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Abstract

This thesis uses the Monte Carlo Approach to estimate the value of American call
options on the maximun of multi-assets. This methodology to price American options
with finitely many exercise opportunities simulates the evolution of the underlying
assets via random trees that branch at each of the possible early exercise dates.
From this tree, two consistent price estimates are obtained, one biased high and the
other biased low. these two estimates can be combined to provide a valid, though
conservative, confidence interval for the option price.

Broadie and Glasserman had already developed several enhancements to improve
the efficiency of the two estimates so that the resulting error is small. They tried to
“prune” the tree by eliminating the branching whenever possible, thus shortening the
simulation time and allowing for faster convergence of the estimates. In this thesis, I

analyze the properties and efficiency of these approaches.



Chapter 1

Introduction

1.1 Introduction

Before 1993, there were no approaches on the use of simulation techniques to value
American-style options. Tilley[1] was the first to take such an approach. Since then, a
number of related articles have followed, including Boyle[2], Grant, Vora and Weeks,
and Broadie and Glasserman[3]. In short, simulation approaches are particularly
useful when there are multiple stochastic factors that determine an option’s value.

Binomial trees that approximate a stock price distribution at future dates are
commonly used to value path-independent American options. Option values are de-
termined at the tree’s terminal date, and backward induction is then used to compute
values at earlier steps, taking the possibility of early exercise into account. This ap-
proach may not be useful if the option is path-dependent or based on many underlying
stochastic factors, because the number of nodes becomes enormous and hard to com-
pute. Simulation methods, however, can easily handle these difficulties and value
general European options.

A problem arises with American derivatives, because the early exercise feature
requires knowledge of “live” and exercise values; standard simulations do not provide
estimates of live value at intermediate dates. If a poor exercise policy is employed,
the estimate of the initial option value may be inaccurate.

The use of Monte Carlo simulation for pricing options was first proposed by

Boyle. One advantage of this method over the binomial method of Cox, Ross, and
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Rubinstein[4] is that it does not grow exponentially with the number of state variables
or underlying assets. Path-dependencies can also be taken into account easily. The
chief drawback of the method has been its inability to incorporate the early exercise
feature of American-style derivative securities.

Broadie and Glasserman propose a way to use simulation for pricing American
options with finitely many exercise opportunities. Two estimators - - - one biased
high and the other biased low - - - are obtained from a simulated tree, which branches
at each of the possible early exercise points. A conservative confidence interval for
the option price is obtained as a consequence. These eatimators are consistent (i.e.,

they converge in probability) and unbiased in the limit.

1.2 Organization of This Thesis

There are five chapters in this thesis. In Chapter 1, a brief introduction is presented.
In Chapter 2, we introduce some basic financial concepts. In Chapter 3, we introduce
our option pricing models for American options . In Chapter 4, we show the numerical

results. Finally, conclusions are in Chapter 5.



Chapter 2

Fundamental Concepts

This chapter contains several basic concepts which remind the reader of fundamental
tools used in chapters to follow option basics, Black-Scholes formula, options involving

several assets, and Monte Carlo simulation.

2.1 Option Basics

Options on stock were first traded on an organized exchange in 1973. Since then there
has been a dramatic growth in the options markets. Now they are traded on many
exchanges around the world.

There are two basic types of option contracts: call options and put options. A call
option gives the holder the right to buy the asset at a stated price (called the ezercise
price or strike price). Conversely, a put option gives the holder the right to sell the
asset at a stated price on or before a stated date.

In general, call and put options can be defined in one of two manners: American
or Furopean. A European option can only be exercised at the maturity date of the
option, whereas an American option can be exercised at any time up to and including
the maturity date, namely early exercise.

Throughout this chapter, we assume that 7' — ¢ denotes the time to maturity, X

denotes the strike price, and S represents the current stock price.
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Positions

There are two sides to each option contract. On one side is the investor who has
taken the long position (i.e., has bought the option). On the other side is the investor
who has taken a short position (i.e., has sold or written the option). The writer of

an option receives cash up front but has potential liabilities later.

Payoffs

Four basic option positions are possible:
1. A long position in a call option.
2. A long position in a put option.
3. A short position in a call option.

4. A short position in a put option.

It is often useful to characterize European option positions in terms of the payoff
to the investor at maturity. The initial cost of the option is then included in the
calculation. If X is the strike price and St is the final price of the underlying asset,

the payoff from a long position in a European call option is
max(Sr — X, 0)

This reflects the fact that the option will be exercised if S > X and will not be
exercised if Sy < X. The payoff to the holder of a short position in the European

call option is
—max(Sr — X, 0)
or
min(X — Sz, 0)

The payoff to the holder of a long position in a European put option is
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max(X — St,0)

and the payoff from a short position in a European put option is

—max(X — S7,0)
or
min(Sy — X)
Figure 2.1 illustrate these payoffs graphically.
t Payoff t Payoff
X =r X Sr
Long Call Short Call
t Payoff t Payoff
X = X S
Long Put Short Put

Figure 2.1: Payoffs from Positions in European Options.
X =Strike price

S7=Price of asset at maturity.
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2.2 The Black-Scholes Formula

In the early 1970s, Fischer Black and Myron Scholes made a major breakthrough by
deriving a differential equation that must be satisfied by the price of any derivative
security dependent on a non-dividend-paying stock. They solved this equation and
obtained the values for European call and put options on stock. This formula, which
has become known as the Black-Shcoles formula, is one of the most significant results
in pricing financial instruments. In this section we show how a similar analysis can
be used to derive the formula.

The expected value of a European call option at maturity in a risk-neutral world
is

E[maz(Sy — X,0)]

where E denote expected value in a risk-neutral world. From the risk-neutral valu-
ation argument the European call option price, ¢, is the value of this discounted at

the risk-free rate of interest, that is,
¢ = e "7 Y E[max(Sr — X, 0)] (2.1)
We know that if a stock price S follows geometric Brownian motion,
dS = rSdt + oSdz

then
2

dlnS = (r — %)dt + odz
From this equation we see that variable InS follow a generalized Wiener process.

The change in InS between time ¢ and 7T is normally distributed:
2

InSy — InS ~ ¢[(r — %)(T — 1), 07T — 1

where St is the stock price at a future time 7', S is the stock price at the current time
t, and ¢(m, s) denotes a normal distribution with mean m and standard deviation s.

Hence, InS7 has the probability distribution equation that is

2

nSy ~ @ln S + (r — %)(T —4),0VT — 1]
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Evaluating the right-hand side of Equation (2.1) is an application of integral calculus.

The result is
c=SN(d) — Xe " T IN(dy)

where
In(S/X) = (r+02/2)(T — 1)

oI —t
_ In(S/X)=(r— o?/2)(T —t) B
4 — o Y

and N(z) is the cumulative probability distribution function for a variable that is

d1:

normally distributed with a mean of zero and a standard deviation of 1 (i.e., it is the
probability that such a variable will be less than z).
The value of a European put can be calculated in a manner similar to a European

call. Alternatively, put-call parity can be used. The result is

p=Xe "I IN(=dy) — SN(—dy)

Options on Stocks that Pay Continuous Dividend Yields

In the continuous payoff model, dividends are paid continuously. Such a model ap-
proximates, broad based stock market index portfolio, in which some company will
pay a dividend nearly every day. Foreign currencies also pay daily dividends in the
form of interest, hence well approximated by the continuous payoff model.

The payment of a continuous dividend yield at rate ¢ reduces the growth rate of the
stock price by ¢. In other words, a stock that grows from S to St with a continuous
dividend yield of ¢ would grow from Se?” to St without dividends. Hence, a European
option on a stock with price S paying a continuous dividend yield of ¢ has the same

—qr

value as the corresponding European option on a stock with price Se™?" that pays no

dividends. Black-Sholes formula can be used with S replaced by Se™?". Hence the

following formulas hold,

C = Se “N(z)—Xe ""N(x —o+/T)
P = Xe " N(—z+o0y7)—Se "N(—xz)
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where
In(S/X)+(r—q+0%/2)T

T =
o\T

In the above formulas, C' is the call option value, P is the put option value,

and N(z) is the cumulative probability distribution function for a variable that is
normally distributed with a mean of zero and a standard deviation of 1 (i.e., it is the
probability that such a variable will be less than z).

These formulas due to Merton, remain valid even if the dividend rate is not a
constant. As long as it is predictable and ¢ is replaced by the average annualized

dividend yield during the life of the option.

2.3 Options Involving Several Assets

Options involving two or more risky assets are sometimes referred to as rainbow
options. One example is the bond futures contract traded on the CBOT. The party
with the short position is allowed to choose between a large number of different bonds
when making delivery. Another example is what is known as a basket options. This is
an option whose payoff depends on the value of a portfolio of assets. A third example
is a LIBOR-Contingent FX option. This is an option whose payoff occurs only if a
prespecified interest rate is within a certain range at maturity.

Options on the maximum of two risky assets enter the payoff function of some
traded assets in a straightforward way. If V and H are the prices of two risky assets
at exercised date, the call options has a payoff equal to max(max(V, H) — F,0), where

F' is the exercise price.

The Pricing of a Call on the Maximum of Several Assets

In European-style options, we know that Black-Sholes formula can help us to get the
value of a call option on a single asset. But if the call options depend on several
assets, how can we get the option value? Below, we show the formula of computing

the value of European call options on several assets,
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Cmaz = S1Nu(di(S1, X, 02),d,(S1, Sz,0%), -+, d\(S1, Sn, 02, P112; P1135 "+ *)
+82 N, (d1(S2, X, 07), 1 (S2, S1,07y), - -+, d1(Sa, Sy 05) s P212, P22y~ )
4.
+50 N (d1(Sn, X, 07), d1 (Sns S, 01n), -+ d1 (S St On_in) s Prins Pnzns * )
—Xe (1 = Np(=dy(S1, X, 02), —dy(Ss, X, 02), - -, —dy(Sn, X, 02), p12, p13, - - *))
where n is the number of assets, X is the exercise price, T" is the time to maturity,

N; is the i-variate standard cumulative normal distribution function, and

log% + (r+ 30T

dl(S'iaXa 0-12) =

O'Z'T
log i + (r — 2o2)T
dZ(Si’XaaiQ) = = o T =
7
log 2t + 30T
di(Si, Sy, 07) = P
ij
afj = 07— 2p;j0i0; + 0?-
_ 07 = pij0i0; — Pik0iTk + PjrT;j0k
Pijk =

0ijTik
for n=2, the expression simplifies to
Cmar = SiNa(di(S1, X, 07),d1(S1, S2,075), pr12)
+S2No(d1 (S2, X, 03), d1(Sa, S1,073), para)
—Xe ™ (1 = No(—do(S1, X, 02), —dy(Sy, X, 02), p12))
If the option is on stocks that pay continuous dividends rates, the formula should
be changed to
Cmaz = S1e PNy(d1(S1, X, 02),d, (S, Sa,0%), p112)
+85e7 % Ny(dy (Sa, X, 02),d(Sa, S1,02%,), par2)
—Xe (1 — No(—dy(S1, X, 02), —da (52, X, 03), p12))
where

log %t + (r— g+ 20T
O'Z'T

dl(S'iaXa 0-12) =
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log%i + (r—q— LoH)T

dQ(Si, X, 0'12) =

O','T
log 2t + 1
5, T2
d\(S;, S;,0%) = —2 =
1( 2~ zy) Uz'jT
2 _ 2 2
0 = 0; —2pijoi0;+ 0]
2
ik = Oi — Pij0i0j — Pik0i0k + Pjk0;j0k
ijk =

040k

and ¢ is the dividend yield rate. About the details of this formula, consult [5].

Calculation of Cumulative Probability in Bivariate Normal
Distribution

The above formula uses the bivariate normal distribution function. So we discuss the
bivariate normal distribution function in this subsection.

We define M(a,b; p) as the cumulative probability in a standardized bivariate
normal distribution that the first variable is less than a and the second variable is
less than b, when the coefficient of correlation between the variables is p. Drezner
provides a way of calculating M (a, b; p) to four-decimal-place accuracy.! If a<0, b<0,
and p<0, \

M (a,b; p) = 17_'02 21 A;A; f (B, Bj)
ij=

where

f(x,y) = expla'(2x —a') + V' (2y — V') +2p(x — a')(y — V)]

g - —* oy

2(1-p?) 2(1-p?)

A; =0.3253030 A; =0.4211071 Az = 0.1334425 A, = 0.006374323
B, =0.1337764 B, = 0.6243247 Bs = 1.3425378 B, = 2.2626645

In other circumstances where the product of a, b and p is negative or zero, one of the

following identities can be used:

M(a’ b; p) = N(CL) o M(a" _b; _p)

17. Drezner “Computation of Bivariate Normal Integral,” Mathematics of Computation, 32 (Jan-
uary 1978), 277-79. Note that the presentation here corrects a typo in Drezner’s paper.
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M(U,, b; ,0) = N(b) o M(_aa b; _p)
M(aab;p) = N(CL)+N(b)—1+M(—a,—b,p)

In circumstances where the product of a, b, and p is positive, the identity
M(a,b; p) = M(a,0; p1) + M(b,0; p2) — N(a) — 6

can be used in conjunction with the previous results, where

(pa — b)sgn(a)

pro= Va2 —2pab + b2
) (pb — a)sgn(b)
2 Va2 —2pab + b2
5 — 1 — sgn(a)sgn(b)

4

(z) = +1, when x>0
SgME) = —1, when <0

2.4 Monte Carlo Simulation

Monte Carlo simulation is a sampling scheme which is used for solving stochastic
and even deterministic problems. In many important applications within finance and
without, Monte Carlo simulation is the only viable tool. In some cases, the time
evolution of a stochastic process is not easy to describe analytically, and Monte Carlo
simulation may be the only strategy that succeeds.

Because of its simplicity, Monte Carlo simulation has become a popular method for
valuing derivatives . It is computationally easy and more efficient than lattice or tree
methods at valuing certain path-dependent process (such as Asian, barrier, forward
start, and look-back options and mortgage-backed securities). This is because the
time taken to carry out a Monte Carlo simulation increases approximately linearly
with the number of variables, whereas the time taken for most other procedures
increases exponentially with the number of variables. Monte Carlo simulation has
the advantage that it provides a standard error for the estimates that are made. It
is an approach that can accommodate complex payoffs depending on some function

of the whole path followed by a variable, not just its terminal value.
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In a risk-neutral environment, the value of any derivative security is the discounted
value of its expected terminal date cash flow. Assume interest rates are not stochastic,
and discounting occurs at the risk-free rate . The current price of a derivative security

is given by

Price = e " E[f (S, - - -, S7)]

where T is the maturity date of derivative, f(Sy,...,S7) is the derivative’s terminal
date cash flow, which may be dependent on the entire price history of the underlying
asset, and Sy, ...,S7 is the history of prices for the underlying asset from ¢ = 0 to T'.

In its crudest form, Monte Carlo simulation approximates the expectation of the
derivative’s terminal date cash flows with a simple arithmetic average of the cash

flows taken over a finite number of simulated price paths:

3 =T 1 al n n
Price ~ e T[N > F(SE, s ST (2.2)
n=1

where S7, ..., S}, is the n-thn =1,2,..., N simulated price path of underlying asset
over the life of the derivative, and f(S7, ..., S}) is the derivative’s terminal date cash

flow from this path.

Random Price Paths and Monte Carlo Simulation

To simulate a price path of underlying asset, we assume that the asset pays no div-
idends and follows a geometric Brownian process. The n-th price path Sg, ..., S}

el

forn=1,2,..., N, follows recursively from
o2
St = S!' jexp|(r — ?)At + oel vV At

where the time to maturity has been divided into s time intervals of length At
(1=1,2,...,s = T/At), r is the risk-free drift rate, o is the underlying asset’s volatil-
ity; and for each time interval, €} is a random sample independently drawn from a
standardized normal distribution N(0,1). Figure 2.2 illustrates three price paths,

each with ten time intervals, for an asset with r = 10%, o = 20%, and At = 0.1 year.
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140

pricepath 1

120 price path 2

Price

100
price path 3

80

Period

Figure 2.2: THREE RANDOM PRICE PATHS.
(Ten time intervals, r = 10%, o = 20%)

After the entire price path Sg, ..., ST has been simulated, we calculate the deriva-
tive’s terminal date cash flow f(Sg,...,ST). We repeat the procedure for each addi-
tional price path. Often we will find it convenient to refer to each repetition of this
procedure as “a simulation.”.

After a large number of independent simulations, we compute a simple arithmetic
average of the resulting terminal value. This gives us the expected terminal value of
the derivative, which we then discount to the present at the risk-free rate to obtain

the derivative’s current price (i.e., Equation (2.2)).



Chapter 3

Model and Estimators

We use the notation following to formulate the problem of pricing American options:

Let there be d exercise opportunities at times 0 =ty < t; < ... < tg 1 =T,
with 7" the time of expiration for the option initiated at time t; or today. Less

formally, we will sometimes indicate t = ty,%1,...,tq—1 by t=10,1,...,T.

Consider a vector-valued Markov chain (S; : ¢ = 0,1,...,7) consisting of all
information required to determine the payoff from exercising an option. For
simplicity, think of the components of S; as lognormally distributed stock price.
In practice, S; would record all relevant information about asset prices, interest
rates, exchange rates, and supplementary variables needed to eliminate path

dependence. We say that state is s at time ¢ if S; = s.

e B is the discount factor from ¢ — 1 to t. We take R, to be a component of

the vector Sy, and assume R; > 0 for all ¢. In addition, let Ry, = X!, R;.
hi(s) is the payoff from exercise at time ¢ in state s, t =0,...,7 — 1.

gi(s) = Ele B+ f,,1(S441)|S: = | is the continuation value at time state s,

t=0,...,7-1.

fi(s) = max[hy(s), g:(s)] is the option value at time ¢ in state s, ¢ =0,...,7T—1.

14
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It is known that the price of American option is the solution of the optimal

stopping problem:

fo(So) = max Ele R h(S,)] (3.1)
where the maximum is over all stopping time 7 taking values in (0,1,...,7). The
optimal policy stops at

T = mln[t = 0, e ,T . ht(St)Egt(St)] (32)

That is, the first time the immediate exercise value is at least as great as the contin-
uation value.

Under some restrictions, Broadie and Glasserman show that there is no unbiased
estimator of Equation 3.1. As an alternative, therefore, they introduce two estima-
tors, one biased high and the other biased low, both consistent and asymptotically

unbiased.

3.1 Simulation Trees

In contrast to the Monte Carlo approach for pricing European options, the evolution
of S; is simulated using random trees rather than just sample paths. By this way,
we can get better accuracy than using the sample paths that Monte Carlo generates.
These random trees branch at each of the d exercise points.

Let b denote the number of branches (i.e., successor nodes) emanating from each
node prior to expiration. Thus each tree consists of a total of 4! sample paths to
expiration day. The nodes in these paths carry all the necessary information such as
stock prices. Consequently, once a tree has been generated, we can calculate option
payoffs at all nodes on the expiration day.

We then work backward through the tree, and at each node we find two estima-
tors for the option prices by comparing the payoff from immediate exercise with the
continuation value. This procedure is repeated until we reach the initial node at time
0. Two estimators for the option price are determined in this fashion.

Formally, given a value of branching parameter b, the evolution of tree can be

described recursively as follows. From the (fixed) initial state Sy, we generate b
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independent samples S, ..., S? of the state at time ¢ = 1. From each of these b
samples, S, iy=1, ..., b, in turn, generate b new samples, Sit!, ..., Si® at time t=2.

Repeat this procedure for every possible exercise time ¢.

To be precise from each node S;'*" at time ¢, we generate b samples S;}i"’,

j=1,...,b, conditionally independent of each other given Sfl'"it and each having the

distribution of S,;; given S, = Si**_. Thus, each sequence Sy, S, 5%, ..., Si'T is
a realization of the Markov chain, and the entire path to any node at time ¢, 1<t<T,
is specified by (i1, 72, ..., i), where 1<i1, 4o, . .., iy, 1311 <b.

To simplify notation, we henceforth indicate the path to a node at time ¢ by ay;
that is, for each node, «y is a t-dimensional vector (i1, 79, ..., 7;) that carries information

about the path to that node. Thus, S~ is written as S*. Similarly, 4. ..3,j is

replaced by a;j, so the j-th node (branch) following Si* is Si}; or, equivalently, Syt
where Q1 = (il, iQ, ey it, it+1) with it+1 = ]
112.66(12.66,12.66)
105.67
(4.62,6.85) 78.70 (0.00,0.00)

108.41 (8.41,8.41)

92.97 (0.00,0.00)

100.00 103.31 105.47 (5.47,5.47)

(3.43,4.16) (3.31,3.3\
87.59 (0.00,0.00)

72.91 (0.00,0.00)

85.99 108.07 (8.07, 8.07)
(2.62,2.62)

96.53 (0.00, 0.00)

|
|
tO =0 tl t2

Figure 3.1: A TREE WITH b = 3 AND EXERCISE OPPORTUNITIES AT tgy, t;, AND
FOR A CALL OPTION.

The value at each node is the stock price, and the values in parameters are the low
and high estimates (¢, H).

Parameter: M = 1, b =3, K = 100, r = 5%, 6 = 10%, T = 1.0, 0 = 20%, and three
exercise opportunities at time 0, 1/2, and one year.
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Figure 3.1 illustrates a tree with parameters b = 3 and M = 1, where M denotes
the dimension of the state vector. To understand the notation, consider the node at
t =T = 2 corresponding to the stock price of 87.59. In our notation it is represented
as 522’3 - - - the subscript 2 indicates that we are looking at a node at time ¢t = 2, and
the superscripts indicate that it is the third branch among the branches emanating
from the second node at ¢ = 1. For this node, therefore, as is (2,3). Similarly, the
node corresponding to 78.70 is Sy (s for this node is [1,2]) and 85.99 is S? (oy for
this node is [3]).

3.2 (Generating Stock Prices

We assume that stock price follows geometric Brownian motion as follows:

gzudt-l-adw

where p is the average return on stocks, o is the volatility of stock price, and dw is

the basic Wiener process.
Log-normal Model
Let X = InS. By Ito’s lemma, we can derive the process of X as follows:
L,
dX = (,u—§0 )dt + o dw (3.3)
In the discrete time model, Equation (3.3) can be rewritten as follows:
1
AX = (p— 502) At+oe/At (3.4)

where € is a random drawing from standard normal distribution N(0,1). Let S; be

the stock price at time 7. An equivalent equation of Equation (3.4) is:
1
InS;yy —InS; = (p— 502) At + oey/ At

or,

Si1=S; - e(u—%zﬂ) A?H‘O’e\/A_t (35)
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Suppose that today is time i, we can employ Equation (3.5) to generate stock price
at time 7+ 1. Since In S; is normally distributed, In S;;; is still normally distributed;

thus ;1 still has the log-normal property.

Getting the Price Path from Monte Carlo Model

We already know the property of the stock price. Now, we will show the equation of

generating price path from Monte Carlo Model.

i i 1 ;
St(k)-f—l = St(k)eﬂﬁp[(r —0; — 2 ) tpy1 — tk \/Thet1 — tka )]

(i=1,...,M,andk =0,...,d—1)

where M is the number of the assets, d is the number of branches, r is the (constant)
interest rate, d; are the dividend yields, and W} (i =1, ..., M) are mean-zero normal
random variates with standard deviations o;, and correlation p;; for i#j.

We get the random sample from the ¢(0,0;). And in this thesis, the options
involving multi-assets, so we need the sample from a standardized bivariate normal
distribution, an appropriate procedure is as follows. Independent samples z; and o
are obtained from ¢(0,0;). The required samples €; and e, are then calculated as

follows:

€L = I
_ / 2
€2 = pi1aT1+To\/1— p7y

where pis is the correlation between the variables in the bivariate distribution.
For an n-variate normal distribution where the coefficient of correlation between
variable ¢ and variable j is p;;, we first sample n independent variables z; (1<i<n)

from ¢(0, 0;). The required samples are ¢; (1<i<n), where

k=i
€ = Z QT
k=1

For ¢; to have the correct variance and the correct correlation with the ¢;(1<i < j),

we must have

Za?k =
k
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and
Z QikQjk = Pij
k
The first sample ¢, is set equal to X;. These equation for the a’s can be solved, so

the €, is calculated from z; and x,, €3 is calculated from z1, x5 and x3, and so on.

3.3 Estimators

The high estimator is simply the result of applying dynamic programming to the

random tree. More precisely, working backward through the tree using the recursions
O = hr(S7")

and
1

O = max[h,(S"), 5 Zb:le o1 @a” (3.6)
j=

We compute the high estimator © = ©y. At any node, therefore, the high esti-
mator is the maximum of the immediate exercise value and the average of discounted
high estimates at successor nodes. The high estimator uses all branches emanating
from a node to approximate both the optimal action (exercise or continue) and the

value of this decision.
The low estimator separates the branches used to determine the action from those

used to determine the continuation value. In words:

1. At each node in the tree, reserve one successor node. Average the discounted

low estimator values at the other b — 1 successor nodes.

2. If the average obtained is less than the immediate exercise value; otherwise, set

the node value equal to the discounted value from the reserved node.

3. Average the resulting node value over all b ways of selecting the reserved suc-

cessor node.
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4. Repeat these steps backward through the tree.

For a more precise formulation, first let

07" = hp(SET 3.7
T T
next, set
natj — ht(_S?t): if ht(Stat)zb_% E?:li;éj e_R?ﬂe?fl (3 8)
' e B9 otherwise
then let
1 & o
O = 5 2o (39
b =

for t =0,...,7 — 1. Finally, the low estimate € is given by 6.

To summarize, this method requires constructing random tree parameterized by
b, the number of branches per node. Once these trees have been obtained, work
backward through the tree to compute the option price. In this way, the early exercise
feature is incorporated in the simulation methodology. The option price itself is
determined in terms of two estimates: one is biased high, and one is biased low, but

both are unbiased in the limit as b goes to infinity.

Example 1

Consider a simple call option on a single stock. The current stock price is 105, strike
price is 100, time to maturity (7)) is one year, annual interest rate is 5%, volatility
is 10%, and the dividend rate is 10%. More important, suppose there are only two
exercise opportunities, 0 and 7'. We exercise the option either today or at expiration.

The price of the option is therefore simply the maximum of its immediate exercise
value (105 — 100 = 5) and the price of a European option expiring at 7. Using the
Black-Scholes formula, we find the price of the European option to be 3.73. Thus the
option price is max[5.00, 3.73] = 5.00, and the optimal decision should be to exercise
immediately rather than to wait until expiration day.

Let us now attempt to use the simulation approach discussed above to find the

low and high estimates for the option price. We generate five nodes on expiration day



Estimators 21

as shown in Figure 3.2. Observe that averaging the payoffs at these nodes provides an
unbiased estimate for the European price, although the estimate itself may be quite
inaccurate in this case since we are using only five sample paths.

101.96(1.96)
93.97(0.00)
105 105.31(5.31)
105.31(5.31)

94.32(0.00)

=0 T

Figure 3.2: A TREE WITH b = 5 AND EXERCISE OPPORTUNITIES AT 0 AND T FOR
A CALL OPTION.

The value at each node is the stock price, and the values in parameters is the pay-
off. The low and high estimates for the option price obtained from this tree are 2.38 and
5.67, respectively.

Parameter: M=1, b=5, K=100, r=5%, 6 = 10%, T=1.0, 0=10%, and two exercise
opportunities at time 0 and one year.

According to Equation (3.6), the high estimator is the maximum of the immediate
exercise value and the discounted estimate of the continuation value. Hence, it is
max[5, e %9(1.96 + 22.53 + 0 + 5.31 4+ 0) /5] = max[5, 5.67].

By erroneously choosing to continue, in this case, we have biased the estimate up-
ward. In general, since a finite number of branches will not represent the distribution
of stock prices perfectly, we will choose to continue whenever the simulated future
prices are too high, even though the optimal decision is to exercise. Conversely, had
the optimal decision been to continue, we will erroneously choose to exercise instead
whenever the simulated future stock prices are too low. In either case, we overes-
timate the option price, as we are always using the large of the immediate exercise
value and the estimated continuation value.

Calculation of the low estimator also requires an estimate for the continuation
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value. Averaging the discounted payoffs at four out of five branches provides five such
estimates. By individually comparing these continuation value estimates with the
immediate exercise value, we can decide whether to exercise or continue, If the decision
is to continuation value — is used as one estimate of the option price. Otherwise, use
the exercise value.

For example, the discounted average of the payoffs at the last four branches is
e~%95(22.534+0+5.3140)/4 = 6.62, which is greater than the payoff from immediate
exercise. Hence a decision to continue rather than exercise is inferred, and the first
low estimate is e790°1.96 = 1.86(the discounted payoff of the reserved first branch).

Now reserve the second branch, and obtain the continuation value from the re-
maining branches as e %%5(1.96 + 0 + 5.3 + 0)/4 = 1.73, which is smaller than
5.00. Hence 5.00 is the second estimate. Repeating the same procedure, the re-
maining three estimates are 0, e7%:%5.31 = 5.05, and 0. Finally, the low estimate is
(1.86 4+ 5.00 + 0 + 5.05 + 0) /5 = 2.38.

In this example, since four of the estimates for the continuation value are greater
than 5.00, we incorrectly infer continuing four out of five times. The only correct
decision is due to 1.73 < 5.00. Therefore, four of the five intermediate estimates ob-
tained from this tree are biased. Since these four values provide an unbiased estimate
for the European option price, which we already know has a value less than 5.00,
the bias is downward. In general, the estimate obtained in this fashion is biased low
because it is an average of some unbiased estimates (based on the correct decisions)

and some other estimates that are biased low (based on the incorrect decisions).

Example 2

Suppose there are three exercise opportunities at time 0, 7/2, and T'. In particular,
consider a call option on a single stock with an initial price of 100. The strike price
is 100, time to maturity is one year, annual interest rate is 5%, volatility is 20%,
and the dividend rate is 10%. The random tree in figure 3.1 corresponds to a single
simulation run. In this figure, the low and high estimates are reported in parentheses

next to the random stock price at each node.
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It is easy to compute the two estimates time 7T'(e.g., at the topmost node at
time 7 in figure 3.1). The stock price is 112.66, so both estimates for this node are
112.66 — 100.00 = 12.66.

At the topmost node at time 7/2, on the other hand, since the immediate ex-
ercise value is 5.67, the high estimate is max[5.67, e %92°(12.66 + 0.00 + 8.41)/3] =
max|[5.67,6.85]. The low estimate is the average of b=3 intermediate values. The
first of these three values is 5.67 because e~%%2°(0.00+8.41)/2<5.67. Similarly, the
second one is 0.00 because e %9%5(12.66 + 8.41)/2 > 5.67, and the third one is
e 9025(8.41) = 8.20 because e *9%5(12.66 + 0.00)/2 > 5.67. Finally, the low esti-
mate is (5.67+ 0.00 + 8.20)/3 = 4.62. The low and high estimates at other nodes are
obtained in the same manner.

The low and high estimates for the price of the option corresponding to this
simulation run are 3.43 and 4.16. Repeating the procedure many times by simulating
new trees, we get refined values of the two estimators as their respective averages
over all the simulation runs. More important, we can get standard errors, and hence
confidence intervals, for these estimators. A conservative confidence interval for the
option price itself can be obtained by taking the upper confidence limit of the high
estimator and the lower confidence limit of the low estimator.

If we let d be the number of exercise opportunities and n the number of replica-

b?1. In particular, increasing

tions, the work required to carry this out grows like n
the branching parameter is typically far more costly than increasing the number of
replications. Increasing b, however, is essential for reducing bias and thus reducing the
width of the confidence interval. This difficulty motivates our investigation into tech-

niques that help reduce the size of the confidence interval without having to increase

b.

3.4 Pruning

Pricing a European option is generally easier than pricing the American option; There
is no optimization involved in the European price. It is therefore natural to try to

exploit information obtained from the European case in pricing the American option.
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The European price provides a highly effective control variate, as example will show.
We explain how the European price can also be used for pruning, i.e., reducing the

number of nodes in the simulated trees. Then we will introduce pruning techniques.

Pruning at the Last Step

Let T'— 1 denote the penultimate exercise opportunity. The optimal action at time
T — 1 depends on which is greater: the immediate exercise value hr_1(Sr_1), or
the continuation value gr_;(Sr—1). The estimators © and # implicitly estimate the
continuation value at each node. But at time 7" — 1 the continuation value is just
the value of a European option initiated at time 7" — 1 and maturing at time 7.
Computing this value directly and efficiently eliminates the need to branch at the
penultimate node.

In other word, if c7(S7—1) denotes the price of the European option initiated at
time T — 1 with initial stock price S7_; and expiring at time 7". then the low and
high estimators are both set to max[hp_1(S7—1), cr(Sr—1)]. Since this implies that
we do not need to generate successor nodes for the nodes at 7' — 1, the work required
is reduced to O (nb?2).

Returning to the tree in Figure 3.1, it is not necessary to branch at time ;. As
an illustration, the low and high estimates at the topmost node at time ¢; would then
become max[5.67,7.20] = 7.20, where 7.20 is the price of the European call option

with initial stock price 105.67 and time to maturity half a year.

Intermediate Pruning

The sole reason for branching (as opposed to simulating sample paths in the usual
way) is to allow for consistent estimation of the optimal action at a node. Suppose
that at time ¢ there is a node corresponding to state s. If we knew that the immediate
exercise value is smaller than the continuation value, i.e., hy(s) < g¢(s), we would know
that the optimal action is to continue and there would be no need to branch; it would
suffice to generate just one successor node. Of course, in general we do not know

g1(s), since g, is itself the value function of an optimal stopping problem.
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But if we can find an easily computed lower bound c(s) < (respectively <)g.(s),
we can check if hy(s) < (respectively <)c(s). If this holds, stopping is guaranteed to
be suboptimal, so there is no need to branch. If there is no branching out of node
i1.. .4, then Equation (3.6) gets replaced by O = exp(—Ry:1)07], and Equation
(3.9) gets replaced with 6" = exp(—R}).

Pruning at the node in this manner considerably reduces the work required per tree
because it eliminates b — 1 successor nodes along with their progeny. Consequently,
in the same amount of time, we can simulate more trees than we could if we were not
pruning. Since increasing b reduces the bias, it is a good idea to devote some of the
savings in time to increasing b as well.

In virtually all practical examples, the value of an option remains strictly positive
throughout its existence. Thus, a simple choice of bound is ¢(s) = 0; at any node at
which the immediate exercise value is zero, there is no need to branch. This test is
free because this choice of ¢ requires no computational effort. For example, in Figure
3.1, since the immediate exercise value at time 0 is 0, it is optimal to continue, and
branching is unnecessary; we should generate just one successor node at time ¢ = 1
instead of three.

In the case hi(s) > 0, we may decide to compare the immediate exercise value
with a more refined bound. Natural choices are ¢;;1(s),. .., ¢r(s), where ¢ (s) is the
value of a European option initiated in state s and maturing at time k. Each of these
corresponds to a particular (suboptimal) exercise policy for the American option, and
thus provides a lower bound on g¢;(s). If hy(s) < cx(s) for any k =t +1,..., T, there
is no need to branch. (In example later, we illustrate this approach using only ¢z (s).)

The idea behind pruning is pictured in Figure 3.3. Specifically, compare the
price cr(Sy,) of the European option initiated at time ¢, and expiring at 7" with the
immediate exercise value at time ty, hy, (S;, ). If the latter is greater, branch in the
usual fashion as shown in Figure 3.3(a). If the former is greater, generate only one

successor node, i.e., only one branch emanates from this node; see Figure 3.3(b).
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European European

Figure 3.3: PRUNING AT TIME .

Figure 3.3(a). If the European value for the option initiated at time ¢, with initial stock
price S, and time to expiration T is smaller than the payoff from immediate exercise, then branch
in the usual fashion. Figure 3.3(b). Otherwise, generate only one successor node at the next time

step tr+1-
For clarity, in this and the following figure the complete trees are not shown. They are in reality
dense trees with branches emanating from every node before expiration - - - one branch from the

pruned nodes and b branches from the rest.
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Numerical Results

We test the techniques discussed by using them here to price options. The example
we consider an American option on the maximum of two assets. We use five initial
prices to test them, the prices are 80, 90, 100, 110, and 120. For simplicity, we assume
the two assets’ initial price are identical, and the parameters that we use in every
case are identical. The annualized interest rate is 7 = 5%; Both assets have dividend
yields 0; = 10% and volatilities o; = 20%; Their correlation are p;; = 30%, i#j; the
strike price K is 100; the time to maturity 7 is three years; and there are four exercise
opportunities at time 0, 1, 2, and 3 years.

We implement pruning using European value at penultimate node and intermedi-
ate pruning based on first checking if the payoff from immediate exercise is positive,
and then comparing it with a single European option maturing at time 7" . The
European price is computed by the formula that we discussed in Chapter 2.3.

The price of the European call option with identical parameters is used as a control
variate with both techniques. The control variate technique is applicable when there
are two similar derivatives, A and B. Security A is the security under consideration;
security B is a security that is similar to security A and for which an analytic solution
is available. Two simulations using the same random number streams and the same
At are carried out in parallel. The first is used to obtained an estimate, f} ,of the

value of A; the second is used to obtained an estimate, f5, of the value of B. A better

27
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estimate of the value of A, f,, is then obtained using the formula

fa=fa—Tfs+[B
where fp is the true value of B. In this case, f4 is the value of the estimator we
want, and fg is the true value of European option. The true value we used here are
obtained using the lattice approach suggested by Boyle, Evnine, and Gibbs[?] on the
same option with four exercise opportunities.

Confidence interval for the option price are computed by taking the upper confi-
dence limit of the high estimator and the lower confidence limit of the low estimator.
Because these interval are conservative, the actual converge shall be much better.

The values labeled ”Point Estimate” are the averages of the corresponding high
and low estimators. Taking the midpoint as the price estimate is a fairly arbitrary
way of compromising between the two. Nevertheless, the relative error ” Real Error”
is computed from this estimate.

The result of using original approach, We show it on the table 4.1. In this ap-
proach, we only use pruning method at penultimate node and take the European
value as control variate.

Immediate pruning approach, in which we use the pruning method at every nodes
of the simulation tree. And the penultimate pruning is used at the penultimate nodes,
the European price is also used as control variate. The result we show it on the table
4.2.

Although the simulation number is not large, but we can see that the real error
on table 4.1 is much small. This is because the approach expand the random tree
completely, so we can get good point estimate. Alternatively, we use much time to
compute by this approach. On the table 4.2, we can see that immediate pruning
approach have worse real error than original approach in same simulation numbers.
This is because immediate pruning approach do not expand the random tree com-
pletely, it delete the branches of the nodes. In the other hand, this let immediate
pruning approach use less time to compute the option value.

We had shown the simulation results of two approaches respectively. Because using

the immediate pruning approach, the branches of simulation tree are eliminated to
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Table 4.1: Option on Maximum of Two Assets
(Original Approach)
90%
Initial Low High Confidence Point True  Real Simulation
Price Estimate Estimate Interval Estimate Value Error Num.
80 3.634 3.664 [3.601, 3.697] 3.649 3.643 0.17% 100
90 7.208 7.281 [7.191, 7.350] 7.245 7.234  0.15% 100
100 12.315 12.502  [12.282,12.535]  12.409 12.412 0.02% 100
110 18.842 19.167  [18.809,19.200] 19.005  19.059 0.28% 100
120 26.666 27.083  [26.535,27.199] 26.875  26.875 0.00% 100
80 3.624 3.659 [3.603, 3.680] 3.642 3.643  0.02% 250
90 7.187 7.278 [7.166,7.299] 7.232 7.234  0.01% 250
100 12.331 12.517  [12.310,12.538] 12.424  12.412 0.10% 250
110 18.891 19.212  [18.871,19.232] 19.051  19.059 0.03% 250
120 26.693 27.104  [26.612,27.179]  26.898  26.875 0.08% 250
80 3.627 3.660 [3.612, 3.675] 3.644 3.643  0.02% 500
90 7.193 7.287 [7.179,7.302] 7.240 7.234  0.09% 500
100 12.300 12.494  [12.286,12.508] 12.397 12.412 0.11% 500
110 18.873 19.187  [18.858,19.202] 19.030  19.059 0.14% 500
120 26.614 27.062  [26.549,27.115]  26.838  26.875 0.13% 500

Initial price=80 means S(()l) = 382) = 80.
This technique includes pruning at last step. European price is used as control variate.
Payoff:maz[maz(SM, S?) — K, 0].
Parameter:b = 50, K = 100, r = 5%, § = 10%, T = 3.0, 0 = 20%, p = 30%, and four

exercise opportunities at times 0, 1, 2, and 3 years.

European prices: 3.269 for So = 80, 6.293 for Sy = 90, 10.513 for Sy = 100, 15.835 for
Sy = 110, 22.080 for Sy = 120.
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Table 4.2: Option on Maximum of Two Assets
(Immediate Pruning Approach)
90%

Initial Low High Confidence Point True  Real Simulation
Price Estimate Estimate Interval Estimate Value Error Num
80 3.653 3.674 [3.619, 3.709] 3.664 3.643  0.58% 100
90 7.188 7.272 [7.133,7.326] 7.230 7.234  0.04% 100
100 12.333 12.493  [12.248,12.575] 12.412  12.412 0.00% 100
110 19.014 19.274  [18.921,19.389]  19.157  19.059 0.51% 100
120 26.633 27.090  [26.428,27.238] 26.862 26.875 0.04% 100
80 3.636 3.658 [3.614, 3.679] 3.647 3.643 0.11% 250
90 7.187 7.278 [7.166, 7.299] 7.232 7.234  0.01% 250
100 12.331 12.517  [12.310,12.538] 12.424  12.412 0.10% 250
110 18.891 19.212  [18.871,19.232] 19.051  19.059 0.03% 250
120 26.693 27.104  [26.612,27.179]  26.898  26.875 0.08% 250
80 3.641 3.664 [3.625, 3.680] 3.652 3.643 0.27% 500
90 7.214 7.288 [7.189,7.314] 7.251 7.234  0.24% 500
100 12.321 12.479  [12.284,12.516] 12.400 12.412 0.09% 500
110 18.963 19.215  [18.915,19.261]  19.089  19.059 0.15% 500
120 26.630 27.061  [26.550,27.121]  26.845 26.875 0.10% 500
80 3.630 3.655 [3.619, 3.666] 3.643 3.643  0.00% 1000
90 7.206 7.282 [7.188,7.300] 7.244 7.234  0.14% 1000
100 12.350 12.506  [12.324,12.532] 12.428 12.412 0.13% 1000
110 18.954 19.207  [18.920,19.240] 19.080  19.059 0.11% 1000
120 26.645 27.076  [26.589,27.116]  26.860 26.875 0.05% 1000

This technique also includes pruning at last step. European price is used as control

variate.

Payoff:maz[max(SW, S®) — K, 0].
Parameter:b = 50, K = 100, r = 5%, 6 = 10%, T = 3.0, 0 = 20%, p = 30%, and four
exercise opportunities at times 0, 1, 2, and 3 years.
European prices: 3.269 for Sy = 80, 6.293 for Sy = 90, 10.513 for Sy = 100, 15.835
for Sy = 110, 22.080 for Sy = 120.
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Table 4.3: The Computing Efficiency
(Original Approach vs. Immediate Pruning Approach)

90% Simulation
Initial Confidence Point True Real Simulation Time
Price Interval Estimate Value Error Num (second)
Original Approach
80 [3.579, 3.680] 3.629 3.643 0.36% 97 100
90 [7.195,7.357] 7.276 7.234 0.58% 96 100
100 [12.289,12.539]  12.414 12.412 0.02% 99 100
110 [18.809,19.200]  19.005 19.059 0.28% 100 100
120 [26.512,27.177]  26.852 26.875 0.08% 98 100
Immediate Pruning
80 [3.619, 3.666] 3.643 3.643 0.00% 1000 94
90 [7.187,7.307] 7.247 7.234 0.19% 584 100
100 [12.272,12.525]  12.399 12.412 0.10% 312 100
110 [18.882,19.279]  19.081 19.059 0.12% 217 100
120 [26.402,27.208]  26.837 26.875 0.13% 159 100

decrease the complexity of the computation. So We know that immediate pruning
approach can use less time to do simulation than original approach. And then We
want to compare the accuracy and computing efficiency of the two approaches we
used. We show that how many simulations numbers that both approaches can make
by using same time. Alternatively, the real error is also shown on the table. From
this, we can know that whether the immediate pruning approach can use less time to
get better real error.

Next, we show the situations of convergence of the two case, the initial price 80
(deep out-of-the money) and 120 (deep in-the-money), on the Figure 4.1, 4.2, 4.3,
and 4.4. We know that we can do more simulations with equal computing time
by immediate pruning approach, and then we want to compare it with the original
approach to know that whether we can get good convergence property with equal

computing time by the immediate pruning approach.
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Figure 4.1: The Convergence of Original Approach (S; = 80).
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Figure 4.2: The Convergence of Immediate Pruning Approach (S, = 80).
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Figure 4.3: The Convergence of Original Approach (S; = 120).
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Figure 4.4: The Convergence of Immediate Pruning Approach (S, = 120).
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Conclusions

As the number of state variables increases, simulation becomes the only computation-
ally feasible numerical approach for pricing options. Unlike other numerical methods,
it allows for complex payoff functions and path-dependencies. Hence it becomes im-
portant to look for possible ways of using simulation for pricing American options.

Because the approach presented here relies on two estimates, one biased high and
the other biased low, and a confidence interval obtained from them, it is important
to reduce the bias and variance of these estimators. The computation including a
control variate causes further enhancement.

The method is most promising for pricing American-style securities with multiple
state variables. Although estimators were developed for option with two decisions,
exercise or not, they are easily extended to a finite number of decision.

This work can be extended in several directions. Variations of the low estimator,
e.g., using by branches to determine the exercise decision and by branches to evaluate
the resulting payoff, remain to be explored. The number of branches per node does
not need to be constant throughout the tree. The convergence rate of the algorithm
and the effect of the choice of n and b on the error remain to be explored. Alterna-
tive variance reduction techniques, including other control variates could be tested.
Quasi-Monte Carlo method, also termed low discrepancy methods that we may use to
replace the original monte carlo method. Additional computational testing on other

American-style securities remains to be done.
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