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Abstract

With the rapid growth of the financial market, an increasingly large number of
sophisticated options are traded in the over-the-counter market to meet clients’ needs.
Path-dependent options are such sophisticated options. A reset option is a kind of
path-dependent option that allows the exercise price to be reset when the price of
the underlying asset ever hits the reset barrier during its life. A lookback option is
another kind of path-dependent option whose payoff depends on the extreme of the

underlying asset’s price over a certain period of time.

In this thesis, we propose a combinatorial method to value European-style reset
and lookback options by the use of the reflection principle. Under this method, we
derive a linear-time algorithm to value reset options and a quadratic-time algorithm
to value lookback options. Traditional methods take quadratic time to value reset
options such as Ritchken’s trinomial tree algorithm and cubic time to value lookback

options using backward induction.

Although the combinatorial method is highly efficient in pricing European look-
back options, it converges slowly. It also underestimates the analytical value. We
propose an interpolation method to improve its convergence. We also price the
American-style lookback options by the use of the interpolation method. The in-

terpolation technique is found to work well for price approximations and is efficient.

In this thesis, all programs run on a PC with Intel Pentium-2 266 CPU, 64 MB
DRAM, and Windows 98 platform.



Chapter 1

Introduction

1.1 Option Basics

Options were first traded on an organized exchange in 1973. Since then there has
been a dramatic growth in options markets. There are two basic types of option
contracts: call options and put options. A call option gives the holder the right to
buy the asset at a specific price called the ezxercise price or strike price. A put option
gives the holder the right to sell the asset at the strike price. Call and put options
can be classified as: American or European. A European option can only be exercised
at the maturity date of the option, whereas an American option can be exercised at
any time up to and including the maturity date; namely, early exercise is allowed.
Let X be the strike price and S; be the price of the underlying asset at the

maturity date. The payoff from a long position in a European call option is
max(Sr — X, 0)

This is because, the holder has the right but not the obligation to exercise it. The
holder will exercise only if S > X and then receive S — X in effect. See Figure 1.1.

Similarly, the payoff from a long position in a European put option is

max(X — Sz, 0)
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The holder will exercise only if X > St and then receive X — St in effect. See Figure
1.2.

payoff

Figure 1.1: CALL OPTION.

payoff

\_S
0 >

X

Figure 1.2: Put OPTION.

1.2 Path-Dependent Options

A path-dependent option is an option whose payoff depends on the path followed by
the price of the underlying asset. There are many kinds of path-dependent options,
such as lookback and Asian options. Their payoffs do not merely depend on the
final value of the underlying asset, but also on the way that the price was reached.
This thesis concentrates on “barrier-like” path-dependent options such as reset and

lookback options.

Reset Options

A reset option provides insurance for its holder by resetting the strike price if the
price of the underlying asset is deep out of money. There are many versions of reset
option. This thesis considers only single-barrier and fully-monitored reset options.

As an illustration, in Figure 1.3 the price path crosses the reset barrier H, and the
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option is reset.

Figure 1.3: RESET OPTION ON A BINOMIAL TREE.

We assume that X denotes the strike price, H denotes the reset level, K denotes
the new strike price, and Sy represents the price of the underlying asset at maturity.
Thus the payoff of a European reset call is

max (St — K, 0) if the price ever hits the barrier H
max(St — X,0)  otherwise

Similarly, the payoff of a European reset put is

max(K — St,0) if the price ever hits the barrier H
max(X — S7,0)  otherwise

Lookback Options

Among path-dependent options lookback options are popular because they allow in-
vestors to buy the underlying asset at the lowest price or to sell it at the highest
price over a certain period. Miscellaneous lookback specifications include floating-
strike lookbacks and fized-strike lookbacks with monitoring of the asset price over the
whole period. The lookback option discussed in this thesis is floating-strike. There-
fore, we abbreviate the “floating-strike lookback” by “lookback” in this thesis. A
lookback call gives its holder the right to buy at the historically lowest price over a

certain period. That is, the exercise price is equal to ming<,<r S(7). A lookback put
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gives its holder the right to sell at the historically highest price over a certain period.
The exercise price of a lookback put is equal to maxo<,<7 S(7) where T is the term
of the option and S is the stock price. For a long position in a European lookback

call, the payoff is
St — ming<, <7 S(7)

Similarly, for a long position in a European lookback put, the payoff is
maxo<.<7 S(7) — St

Though lookback options take full advantage of a significant upward or downward
trend in the price of the underlying asset, they are much more expensive than plain
vanilla (classic) options. For an n-period lookback option, we can imagine that there
exist n + 1 reset barriers. It is intuitive that the premium of a lookback option
increases with n. This is because when the number of time partitions increases, the
number of reset barriers increases, and the extreme of asset price might lie on the

added barrier.

1.3 Organization of This Thesis

There are six chapters in this thesis. We give a brief introduction in Chapter 1. In
Chapter 2, some concepts in finance, mathematics, and computer science are intro-
duced. We devote a whole chapter to pricing reset options in Chapter 3. In Chapter
4, we price lookback options and describe their behavior. Chapter 5 contains experi-

mental results. Finally, we discuss future work and conclude in chapter 6.



Chapter 2

Fundamental Concepts

This chapter covers basic concepts used in the book. We cover the well-known Black-

Scholes model, the binomial model, and the reflection principle.

2.1 The Black-Scholes Option Pricing Model

Options theory has played an important role in the modern theory of finance. In 1973,
Fischer Black and Myron Scholes published the well-known option pricing model,
called the Black-Scholes option pricing model, in the Journal of Political Economy.
This formula has opened a new window into the modern theory of finance, and has
been one of the most significant breakthroughs in finance. For the derivation of this
formula, the mathematics is quite complex, so we omit it here. See [2] for more

detailed information. We review the assumptions given in the model below.

1. The stock price follows the log-normal distribution.
2. There are no taxes or transaction costs.

3. There are no dividends during the life of the option.
4. There are no risk-less arbitrage opportunities.

5. The risk-free rate of interest, r, is constant.

6. The trading is continuous.
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7. The options are European.

We assume that C' denotes the call price, and P denotes the put price. The Black

and Scholes formula follows:

C = SN(d)— Xe ""N(dy) (2.1)
P = Xe 'N(—dy) — SN(—d;) (2.2)

where

In(S/X) + (r+0%/2)T

oVT
_ In(S/X)+(r—0*2)T _
dy = ST =d; oV'T

N(z) = the cumulative normal probability

d1:

0? = annualized variance of the continuously compounded return on the stock
r = continuously compounded risk-free rate

T = time to maturity

2.2 Wiener Process

A Wiener process is a particular type of Markov stochastic process. The behavior of
a variable, w, which follows a Wiener process can be understood by considering the
changes in its value in small intervals of time. Consider a small interval of time of
length At and let Aw be the change in w during At. There are two basic properties
for Aw.

Property 1. Aw must satisfy the equation

Aw = e\/Kt (2.3)

where € is a random variable drawn from the standardized normal distribution N (0, 1).
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Property 2. The values of Aw for any two different short intervals of time At are

independent.

By Property 1, Aw is a normal distribution N(0,/At), while Property 2 implies
that wfollows a Markov process. We assume that our stock price follows the stochastic
process described below:

%zudtﬁtadw (2.4)

where p is the stock’s expected rate of return per unit time and o is the volatility
of the stock price. Equation (2.4) is the most widely used model of stock price and
is also known as the geometric Brownian motion. We will use it to construct the

binomial model in next section.

2.3 The Binomial Model

The binomial model is a discrete-time approximation of the continuous-time pricing
model. This is a binomial tree that represents the possible paths that might be
followed by the price over the life of the option.

First, we assume that the model follows the geometric Brownian motion, % =
rdt+ o dw. Second, we assume that we live in a risk-neutral world, so ;= r. In such
a world, everyone is risk-averse, and the expected rate of return on all securities is
the risk-free interest rate. As in Figure 2.1, we assume S denotes the current price
at time ¢, which will either increase to Su with probability p or decrease to Sd with

probability 1 — p after time At. We get:
pSu+ (1 —p)Sd= Se

where 7 is the risk-free interest rate.
After At, the stock price S either moves to Su with probability p or Sd with
probability 1 — p.

The variance of the binomial stock price at At is given by

p(Su)* + (1 = p)(8d)* — (Se™™")?
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1-p

Figure 2.1: BINOMIAL MODEL.

So we obtain the following equality for variance,
p(Su)? + (1 — p)(Sd)? — (Se™")? = S?o2At.
or
pu? + (1 — p)d? — ¥2 = 62 At.

Imposing ud = 1, the following equalities which satisfy the above in the limit obtain

u = ecf\/ At

d — eovAi_ 1

erAt_d
u—d

We shall call them the CRR parameters, because Cox, Ross and Rubinstein proposed

p:

them. See [6] for more detailed discussion.

2.4 The Reflection Principle

Besides the methods described above, the key tool in understanding the combinatorial
method for our algorithms is the reflection principle [12].
In Figure 2.2, suppose a particle starts at position (0, —a), on the integral lattice

and wishes to reach (n, —b). Without loss of generality, assume a,b > 0. We restrict
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the particle to move to either (i + 1,74+ 1) or (i + 1,7 — 1) from (4, j), the way the

binomial tree for the stock price is supposed to be traversed. That is,

(1,7) > (i+ 1,5+ 1) can be regarded as the up move S — Su.
(4,7) = (i+ 1,5 — 1) can be regarded as the down move S — Sd.

Figure 2.2: THE REFLECTION PRINCIPLE.

How many such paths the particle can take that touch or cross the z-axis? Con-
sider any legitimate path from (0,—a) to (n,—b) that either touches or crosses the
z-axis. Let J denote the first position it happens. By reflecting the portion of the
path from (0, —a) to J, a path from (0,a) to (n,—b) is constructed. A moment’s
reflection leads to the conclusion that the number of paths from (0, —a) to (n,—b)
that touch the z-axis is exactly the number of paths from (0, a) to (n,—b). This is
the celebrated reflection principle of André (1840-1917) published in 1887 [10]. The

number of paths is thus equal to
(n+ﬁ+b) for even, non-negative n +a + b
2
and zero otherwise. The negative n+a+b case can be disregarded with the convention,

(Z)z()fork<00rk>n



Chapter 3

Reset Options Pricing

In Chapter 2, we discussed the binomial model in general and the CRR model in
particular. In this chapter, reset option pricing is based on the CRR model.

3.1 Backward Induction on Binomial Tree

The binomial tree method is widely used in option pricing. To price reset options,
backward induction on the binomial tree is the standard scheme. We show how to
price these options as follows.

Assume that X denotes the strike price, H denotes the reset level, K denotes the
new strike price, and St represents the price of the underlying asset at maturity. We
first adjust the reset barrier to the new barrier, called the effective barrier. We thus
guarantee that the effective barrier coincides with one of the legal stock prices on the
tree. Then, we evaluate the option by starting at the end of the tree (at time T).
For a call option at maturity, the payoff is either max(Sr — X, 0) or max(Sr — K, 0).
We use two arrays C' and @ to store them respectively. In general, at state (i, ),
where i denotes at time i and j denotes the stock price Su?d™7, the value of C(3, §)

and Q(7,7) are as follows:

Cli,j)=e™(pCli+1,7+1)+(1-p)CGE+1,5))

QU,j)=e™(pQUE+1,j+1)+(1-p)Q>E+1,5))

10
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If the state (7,7) is on the effective barrier, then we move the value Q(i,5) to
C(i,7). By working through all the nodes, the value of the option at time zero is
C(0,0). The running time of this algorithm is quadratic in n, where n is the number

of time periods.

3.2 The Combinatorial Method

Counting the valid paths that lead to a particular terminal price is the idea of the
combinatorial method. A European reset call option with strike price X and new
strike price K can be disassembled as a down-and-out call with strike price X plus a
down-and-in call with strike price K.

As an illustration in Figure 3.1, the number of paths from S to the terminal price
Suld™ is (?), where each path has the same probability p?(1 — p)»~7.

We assume that H < K < X, where H is the reset barrier. Let

/ Suid™
2j-n
S
X
n-h
> H=Sd ™"
2nizh, .

d ‘ n

v

Figure 3.1: RESET CALL ON THE BINOMIAL TREE.

By the reflection principle, the number of paths that hit the reset level Sd"~" is:

(ws5-4)
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Thus, the option value is

h n
(> (A+B)+ > C),where
i=l%]+1 j=h+1

A = < " ) max(Su/d"™ — K, 0)

n+j—h
_ () _ n im—j
B (<]> <n+j B h))maX(Su d X,0)

C = <n> max(Su/d"™7 — X, 0)
J

The running time of this algorithm is proportional to n — % The experimental results

are discussed in Chapter 5.



Chapter 4

Lookback Options Pricing

The payoff from a lookback call (put) depends on the minimum (maximum) stock
price reached during the life of the option. In this chapter, we price the European-
and American-style lookbacks based on the CRR model. Due to the slowness of its

convergence, we adopt the interpolation method to reduce the computation time.

4.1 Backward Induction on Binomial Tree

The valuation formulas of European lookback options have been proposed in 1979;
see [7] for detailed discussion. Like the Black-Scholes model, this formula assumes
continuous trading. Hence, under this formula, we can imagine that there exist an
infinite number of reset barriers. However, continuous trading is impossible in reality.
To price discrete-time lookbacks, the continuous-time valuation formulas are no longer
favorable; the prices calculated by this formula are also more expensive than discrete-
time models. Thus, we adopt the binomial tree method to price discrete lookbacks.
Backward induction on the binomial tree is a standard method. We show how it
works in the following.

We assume that the European lookback call option is issued at time zero, and the
current value of the underlying asset is S. The binomial tree for an n-period European
lookback call option issued at time zero is illustrated in Figure 4.1. Hence S,,;,, = S;
whose S,,;, denotes the minimum price. There exists n+ 1 reset-barriers, Hy, Hy,. . .,

H,. We work from H, toward H, one barrier at a time. For each barrier H;, we

13
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Figure 4.1: AN N-PERIOD LOOKBACK CALL ON THE BINOMIAL TREE.

calculate the present value of those paths with the minimum price H;. The procedure
is similar to that of pricing reset options, and it requires O(n?) time. Since there
are n + 1 barriers, this algorithm takes O(n?) time. We also observe that the price
converges slowly and is below the analytical value. This Algorithm is also applicable

for other types of lookback options. See Chapter 5 for the experimental results.

4.2 American Lookback Options Pricing

In this section, we concentrate on the pricing of American lookbacks. Unlike European
options, it is impossible to derive closed-form expressions for the value of American
options. The combinatorial method is also not applicable to the pricing of American
options. If the underlying asset does not pay dividends during the life of the option,

the American lookback call is equal to the European one. See [5] for more details.
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Figure 4.2 illustrates a three-period American lookback put option. This binomial
tree is based on the CRR model. We suppose that the initial stock price S = Sy =
100, the risk-free interest rate r is 6% per annum, the stock price volatility o is 30%
per annum, the number of time periods n is 3, and the total life of the option 7T is one
year. Under the CRR model, other parameters are At = 0.333, u = 1.189, d = 0.841,
R =1.0202, and p = 0.515

168.09
168.09
0.00

118.90
141.37 118.90
22.47 0.00

84.10
118.90 100.00
34.80 15.90

Figure 4.2: A THREE-PERIOD TREE FOR VALUING AN AMERICAN LOOKBACK PUT
OPTION.

The top number at each node is the stock price. The next level of numbers at
each node represents the possible maximum stock prices achievable on paths leading
to the node. Whereas the final level of numbers represents the values of the option
corresponding to each of the possible maximum stock prices. The values of the option
at the final nodes of the tree are calculated as the maximum stock price minus the

actual stock price. Rolling back through the tree, we can calculate the value of the
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American lookback as $15.69. The value of the European lookback calculated under
the CRR model is $14.69. The analytical value is $22.75.

The algorithm for pricing American lookbacks is similar to that described in Sec-
tion 4.1. Both European and American lookbacks have the characteristics of slow
convergence. We will compare the convergence speeds of European and American

lookbacks in Section 4.5.

4.3 An Improved Algorithm

In Section 4.1, we showed that the traditional backward induction for pricing lookback
options is a cubic algorithm in n. By changing the binomial tree, we can derive a
quadratic time algorithm [9]. We will briefly show how it works and the drawback of
this algorithm in the following.

We use the 3-period binomial tree discussed in Figure 4.2. All the parameters we
use here are the same in Section 4.2. We define F'(t) as the maximum stock price
achieved up to time 7" and set

Y(t) = %

We use the CRR model to produce a tree for Y. Initially, Y = 1 because F' = S
at time zero. If there is an up movement in S during the first time step, both F'
and S increase by a proportional amount u and Y stays the same. If there is a down
movement during the first time step, F' stays the same, then Y = u. We can produce
the tree for Y in Figure 4.3. An up movement in Y corresponds to a down movement
in the stock price, and vice versa. The probability of an up movement in Y is 1 — p
and the probability of a down movement in Y is p. In dollars, the payoff from the

option at maturity is
SY -8
In stock price units, the payoff from the option at maturity is

Y -1
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We omit the detailed procedure here, see [9] for more discussion. By rolling back
through the tree, we can count the value of the American lookback put at time
zero (in stock price units) as 0.1569. The dollar value of the option is therefore

0.1569x100=15.69.

1.6809
0.6809

1.4137
0.4137

1.1890
0.1890

1.0000 1.0000

0.1569

Figure 4.3: EFFICIENT PROCEDURE FOR VALUING AN AMERICAN LOOKBACK OP-
TION.

This algorithm is faster than that described in Section 4.1. However, when the
historical extreme is not equal to the current stock price, the nodes on the lattice may
not combine. To overcome this shortcoming, we then move the historical extreme to
the nearest lattice node. As an illustration in Figure 4.4, S,,,, is not on the lattice
nodes, we then either move it to Su (Spmazfioor) O SU*(Smagceir)- In Figure 4.4 we
move Sper to Su , and call it Syaqfi00r- Though this procedure successfully solve
the drawback, the convergence of either Sy.qzfi0or OT Smazcea 15 biased, see Figure 4.5
as an illustration. Hence, this algorithm is still not adaptable for historical extreme
values. In the next section, we will produce a quadratic time algorithm, and it can

handle historical extreme values.
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18

Figure 4.4: THE DRAWBACK OF THIS ALGORITHM, WHEN EXTREME VALUE IS NOT

ON THE LATTICE NODES.
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Figure 4.5: THE BIAS OF THIS ALGORITHM FOR HISTORICAL EXTREME VALUES.

The parameters are S = 100, Syez = 110, o = 30%,

T =1 (year), r = 6%, ¢ = 0%. The

analytical value of the European lookback put is about 23.89.
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4.4 The Combinatorial Method

In Section 4.1, we showed that the running time of the binomial tree method with
backward induction is cubic in n. The improved algorithm discussed in Section 4.3 is
biased when historical extreme value is not equal to the current stock price. In this
section, we propose a quadratic-time algorithm to price European lookback options
based on the combinatorial method. This algorithm is also applicable for historical
extreme values.

For simplicity, we assume the European lookback call option is issued at time
zero, and the number of time periods n is even. Then at time zero, S,,;, is equal
to the value of the underlying asset, S. As illustrated in Figure 4.6, the number of
paths from S to the terminal price 4; = Su'd"~* is (n”_Z), where each path has the
same probability p*(1 — p)"~*. There are n + 1 reset barriers, and the reset barrier
H; is equal to Sd"~7. By the reflection principle, the number of paths reaching the
terminal node A; that hit the reset level H; is (n +7;_j).

For a terminal node A;, where ¢ < n/2, the minimum price reached to this node
might be H;, H;\1, ... , Hy. Note that A; has the same price as Hy; for 0 <@ < 2.
We count the number of paths that hit the reset level H;, H;1,. .., Hy;, and call them
n(H;), n(Hii1),. . ., n(Hy;), respectively. Thus the number of paths reaching A; with

minimum price H; is equal to

{ n(H;) —n(H; 1) ifj#i
1 if j=1

For a terminal node A;, where i > n/2, the minimum price reached to this node might
be H;, H;\1, ... , H,, and we call them n(H;), n(H;;1), ... , n(H,) respectively. Thus

the number of paths reached to A; with minimum price H; is equal to:

{ n(H;) —n(H; 1) ifj#i
1 if j=1

The option value is therefore
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A CH
A(n/2)+1 : H(n12)+1 ~H,
Hn \ An/Z: Hn/ZNHn
Ho: \ f
Hn/2
H A H -H
4 2 Mp™My
H, \\
H, \ A HH,
H,
H, Ayt H,

Figure 4.6: AN N-PERIOD LOOKBACK CALL UNDER THE BINOMIAL MODEL.

o2 n n
eTO-D Ax(Ai—Hj)+ > Y Ax (A — H,)), where
1=0 j=i i=2+1 j=i

A= { (n+7;—j) B (n+i—n(j_1)) Zf] 7 Z
1 if j=1

The running time of this algorithm is quadratic in n. The experimental results

are in Chapter 5.
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Figure 4.7: CONVERGENCE OF A EUROPEAN LOOKBACK CALL OPTION. The pa-
rameters are S = 100, Spin, = 95, 0 = 30%, T' =1 (year), r = 6%, ¢ = 0%. The analytical
value is about 24.54.

4.5 The Convergence Speed Comparison

Figure 4.7 illustrates the convergence speed of the European lookback call option. It
shows that the algorithm converges slowly to the analytical value as n increases. For
a large number of time periods, e.g, n = 3000, the relative error is about 1%. Even
under the power of the combinatorial method, it takes about 8 seconds to compute
the value with 3000 periods. Hence for computing the option value with large n, the
combinatorial method still takes significant running time.

Figure 4.8 illustrates the convergence speed of the American lookback put option.
We can find that the American lookback option converges slower than that of the
European one. It takes much time to compute the value with large n. For example,

it takes about 9 hours to compute the value with n = 2000 .
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Figure 4.8: CONVERGENCE OF AN AMERICAN LOOKBACK PUT OPTION. The pa-
rameters are S = 100, Sy = 100, 0 = 30%, T = 1 (year), r = 6%, ¢ = 0%. The upper
bound of the put value is about 30.34.

Both European and American lookback options have the characteristics of slow
convergence. And they all take much time to compute the value for large n. Due
to this reason, we propose the interpolation method to reduce the computation time.

We will describe how it works in the next section.

4.6 The Interpolation Method

This section proposes an interpolation method to price European and American look-
back options when they are monitored discretely. There are many numerical methods
for interpolation. Lagrangian polynomials and Newton’s interpolations are equiva-
lent in nature, but different in presentation. In this thesis, we concentrate on the

Lagrangian polynomials.
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Lagrangian polynomials

The Lagrangian polynomial is perhaps the simplest way to exhibit the existence of
a polynomial for interpolation with unevenly spaced data. Data where the z-values
are not equispaced often occur as the result of experimental observations or when
historical data are examined.

Suppose we have a table of data with four pairs of z- and f(x)-values, with z;

indexed by variable 2:

z  f(z)
o Jo
T f1
) fo
T3 /3

Here we do not assume uniform spacing between the z-values, nor do we need the
z-values arranged in a particular order. The z-values must be all distinct, however.

Through these four data pairs we can pass a cubic. The Lagrangian form is

(x — z1)(x — z2)(x — z3) ot (x — zo)(x — z2)(x — z3) :

(zo — 1) (T0 — @2)(T0 — 3) (21 — o) (21 — 22) (71 — 73)
(x — zo)(x — 1) (x — x3) (x — zo)(x — 1) (x — 22)
(562 - xo)($2 - xl)(l'Q - $3) 2 (353 - xo)(iﬂ?, - $1)($3 - $2)

Pg(.’L') =

fs

This equation is made up of four terms, each of which is cubic in x; hence the
sum is a cubic. The pattern of each term is to form the numerator as a product of
linear factors of the form (z — x;), omitting one z; in each term, the omitted value
being used to form the denominator by replacing x in each of the numerator factors.
In each term, we multiply by the f; corresponding to the z; omitted in the numerator
factors. The Lagrangian polynomial for other degrees of interpolating polynomials
employs the same pattern of forming a sum of polynomials all of the desired degree;
it will have n + 1 terms when the degree is n.

It is easy to see that the Lagrangian polynomial does in fact pass through each
of the points used in its construction. For example, in the preceding equation Ps(z),
Psy(z;) = f; fori =0, 1, 2, 3.
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An interpolating polynomial, while passing through the points used in its construc-
tion, does not, in general, give exactly correct values when used for interpolation. The
reason is that the underlying relationship is often not a polynomial of the same de-
gree. Thus the error term of an interpolating polynomial with n + 1 points is given

by the expression

A9

B(e) = (= ao)(e = 21) -+ (0 = 2a)

where £ is in the smallest interval that contains {x, 7, 71, ..., 7, }, and f**! represents

the n + 1-st derivative.

The idea of interpolation and evaluation

We have pointed out that it takes lots of computation time to value either a European
or an American lookback option when n is large. Trying to reduce the cost of the
computation time, we adopt the Lagrangian polynomial.

The idea of the interpolation technique is heuristic; see [14] for more detailed
discussion. For an interpolating equation with four points, the y-values of them
are C, Oy, O3, Cy respectively, where the subscript of C' denotes the monitoring
frequency. It is easy to see that Cy is the analytical value. The z-values are given

1 1

by z1 = %, Ty =3,T3 =3, and Te = é = 0. Hence the Lagrangian polynomial is

) = (@ — @) (x — 23) (7 — 7o) (z —z1)(z — 23)(2 — Too)
Ple) (21— 22) (1 — w3) (71 — 5’"c>o)c1 - (T2 — 1) (T2 — 23) (T2 — Too)
(x —z1)(x — 22)(x — Too) (x — z1)(x — z2)(x — z3) o
(23 — 1) (23 — 72) (T3 — Too) (Too = 1) (Too — T2)(Too — T3) =

Cs

+ Cs +

Note that P(X,) = P(%) =C,,n=1,2,3,00. Then the interpolated price of C,
is P(%) This algorithm is easy to program and it combines speed and accuracy; see

Figure 4.9 for illustration.

Other experimental results are discussed in Chapter 5.
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Figure 4.9: CONVERGENCE COMPARISON: COMBINATORIAL METHOD VS INTERPO-

LATION METHOD.

Seven-point interpolation is used. The seven points are: n = 50,

n =90, n = 130, n = 170, n = 210, n = 250, and n = co.



Chapter 5

Experimental Results

5.1 Reset Options

This section concentrates on the experimental results of reset options. In Chapter 3,
we described two methods, the combinatorial method and the binomial tree method
with backward induction, of pricing reset options. Both should produce the same
value under the same parameters, because they are both based on the CRR model.
The option value oscillates as we increase the number of time periods n; see Figure
5.1.

The reason for the jittery is that the reset barrier H does not coincide with one of
the n + 1 available stock prices. To reduce this error, we need to find n, the number
of time periods, that can guarantee that the barrier is almost on a layer of nodes.
The n are:
m2o?T

Figure 5.2 shows the fast convergence with n from equation (5.1).

n = m=1,23. (5.1)

Table 5.1 tabulates their running times. From Figure 5.3, we can see clearly
the dramatic difference between the linear-time and quadratic-time algorithms. The

combinatorial method takes much less time for the same n.

26
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Figure 5.1: THE SAWTOOTH-LIKE CONVERGENCE BASED ON THE BINOMIAL MODEL.
The parameters are S = 100, X = 100, K =95, H =90, 0 = 30%, r = 6%, ¢ =0%, T =1
(year). The analytical value is about 16.014.

Table 5.1: Time used of a European reset call option by the two methods (combina-
torial method and binomial tree method with backward induction).

Number of Periods Combinatorial Backward Induction on

Method the Binomial Tree

72 0.2 ms 6 ms
202 0.6 ms 30 ms
656 1.8 ms 170 ms
810 2.2 ms 220 ms
1370 3.8 ms 550 ms
1589 4.4 ms 770 ms
2626 7.3 ms 2150 ms
2926 8.1 ms 2630 ms
3242 9.0 ms 3190 ms
3924 10.9 ms 4730 ms
4288 11.9 ms 5650 ms

4669 13.0 ms 6700 ms
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Figure 5.2: THE FAST CONVERGENCE OF A EUROPEAN RESET CALL FOR WELL
CHOSEN N’S. The parameters are S = 100, X = 100, K = 95, H = 90, ¢ = 30%, r = 6%,
q = 0%, T =1 (year). The n we choose are: 72, 202, 656, 810, 1370, 1589, 2626, 2926,
3242, 3924, 4288, and 4669.
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Figure 5.3: TIME USED OF A EUROPEAN RESET CALL OPTION BY THE TWO METH-
ODS (COMBINATORIAL METHOD AND BINOMIAL TREE METHOD WITH BACKWARD

INDUCTION).

q=0%, T =1 (year).

The parameters are S = 100, X = 100, K = 95, H = 90, 0 = 30%, r = 6%,
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Table 5.2: Time used of a European lookback call option by the two methods (com-
binatorial method and binomial tree method with backward induction).

Number of Periods Combinatorial Backward Induction on

Method the Binomial Tree

100 0.11 s 0.77 s
300 0.16 s 9.32 s
500 0.22 s 2244 s
1000 0.88 s 194.11 s
1500 2.03 s 657.02 s
2000 3.62s 1566.53 s
2500 5.66 s 3063.75 s
3000 8.08 s 5300.15 s
3500 11.04 s 8418.54 s
4000 14.33 s 12568.88 s
4500 18.18 s 17900.50 s
5000 22.41 s 24574.49 s

5.2 Lookback Options

In this section, we concentrate on the experimental results of lookback options. In
Chapter 4, we described two methods, the combinatorial method and the binomial
tree method with backward induction, of pricing European lookback options. Both
should produce the same value under the same parameters because they are both
based on the CRR model. The option value converges slowly as we increase the
number of time periods, and it underestimates the analytical value (see Figure 4.7).

Table 5.2 tabulates their running times. From Figure 5.4, we can see clearly
the dramatic difference between the quadratic-time and cubic-time algorithms. The
combinatorial method takes much less time for the same n.

For pricing American lookback options, the combinatorial method is no longer
applicable. Like the European ones, the convergence of American lookback options is
slow (see Figure 4.8). The pricing of American lookback options under the binomial
model is time-consuming (see Table 5.3).

Figure 4.9 illustrates the convergence speed of the combinatorial method and the
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Figure 5.4: TIME USED OF A EUROPEAN LOOKBACK CALL OPTION BY THE TWO
METHODS (COMBINATORIAL METHOD AND BINOMIAL TREE METHOD WITH BACK-
WARD INDUCTION). The parameters are S = 100, Spin = 95, 0 = 30%, r = 6%, g = 0%,
T =1 (year).

interpolation method for pricing a European lookback call option. We then compare
their running times in Table 5.4. Note that most of the running time by the interpo-
lation method is to evaluate the values at the interpolated points, i.e. the values at
n=>50,n =290, n =130, n =170, n = 210, n = 250, and n = oo.

Table 5.5 shows the running times of pricing an American lookback put option
by the binomial tree method with backward induction and the interpolation method.
Most of the running time by the interpolation method is to evaluate the values at
the interpolated points, i.e. the values at n = 50, n = 70, n = 90, n = 110, n = 130,
n = 150, and n = 170. Figure 5.5 illustrates the convergence of the binomial tree

method with backward induction and the interpolation method.
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Table 5.3: Time used of an American lookback put option (backward induction on
the binomial tree).

Number of Periods Backward Induction on
the Binomial Tree

100 1.59 s
300 28.45 s
200 134.62 s
700 375.36 s
900 808.56 s
1100 1493.64 s
1300 2489.99 s
1500 3855.00 s
1700 5648.81 s
1900 7927.07 s
2100 10757.76 s
2300 14195.06 s
2500 18302.44 s
3000 31892.05 s

Table 5.4: Time used of a European lookback call option by the two methods (com-
binatorial method and interpolation method).

Number of Periods Combinatorial Interpolation

Method Method
100 0.11 s 0.64 s
300 0.16 s 0.64 s
500 0.22 s 0.64 s
1000 0.88 s 0.64 s
1500 2.03 s 0.64 s
2000 3.62 s 0.64 s
2500 5.66 s 0.64 s
3000 8.08 s 0.64 s
3500 11.04 s 0.64 s
4000 14.33 s 0.64 s
4500 18.18 s 0.64 s

2000 2241 s 0.64 s




Lookback Options 33

Table 5.5: Time used of an American lookback put option by the two methods (bi-
nomial tree method with backward induction and interpolation method).

Number of Periods Backward Induction on Interpolation

the Binomial Tree Method
100 1.59 s 11.75 s
300 28.45 s 11.75 s
500 134.62 s 11.75 s
1000 1116.41 s 11.75 s
1500 3855.00 s 11.75 s
2000 9269.39 s 11.75 s
2500 18302.44 s 11.75 s
3000 31892.05 s 11.75 s
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Figure 5.5: CONVERGENCE COMPARISON: BINOMIAL TREE METHOD WITH BACK-
WARD INDUCTION VS INTERPOLATION METHOD. Seven points interpolation. The
seven points are: n =50, n =70, n =90, n = 110, n = 130, n = 150, and n = 170.
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Table 5.6: Convergence speed for pricing a European lookback call option by these

methods.
Number of IP CM Number of MC UMC
Periods Replications
2500 24.411 24.355 2500 24.492 24.688
5000 24.471 24.408 5000 24.322 24.683
7500 24.493 24.432 7500 24.453 24.606
10000 24.505 24.446 10000 24.484 24.541
12500 24.511 24.456 12500 24.651 24.492
15000 24.516 24.464 15000 24.411 24.522
17500 24.519 24.469 17500 24.450 24.618
20000 24.522 24.474 20000 24.472 24.600
22500 24.524 24.478 22500 24.565 24.575
25000 24.526 24.481 25000 24.447 24.626
27500 24.527 24.484 27500 24.544 24.621
30000 24.528 24.486 30000 24.410 24.488

The parameters are: S = 100, Sy, = 95, 0 = 30%, T =1 (year), r = 6%, ¢ = 0%.

The analytical value is about 24.540.

Table 5.6 compares the combinatorial method (CM), the interpolation method
(IP), the Monte Carlo method (MC) with n = 1000, and the Unbiased Monte Carlo

method (UMC) [1].

5.3 More Comparisons in Convergence for Look-
back Options

The payoff from a lookback call depends on the historically minimum stock price

reached during the life of the option. When the option is issued today, then S,,;, is

equal to S, where S denotes the current stock price. However, during the life of the

option, S,,;, may not be equal to S. Table 5.7 tabulates the European lookback call
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Table 5.7: The comparison of the European lookback call value for various S,,,.

Number of S,,;,, =100 95 90 70 10
Periods
2500 23.978 24.355 25.406 35.895 90.582
5000 24.044 24.408 25.449 35.906 90.582
7500 24.073 24.432 25.468 35.911 90.582
10000 24.091 24.446 25.480 35.914 90.582
12500 24.102 24.456 25.488 35.916 90.582
15000 24.111 24.464 25.493 35917 90.582
17500 24.118 24.469 25.498 35.918 90.582
20000 24.124 24.474 25.502 35.919 90.582
22500 24.128 24.478 25.505 35.920 90.582
25000 24.132 24.481 25.507 35.921 90.582
27500 24.135 24.484 25.509 35.921 90.582
30000 24.138 24.486 25.511 35.922 90.582

Analytical 24.204 24.540 25.554 35.933 90.582

Other parameters are: S =100, o0 = 30%, T' =1 (year), r = 6%, ¢ = 0%.

price for various S,,;,, while keeping other parameters unchanged. From Table 5.7, we
can see that the major the difference between S and S,,;,, the faster the convergence
speed.

To price discrete lookback options using the continuous monitoring formula, Broadie,
Glasserman, and Kou [1996] discover a simple correction procedure; One needs only
to adjust the n + 1 reset barriers by a factor of exp (0.5826x0 X \/7%) For a Eu-
ropean lookback call option, we need to adjust each barrier downward by a factor
calculated as exp (0.5826x0 X \/7%) by the BGK method; see Table 5.8.

When the value of the underlying asset is monitored over the whole period, the
premium of the lookback options are expensive. A partial monitoring of the underly-
ing price is one way of reducing the lookback’s premium. A partial lookback option
is cheaper than a classic lookback option, and the payoff of such option depends on
the period monitored. We assume that the current time ¢ = 0, the monitoring period

of the partial lookback option starts at time 7 and ends at time T prior to the
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Table 5.8: The convergence of the BGK method.

Number of S,,;, =100 95 90 70 10
Periods
1000 24.268 24.589 25.588 35.943 90.582
2500 24.243 24.572 25.580 35.939 90.582
5000 24.231 24.561 25.573 35.936 90.582
7500 24.226 24.558 25.569 35.936 90.582
10000 24.223 24.555 25.566 35.936 90.582
12500 24.221 24.553 25.565 35.935 90.582
15000 24.220 24.553 25.564 35.935 90.582
17500 24.218 24.552 25.564 35.935 90.582
20000 24.217 24.551 25.563 35.935 90.582
22500 24.217 24.550 25.563 35.935 90.582
25000 24.216 24.549 25.562 35.935 90.582
27500 24.215 24.549 25.562 35.934 90.582
30000 24.215 24.549 25.562 35.934 90.582

Analytical 24.204 24.540 25.554 35.933 90.582

Other parameters are: S =100, 0 = 30%, T =1 (year), r = 6%, ¢ = 0%.
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expiration date T. Then the payoff of such a European lookback call at maturity can

be written as
max (S — mingy <,<1y S(7),0)

Figure 5.6 illustrates the convergence of such partial lookback call option.
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Figure 5.6: CONVERGENCE OF A EUROPEAN PARTIAL LOOKBACK CALL OPTION.
The parameters are S = 100, 0 = 30%, T' = 12 (month), Ty = 6 (month), Ty = 9 (month),
r =6%, ¢ = 0%.



Chapter 6

Conclusions

The combinatorial method has been widely applied in many fields. In this thesis,
we extend it to pricing European-style reset and lookback options. In Chapter 5,
we showed the efficiency of pricing such options by the combinatorial method. We
successfully reduced the running time by an order.

We also found that the convergence of lookback options were very slow. To price a
European lookback option with a large n, even under the power of the combinatorial
method, it took minutes to get the result. It was clearly not efficient. We then tried
the interpolation method, called the Lagrangian polynomial, to make it converge
faster. We approximated the option value at a large n by interpolating with the
polynomial. From our experimental results, we successfully reduced the running time
and obtained well approximations. We also used this method to price American
lookback options and obtained good results.

From our experimental results, the interpolation method can be applied to price
other lookback-like options. We may work in the future if the interpolation method
could be applicable for other complex options that have smooth curve. Second, we
may want to know that how many data points are needed to obtain good approxima-

tions by the interpolation method.
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