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Chapter 1

Introduction

Intuitively, to verify a problem’s solution is easier than to solve it. By the
definition of NP, let L be a language in NP, then there exists a relation R, for
any x € L, there exists a witness y of length poly(|z|) such that (z,y) € R,
which can be decided in polynomial time. In fact, a weaker verifier, which
runs in logarithmic space, is needed: since 3SAT can be verified in logrithmic
space, and every NP-problem can be reduced to 3SAT under a logarithmic-
space reduction [13].

A more surprising result is NP=PCP(log|z|,1), which states that for
any problem in NP, there exists an relation R such that to verify whether
(z,y) € R, the verifier just has to toss O(log|z|) random bits and to read
O(1) bits from y, where the running time of the verifier is a polynomial of
|z| [1]. In [3] and [15], it is possible to construct proof systems for any proof
in a reasonable formal system, where the verifier runs in O(|z| + lgy)-time.
In all these cases, verifier has to perform Q(|z|) work.

Recently, Ergiin et al. suggest an approximate model of PCP, in which
it is enough for the verifier to know that the proof is close to correct, and
the running time of the verifier reduces to sublinear [6]. This idea is also
adaptive to interactive proof systems. If we allow the prover and the verifier
to communicate after the proof is written, verification can be facilitated. In
fact, the efficiency of the algorithms with the approximate PCP system has
only a fraction of O(logn) loss.

What we mean by “close” is problem dependent. For example, for a
MAX3SAT problem, for a goal of K satisfied clauses, one might consider
“close” when there are (1 — €) K satisfied clauses, for some small e. On the



other hand, for a 3SAT problem with m clauses, this is not acceptible for any
€ > 1/m since it might be the case that for each truth assignment, there are
unsatisfied clauses of some fraction smaller than ¢, say, O(1/m) out of the
m clauses, such that the expression is overall unsatisfiable. Throughout this
thesis, we will concentrate on optimization problems, in which the slightly
faulty proof does not ruin the overall task.

Structure of this thesis. In this thesis, we will explore problems related to
approximate PCP/IP systems suggeusted in [6] and discuss the relationship
between the new method and traditional complexity classes. In Chapter 2,
we introduce the models used in later chapters as well as related concepts.
In Chapter 3, we start with two simple problems to show how the proof
system works and build some basic algorithms to facilitate the proofs of more
complicated problems. In Chapter 4, we show how to verify proofs of NP-
complete problems with the basic algorithms in Chapter 3 and discuss the
relationship to MAXSNP (which is a fragment of NP optimization problems)
and coNP. We also apply the proof system to a problem beyond NP and coNP.
In Chapter 5, a brief conclusion is given.



Chapter 2

Prelimilaries

2.1 Definitions of IP and PCP

Before we introduce the approximate proof systems, we give a brief review
of PCP and IP and important theorems first.

Definition 2.1.1 (IP [7]) An interactive proof system (IPS) consists of two
players, an infinitely powerful prover P and a probabilistic polynomial-time
verifier V. P and V share a read-only input tape and a read/write communi-
cation tape. P and V have their own private work tape and random-bit tape.
The output tape can only be accessed by V. The proof system accepts iff the
verifier enters an accepting state.

An interactive proof system for a language L is a pair < P,V >,

1. If x € L, then Prob(< P,V > (z) accepts) > 3/4.
2. If x ¢ L, then for all P', Prob(< P,V > (z) accepts) < 1/4.

A round of an interactive protocol is a message from the verifier to the
prover followed by a message from the prover to the verifier. We let IP(f(n))
represent the languages accepted by interactive proof systems bounded by f(n)
rounds. The class IP = JIP(poly(n)).

It is obvious that NP C IP(1); in polynomial time, V can make sure
that whether an instance is in L if P provides a valid proof string without
using any random bits. A important relationship between IP and traditional
complexity class is proved by Shamir [14].
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Theorem 2.1.1 IP=PSPACE.

Definition 2.1.2 (PCP [2]) A language L is in PCP(f(n),g(n)) if there
is a polynomial-time randomized oracle machine M¥(r,x) which works as
follows:

1. It takes input  and a (random) string r of length O(f(n)), where
n=|z|.

2. It generates a query set Q(r,z) = {q1,--.,qm} of size m = O(g(n)).
3. It reads the bits yYq,, ..., Ygn-

4. It makes a polynomial-time computation using v,z and yq,, . .., Y, and
ouputs M¥(r,z) € {0,1}.

Moreover the following acceptance conditions hold for some § > 0 and all x:

1. If x € L then there exists a y such that for every r we have M¥(r,z) =
1.

2. If x ¢ L then for every y we have Prob,(M¥Y(r,x)) = 0) > §.

It is easy to see that PCP(0,n°("))=NP. In fact, a better result is proved
in [1] as follows.

Theorem 2.1.2 NP = PCP(logn,1).

2.2 Definitions of Approximate Proof Systems

Before we define the approximate proof system formally, let us give a simple
example first.

Among a set of n weighted elements, the verifier V' wants to know the
i'" heaviest one for some reason. The prover P gives V an element e; and
claims that it satisfies V’s demand. As a proof, P gives two arrays L and L'
with length ¢ and n — i respectively, where L (L') contains all the indices j
such that the element e; in the set is heavier (lighter) than e;. In some cases,
V does not ask for ezactly the i** heaviest element, but the one around i**,
say, about ¢ + en. If so, V only has to perform constant work for verification
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independent of n as follows. V' randomly picks O(1/¢) indices out of L (L’),
reads out the corresponding elements from the set, and rejects if one of them
is not heavier (lighter) than e;.

This example gives an approximate proof system to prove that e; is the
it" heaviest one in the set, where the error is bounded by en. To facilitate
the discussion of accuracy, we introduce the concept of distance function .
For any instance z, let y be a candidate of the real solution f(z). A distance
function A(y, f(z)) denotes how far y is from f(x), by a value ranging from
0 to 1. When y = f(z), Ay, f(z)) = 0. The larger the value of A, the
farther away from f(z) y is. For convenience, in later sections sometimes we
refer to the distance as A.

In the above example, we check the correctness of P’s answer in two
phases, the lower bound phase and the upper bound phase. Denote by ¢’ the
real order of e;. In the lower bound phase, the distance A is 0 for i’ > i
and A = |i — i'|/i otherwise. In the upper bound phase, A is 0 if ¢ > ¢’ and
A = |i" —i|/(n— i) otherwise. It is clear that if the distance A exceeds €, V
will find out with high probability.

Now we describe the approximate proof system more formally. In the
approximate proof system, P and V share an input tape and a proof tape
(write-only for P, read-only for V'), all other tapes being private. Both P
and V compute in a RAM model with the following characteristics:

1. Each register can store an arbitarily long bit string.

2. Each basic operation between two registers, such as read, write, com-
pare, add, shift, etc., takes constant time.

We also assume that “to randomly pick some element” takes constant
time.

Definition 2.2.1 (Approzimate IPS [6]) Let A(-,-) be a distance function.
A function f is said to have an t(e,n)-approzimate interactive proof system
(approzimate IPS) with distance function /\ if there is a randomized verifier
V such that for all inputs € and z of size n, the following holds. Let y be the
contents of the proof tape, then:

1. If Ay, f(z)) = 0, there is a prover P, such that V accepts with proba-
bility at least 3/4 (over the internal coin tosses of V).
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2. If Ay, f(z)) > €, for all provers P’, V rejects with probability at least
3/4.

3. Vruns in O(t(e,n)) time.

Definition 2.2.2 (Approzimate PCPS [6]) Let /\(-,-) be a distance func-
tion. A function f is said to have an t(e,n)-approximate probabilistically
checkable proof system (approzimate PCPS) with distance function A\ if there
1s a randomized verifier V such that for all inputs € and z of size n, the fol-
lowing holds. On the output tape, there are two strings y and z, where y is a
candidate of the solution, z is the proof of y = f(z). Then:

1. If Ay, f(x)) =0, there is a proof z, such that V accepts with probability
at least 3/4 (over the internal coin tosses of V).

2. If Ay, f(x)) > €, for all proof ', V rejects with probability at least
3/4.

3. V runs in O(t(e,n)) time.

Throughout this thesis, we will concentrate on the case that t(e,n) is
sublinear in n.

We modified the definition of the approximate PCPS model given in [6]
to a slightly more restricted case: Instead of requiring that the prover is
restricted to a function determined before the start of the interaction, we
require the prover write down the whole proof before the interaction starts.
In the next chapter, we will show that this restriction does not limit the
ability of the proof system.

The choice of the distance function A is problem specific and determines
the ability to construct a proof system, as well as how interesting the proof
system is. The traditional definitions of interactive proof (probabilistically
checkable proof) systems for decision problems requre that when y = f(z),
an honest prover (an correct proof) can convince the verifier of that fact, and
when y # f(x), no prover can convince the verifier of that. [EKR| suggest
that, in the approximate model, this is achieved by choosing A(-,-) such
that A(y,y’) > € whenever y # y' and A(y,y) = 0. Not every problem has
an approximate proof system with the sort of distance function, but such a
problem does exist, and we will discuss one in Section 4.1.2. In fact, a more



straightforward distance function is A(y,y’) = max{0,1 — y/y'}, where the
proof system accepts only when y > (1 — ¢€) f(x).

An approximate proof system is suitable for optimization problems, which
are defined as follows.

Definition 2.2.3 (Optimization Problem [13]) An optimization problem is
defined by a tuple (L, S, v, goal) such that I is the set of instances of the
problem, S is a function that maps an instance x € L to all feasible solutions,
v is a function that associates a positive integer to all s € S(x), and goal is
either minimization or maximization.

The value of an optimal solution to an instance z is called OPT(z) and
is the minimum or mazimum of {v(s)|s € S(z)} based on goal.

But in most cases, the approximate proof system can only give a lower
bound to a maximization problem or an upper bound to a minimization
problem. We will discuss this in Chapter 4.

2.3 The Definition of Spot Checkers

A spot checker is like a verifier in the approximate PCPS without either
interactions with a prover or a proof string. It checks the correctness of the
result (of some claim, some program supposed to compute some function,
etc.) by examine some“spots” in the input and the output.

For example, to check whether a given multiset A of size n contains O(n)
distinct elements, one might randomly pick m elements from A and check
their distinctness by sorting. It is known that m = Q(y/n) [5]. Another
example, to check whether a sequence is well-sorted, is given in Section 3.3.

A formal definition of a spot-checker is as follows.

Definition 2.3.1 (Spot-Checker [5]) Let /\ be a distance function. We say
that C is an e-spot-checker for f with distance function /\ if the following
holds.

1. Given any input z and program P (purporting to compute f), and ¢, C
outputs with probability at least 8/4 (over the internal coin tosses of C)
PASS if A=0 and FAIL if for all inputs y, A\ > €.

2. The runtime of C is o(|z| + |f(z)]).
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We can observe that any f with an e-spot-checker will trivially have an
O(log |z|)-approximate PCPS if the checker runs in time O(log|z|), or a
sublinear time approximate PCPS if | f(z)| = O(|z|).

2.4 Definitions of MAXSNP Class

In order to perform reductions on optimization problems properly, Papadim-
itriou introduced a new reduction as follows.

Definition 2.4.1 (L-Reduction [13]) Suppose that A and B are optimization
problems (mazimization or minimization). An L-reduction from A to B is
a pair of functions R and S, both computable in logarithmic space, with the
following two additional properties: First, if x is an instance of A with op-
timum cost OPT(z), then R(z) is an instance of B with optimum cost that
satisfies

OPT(R(z)) < a-OPT(z),

where « is a positive constant. Second, if s is any feasible solution of R(z),
then S(s) is a feasible solution of x such that
|OPT(z) — c(S(s))| < B |OPT(R(z)) — c(s)],

where (3 is another positive constant particular to the reduction (and we use
¢ to denote the cost in both instances). That is, S is guaranteed to return

a feasible solution of x which is not much more suboptimal than the given
solution of R(z).

To discuss the NP optimization problems systematically, Papadimitriou
also defines a new class named MAXSNP.

Definition 2.4.2 (SNP [13]) Strict NP, or SNP, is defined to be the class
of problems with the properties expressible as

ASVz Vs .. Vpd(S, G, 21, . . ., xk),

where ¢ is a quantifier-free First-Order expression involving the variables z;
and the structures G (the input) and S.



Definition 2.4.3 (MAXSNP, [13]) MAXSNP, is defined to be the following
class of optimization problems: Problem A in this class is defined in terms
of the expression

mgxl{(wla s ,l’k) € Xk : ¢(G17- . 7Gm757 xl;"'amk)}|

Definition 2.4.4 (MAXSNP [13]) MAXSNP is the class of all optimization
problems that are L-reducible to a problem in MAXSNP,.

Notice that, by the definition of MAXSNP, a MAXSNP-complete problem
must be in MAXSNP,. To see what a MAXSNP, problem is like, we give an
example below.

Two vertices in a graph are said to be independent if there is no edge
between them. Given a graph G = (A, E) of degree at most k, we want
to find the largest independent subset of A. This problem is known as k-
Degree Independent Set. It is not only an NP-complete problem but also a
MAXSNP-complete problem. Now we require the input to be given by a set
H of (k + 1)-tuples (z,y1,.-.,yx) such that for any = € A, the y;’s are the
neighbors of node z (with repetitions when = has fewer than k neighbors).
|H| = |A|. The k-Degree Independent Set problem can be written as:

Iglgfﬂx,yl,---,yk) @y, ue) € HIA [z € SIA[yn € SIA. . Alye ¢ ST}

S is an independent set [13].
And to point out the close relationship between MAXSNP and PCP,
Papadimitriou also defines a variation of PCP called MAXPCP.

Definition 2.4.5 (MAXPCP [13]) Let ki, k2, ks > 0, and f be a polynomial-
time computable function. Assign to each string x and each bit string r with
Ir| = kolog |z| a set f(x,r) of ki numbers in the range 1...|x|*, and let M be
a polynomial-time Turing machine with three inputs. Define now this opti-
mization problem: “Given x, find the string y of length |z|* that mazimizes

> ”

the number of strings r with |r| = kolog |z| such that M(x,r,y|f@r)) = yes’.

It can be proved that MAXSNP=MAXPCP [13].
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Chapter 3

Basic Algorithms for the
Approximate Proof Systems

3.1 Warming Up

In the One-Center Problem, given a set of points, the goal is to find a circle
containing all of these points such that the radius of the circle is minimized.
For any instance z, once a prover P offers an answer y, how can a verifier V
make sure that y is a correct, or at least good enough? V can randomly pick
some points and checks that the geometric distance between the point and
the center is less than the radius. The question is how many should V' picks?
With a distance function A=(number of points outside the circle)/(number
of points), if A > €, a point falls outside of the circle with probability at least
€. Thus, within O(1/¢) time, V' will reject with probability at least 3/4.

V can further decide whether the given circle is minimized. If it is, P
should be able to find two points on the circle which form an arc of degree 7,
or three points which form an arc of degree more than 7. In this final step,
V requires only constant time [10].

Now consider a similar problem, Convex Hull Problem. A convex
polygon is a polygon with the property that a line segment connecting any
two points inside the polygon must itself lie inside the polygon. The convex
hull of a set of planar points is defined as the smallest convex polygon con-
taining all of the points. The problem is to find the convex hull given a set
of n points.
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Figure 3.1: Any n-polygon can be devided into n — 2 triangles.

P gives the answer by an ordered list of a subset of the points. How does
V' make sure that the answer is correct? First, points in the list with the
given ordering must form a convex polygon. Second, all of the points must
situate inside the polygon. The later case is easy to check. If V' is sure that
he got a polygon, since any n-polygon can be devided into n — 2 triangles,
after V picks a point p from the point-set and a vertex v from the answer-list,
the prover should be able to find out two consecutive points vy, vy from the
list, such that p is in the triangle formed by v, vy, ve. If there are at least en
points outside the polygon, V' will be able to discover one with probability
at least 3/4 within O(1/¢)-time.

Now we consider the case to check whether the points in the list form a
convex polygon by the given ordering. Let m; be the length of the list. In
most cases my is far less than n. V' can simply check the points one by one
to make sure that they form a convex polygon, if he find out that m; is less
than some value, say, logn. But what if it is not the case?

Since we know that Sorting can be reduced to Convex Hull under the
comparison model [10], unless there is a method to check whether a list is
sorted in o(logn) time, checking whether the list forms a convex polygon
must take Q(logn) time. We will give an algorithm to this problem later, in
Section 3.3.
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3.2 Basic Set Operations

In each of the following problems, we first introduce the lower bound algo-
rithm given in [6], then with the same manner we construct an upper bound
algorithm. If the claimed answer of P is far from correct, that is, the distance
is at least €, V' rejects with probability at least 3/4. If the answer is correct,
V accepts with probability 1. For convenience, all these algorithms are pre-
sented as an [P protocol followed by a description stating how to modify the
algorithm into a PCP version.

3.2.1 Element Distinctness

INSTANCE: An list X = {z1,...,2,}.
QUESTION: Are all the z;’s distinct?

Lower Bound
DISTANCE: |{z; : 3z; s.t. z; = z; and © # j}|/|X|

Algorithm 3.2.1 (Lower Bound for Distinct Elements)
Repeat O(1/e) times:

V randomly chooses i € [1 ...n].
V sends x; to P.

P returns j to V.

V rejects if 1 # j.

If V does not reject, then V accepts.

The PCPS version. P writes a list of ordered pairs containing each input
element and its location in the input list (z;,7) in the order sorted by the
value of x;. V then performs binary search to find (z;,j) and checks j = 1.
This adds an additional logn factor to the time.

The above strategy with binary search is suggested in [6]. In fact, the
additional logn factor can be eliminated. Since z;’s can be encoded with
a binary string of length at most O(logn), P can write the answer in an
array A of size O(n¥), where the tuple (z;,j) is represented as A[z;] = j.
A[s] = null for any binary encoding s that is not among z;’s. Under a RAM
model, V' can check the value of A[z;] in constant time.
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Upper Bound

The original question can be midified as follows:

QUESTION: The size of Y = {z;|3z;,z; = z; € X and i # j}.

DISTANCE: 0 if |Y| > p and (p — |Y'|)/p otherwise, where p is P’s claimed
size of Y.

Algorithm 3.2.2 (Upper Bound for Distinct Elements)
Performs the set size lower bound algorithm (Algorithm 3.2.3) to make sure
that |Y| is large enough.

3.2.2 Size of a Set

INSTANCE: A set S.
QUESTION: The size of S.

Lower Bound
DISTANCE: 0 if |S| > p and (p — |S|)/p otherwise, where p is P’s claimed
size of S.

Algorithm 3.2.3 (Lower Bound for Set Size)

P sends p to V.

P writes the elements of S to an array A of size p.

Perform element distinctness lower bound algorithm on A with parameter

€/2. Repeat O(1/¢€) times:

V randomly chooses an i € [1 ...n] and sends it to P.
P sends V a proof Ali] € S.

The PCPS version. It’s easy to see that P can write down all the answers
to all possible queries of V. After V' chooses an i, what he has to do is to
check out the “answer entry” from the “answer table” according to .

The lower bound of | X UY| can also be estimated with algorithm 3.2.3.
The algorithm used in the One-Center problem is in a similar manner.

Upper Bound

DISTANCE: 0 if |S| < p and (|S| — p)/|S| otherwise, where p is P’s claimed
size of S.
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Algorithm 3.2.4 (Upper Bound for Set Size)

P sends p to V.

P writes the elements of S to an array A of size p.
Repeat O(1/¢) times:

V randomly picks an element s € S, and sends it to P.
P sends V an 1.

V rejects if s # Alil.
If V does not reject, then V accepts.

Notice that since p is an upper bound, the only thing V should check is
whether all elements in S are in A; thus the element distinctness protocol
does not need to be performed.

The PCPS version. P writes a list of ordered pairs (z,y), where z is an
element of S and y is the evidence that x is in S. All the pairs are sorted by
the value of z. V randomly picks an element s from S and performs binary
search to find (s,ys) and checks the validity of ys. V rejects whenever s is
not found in the ordered list or y, is not a proper piece of evidence. This
adds an additional logn factor to the time requirement. In fact, the logn
factor can be eliminated. See the discussion of Section 3.2.1.

Here are two applications. To estimate the upper bound of | X UY| =
| X|+1|Y]—|X NY]|, use algorithm 3.2.4 to estimate | X| + |Y| and algorithm
3.2.6 to estimate | X NY|.

3.2.3 Set Equality
INSTANCE: Given two lists X =< x1,...,2, >, Y =< y1,...,yn >.
QUESTION: Is set X equal to set Y?

To make sure that X and Y are two sets of size n, we can perform algo-
rithm 3.2.1 and 3.2.3 first.

Lower Bound
DISTANCE: 0 if X=Y and |X — Y|/n otherwise.

Algorithm 3.2.5 (Lower Bound for Set Equality)
P writes an arrays T of length n, where T[i] contains a pointer to the location
of z; in Y. V randomly picks an i and checks that whether x; = yry;.

15



The PCPS version. This algorithm is also of approximate PCPS form as well.

Upper Bound
QUESTION: Is | X NY| at most pn?
DISTANCE: max{(|X NY|/n) — p, 0}.

Algorithm 3.2.6 ! (Upper Bound for Set Union)

V randomly chooses a set S € {X,Y} and then randomly picks an element
from S, and asks P the location of this element. P has to answer which set
it is from and its location in this set. V rejects if P’s answer is inconsistant
with what V knows. Repeat the above steps O(1/ep) times.

The PCPS version. P writes a list T of size | X UY'|. Each entry of T contains
< a, (b1,b2) >, where a is an element of XUY", b1 € {X,Y} stands for which
set a comes from and b2 stands for the location of a in set b1. All the pairs
are sorted by the value of a. After V picks an element, he performs a binary
search to find the proper entry and chekcs the correctness of < b1, 62 >. This
adds an additional logn factor to the time requirement. The additional logn
factor can in fact be eliminated. See the discussion of Section 3.2.1.

3.3 Checking a Sorted List

3.3.1 The Algorithm

Given a seugence zx of length n, V' wants to make sure that z contains a long
increasing subsequence. He performs the following algorithm:

Algorithm 3.3.1 (Check Sorted List)
Repeat O((1/€)1g1/6) times:
Randomly choose i € [1,n].
for k< 0...1g7 do
Repeat O(1g1/6) times:

Randomly choose j € [1,2*].
If (Ali — j] > Ali]), then reject.

!Modified from the approximate IPS for Two Set Intersection in [6].
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for k<« 0...1g(n—1) do

Repeat O(1g1/6) times:

Randomly choose j € [1,2F].
If (Ali] > Ali + j]), then reject.

Accept.
This Procedure runs in ((1/¢)lgnlg?1/6) time and satisfies:

e If x is sorted, it accepts.

e If 2 does not have an increasing subsequence of length at least (1 —e¢)n,
then with probability at least 1-, it rejects.

That is, once x passes the test, with high probability it has an increasing
subsequence of length at least (1 — €)n. Here the distance function used is as
follows. Let the number of the longest increasing subsequence be n’. Then
A = (n—n')/n. To see why the algorithm works correctly, we briefly describe
the proof in [5]. First, transform the problem into one in graph theory.

Definition 3.3.1 The graph induced by an array x of intergers having n
elements is the directed graph G, where V(G,) = vy,...,v, and E(G;) =
{(vi,v5) -1 < j and z[i] < z[j]}.

We can observe that the graph G, is transitive, i.e., if (u,v) € E(G,) and
(v, w) € E(Gy), then (u,w) € E(G,). Now we use I'}; (i) to denote the set
of vertices in the open interval between ¢t and ¢’ that have an incoming edge
from v;. Similarly, I'; /() denotes the set of vertices between ¢ and t' that
have an outgoing edge to v;.

Definition 3.3.2 A wvertex v; in the graph G, is said to be heavy if for all k,
0<k<1gi, [T o ;1) > n2*, and for all k, 0 < k < lg(n—i), TGy (D] 2
n2*, where n = 3/4.

With the pigeonhole principle, one can show that if v; and v; (i < j) are
heavy vertices in the graph G, then (v;,v;) € E(G;). It follows that a graph
G, with (1 — €)n heavy vertices has a path of length at least (1 — €)n. Since
G, is induced by z, by definition the length of the increasing subsequence of
z is at least (1 — €)n.

By this method, one can show that not only there is a long increasing
subsequence, but also the points checked belong to this sequence.
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3.3.2 Examples

A Lower Bound for the Common Subsequence. Given p strings I3, ..., I, each
of length n, the problem is to find out a common subsequence as long as
possible. Now P claims that there is a common subsequence with length at
least [. P and V perform the following algorithm.

Algorithm 3.3.2 (Lower Bound for the Common Subsequence)

1. P writes a string s and p arrays S, ..., Sy, each of length I. S;[j] =k
stands for that s[j] appears in the k' element of the it* input string.

2. V performs algorithm 3.3.1, and in each of the O(1/¢) repetitions, right
after randomly choosing an i, adds the following steps:

fork<1...p
Rejects if I1,[Sy[i]] # s[i].

Now we give a proof to the problem left in Section 3.1.
Checking the Convexity of a Polygon. For a convex polygon, we have the
following observations (see Fig. 3.2):

1. Define the value of any point v; in the list to be the direction of angle
(vi—1,vi,V;y1). If the points in the given order do form a convex poly-
gon, then the list is well-ordered, since any concave angle will cause a
misordering.

2. If the vertices on a subsequence of the list form a convex polygon, then
in this subsequence, for any vertex ¢, all other vertices will fall in angle
(vic1, Vi, Vig1).

3. If any two angles (vq, v, v3) and (vy, vy, vy) are well-ordered in the list,
vy, vg,vg all fall in angle (v],v5,v}) and vise versa. Since the lines
spanning out from the two angles either form a convex angle or do not
cross to each other, (vq,v3, v}, v5) and (vh, vy, vy, v2) are convex shaped.

Thus, V can check whether all the vertices selected satisfy

1. They are in a long well-ordered subsequence of the list (by Algorithm
3.3.1).
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Figure 3.2: (a) Well-ordered vertices form a convex polygon. (b) Any concave
angle will cause a misordered subsequence. (c) If a concave angle exists, even
the vertices are well-ordered respectively, some points would fall outside a
convex angle. (d) All the vertices fall inside the angles can form a convex

polygon.

2. For any angle (v; 1,v;,v;+1), no vertices fall out of it.

Since O(1/¢) vertices are checked, max{O(1/¢e?), O((logm;)/¢)} time is needed.
If there are at least O(e) vertices in the list breaking the rule, with high prob-
ability V' will pick one out.
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Chapter 4

Approximate Proof Systems on
Various Problems

4.1 On NP-Complete Problems

4.1.1 For Some NP-Complete Problems

MAX3SAT. Given a boolean expression ¢ of m clauses, each of the clauses
consists of 3 literals. Is there a truth assignment such that the number of
satisfied clauses is at least k7

Algorithm 4.1.1 (MAX3SAT)

P writes a truth assignment and an array A of length m, where A[i] indicates
the literal that makes clause i satisfied. V randomly picks O(1/e€) clauses,
rejects as long as one of them is not satisfied, and accepts otherwise.

If the number of satisfied clauses is less than (1—¢)m, V is likely to reject.

k-Degree Independent Set. Given a graph G = (A, E) with degree at most
k. Is there a set I C A of size at least K, such that whenever 7,5 € I there
is no edge between 7 and j? In this slightly complicated problem, we require
a special input structure to facilitate the proof.

Input Structure: An array A to represent the list of vertices. For all ver-
tices v;, Afi] contains a k-tuple, which represent all its neighbors, duplicated
if the degree of some vertex is less than k. If the input is not given in this
structure, P should build it up first, and runs the set equivelent algorithm
to convince V.
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Algorithm 4.1.2 (k-Degree Independent Set)

1. P writes an array A of length K such that A[A[i]] € I for all i, and an
array N', where N'[i] = 1 if A[i] is in I and 0 otherwise.

2. P and V perform the element distinctness with parameter €/2. As for
the validity for each Afi], V has to check that each element in Afi] is
distinct and A'[A[i]] = 1.

3. V randomly picks O(1/€) elements from A. For any picked element i,
let the k-tuple of A[A[i]] be (i1,...,i). V then checks that for each i;,
AI [’LJ] =0.

If the size of the clique is less than (1 — €)k, V is likely to reject.

One might be interested in expanding the algorithm of k-Degree Indepen-
dent Set problem to the general Independent Set problem. Before we explore
the Independent Set problem, we shall first try a closely related problem,
MAX CLIQUE.

MAX CLIQUE. Given a graph G = (A, E), find a set A’ C A such that
the G’ induced by A’ from G is a clique and is as large as possible. To give
a lower bound k of |A’|, P and V runs the following algorithm.

Algorithm 4.1.3 (MAX CLIQUE)

1. P writes a list A' of size k and an array A of length |A|. If Afi] € A,
then Afi]=1 and A[i/=0 otherwise.

2. P and V perform Algorithm 3.2.3 (to prove the lower bound of size of
a set) to make sure that |A'| is large enough.

3. V randomly picks O(1/¢€) vertices from A, rejects if for any vertex v
picked, ' € A such that (v,v") ¢ E. This can be done easily if G
is given by an adjacency matriz, or if P carefully writes down all the
proof that (vy,vs) € E for any vy,v, € A'.

The above algorithm needs O(k/¢) time, that is, O(e|E|'/?) time, since
k = O(|E|'/?). But if we apply this method to the Independent Set problem,
it fails to be a sublinear time algorithm. We argue as follows. If there
is a method in time o(k), let it be O(k¢) for some ¢ < 1. Choose € =
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1/(k + 1). With O(k°*!) time, V can verify that G indeed has a clique of
size k, with positive and negetive errors both bounded in 1/4. Notice that,
within o(k?) time, V cannot read in all the structure of the clique. Thus,
unless there is some method other than to check ”physically”, it seems there
is no better algorithm to verify the existence of a k-clique. We conclude that
there is unlikely to be a straightforward method to give a lower bound for
the Independent Set problem with a sublinear-time approximate PCPS.

4.1.2 Another Way To Prove NP=PCP(logn,1)

The fact that MAX3SAT has an approximate PCPS reveals the close relation-
ship between the approximate proof systems and the formal PCP. Consider
the following problem.

ROBE3SAT [9]. Given a boolean expression ¢ in CNF, with 3 literals per
clause, ¢ is either satisfiable or at least an e-fraction of the clauses of ¢ are
not satisfiable. Is ¢ satisfiable?

It has been proved that there exists a constant € such that this prob-
lem is NP-complete [9]. That is, for any instance z in NP, there is a log-
arithmic space Turing machine that reduces it to ROBE3SAT. Notice that
ROBES3SAT is a very special case of MAX3SAT: V either accepts because ¢
is satisfied, or rejects because ¢ is not satisfied (thus more then an e-fraction
of clauses are not satisfied), with high probability. Removing the require-
ment that V runs in a RAM model does not affect the fact that V' has to
check only O(logm) bits of the proof. This is consistent with the famous
NP=PCP(logn,1) theorem.

Notice that this result does not imply that every problem in NP has
an sublinear-time approximate PCPS, since the reduction takes polynomial
time, exceeding the limitation of sublinear time.

4.2 On MAXSNP, Problems

In the former section, we saw two MAXSNP-complete problems, MAX3SAT
and k-Degree Independent Set problem, with proofs checkable by sublinear-
time approximate PCPS. Now we want to discuss the relationship between
a sublinear-time approximate PCPS and MAXSNP problems.
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In Section 2.4, we know that MAXSNP-complete problems must be in
MAXSNPy. A MAXSNP, problem is to find a relation S to maximize M =
H(z1,...,2) € X¥: ¢(Gy,...,Gm, S, z1,...,2)}|. If we require a special
input structuer of G;’s, then we can construct an approximate PCPS for
every MAXSNP, problem that gives a lower bound for M as follows.

Input Structure. For any problem with k-ary input relations Go(z1, - . . , ),

.., Gi(z1,...,x1), assume that the size of V' is n and each |z;| = O(logn).
Now we require the input relation G;’s not to be given as a logic expresson,
but a list of the whole mapping V¥ — {0,1}. The list is at most poly(n)
long.

The Distance. For any relation S, let Mg be the real value of |{(z1,...,zx) €
Vk: ¢(Gy,...,Gm,S,T1,...,71)}| and let the claimed value be mg. Then
A = max{(mg — Mgs)/msg,0}.

Algorithm 4.2.1 (MAXSNP,)

P claims the lower bound for M to be m, and writes a feasible relation S,
with the structure similar to the input relations. Then P writes all the k-tuple
(x1,..., k) satisfying ¢ to an array of length m. V randomly picks O(1/¢)
tuples, rejects if any one of them cannot satisfy ¢, and accepts otherwise.

Notice that for any specific problem, if we assume that each of the rela-
tions takes constant length in ¢, then ¢ is of constant length. And because of
our requirement of the special input structure, it is possible for V' to check in
constant time that each relation in ¢ takes a proper value. Thus the overall
value of ¢ can be checked in constant time.

There is no obvious way to prove that any problem with an approximate
PCPS has a MAXSNP form. But recall that MAXPCP=MAXSNP. It is
interesting to show that all the algorithms used so far can be expressed as a
MAXPCP problem.

Recall that the MAXPCP problem is, given z, to find a string y of length
|z|* that maximizes the number of strings r with |r| = kylog|x| such that
M(z,7,Y|(zr))=yes. In approximate PCPS, P writes a proof string to V,
and V randomly picks some parts out of it to check validity. V' runs in time
O(log |z|); thus the random coins he tosses can not exceed O(log |z|), and he
himself of course runs in polynomial time. To convince V', the proof string
given by P should make V' accept under most of the cases.

Almost all the basic algorithms can be transformed into a MAXPCP ver-
sion trivially, except one: To check the ordered list. To prove a list contains
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a long well-ordered subsequence, Algorithm 3.3.1 reads O(logn) bits from
the proof string. But since we do not require the MAXPCP model to run in
sublinear time, the solution is simple. One can check the validity by making
sure that all pairs of the input elements are valid. V' can randomly choose
enough number of pairs of elements from the list L, rejects if there exits a
pair (L[], L[j]), where i < j such that L[{] > L[j]. There are (’2‘) pairs,
and at least en pairs will cause the rejection if there are at least en elements
breaking the rule.

Now we can express the problem with a proof checkable by an approx-
imate PCPS, which is constructed with the algorithms we introduced, as
follows. For any instance z, find a string y such that V(z,7,y|f@) = yes
for at least some required amount of r’s. The required amount is problem
dependent. For example, in the problem of checking element distinctness,
it is (;) — en. Notice that, even if for all r’'s V' answers yes, it does not
nessesarily mean V' gets an exact answer. See the following example.

Approximate lower bounds on sums [6]. Given positive integers z1,. .., Z,,
P can convince V' of a good approximation to a lower bound on 1 , ;.
Consider the set S = {(4,7)|1 < i < n,1 < j < z;} whose cardinality is
>, ;. Given (7,7), V can determin membership in S in constant time, by
verifying that 1 < ¢ < nand 1 < j < z;. Thus, P and V can perform
Algorithm 3.2.3 to estimate the lower bound of |S|. To bound the error in e,
it is enough to work with only the O(1/¢) most significant bits of the weights.

When we transform the above proof system for some fixed € to a MAX-
PCP one, assume that s is the claimed lower bound of |S|. If |S| < (1 —¢)s,
for at least a fraction € of r’s, V' will reject. On the other hand, if V' accepts
for all r’s, because only O(1/€) most significant bits are used, it is not enough
for V to be sure that he gets a exact answer.

4.3 On coNP Problems

After providing the lower bounds of some NP optimization problems, it is
reasonable for us to ask: Is there a simple method for V' to make sure that
if it is a feasible solution, it is also an optimal one, just as what V' can do in
the One-Center problem?

If such a method does exist, say, in time O(logn), consider the following
UP problem (we take a MAXSNP problem as an example): “Given a goal
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K,is maxg |(z1,...,zx) € X* : ¢(G1,...,Gm, S, T1,...,7;)| less than the goal
K?”
If such a method does exist, for a NP Turing machine, it can of course find

out that under some relation S, M = [{(z1,...,7x) € X* : ¢(G1,...,Gm, S, 21, . ..

Then it performs the O(logn) method to make sure that M is optimized. If
it is, compare M with K. If M < K, it accepts. For all other cases it rejects.

Recall that an SNP problem is of the form ASVz1 Vs ... Vard(S, G, 1, - . ., zx).

Thus, if any MAXSNP version of some SNP problem has this property, then
the corresponding coSNP problem, which states that there is no relation sat-
isfying Va,Vz, ... Vrip, will also be in UP: just take K = 2*. So we should
not respect an NP-complete problem in MAXSNP, to have such a property.

Another trial is to give both the upper and the lower bound, just as what
we can do when building the basic algorithms in Section 3.2. For example,
for the MAX3SAT problem, we know it is easy to check the correctness of the
lower bound of satisfied clauses. Now we ask whether there is an approximate
IPS which proves that the number of clauses simultaneously satisfied is at
most K? For convenience, we will discuss MAXSNP problems only.

Recall that many NP complete problems are in MAXSNP, to ask whether
there exists a relation such that the number of k-tuples satisfying ¢ achieves
a goal K. Now we want to ask that whether the number of k-tuples will
not exceed K for any relation. This, again, is a coNP question. In the
example of MAX3SAT, if one can prove with some K less than the number
of total clauses, he will be able to answer that such a boolean expression is
unsatisfiable.

Notice that we don’t think there is an approximate PCPS for coNP prob-
lems, since this will imply that coNP is in NP. Rather, it is known that coNP
is in IP, so what we want to know is whether it is possible to reduce the time
V needs in the IP system.

By the definition of approximate IPS, assume that P writes a proof of
length poly(|z|) before the conversation with V', and V runs in O(log |z|)
time to finish verification. That is, there exists some string z with length
poly(|z|) such that there exists an IP system to prove that x is not in L
within time O(log |z|). In [8] we have the following theorem:

Theorem 4.3.1 Let c¢(-) be an integer function and L C {0,1}*. Suppose
that L has an interactive proof system in which both the randomness and com-
munication complezities are bounded by c(-), then L € Dtime(2°C)poly(-)).
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Here we have ¢(-) = klog|z|, thus the time will be in Dtime(poly(|z|)).
But there might be some trouble since what we have is not a standard IP
system. This is because when 0 < A < ¢, the verifier’'s answer is ambiguous.
But we will see that it doesn’t matter with the polynomial time algorithm
constructed by the method in [8].

Definition 4.3.1 (The Game Tree and Its Value [8]). For some fized V and
:

e The tree T,: The nodes in the tree, denoted T, correspond to possible
prefizes of the interaction of V with an arbitrary prover. The root rep-
resents the empty interaction and is defined to be at level 0. For every
1=0,1,... the edges going out from each 2iy, level node correspond to
the messages V may send given the history so far. The edges going
out from each (2i+ 1)** level node correspond to the messages a prover
may send given the history so far. Nodes which correspond to an ex-
ecution on which V stops have as children one or more leaves, each
corresponding to a possible V’s random-pad which is consistent with
the interaction represented in the father. Thus, leaves correspond to
augmented transcripts as defined above.

e The value of T,,: The value of the tree is defined bottom-up as follows.
The value of a leaf is eighter 0 or 1 depending on whether V accepts
in the augmented transcript represented by it or not. The value of an
internal node at level 2i is defined as the weighted average of the values
of its children, where the weights correspond to the probabilities of the
various verifier messages. The value of an internal node at level 2i-1 s
defined as the mazximum of the values of its children. This corresponds
to the prover’s strategy of trying to mazimize V’s accepting probability.
The value of the tree is defined as the value of its root.

To decide if z is in the language accepted by V, it suffices to approximate
the value of the tree 7, defined above. Since the communication is only
O(log(|z|)) bits, T, has at most poly(|z|) nodes. Thus, we can construct T,
for any = and compute the value of each of its nodes in time poly(|z|). By
the definition of approximate IPS, when A = 0, V' accepts with probability
at least 3/4, thus the value of T, is at least 3/4, and when A > ¢, the value
of T, is at most 1/4. But notice that we assume that randomly picking
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some content from a memory location takes constant time; in contrast in
the IP system, to send a address consumes O(log |z|) bits. If V needs some
interaction like this, it must not take more than constant rounds.

Now we can construct a deterministic polynomial time algorithm A such
that

1. If M = maxg |(x1, ..., zx) € V¥ : ¢(G1,...,Gm, S, 21, ..., xk)| is less than
K, there is some (proof) string z of lengh |z|¥ such that A(x,z) = yes.

2. if M > (1 + ¢)K, for any string 2’, A(z,2") = no.

Equivalently, there will be an NP algorithm to answer whether z is far from
being in L.

Furthermore, if for some coNP-complete problem, we require that, let
p > 3/4 be the possibility that V' accepts when A = 0, no proof can make
V' accept with probability more than p — 1/poly(|z|) when = ¢ L, just as
when proving the lower bound of MAX3SAT, V answers a false “PASS”
with probability at most 1 — 1/m. With a counter in logarithmic space, one
can tell if the distance is 0 by considering all possible coin-tosses, each round
in O(log|z|), thus logarithmic space. We do not have to require that all the
coNP problems have such a good property; that one coNP-complete problem
has a proof of such a sort is enough to force the whole coNP class to be in
NP.

4.4 Permanent: a #P Problem

The permanent of an n X n matrix A = (a;; : 0 <4,j < n—1) is defined by

n—1
perm(A) = Z H Qi n(i)>

T 1=0

where the sum is over all permutations 7 of n = {0,...,n — 1}. It is a
#P-complete problem. In this section, we only consider 0,1-matrices. To
compute the exact value of perm(A), there are no known algorithms within
time less than O(n2"). But there do exist some probabilistic algorithms to
approximate the value of perm(A) within time o(2"). In 1996, Jerrum et
al. suggest an algorithm within time O(exp(O(n'/?log?n))) [11]. Karmarkar
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et al. give an Monte-Carlo algorithm, which runs in poly(n)2"/? time [12].
Cai et al. show that to give a probabilistic polynomial time algorithm for
perm(A) is rather difficult [4]. Now we shall show that to check the lower
bound is much easier, by giving a approximate PCPS for it, though it takes
a tremendously long proof.

Algorithm 4.4.1 (Lower Bound for Permutation)
Let m be the claimed value of perm(A).

1. P writes an array of length m, each entry containing an n-tuple (i1, . . . ,i,),
which is a permutation of (1,...,n). In a feasible n-tuple, for any j**
entry i, Ajq; # 0.

2. P and V perform Algorithm 3.2.8 to prove the lower bound for the
number of feasible n-tuples.

By our assumption, to randomly pick a tuple written by P takes constant
time. Thus to verify the lower bound takes O(n/¢) time. If we take addressing
time in consideration, it takes O((nlogn)/e) time. It seems uninteresting
since we are concerned only with sublinear time algorithms. But recall that
an n X n matrix has n? entries; thus the input size is N = n2, and the running
time turns to be O((N'/2log N)/¢).

One might be interested in comparing the accuracy of these algorithms.
Let a be the real value of perm(A) and a be the estimate one. Once P’s proof
passes Vs verification, V believes that a > a(1—e) and n!l—a > (n!l—a)(1—e),
that is, a(1—e€) < a < d+e(n!—a) . In [11] we have a/(14+€) < a < a(l+€),
that is, a/(1+¢€1) < a < a(l+¢). In [12] we have (1 —€e)a < a < (1+ €)a,
that is, a/(1+€) < a < a/(1—¢€3). The bound in [11] is tighter when €; = €.
Taking € = €1 /(1 + €;) will cause the same lower bound.

Now consider the upper bound case. A straightforward algorithm modi-
fied from the above algorithm is that P writes (n! —m) (n + 1)-tuples, each
tuple (i1,...,ln, k) with an additional value k& which stands for A, = 0.
When a > n!/2, the upper bound seems to be better than [11]. Unfortu-
nately, it takes too much time for V to verify the value (n! — m), since n!
cannot be computed in o(n).
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Chapter 5

Conclusions

In this thesis, we explored the approximate proof system in various prob-
lems, including polynomial time solvable problems, NP-complete (MAXSNP-
complete) problems, and the Permanent problem which is not known to be
in NP. We restricted our attention to those problems with proofs that can
be checked with sublinear time. It is possible that some NP problems do
not have such kind of proofs with proper distance functions. The fact that
some NP-complete problems have such a proof does not help to eliminate the
possibility. Because of lack of a feasible reduction under the sublinear-time
approximate proof system, it is not easy to capture the concrete scope of the
languages with such a proof system. Thus we discussed this issue case by
case. We also discussed its limitation by two special cases and conclude that
coNP problems (beyond NP) do not seem to have such kind of proofs. Once
a reasonable reduction is defined, it will be helpful to find the relationship
between various kinds of combinatorial problems.
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