LSM Std. CRR LSM Std.

0.3 6.3228 6.2870 (0.0256) 6.2280 6.1555 (0.0247)

45 0.4 8.3571 8.3265 (0.0360) 8.2558 8.1852 (0.0352)

0.5 10.3149 10.2864 (0.0476) 10.2117 10.2090 (0.0474)

0.3 6.4256 6.3706 (0.0253) 6.3099 6.2832 (0.0255)

40 0.4 8.5921 8.5353 (0.0359) 8.4505 8.4115 (0.0355)

0.5 10.6800 10.6045 (0.0459) 10.5220 10.5057 (0.0472)

0.3 6.4277 6.4245 (0.0255) 6.3111 6.2814 (0.0256)

35 0.4 8.6118 8.5807 (0.0357) 8.4646 8.3980 (0.0356)

0.5 10.7436 10.7014 (0.0465) 10.5708 10.5530 (0.0476)

Table 3.2: Pricing AGMAL. The parameters are S0 = UB = 50, r = 2%, q = 4%,

T = 1, Ts = 1=12 (n = 22), L = 8 for the a = 3 cases, L = 3 for the a = 5 cases, and

n0 = 50. \Std." is the sample standard deviation of Monte Carlo simulations (MC).

undervalued. The reason can be traced to Proposition 1. Second, the fact that the

prices calculated by the tree algorithm are within twice the sample standard deviation

given by the LSM method shows that the tree algorithm is likely to converge to the

correct value. Third, the early-exercise premiums are relatively stable. In the unusual

case where r = 2% and q = 4%, they are just slightly over 0.165. In fact, as show

in Figure 3.4, they are roughly �xed when L � 3. In that Figure, we move ahead

of ourselves by plotting the early-exercise premium of the arithmetic-moving-average

lookback option as well.

In order to examine the option values of the AGMAL between Scenario one and

Scenario two by our lattice algorithm, the most important factors q and Ts are varied.

Table 3.3 shows that the prices are more sensitive to Ts than q. However, there is

little di�erence when Ts is at most two months whatever the value of q. And even if

Ts is three months long, the di�erence is still insigni�cant. These result show that the

probability of early exercise for the AGMAL before Ts with a relatively short reset

period is too small to be noticed.
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Figure 3.3: Convergence of AGMAL. The parameters are S0 = UB = 50, � =

40%, r = 2%, q = 4%, T = 1, Ts = 1=12 (n = 22), a = 3 and n0 = 50. AG* and

LSM represent the price obtained by Richardson's extrapolation and the least-square

simulation method, respectively. LSM gives a value of 8.3265 with a sample standard

deviation of 0.0360. A band with a width of 2 times the standard deviation above

and below LSM is plotted for reference.
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Figure 3.4: Stability of the Early Exercise Premium. The parameters are

S0 = UB = 50, � = 40%, r = 2%, q = 4%, T = 1, Ts = 1=12 (n = 22), a = 3, and

n0 = 50. Both the geometric- and arithmetic-moving-average lookback options are

plotted.
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Ts 1/12 2/12 3/12

q Scenario 1 Scenario 2 Scenario 1 Scenario 2 Scenario 1 Scenario 2

2% 6.778140 6.778140 7.069512 7.069512 7.216221 7.216223

4% 6.322439 6.322439 6.607496 6.607502 6.750990 6.751187

6% 5.923372 5.923372 6.203751 6.203848 6.344009 6.345403

Table 3.3: Early Exercise before Ts for AGMAL. The parameters are S0 =

UB = 50, � = 30%, r = 2%, LB = 45, T = 1, n = 22 for the Ts = 1=12 cases, n = 45

for the Ts = 2=12 cases, n = 67 for the Ts = 3=12 cases, a = 3, and n0 = 50.



Chapter 4

Pricing Arithmetic-Moving-

Average-Lookback

Options

In this chapter, we price the arithmetic-moving-average-lookback options (AMALs).

AMAL is similar to GMAL except that the geometric moving average is replaced with

the arithmetic version:

ma � min
a�1�t�n

Pt
i=t�a+1 Si

a
:

Due to the nonnormality of the arithmetic sum of the stock prices when modeled by

geometric Browning motion, we are not expected to derive the analytical solution for

the AMAL. Instead, we use the CRR model.

4.1 Pricing AMAL on the CRR Model

The basic price tree remains the same as the geometric version. The di�erence lies

in the auxiliary state variables for the nodes. Let C(i; j; k; b) denote the option price

on node N(i; j). The meaning of b is the same as the geometric version. But that of

k di�ers. The size of the auxiliary state variables depends on the set formed by the

possible strike prices. In the geometric version, the set is

fS0u
k=a : k is an integer; kLB � k � kUBg:

In contrast, in the arithmetic version, it is no longer so simple. We �rst �nd all

the possible strike prices between LB and UB and put each in array M(k), where

k = 0; 1; : : : ; kmax, softed from the smallest to the largest one such that M(0) = LB

and M(kmax) = UB. (Notice that M(0) may not equal LB. This happens when LB

28
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is smaller than all possible strike prices.) The possible strike prices in the arithmetic

version forms the set

fM(k) : k is an integer; 0 � k � kmaxg:

So k is not the power index but the rank of the moving average in the array.

Unfortunately, this set grows with O(La�1) which is exponential in a. In order to

overcome this complexity, we observe that the accuracy of the strike price is rounded

to 2 decimal places in the market (x = 2). Consequently, the size of the set is much

more limited. For example, when UB = 50, LB = 45, there are at most 501 possible

strike prices: f45:00; 45:01; : : : ; 50:00g.

The backward-induction formula for the AMAL is similar to that for the GMAL

except for the function k(l). The function k(l) now becomes

k(l) =

8><>:
k; if M(k) � MA(b(l))

f(MA(b(l))); if LB � MA(b(l)) < M(k)

0; if MA(b(l)) < LB

; (4.1)

where MA(b(l))) is the arithmetic moving average with respect to the path from node

N(i; j) to node N(i + 1; j + l).

For example, suppose UB = 50, LB = 45, MA(b(l)) = 47, and M(k) = 48.

By function (4.1), we know that when the state moves to node N(i + 1; j + l), the

minimum moving average moves down to 47. Hence, we have to search the correct

rank k which corresponds to a minimum moving average of 47 in the successor node

N(i + 1; j + l). However, searching the array can be time consuming. We now turn

to a more eÆcient way to invert M(k) to get rank k. The idea is to hard-code the

correspondence once and for all. Of course a correspondence is simply an integral

function, which can be coded as a table. Let f(i) be the said array (called the rank-

inversion table), where bM(0)�c � i � bM(kmax)�c and � � 10z with z being the

smallest nonnegative integer such that bM(i)�c 6= bM(j)�c for i 6= j. The table can

be constructed by the following algorithm.

Algorithm 1 Construction of the Rank-Inversion Table.

1: for k = 0 to kmax do

2: f(bM(k)�c) := k;

3: end for

For example suppose M(0) = 1, M(1) = 1:11, M(2) = 1:33, M(3) = 1:55, and

M(4) = 1:7. It is obvious that � = 10 and f() works as desired. If givenM(k) = 1:33,

we can �nd k = 2 via rank-inversion table f( ) in constant time.
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Location Value

b10M(k)c f(b10M(k)c)

10 0

11 1

12 -

13 2

14 -

15 3

16 -

17 4

Theoretically, the algorithm for the AMAL takes O((L+1)a+1) space and O((L+

1)a+1) time. Although it may seem that the algorithm for the AMAL is faster than

that for the GMAL, the numerical results show that the opposite is true in practice.

The reason is that there is a big constant factor for the AMAL algorithm.

4.2 Numerical Results

We use the same parameters as in the geometric version to price both AMALs. Ta-

bles 4.1 and 4.2 show that the prices are similar to the geometric counterparts. In

particular, the convergence is quite fast as shown in Fig. 4.1. Comparing AMAL and

GMAL, we observe that, the price of GMAL is greater than that of AMAL because

of the smaller mean of the geometric average. Second, the price di�erence increases

with the moving-average period a and volatility �. Still, the di�erence is hard to

detect. Figure 4.2 shows that the di�erence is quite stable when L � 3. As it takes

much less time to calculate the price of GMAL, it is a good approximation to the

value of AMAL. Finally, Table 4.3 shows that the probability of early exercise before

Ts with a short reset period is too small to be noticed.

4.3 Empirical Studies

This section conducts empirical studies of two American-style AMALs, the PL06 and

PL07 issued by Polaris Securities in 1999. The contract speci�cations are tabulated

in Table 4.4. The required parameters for our algorithm are listed in Table 4.5.

By running our algorithms based on the parameters, the pricing results appear in

Table 4.6.

We make the following observations. First, compared with the issue prices of Po-

laris Securities, those calculated by our algorithm are essentially identical: 26.81 vs.

26.98 and 16.65 vs. 16.67. Second, the GMAL results remain good approximations

in both securities. Prices calculated by the lattice algorithms for AMAL and GMAL
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a = 3 a = 5

LB � CRR MC Std. CRR MC Std.

0.3 6.1684 6.1706 (0.0019) 6.0757 6.0726 (0.0019)

45 0.4 8.1909 8.1933 (0.0029) 8.0907 8.0864 (0.0028)

0.5 10.1358 10.1380 (0.0039) 10.0340 10.0314 (0.0038)

0.3 6.2688 6.2715 (0.0018) 6.1552 6.1507 (0.0018)

40 0.4 8.4209 8.4225 (0.0026) 8.2809 8.2775 (0.0027)

0.5 10.4937 10.4987 (0.0036) 10.3371 10.3299 (0.0036)

0.3 6.2708 6.2724 (0.0018) 6.1564 6.1542 (0.0018)

35 0.4 8.4404 8.4449 (0.0026) 8.2946 8.2881 (0.0026)

0.5 10.5563 10.5573 (0.0035) 10.3847 10.3812 (0.0035)

Table 4.1: Pricing the European-Style AMAL. The parameters are S0 = UB =

50, r = 2%, q = 4%, T = 1, Ts = 1=12 (n = 22), x = 2, L = 8 for the a = 3 cases,

and L = 3 for the a = 5 cases. \Std." is the sample standard deviation of Monte

Carlo simulations (MC).

a = 3 a = 5

LB � CRR LSM Std. CRR LSM Std.

0.3 6.3223 6.3000 (0.0253) 6.2268 6.1941 (0.0254)

45 0.4 8.3565 8.3279 (0.0361) 8.2541 8.1816 (0.0352)

0.5 10.3140 10.3073 (0.0478) 10.2097 10.1256 (0.0458)

0.3 6.4250 6.3943 (0.0256) 6.3084 6.2378 (0.0248)

40 0.4 8.5911 8.5704 (0.0355) 8.4481 8.3379 (0.0349)

0.5 10.6783 10.6431 (0.0480) 10.5188 10.4617 (0.0470)

0.3 6.4271 6.3854 (0.0250) 6.3096 6.2766 (0.0255)

35 0.4 8.6108 8.5759 (0.0367) 8.4621 8.4348 (0.0354)

0.5 10.7417 10.7140 (0.0472) 10.5672 10.5023 (0.0461)

Table 4.2: Pricing the American-Style AMAL. The parameters are S0 = UB =

50, r = 2%, q = 4%, T = 1, Ts = 1=12 (n = 22), x = 2, L = 8 for the a = 3 cases,

L = 3 for the a = 5 cases, and n0 = 50. \Std." is the sample standard deviation of

the least-squares simulations (LSM).
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Figure 4.1: Convergence of EAMAL. The parameters are S0 = UB = 50, � =

40%, r = 2%, q = 4%, T = 1, Ts = 1=12 (n = 22), x = 3, and a = 3. EA* and

MC represent the price obtained by Richardson's extrapolation and the Monte Carlo

simulation, respectively. Here, MC gives a value of 8.1933 with a sample standard

deviation of 0:0029. A band with a width of 2 times the standard deviation above

and below MC is plotted for reference.
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Figure 4.2: Price Di�erence of Geometric and Arithmetic AMALs. The

parameters are S0 = UB = 50, � = 40%, r = 2%, q = 4%, T = 1, Ts = 1=12

(n = 22), dp = 3, a = 3, and n0 = 50.
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Ts 1/12 2/12 3/12

q Scenario 1 Scenario 2 Scenario 1 Scenario 2 Scenario 1 Scenario 2

2% 6.777619 6.777619 7.069056 7.069056 7.215519 7.215521

4% 6.321930 6.321930 6.607049 6.607055 6.750304 6.750486

6% 5.922871 5.922871 6.203310 6.203405 6.343335 6.344661

Table 4.3: Early Exercise before Ts for American-Style AMAL. The parame-

ters are S0 = UB = 50, � = 30%, r = 2%, LB = 45, T = 1, n = 22 for the Ts = 1=12

cases, n = 45 for the Ts =
2
12

cases, n = 67 for the Ts = 3=12 cases, x = 2, n0 = 50,

and a = 3.

PL06 PL07

Issue date 08/21/1999 08/27/1999

First trading date 09/02/1999 09/06/1999

Reset date 09/21/1999 09/28/1999

Expiration date 09/01/2000 09/05/2000

Moving-average period (days) 6 6

UB 103.75 64.45

LB 0.9�UB 0.9�UB

Issue volatility 54.38% 54.58%

Issue price (NTD) 26.98 16.67

Table 4.4: Contract Speci�cations of PL06 and PL07.

PL06 PL07

S0 103.75 64.45

UB 103.75 64.45

LB 93.38 58.01

� 54.38% 54.58%

r 5.00% 5.00%

q 0.00% 0.00%

T 378=365 376=365

Ts 31=365 31=365

n 24 23

a 6 6

L 2 2

Table 4.5: Parameters Setup for Pricing PL06 and PL07 with the Lattice

Algorithm.
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PL06 PL07

AMAL (CRR) 26.8125 16.6495

GMAL (CRR) 26.8181 16.6528

AMAL (MC) 26.8160 16.6515

Sample standard deviation 0.0071 0.0044

Implied volatility by AMAL (CRR) 54.80% 55.04%

Table 4.6: Pricing and Volatility of PL06 and PL07. The parameters are based

on Table 4.5.
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Figure 4.3: Implied Volatilities of PL06.

are within one sample standard deviation of the Monte Carlo simulations based on

2,000,000 paths (1,000,000 plus 1,000,000 antithetic). The tightness of the results

gives us con�dence in their correctness. Assured by our results, we proceed to calcu-

late the implied volatilities of both securities in Figure 4.3 and Figure 4.4 with the

AMAL algorithm. The two plots show that the volatilities lie within the band of 55%

and 65%. This level of volatility is typical of stocks in Taiwan.
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Figure 4.4: Implied Volatilities of PL07.



Chapter 5

Hedging

This chapter investigates the delta and gamma of MALs. Surprisingly, the delta jumps

as the reset date approaches. Because of the price similarity between geometric and

arithmetic MALs, we focus on EGMALs.

5.1 Delta

Let C(S0;�) be the value of the MAL based on our lattice algorithm and initial stock

price S0 with parameter vector � � fUB;LB; �; r; q; T; Ts; n; L; a g. Numerical delta

� is calculated as

� =
C(S0u;�)� C(S0d;�)

S0u� S0d

Figure 5.1 shows option prices with di�erent combinations of LB and UB. The

price di�erence between the vanilla option and the MAL vanishes as S0 increases. On

the other hand, when S0 decreases, the reset feature makes the MAL's price decrease

more slowly than the vanilla option's. In the extreme case when UB = LB, an MAL

reduces to a vanilla call. One most interesting feature of the �gure is the concavity of

the MAL price when stock price is between LB and UB. It implies nonmonotonicity

in the value of delta, unlike the case with the vanilla option.

Figure 5.2 explores the matter more closely. Indeed, the delta of MAL is not a

monotonically increasing function of S0. The delta is a decreasing function of the

stock price when the stock price is roughly between LB and UB. Given the UB,

the phenomenon is more prominent with lower LBs. This reects the two forces in

determining the option value. As the stock price decreases, the downward stock price

will tend to lower the option value, whereas at the same time the higher probability

of a low strike price will tend to raise the option value. When the stock price is

between LB and UB, the strike-price e�ect is at its strongest. Though not strong

enough to make the delta negative, it is able to counteract the decrease in the option
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Figure 5.1: EGMAL and the Lower and Upper Bounds. The parameters are

� = 30%, r = 2%, q = 4%, T = 1, Ts = 1=12 (n = 22), L = 3, and a = 3. C A B

means the MAL is priced with LB = A and UB = B.

value because of the lower stock price. The option holder is therefore well protected

by the downward reset feature. When stock price penetrates below LB, however, the

stock-price e�ect will dominate the strike-price e�ect and the protection no longer

exists.

5.2 Gamma

The numerical gamma � is calculated as

� =

C(S0u
2;�)�C(S0;�)
S0u2�S0

�
C(S0;�)�C(S0d2;�)

S0�S0d2

(S0u2 � S0d2)=2
:

The complex behavior of delta suggests that gamma should behave in a complex way

as well. Figure 5.3 shows that the gamma is negative roughly between LB and UB.

(Because it is the moving average, not the stock price, that determines the strike

price, the gamma is negative roughly, but not exactly, between LB and UB.)

For vanilla European-style calls, the gamma is positive. When a securities �rm

sells derivative securities with a positive gamma, the �rm's position has a negative

gamma. In that case, if it implements a delta-neutral hedging strategy, the negativity
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Figure 5.2: Delta of EGMAL. The parameters are � = 30%, r = 2%, q = 4%,

T = 1, Ts = 1=12 (n = 22), L = 3, and a = 3. Delta A B means the delta is

evaluated with LB = A, UB = B.

of gamma will result in hedging losses (the so-called gamma risk). Therefore, a delta-

gamma-neutral hedging strategy should be implemented instead. This is especially

relevant when the underlying stock price is volatile or the hedging frequency is low.

The opposite is true for the seller when a derivative security has a negative gamma.

From the seller's print of view, a negative gamma means hedging pro�t when imple-

menting the delta-neutral strategy. This is an important consideration as imple-

menting the delta-gamma-neutral hedging requires two hedging instruments with the

same underlying asset besides the money market account. This is often impossible;

for example, only one option exists for a speci�c stock in Taiwan's options market.

Apparently, the negative gamma of MAL bene�ts the issuing securities �rm. But

the issuing �rm may face more gamma risk when the stock price or, more precisely,

the prevailing moving average is outside the range LB and UB. A proposal will be

to issue MALs without an LB. Then the gamma is zero roughly below UB, which

implies that the MAL value decreases with the underlying stock price linearly because

the strike price can be continuously changed downward without bounds.
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Figure 5.3: Gamma of EGMAL. The parameters are � = 30%, r = 2%, q = 4%,

T = 1, Ts = 1=12 (n = 22), L = 1, and a = 3. Gamma A B means the gamma is

evaluated with LB = A and UB = B.

5.3 Delta Jumps

Like most of reset options, the MAL encounters a delta jump at the reset date. As

the reset date approaches, the value of MAL is getting more and more sensitive to the

moving average. Consider an MAL with a = 3, STs�2 = STs�1 = 50, and UB = 49.

UB is the current strike price. The strike price will be revised down if STs < 47, being

the solution of (50 + 50 + x)=3 = 49. This results in a kink for the option value and

a delta jump at S = 47 (see Figure 5.4 and Figure 5.5).

The occurrence of the delta jump relies on past a � 1 stock prices. It makes the

stock price on the reset date, STs , play a less critical role in MAL than in other reset

options, whose strike price depend solely on the stock price directly. The probability

of a delta jump at the reset date is also smaller. This is yet another advantage of

MALs.



Hedging 40

3.0

5.0

7.0

9.0

44 47 50 53 56

STr

C_47_50

C_47_49

C_49_49

Figure 5.4: Option Value of EGMAL. The parameters are STs�2 = STs�1 = 50,

� = 30%, r = 2%, q = 4%, T = 11=12, Ts = 0, and a = 3. C A B means the option

price is evaluated with LB = A, UB = B.
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Figure 5.5: Delta of EGMAL. The parameters are STs�2 = STs�1 = 50, � = 30%,

r = 2%, q = 4%, T = 11=12, Ts = 0, and a = 3. Delta A B means the delta is

evaluated with LB = A, UB = B.



Chapter 6

Conclusions and Future Work

In this thesis, we investigate approaches to price derivative securities and apply them

to value geometric and arithmetic moving-average-lookback options (MALs). The

pricing results show that our algorithms based on the CRR model converges quickly

to the correct value. We also �nd that the price di�erence between the geometric

and arithmetic MALs is very small. As it takes much less time to price the geometric

version, it is a good approximation to the arithmetic version. We apply the least-

squares simulation to approximate the American-style MAL. Compared with the

lattice algorithm, the least-squares simulation systematically undervalues the option.

This thesis highlights the need for additional research in the future. The �rst

is to develop an eÆcient and accurate deterministic approximation for the CDF of

the multivariate normal distribution. The reason is that the analytic solution to the

geometric MAL is available as the CDF of the multivariate normal distribution. The

second is to provide a more eÆcient way to deal with the non-Markovian problem,

which is not an easy task in the framework of tree models. Finally, the LSM algorithm

is a simple yet powerful method to approximate American-style derivative securities

and can be applied to price complicated derivative securities which tree models cannot

handle well. It is still under development. Hence, we consider it worthwhile to develop

the LSM algorithm further.
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Appendix A

Proofs for Analytical Solution to

GMAL

A.1 Eqs. (3.3) and (3.4)

Let Xk � [Xk
a�1; X

k
a ; : : : ; X

k
n]
0, �k, �k, and �k denote the mean vector, the variance-

covariance matrix and the correlation matrix of Xk for ease of presentation. Let bk

be a d-row zero vector except that kth element is unit, where d = n�(a�2). Let E( ),

V ( ), and Cov( ) denote ER( ), V R( ), and CovR( ). Recall that R is the probability

measure with the stock price as the numeraire. De�ne

A =
1

2�d=2 det(�k)1=2
;

B = eb
k
0

�k+bk
0

�
k
b
k

;

Zk = Ck�1(Xk � (�k +�kbk));

Ck =

266666664

q
V (Xk

a�1) 0 � � � 0

0
q
V (Xk

a ) � � �
...

...
...

. . . 0

0 � � � 0
q
V (Xk

n)

377777775 :

Then,

E(expfbk
0

Xkg1(Xk<0))

= A

Z
0

�1
expfbk

0

Xk �
1

2
(Xk � �k)0�k

�1

(Xk � �k)g dXk

= AB

Z
0

�1
expf�

1

2
(Xk � (�k +�kbk))0�k

�1

(Xk � (�k +�kbk))g dXk
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= B

Z �Ck
�1

(�k+�k
b
k)

�1

1

2�d=2 det(�k)1=2
expf�

1

2
Zk

0
Rk�1Zkg dZk: (A.1)

Consequently, we can obtain Eq. (3.3) and Eq. (3.4) with Eq. (A.1).

A.2 Moments of Xk

By de�nitions,

E(Xk
i ) =

(
E(Yk)� E(Yi) if k 6= i

E(Yk) otherwise

V (Xk
i ) =

(
V (Yk) + V (Yi)� 2Cov(Yk; Yi) if k 6= i

V (Yk) otherwise

Cov(Xk
i ; X

k
j ) =

8>>><>>>:
V (Yk)� Cov(Yk; Yi)� Cov(Yk; Yj) + Cov(Yi; Yj) if i 6= j

V (Yk)� Cov(Yk; Yi) if j = k 6= i

V (Yk)� Cov(Yk; Yj) if i = k 6= j

V (Yk) if i = j = k

;

where

E(Yi) =

 
(2i� a + 1)

2
�t� T

! 
r +

�2

2

!
;

V (Yi) =
(a� 1)(2a� 1)

6a
�2�t + �2(T � ti);

Cov(Yi; Yj) =

�
�

a

�2 iX
k=i�a+1

jX
h=j�a+1

min(k; h)�t;

��2[ (i+ j � a+ 1)�t� T ]:
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