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Abstract

A derivative(or derivative security) is a financial instrument whose value depends
on the value of other, more basic underlying variables, such as bonds or stocks. A
stock option is a right to buy or sell a stock by a certain date for a certain price. The
price in the contract is known as the exercise price or strike price; the date in the
contract is known as the expiration date or maturity.

Stock options with reset properties are traded actively on many exchanges through-
out the world. A reset option is a path-dependent option whose strike price can be
reset based on certain criteria. The geometric-average-trigger reset option resets the
strike price based on the geometric average of the underlying asset’s price over a cer-
tain time period, the so-called monitoring interval. If there are multiple monitoring
intervals, multiple resets result. Similar contracts have been traded on exchanges
in Asia. For example, Grand Cathay, a securities firm in Taiwan, issued two reset
options(Bloomberg 0517TT and 0522TT) in the Taiwan Stock Exchange in 1999.

This thesis suggests two numerical approaches for pricing geometric-average-trigger
reset options with multiple monitoring intervals. For American-style reset puts,
an O(n4h2)-time algorithm on an n-period binomial lattice is presented, where h
is the length (in number of periods) of each monitoring interval. A more efficient
O(n3hm)-time algorithm, where m denotes the number of monitoring intervals, prices
European-style reset options. It is also shown that an American-style reset call will
not be exercised early if its underlying asset does not pay dividends. This makes the
second approach applicable to American-style reset calls. It can be proved that the
price of a geometric-average-trigger reset call is higher than that of an arithmetic-
one, and vice versa for a put. Monte Carlo simulations suggest that both European-
style geometric- and arithmetic-average-trigger reset options have similar values. This
suggests that our approaches give very approximate price for the difficult arithmetic-
average-trigger reset options. Experimental data confirm the correctness of the results
above.



Chapter 1

Introduction

A derivative(or derivative security) is a financial instrument whose value depends on
the value of other, more basic underlying variables, such as bonds or stocks. With the
rapid development of many economies, more and more derivatives have been designed
and issued by financial institutions in order to satisfy their clients. All the financial
innovations make the market grow fast and become more efficient. But on the other
hand, those sophisticated derivatives are getting more complicated and difficult to
understand. They give rise to new problems in pricing and hedging. These problems
have attracted the attention of both the industry and the academia.

A new science, named financial engineering, is founded under such circum-
stances. It is the result of the interaction between three disciplines: financial eco-
nomics, computer science, and mathematics. This science involves the design, de-
velopment, and implementation of innovative financial instruments and processes,
through which we can meet the requirement of risk management. The field of finan-
cial engineering has developed very quickly for last 3 decades.

A Review of Reset Options

A stock option is a right to buy or sell a stock by a certain date for a certain price.
The price in the contract is known as the exercise price or strike price; the date in
the contract is known as the expiration date or maturity. A call option gives the
holder the right to buy the underlying asset, while a put option gives the holder the
right to sell the underlying asset.

Path-dependent derivatives are derivative securities whose payoff depends nontriv-
ially on the price history of the underlying asset. Some path-dependent derivatives
such as barrier options can be efficiently priced. Others, however, are known to be
difficult to price in terms of speed and/or accuracy, like the (arithmetic) Asian option
(see Lyuu [2002].) A reset option is a path-dependent option whose strike price can
be reset based on certain criteria. To prevent price manipulation, many contracts use
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Introduction 2

the average price of the underlying asset during a certain time period, the so-called
monitoring interval, as a reset trigger instead of the underlying asset’s price.

This reset criteria makes the options hard to price. The averaging can be either
over the prices in the monitoring interval or based on a moving window sliding over the
monitoring interval. The geometric-average-trigger reset option uses the geometric
price average in the monitoring interval to set the strike price at the reset date. If there
are multiple monitoring intervals, the end of each interval is a reset date. For example,
Grand Cathay, a securities firm in Taiwan, issued two reset options(Bloomberg 0517TT
and 0522TT) in the Taiwan Stock Exchange in 1999. We briefly describe the two
options below.

• 0517TT: The strike price was 57.25 New Taiwan dollars (TWD) initially. It
would be reset to 52.65 TWD if the six-day moving average of its underlying
asset’s prices, the CMC Magnetics Corporation, fell below 52.65 TWD during
the first three months after the option was issued.

• 0522TT: The strike price would be reset to 98%, 96%, 94%, 92%, and 90% of
the initial strike price of 81 TWD if the six-day moving average of the CMC
Magnetic Corporation stock prices would fall to 98%, 96%, 94%, 92%, and
90%, respectively, of the initial strike price during the first three months after
the option was issued.

Gray and Whaley [1999] derive an analytic solution for single-reset reset options.
Heynen and Kat [1995] discuss the discrete lookback options, which are closely re-
lated to reset options. Cheng and Zhang [2000] derives an analytic formula for the
geometric-average-trigger reset option with a single monitoring interval. Their for-
mula can only be applied to options with only a single monitoring interval. Their
formula is erroneous, however (see Fang[200].)

In this thesis two numerical approaches are introduced for pricing geometric-
average-trigger reset options with multiple monitoring intervals. For American-style
reset puts, it is shown that if each monitoring interval has the same duration, say
h periods, then an O(n4h2)-time algorithm can be derived. A much more efficient
O(n3hm) algorithm exists for European-style reset options, where m denotes the num-
ber of reset dates. Besides, Monte Carlo simulations suggest that both European-style
geometric- and arithmetic-average-trigger reset options have similar values.

Structures of the Thesis

This thesis is organized as follows. In Chapter two, some background knowledge about
financial derivatives is introduced, including the properties of derivatives, pricing
models and methods. The definition of geometric-average-trigger reset option can
also be found in Chapter 2. The lattice approach that can handle American-style
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options is shown in chapter 3. In chapter 4, a much more efficient combinatorial
approach is introduced. Experimental results and some properties of average reset
options are provided in Chapter 5.



Chapter 2

Option Pricing Basics

2.1 Basic Assumptions

Some basic assumptions in finance is presented here. Survey on mathematical tools
is also given in this section.

2.1.1 Basic Assumptions in Finance

The following statements must hold for all the models in this thesis.

Rational Behavior

People in this ideal market all behave rationally. That is, they try to maximize their
benefit. They want to gain more and avert risk. This is also a basic assumption used
in most economic models.

Efficient Market

All derivatives are priced correctly. You can trade at the market price. This assump-
tion implies that there is no liquidity problem in this ideal market.

Complete competitive market

All people behave like price takers in this market. Trading activities do not influence
the prices in the market. So traders in this market do not care about the side effects
of their activities, such as price movements caused by their trading.

No Arbitrage Opportunity

Arbitrage is any trading strategy that requires no cash investment and has some
probability of making profits without any risk of loss. In our ideal environment,
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Option Pricing Basics 5

there should be no arbitrage opportunity for any trading strategy. That is, you can
not make excess return without taking any risk. This important assumption implies
that the return of any riskless portfolio is the risk-free rate.

No Transaction Cost

No tax and shoes leather cost need to be taken into consideration. This assumption
will make our models become simpler.

2.1.2 Survey of Mathematical Tools

2.1.2.1 Stochastic Process

Any variable whose value changes over time in an uncertain way is called a stochastic
process. Stochastic processes can be classified as discrete−time processes or continuous−
time ones. A discrete-time stochastic process is one in which the value of the variable
can change only at some certain time, whereas a continuous-time stochastic process
allows changes take place at any time.

Formally, a stochastic process X = {X(t)} is a time series of random variables. In
other words, X(t) is a random variable for time t, and it is usually called the process
state at time t. We often write X(t) as Xt in shorthand. If the time t comes from a
countable set, we call Xt a discrete − time stochastic process. If the time t forms a
continuum, we call it a continuous − time stochastic process. Any realization of X
is called a sample path or trajectory. Note that a sample path is but an ordinary
function of t. Figure 2.1 plots a sample realization of a Brownian motion process.

Wiener Process A Wiener process, sometimes referred to as a Brownian motion
in physics, is a particular type of Markov stochastic process. It is often used for
simulating stochastic variables in physics and finance.

Assume the behavior of Zt follows a standard Wiener process. Consider the change
of its value in a small duration of 4t. Let 4z be the change in z during 4t, then the
following properties must hold :
Property 1

4z = ε
√

4t

where ε is a random drawing from the standard normal distribution. 1

Property 2

1A standard normal distribution is a normal distribution with mean zero and standard deviation

1.
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Figure 2.1: A Sample Path of a Brownian Motion Process. The stochastic
process with volatility is testified by the jittery of the path. The related deterministic
process with randomness been taken out is also plotted for reference.

The value of 4z for any two disjoint time intervals are independent.

Thus 4z is a normal distribution with zero mean and its standard deviation is
equal to

√
4t by property 1. Property 2 implies that z follows a Markov process.

Generalized Wiener Process The standard Wiener process is a stochastic pro-
cess with mean zero and variance 1. A generalized process can be defined in terms
of a standard Wiener process dz as follows:

dx = a dt + b dz (2.1)

where a and b are constants.

2.1.2.2 Ito Process

In this subsection, I will introduce a powerful tool, developed by Ito[3], to handle
stochastic processes. An Ito process is a stochastic process X = {Xt, t ≥ 0} satisfying

Xt = X0 +

∫ t

0

as +

∫ t

0

bsdWsds, t ≥ 0, (2.2)
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where X0 is the ”starting point, ” and at and bt are two stochastic processes satisfying
∫ t

0
|as|ds < ∞ and

∫ t

0
|bs|ds < ∞, respectively, almost surely for all t ≥ 0. A shorthand

for (2.2) is the following Ito differential,

dXt = atdt + bt

√

dtξ (2.3)

where ξ is again a random variable from the standard normal distribution. From
(2.3), it is easy to find that dW in (2.2) is a normal distribution with mean zero
and variance dt. It is easy to see that (2.3) reduces to (2.1) when at and bt are all
constants.

Ito’s Lemma The central tool in the Ito integral is Ito’s lemma. It says that a
smooth function of an Ito process is also an Ito process. Assume Xt is an Ito process
of (2.1), and f is a smooth function, then the following equation follows from Ito’s
lemma:

df(X) = f ′(x)adt + f ′(x)bdW +
1

2
f ′′(x)b2dt (2.4)

The Ito’s process can be generalized to higher dimensions for handling multi-
dependent or independent Wiener processes. Consult [3] for more information.

2.2 Option Pricing Models

The basic options theory in finance and mathematical models are introduced in this
section.

2.2.1 Option Basics

Option on stocks were first traded on an organized exchange in 1973. Since then
there has been a dramatic growth in options markets. Huge volumes of options are
also traded over the counter by banks and other financial instititions. The underlying
assets include stocks, stock indices, foreign currencies, debt instruments, commodities,
and futures contracts.

There are two basic types of options. A call option gives the holder the right to
buy the underlying asset by a certain date for a certain price. A put option gives
the holder the right to sell the underlying asset by a certain date for a certain price.
The price in the contract is known as the exercise price or strike price; the date
in the contract is known as the expiration date or maturity. American options
can be exercised at any time up to the expiration date. European options can be
exercised only on the expiration date itself.2 Most of the options that are traded on

2Note that the terms American and European do not refer to the location of the option or the

exchange. Some options trading on North American exchanges are European.
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exchanges are American, and one contract is usually an agreement to buy or sell 100
shares(1,000 shares in the Taiwan Stock Exchange). European options are generally
easier to analyze than American options, and some of the properties of an American
option are frequently deduced from those of its European counterpart.

2.2.1.1 Payoffs on Standard Options

S

Profit/loss

S

Profit/loss

S

Profit/loss

X

X

X

X

(a) (b)

(d)(c)

P

P

C

S

Profit/loss

Figure 2.2: Profit/Loss of Options. (a) Long a call. (b) Short a call. (c) Long a
put. (d) Short a put.

An option gives the holder the right to do something. The holder does not have to
exercise the right. For example, consider the standard European option. Assume the
value of the underlying asset is S, the strike price is X, and the premium of call/put
option is represented by C and P , respectively. Then the payoff for the long position
at maturity is max(0, S −X) for call options; max(0, X − S) for put options. So the
profit for a long position in call options at maturity is

max(S − X, 0) − C

The profit for a long position in put options is

max(X − S, 0) − P
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So the profit for a short position in call options is

−[max(S − X, 0) − C] = min(X − S, 0) + C

while the profit for a short position in put options is

−[max(X − S, 0) − P ] = min(S − X, 0) + P

Equations above are illustrated graphically in Figure 2.2. Note that the calculations
above ignore the time value of money.

2.2.2 The Black-Scholes Formula

In the early 1970s, Fischer Black, Myron Scholes, and Robert Merton made a major
breakthrough by deriving a differential equation that must be satisfied by any deriva-
tive security whose underlying asset is a non-dividend-paying stock. They solved
this equation and obtained the closed-form solution for European call and put op-
tions on stock. This formula, known as the Black-Scholes formula, is one of the most
significant tools for pricing financial instruments.

2.2.2.1 The Log-normal Model for Stock Price

A log-normal distribution for the stock price is the standard model used in financial
economics. This is because its properties can satisfy reasonable assumptions about
the random behavior of stock prices. The stochastic log-normal model for the non-
dividend-paying stock is

dS

S
= µdt + σdz (2.5)

Equation (2.5) is also known as geometric Brownian motion where S is the stock
price. The variables µ and σ are referred to as the expected return and volatility,
respectively.

Clearly, the rate of return3 on stock is a random variable with a normal distribu-
tion. That is why we call it log-normal. The stock price realized by this model will
never be negative, and the percentage changes of S are independent and identically
distributed. These nice properties make it a good model for simulating the stock
price movement.

2.2.2.2 Assumptions

The assumptions used to derive the Black-Scholes differential equation are listed
below:

3Using the continuous compounding formula.
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1. The value of the underlying assets follows the log-normal distribution.

2. The rate of return on stock, µ, and the volatility of stock price, σ, are constant
throughout the option’s life.

3. The short selling of securities with full use of proceeds is permitted.

4. The are no transaction costs or taxes. All securities are perfectly divisible.

5. No dividends are paid during the life of the derivative security.

6. No arbitrage opportunity.

7. Security trading is continuous.

8. The risk-free interest rate, r, is constant and unchanged during the life of the
security.

2.2.2.3 The Black-Scholes Differential Equation

By eliminating the random source of the underlying stochastic process [6], the final
equations emerges as

∂f

∂t
+ rS

∂f

∂S
+

1

2
σ2S2 ∂2f

∂S2
= rf (2.6)

where f is the price of a derivative security, S is the stock price, σ is the volatility of
the stock price, and r is the continuously compounded risk-free rate.

2.2.2.4 The Closed Form Solution for Black-Scholes Formula

The closed form solutions for the price of European calls and puts by solving (2.6)
can be described as below,4

C = SN(d1) − Xe−rT N(d2)

P = Xe−rT N(−d2) − SN(−d1)

where

d1 =
ln(S/X) + (r + σ2/2)T

σ
√

T

d2 =
ln(S/X) + (r − σ2/2)T

σ
√

T
= d1 − σ

√
T

4C denotes the call price, P denotes the put price.
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The notations for the above equation are described as below.
N(x) = probability distribution function for standard normal distribution,
σ2 = annualized variance of the continuously compounded return on stocks,
r = continuously compounded risk-free rate,
T = time to maturity.

2.2.3 The CRR Binomial Lattice

S

Su

Su
2

Su
3

Sd

Sd
2

Sud
2

Sud
2

Sd
3

Sud

Figure 2.3: A Three-Period Binomial Model . Stock price moves over three time
periods on the binomial model. S is the stock price at period 0 and u and d are
constants indicating the upward and downward ratios of stock price movements.

The approach to build a binomial lattice for the log-normal distribution is intro-
duced here. First of all, we should calibrate the first and the second moments. The
generalized three-period binomial model is illustrated in Figure 2.3.

Let Pu and Pd indicate the probability of an up move and a down move, respec-
tively, then the equations can be described as follows,

Rf = ln uPu + ln dPd

V = (ln u − Rf )
2Pu + (ln d − Rf )

2Pd

Pu + Pd = 1

where Rf denotes the risk-free rate and V denotes the variance of the stock return.
Certainly, these four unknown variables can not be determined by the above three
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equations. For the convenience of pricing in lattice models, proper constraints are
selected to achieve some good properties. Some examples are: the constraints we add
in the CRR model is ud = 1, and Pu = Pd = 0.5 in the Jarrow’s model.

2.3 Geometric-Average-Trigger Reset Options

An option starts at time 0 and matures at T . Let r denote the risk-free interest rate.
S(t) denotes the underlying asset’s price at time t, and σ denotes the volatility of
underlying asset. We assume S follows

dS = rS dt + σS dW

in a risk-neutral economy.
Geometric-average-trigger reset options are reset options whose strike price can

be reset to the geometric average of the underlying asset’s prices over a monitoring
interval. Consider a general reset option with m reset dates: 0 ≤ t1 < t2 < · · · <
tm−1 < tm ≤ T . Assume the m monitoring intervals are [t1 − `1, t1], [t2 − `2, t2], . . . ,
[tm−`m, tm], where `i denotes the length of the ith monitoring interval. Define avg(ti)
as the geometric average price of the underlying asset during the ith monitoring
interval. Let K(ti) be the strike price prevailing at time ti with K(t0) = K, the
original strike price. The reset procedure at time ti is:

K(ti) =

{
K(ti−1), if avg(ti) ≥ K(ti−1)
avg(ti), if avg(ti) < K(ti−1)

.

We will assume that `1 = `2 = · · · = `m = ` and that the monitoring interval are
disjoint to simplify the presentation. The payoff of the call is (S(T ) − K(tm))+.
Similarly, the reset procedure for the put is

K(ti) =

{
K(ti−1), if avg(ti) ≤ K(ti−1)
avg(ti), if avg(ti) > K(ti−1)

,

and the payoff of the put is (K(tm) − S(T ))+.



Chapter 3

The Lattice Approach to Pricing

An algorithm based on the binomial lattice model is introduced in this chapter. This
algorithm can accurately price general American-style geometric-average-trigger reset
call/put options. The backward-induction technique is applied in this algorithm.

3.1 The Binomial Model

The standard CRR binomial lattice will be adopted for the underlying asset’s price
dynamics. The binomial model starts at (discrete) time 0 and ends at time n. Because
the life span of an option is T , the length of each period, denoted as ∆t, equals T/n.
The number of periods for a monitoring interval, h, equals `/∆t. Let node (i, j),
0 ≤ j ≤ i ≤ n, stands for the node at time i with j cumulative down moves and
S(i, j) denotes the underlying asset’s price at node (i, j). Initially, S(0, 0) = S(0).
The current underlying asset’s price at node (i, j), S(i, j), becomes S(i, j)u at node
(i + 1, j) (the up move) with probability pu and S(i, j)d at node (i + 1, j + 1) (the

down move) with probability pd ≡ 1 − pu, where u = eσ
√

∆t and

ud = 1.

The above identity, though not necessary for theoretical purposes, is crucial in the
development of our algorithm. Clearly, S(i, j) is equal to S(0)ui−2j, and node (i, j)
is reached with probability

(
i
j

)
pi−j

u pj
d. We assume that the underlying asset does

not pay dividends for simplicity. For pricing purposes, the probability pu is set to
(er∆t − d)/(u − d), where r denotes the continuously compounding risk-free interest
rate per annum.

3.2 Basic Ideas

To price a geometric-average-trigger reset option, the geometric sum of the underlying
asset’s prices in a monitoring interval is a key number because it sets the strike price.

13
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Figure 3.1: The Binomial Model. Node (i, j) is the result of j down moves and
i − j up moves, where 0 ≤ j ≤ i.

Our algorithm keeps track of the prevailing strike price and the partial geometric sums
of the underlying asset’s prices during a monitoring interval at each node. These
numbers constitute the states for a node. The question is, what is the size of the
states at each node?

We first define a few key terms. Let (S0, S1, . . . , Si) be a sequence of prices, where
i ≤ h. Define S0S1 · · ·Si as the (partial) geometric price sum. When i = h, we call
(S0S1 · · ·Sh)

1/(h+1) a geometric price average. For example, the geometric price sum
of a price sequence (S, Su, Su2, . . . , Sui) is Si+1ui(i+1)/2. When i = h, its geometric
price average is Suh/2. For a price of form S(0)iug, we call g the price index.

The underlying asset’s prices over an n-period lattice form the set

{S(0)u−n, S(0)u−n+1, . . . , S(0)un−1, S(0)un}.

The set of possible partial geometric price sums for the ith (i ≤ h) node in a moni-
toring interval is some subset of

{S(0)iu−n(i+1), S(0)iu−n(i+1)+1, . . . , S(0)iun(i+1)−1, S(0)iun(i+1)},

which has 2n(i+1)+1 elements. This is because the maximum geometric price sum for

ith node in a monitoring interval is smaller than

i
︷ ︸︸ ︷

S(0)un × · · ·S(0)un = S(0)un(i+1).
Similarly, the minimum geometric price sum is larger than S(0)u−n(i+1). Hence, all
possible geometric price sums for this node must has a integral price index between
−n(i + 1) and n(i + 1). Therefore, the number of possible geometric price sums for
a node falling under a monitoring interval is bounded by O(nh). The number of
possible strike prices is also bounded by O(nh) because the strike price will only be
reset to a prevailing geometric price average. As a result, the maximum number of
states for each node is bounded by O(n2h2). This estimate is pessimistic as some
nodes need much fewer states.
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3.3 Four Types of Nodes

Depending on where a node is located on the lattice relative to the monitoring inter-
vals, different backward-induction formulas result. In Fig. 3.2, the lattice is divided
into four areas. Area A includes the lattice nodes before the first monitoring interval.
Each node in area A needs only one state to store the option value whose correspond-
ing strike price is K. Note that partial geometric sums of the underlying asset’s prices
are not required since no nodes in area A fall under any monitoring interval. We use
MA

i,j to denote the option value at node (i, j) in area A.

h h

A B C ED

h

1t 1-m
t

m
t

Figure 3.2: Overview of the Lattice.

The second area, area B, includes all the nodes falling under the first monitoring
interval. Each node requires 2n(h+1)+1 states for the 2n(h+1)+1 different possible
geometric price sums. We use MB

i,j(y) to denote the option value when the price index
of the partial geometric price sum is y − n(h + 1) at node (i, j) in area B.

The third area, area D, includes all the nodes between two adjacent monitoring
intervals. Each node needs 2n(h+1)+1 states since up to 2n(h+1)+1 strike prices
need to be recorded. The geometric price sums are not required since nodes in area
D do not fall under any monitoring interval. We use MD

i,j(x) to denote the option

value whose corresponding current strike price is S(0)u
x

h+1
−n at node (i, j) in area D.

The original strike price K is not necessarily equal to one of the possible geometric
price averages. Define z which satisfies

S(0)u
z−1

h+1
−n < K ≤ S(0)u

z

h+1
−n. (3.1)

Then MD
i,j(z) as the option value whose corresponding current strike price is K instead

of S(0)u
z

h+1
−n. Note that the calculations for the states whose price indexes are
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greater than z can be skipped because the strike price can only be reset to some
geometric price averages lower than K.

The third area, area C, includes all the nodes falling under the monitoring intervals
(excluding the first monitoring interval.) [2n(h+1)+1]2 states are needed at each node
in area C. This is because both the geometric price sums and the prevailing strike
prices are relevant. We use MC

i,j(x, y) to denote the option value when the current

strike price and the price index of the partial geometric price sum are S(0)u
x

h+1
−n and

y − n(h + 1), respectively, at node (i, j) in area C.

3.4 Pricing with Backward Induction

To evaluate an American-style option, we traverse the lattice in a backward fashion.
Prices for the states at any node in area D can be evaluated by

MD
i,j(x) = e−r∆t[puM

D
i+1,j(x) + pdM

D
i+1,j+1(x)].

Next, we focus on the states for a node that is located on a reset date between
areas C and D. Resetting of the strike price may happen here. If the current strike
price is lower than or equal to the prevailing geometric price average (i.e., x ≤ y in
the following formula), the strike price will not be reset; otherwise, the strike price
should be reset to the prevailing geometric price average. Therefore,

MC
i,j(x, y) =

{
e−r∆t[puM

D
i+1,j(x) + pdM

D
i+1,j+1(x)], if y ≥ x,

e−r∆t[puM
D
i+1,j(y) + pdM

D
i+1,j+1(y)], if y < x.

Now we focus on the states for nodes in area C. We should keep track of the
current strike prices and the price indices, which represent the geometric price sums
over the monitoring interval. We use the following formula:

MC
i,j(x, y) = e−r∆t[puM

C
i+1,j(x, y + (i + 1) − 2j) + pdM

C
i+1,j+1(x, y + (i + 1) − 2(j + 1))].

Consider the states for a node (i, j) which is one period before the beginning of
a monitoring interval (but excluding the first monitoring interval), that is, located
at the boundary between areas D and C. We can evaluate them by the following
formula:

MD
i,j(x) = e−r∆t[puM

C
i+1,j(x, (i + 1) − 2j) + pdM

C
i+1,j+1(x, (i + 1) − 2(j + 1))].

For the states at node (i, j) on the first reset date, we apply the following formula:

MB
i,j(y) =

{
e−r∆t[puM

D
i+1,j(y) + pdM

D
i+1,j+1(y)], if y < z,

e−r∆t[puM
D
i+1,j(z) + pdM

D
i+1,j+1(z)], if y ≥ z.
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For the states at a node in the first monitoring interval (area B), we apply the
following formula:

MB
i,j(y) = e−r∆t[puM

B
i+1,j(y + (i + 1) − 2j) + pdM

B
i+1,j+1(y + (i + 1) − 2(j + 1))].

For the states at a node one period before the beginning of the first monitoring
interval, we apply the following formula:

MA
i,j = e−r∆t[puM

B
i+1,j((i + 1) − 2j) + pdM

B
i+1,j+1((i + 1) − 2(j + 1))].

Finally, the backward-induction formula in area A is

MA
i,j = e−r∆t(puM

A
i+1,j + pdM

A
i+1,j+1).

The final pricing result is obtained at MA
0,0.

Since the maximum number of states for each node is bounded by O(n2h2) and
there are O(n2) nodes in the lattice, we conclude that the algorithm runs in O(n4h2)
time.



Chapter 4

The Combinatorial Approach

In the former algorithm, O(n2h2) states are needed for every node in a monitoring
interval (but excluding the first monitoring interval). This results in an O(n4h2) algo-
rithm since there are O(n2) nodes. A faster O(n3hm) approach using combinatorics
will be described below where m denotes the number of monitoring intervals. This
approach, still based on the CRR lattice, provides the same results as the former
one, just faster. Forward-induction technique is employed by this approach. In other
words, we assume that the probability at root node is 1, and the probabilities propa-
gate forward in time. The option value is computed by taking the expected value of
the final payoff. We will devise an efficient way to propagate the probabilities using
combinatorics. See Lyuu [2002] for more information on the combinatorial methods
for pricing.

4.1 Monitoring Intervals

In Fig. 4.1, each array has 4 states which are corresponding to different current strike
prices K1, K2, K3, and K4, respectively. Assume K1 > K2 > K3 > K4. The variable
ai (1 ≤ i ≤ 4) listed in left most array denotes the transition probability for the
state whose corresponding strike price is Ki at an arbitrary node α located at the
beginning of a monitoring interval. The ith term in right most array denotes the
probability for the state whose corresponding strike price is Ki at another arbitrary
node β located at the end of a monitoring interval. The variable bi in the central array
denotes the transition probability for the price paths that start from α and end in β
with geometric price average equal to Ki. Our goal is to evaluate the probabilities
for each state variable at node β efficiently. This can be divide into two different
subgoals as follows.

18
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Figure 4.1: Probability Propagation in a Monitoring Interval.

Probabilities at Reset Dates

Recall that the strike price will be reset if the new geometric price average is lower
than the original strike price. Take the second state variable in the left most array for
example. The probability for the price paths reaching this state is a2, and the current
strike price for the price paths is K2. Obviously, the probability for the price paths
that pass through this state and have geometric price average Ki is a2bi. However,
the strike price will only be reset when the geometric price average is lower than
the current strike price. So the probability a2b1 should be added in the second state
variable in the rightmost array. The probabilities in the right most array are derived
similarly.

The computational complexity can be reduced by writing the formula for the ith
state variable in the right most array as

(
i−1∑

k=1

ak

)

bi +

(
i∑

k=1

bk

)

ai.

Since
∑i−1

k=1 ak and
∑i

k=1 bk for 1 ≤ i ≤ 2nh can all be evaluated in O(nh) time, the
transition probabilities in the right most array can be evaluated in O(nh) time.

Transition Probabilities

The transition probabilities in the central array can be evaluated by the following
generating function:

(x−h + xhy)(x−h+1 + xh−1y) · · · (x−2 + x2y)(x−1 + xy). (4.1)
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Similar generating functions can be found in Lyuu [2002] for solving geometric average
Asian options. The coefficient of xαyβ denotes the number of the paths that start from
a node (i, j) and go through the node (i + h, j + h− β) with the geometric price sum
equals to S(i, j)h+1uα. The same probabilities need for all (i, j) pairs. It is obvious
that formula (4.1) can be computed in time O(h4). So the transition probabilities in
the central array can be obtained in O(h4) time.

In summary, it takes O(n3h) time to propagate the probabilities through the
monitoring intervals. Assuming that there are m monitoring intervals in the lattice,
the algorithm would take O(n3hm) time.

4.2 The Algorithm

Each node needs the same amount of the states as the previous approach described
to store the transition probability instead of option value.1 We use P •

i,j(•) to denote
the transition probability at a state in (i, j). In area A, we set PA

0,0 = 1. If node (i, j)
is the first period in the monitoring interval, then it is obvious that

PB
i,j(x) =

{ (
i
j

)
pi−j

u (1 − pu)
j, if x = (i − 2j)(h + 1) + n(h + 1),

0, otherwise.

The probabilities propagated through area B can be determined by the methods
provided in the last subsection. The probability propagation between areas B and D,
that is, for the state variables at node (i, j) located at node which are immediately
after the first reset date, is determined by propagating the probabilities from the state
variables located at first reset date by the following formula:

PD
i,j(x) =







PB
i−1,j(x)pu + PB

i−1,j−1(x)pd, if x < z,
∑

y≥z PB
i−1,j(y)pu +

∑

y≥z PB
i−1,j−1(y)pd, if x = z,

0, if x > z,

where z is defined in Eq. (3.1). Probability propagated through area D can be

determined by PD
i,j(x) =

∑p
q=0 PD

p,q(x)
(

i−p
j−q

)
p

(i−p)−(j−q)
u pj−q

d for any arbitrary node (i, j)

located at last period before the next monitoring interval and node (p, q) located at
first period after the former monitoring interval (i.e; the boundary between area D
and C). To propagate the probabilities into area C, the following recurrence is used:

PC
i,j(x, y) =

{
PD

i−1,j(x)pu + PD
i−1,j−1(x)pd, if y = (i − 2j)(h + 1) + n(h + 1),

0, otherwise.

1Only the states in the boundary nodes, the nodes between two different areas as described above,

are needed in our algorithm. States at some other nodes are not required.
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Obviously, to propagate probabilities through area C can be done by the methods
determined in the last subsection, so we only need to consider propagating the prob-
abilities from nodes located at the reset date to any arbitrary node (i, j) located at
next period. This can be done by first setting all state variables located at node (i, j)
to 0, and then propagate the probabilities from nodes located at the last period by
the following formulas:

PD
i,j(x) =

∑

k≥x

PC
i−1,j(x, k)pu +

∑

k≥x

PC
i−1,j−1(x, k)pd

+
∑

k>x

PC
i−1,j(k, x)pu +

∑

k>x

PC
i−1,j−1(k, x)pd

Finally, the option value is simply the discounted expected value of the final payoff.



Chapter 5

Behavior Analysis and
Experimental Results

5.1 Behavior Analysis

Some special properties of reset options are discussed in this section. First, an
American-style reset call is proved not to be exercised early if the underlying asset
does not pay dividends. Second, the relations between the time span of monitoring
intervals and the option value are also discussed.

Theorem 5.1.1 An American-style reset call option will not be exercised early if the

underlying asset does not pay dividends.

Proof. It is well-known that an American vanilla call option will not be exercised
early if the underlying asset does not pay dividends. That is, at any arbitrary node
N of the lattice, the following inequality should always be satisfied:

EQ
v [VN ] ≥ SN − K

where EQ
v [VN ] denotes the option value at node N if a vanilla option is not exercised

immediately, and SN denotes the underlying asset’s value at node N . Since the strike
price of a reset call could only be reset to a lower level, the value to hold a reset call
should be at least as high as the value to hold a vanilla call . It is observed that

EQ
r [VN ] ≥ EQ

v [VN ] ≥ SN − K

where EQ
r [VN ] denotes the option value at node N if a reset option is not exercised

immediately. As a result, a reset call won’t be exercised early. 2

Most average reset options in real market are triggered by the arithmetic price
average instead of geometric one. Pricing arithmetic-average-trigger reset options is

22
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not easy, but it is surprisingly easy to explore the relationship between these two
kinds of options.

Theorem 5.1.2 The price of the geometric-average-trigger reset call option is higher

than the price of the arithmetic-average-trigger reset call option.

Proof. Let avgG(ti) and avgA(ti) denote the geometric and the arithmetic price
average of the i-th monitoring interval, respectively. Since avgG(ti) ≤ AvgA(ti), we
have

min{K, avgG(t1), avgG(t2), . . . , avgG(tm)} ≤ min{K, avgA(t1), avgA(t2), . . . , avgA(tm)}.

Consequently,

E(S(T ) − min{K, avgG(t1), avgG(t2), . . . , avgG(tm)})+

≥ E(S(T ) − min{K, avgA(t1), avgA(t2), . . . , avgA(tm)})+.

2

Theorem 5.1.3 The price of the geometric-average-trigger reset put option is lower

than the price of the arithmetic-average-trigger reset put option.

Proof. Obviously,

max{K, avgG(t1), avgG(t2), . . . , avgG(tm)} ≤ max{K, avgA(t1), avgA(t2), . . . , avgA(tm)}.

Consequently,

E(max{K, avgG(t1), avgG(t2), . . . , avgG(tm)} − S(T ))+

≤ E(max{K, avgA(t1), avgA(t2), . . . , avgA(tm)} − S(T ))+.

2

In real market, We compute the average price of some representative prices, like
closing prices, instead of computing the continuous geometric price average during
the monitoring intervals. The relationship between the sampling frequencies and the
option value can be explored by taking advantages of Brownian bridge. We sample n
points, including the beginning and the end points, in each monitoring interval; these
n points divide the monitoring interval into n − 1 equal sub-intervals. The average
price of n sampling points located at i-th monitoring interval is denoted as avgG

n (ti).
Some required properties of Brownian bridge are explored in the following lemma.
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5.2 Experimental Results

The data listed in Table 5.1 show how the the number of reset dates influence the
option value. Suppose that it is a put option, the initial stock price is 100, the
initial strike price is 95, the interest rate 5%, the volatility is 30%, the length of
the monitoring intervals is 5 periods, and the number of periods in the lattice is 50.
Assume the lifespan of the option is one year. Since the options are more likely being
reset when the number of reset dates increase, the option value also increases as the
reset dates increase. Monte Carlo simulations results are also listed in the same table
to show the accuracy of our algorithms.

The data listed in Table 5.2 show how the different lengths of monitoring intervals
influence the option value. Suppose that the initial stock price is 100, the initial strike
price is 90, the interest rate 6%, the volatility is 30%, and the number of periods in
the lattice is 65. The reset dates are at period 10,20,30,40,50,60. Assume the lifespan
of the option is one year. We can see from the result that the option value decreases
as the length of the intervals increases.

Table 5.3, Table 5.4, and Table 5.5 show that the relative difference between the
value of geometric- and arithmetic-average-trigger reset options is insignificant. Fig
5.1 demonstrates the oscillation of option value with respect to n, the number of
periods in the lattice. We can see that the option value converges very quickly when
n ≥ 50. Table 5.6 compares the running time of the two algorithms. Obviously the
combinatorial approach is far more efficient then the lattice approach.

Reset Dates (Year) Lattice Lattice(Euro) MC
1 8.73217 8.3018 8.3020

1,0.8 10.8541 10.4507 10.3667
1,0.8,0.6 12.4521 11.9824 11.9054

1,0.8,0.6,0.4 13.7323 13.1883 13.1036
1,0.8,0.6,0.4,0.2 14.735 14.1174 14.0317

Table 5.1: Option Values with Respect to Different Reset Dates. The option
value increases with the number of reset dates. After 1,000,000 sample paths with
Monte Carlo simulation with 1,000 time steps, the option values are relatively close
to the values calculated by the lattice approach.
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Length(year) Lattice MC
1/65 22.8105 22.795
2/65 22.7031 22.699
3/65 22.6586 22.625
4/65 22.5909 22.571
5/65 22.5191 22.490

Table 5.2: Option Values w.r.t. Different Lengths of Monitoring Intervals
Option values increase as the length of monitoring intervals decrease. The 1,000,000
times sampling from Monte Carlo Simulation agrees with the values calculated by the
lattice approach.

# of periods vol=0.5 vol=0.8 vol=1.0 vol=1.2 vol=1.5
10 26.04028647 37.70778614 44.85940238 51.51328682 60.57598176
100 26.1147983 37.73757635 44.95541639 51.63071751 60.76180327
1000 26.13326108 37.76117174 45.18583957 52.01828236 61.19064968
10000 26.16468427 37.78172752 44.97135585 51.56229747 60.4602232

Table 5.3: Evaluate Geometric-Average-Trigger Reset Calls with Monte
Carlo simulations. T = 1, S0=100, K=95, r=0.05, h=0.2, and reset date=0.5.

# of periods vol=0.5 vol=0.8 vol=1.0 vol=1.2 vol=1.5
10 26.00424102 37.46460782 44.73355475 51.56247684 60.40588585
100 26.06763879 37.68977758 44.79836599 51.49789968 60.31990169
1000 26.10137742 37.69141599 44.71671987 51.51986505 61.07059802
10000 26.10477572 37.65250356 44.78363601 51.42352387 60.16191354

Table 5.4: Evaluate Arithmetic-Average-Trigger Reset Calls with Monte
Carlo simulations. T = 1, S0=100, K=95, r=0.05, h=0.2, and reset date=0.5.

# of periods vol=0.5 vol=0.8 vol=1.0 vol=1.2 vol=1.5
10 0.138421878 0.644902152 0.280537915 -0.095489974 0.280797615
100 0.180585399 0.126660946 0.349346999 0.257245769 0.72726871
1000 0.122004154 0.184728774 1.038200693 0.958157949 0.196192818
10000 0.228967233 0.342027665 0.417420891 0.269137735 0.493398217

Table 5.5: Difference Percentage. The Relative difference is insignificant.
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Figure 5.1: Oscillation of Option Value. This figure demonstrate the oscillation
of option value with respect to n, the number of periods in the lattice. The option
value converges very quickly when n ≥ 50.

n = 50 n = 100 n = 200 n = 400
Lattice 1′33′′ N.A. N.A. N.A.

Combinatorial 0.14′′ 0.48′′ 21.4′′ 22′18′′

Table 5.6: Running-Time Comparison. The combinatorial approach is far more
efficient then the lattice approach. Assume T = 1, the number of monitoring interval
is 2, the interval length is 0.2, and the reset dates are at 0.4 and 0.8 . n denotes the
number of periods. The experiment is done on an IBM PC with an Intel Pentium III
866 MHz processor and 1 GB DRAM.



Chapter 6

Conclusion and Future Work

The geometric-average-trigger reset option resets the strike price based on the geo-
metric average of the underlying asset’s prices over a monitoring interval. Similar con-
tracts have been traded on exchanges in Asia. An O(n4h2)-time algorithm for general
American-style reset options is presented in the thesis. A more efficient O(n3hm)-
time algorithms is derived to price European-style options. Besides, it is proved that
an American reset call option won’t be exercised early if the underlying assets won’t
pay the dividends. Numerical results are given to suggest the correctness of these
two approaches. Besides, numerical evidence suggests that our pricing approaches
give very tight lower (upper) bounds on arithmetic-average-trigger reset calls (puts,
respectively). Research on arithmetic-average-trigger reset options is under way.
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