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Abstract

A financial derivative is a financial instrument whose payoff is based on other
elementary financial instruments, such as bonds or stocks. With the rapid growth
and deregulation of many economies, more derivatives are being designed by the
financial institutions to satisfy the needs of their clients. This also gives rise to new
problems in pricing and hedging.

It has been proved that pricing arbitrary European options is a § P-hard problem
[2]. Even now, there are some notorious derivatives, such as Asian options, that can
not be efficiently priced. These sophisticated derivatives are playing important roles
in financial markets.

Pricing path-dependent derivatives with tree models combined with state variables
is a standard numerical approach, especially when we can not get proper closed form.
Monte Carlo simulation is also a good alternative, but it is less efficient than the tree
methods in general. [7]

A systematic approach to constructing data structures and algorithms for pricing
is the first goal of this thesis. I will first introduce how the idea works by illustrating
the underlying ideas. Then I will apply the ideas to European-style path-dependent
options, such as barrier options, geometric average-rate option and Asian-like interest
rate options. For American-style options, the early exercise property of these options
is critical, and the numerical data from Asian-like derivatives also suggests that it
is a monotone curve rather than an oscillated one. The second goal of this thesis is
therefore about demonstrating these properties of the pricing data.

Pricing the arithmetic average rate options is a hard problem. This is because
we can’t derive a proper formula for describing the distribution of the sums of log-
normal random variables. A new lattice model is designed for pricing the arithmetic
average-rate options. This efficient approach can give a more reliable answer than
other approaches.



Chapter 1

Introduction

1.1 Setting the Ground

A financial derivative is a financial instrument whose payoff is based on other ele-
mentary financial instrument, such as bonds or stocks. With the rapid growth and
deregulation of economies, more derivatives are being designed by the financial insti-
tutions to satisfy the needs of their clients. More sophisticated derivatives created
by financial institutions become so complex and hard to be understood. On the one
hand, the financial innovations make the market more efficient. On the other hand,
they also give rise to new problems in pricing and hedging. These problems will be-
come more important as these sophisticated derivatives start play to important roles
in financial markets.

A new discipline, named financial engineering, is founded under such circum-
stances. This new discipline involves the design, development, and implementation
of innovative financial instruments and processes, through which we can meet the re-
quirement of risk management. In order to solve the finance problems, I will combine
knowledge from different subjects in finance, computer science and mathematics.

Pricing arbitrary derivatives has been proved to be a §-P problem [2]. Usually,
we can price some complex derivatives via Monte Carlo method. But it’s hard for
pricing American-style options by this method, the efficiency of it is also poor. This
situation give us strong intuition for finding appropriate systematic approach about
pricing.

This thesis discusses solving path-dependent derivatives with tree methods and
state variables, and provides a systematic and efficient approach for these sophisti-
cated derivatives. We can easily and intuitively build up a computer program for pric-
ing these sophisticated derivatives following our approach. From the pricing data, we
examine some interesting properties, like the early exercise property of the American-
style options and the oscillating curves of pricing data. These observations give us
insights into derivatives pricing.

In order to solve the strongly path-dependent arithmetic average-rate options, a
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new pricing tree model, using the closure property on natural number, is investigated.
This model provides a good approach for pricing these options. The experimental data
in this thesis show that this approach is efficient and can offer satisfactory results.

1.2 Structures of the Thesis

I organize this thesis as follows. In Chapter two, I will introduce some underlying
knowledge about financial derivatives, including the properties of derivatives, pricing
models and methods. In Chapter 3, I will describe how to implement a computer
program for pricing the derivatives efficiently and systematically. Some complex ex-
amples like the geometric average-rate options and arithmetic average interest-rate
options are priced in Chapter 4 by the approach described in Chapter 3. Some obser-
vations about the pricing results are also made in this chapter. An new pricing tree
model, used for pricing the arithmetic average-rate options, is described in Chapter
5. We will compare this algorithm with numerical results from other papers.
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Fundamental Concepts

In this chapter, I would like to introduce some background knowledge you about
financial world, basic rules of derivatives and pricing methods. Some concepts, like
stopping time, will be introduced later when needed.

2.1 Basic Assumptions

In this section, T would like to introduce basic assumptions in finance and mathemat-
ical models. Survey on the background mathematics is also given in this section

2.1.1 Basic Assumptions in Finance

The following statements are needed for all the models in this thesis.

Rational Behavior

People in this ideal market all behave rationally. That is to say, they try to maximize
their benefit. They like to gain more and avert risk (risk averters). This is also a
basic assumption used in most economic models.

Efficient Market
All derivatives are priced correctly. You can trade at the market price. This assump-
tion implies that there is no liquidity problem in this ideal market.

Complete competitive market

All people behave like price takers in this market. Trading behaviors do not influence
the prices in the market. So traders in this market do not care about the side effects
of their activities, such as price movements caused by their trading.
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No Arbitrage Opportunity

Arbitrage is any trading strategy that requires no cash investment and has some
probability of making profits without any risk of loss. In our ¢deal environment,
there should be no arbitrage opportunity for any trading strategy. That is to say, you
can not make excess return without suffering any risk. This important assumption
implies that the return of any riskless portfolio is the risk-free rate.

No Transaction Cost

No tax and shoes leather cost need to be taken into consideration. This assumption
will make our models become simpler.

The Markov Property

A Markov process is a particular type of stochastic process where only the present
value of a variable is relevant for predicting the future. To simplify the models for
computation, all processes in this thesis are Markov processes.

2.1.2 Survey of Mathematical Tools

In this subsection, I will introduce stochastic processes needed to model the financial
variables and some important tools needed for handling these models.

2.1.2.1 Stochastic Process

Any variable whose value changes over time in an uncertain way is called a stochastic
process. Stochastic processes can be classified as discrete-time processes or continuous-
time ones. A discrete-time stochastic process is one in which the value of the variable
can change only at some certain time, whereas a continuous-time stochastic process
allows changes can take place at any time.

Formally, a stochastic process X = {X(¢)} is a time series of random variables. In
other words, X (¢) is a random variable for time ¢, and it is usually called the process
state at time t. We often write X (¢) as X; in shorthand. If the time ¢ comes from
a countable set, we call X; a discreet-time stochastic process. If the time ¢ forms
a continuum, we call it a continuous-time stochastic process. Any realization of X
is called a sample path or trajectory. Note that a sample path is but an ordinary
function of ¢. Figure 2.1 plots a sample realization of a Brownian motion process.

Wiener Process Wiener process is a particular type of Markov stochastic pro-
cess. It is sometimes referred to as Brownian motion in physics. It is often used for
simulating stochastic variables in physics and finance.
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Figure 2.1: SAMPLE PATH OF A BROWNIAN MOTION PROCESS. The stochastic
process with volatility is testified by the jittery of the path. The related deterministic
process with randomness been taken out is also plotted for reference.

I will illustrate the idea with a standard Wiener process. Assume the behavior
of Z; follows a standard Wiener process. Let’s consider the change of its value in a
small interval of time At. Let Az be the change in z during At. Then the following
properties must hold :
Property 1

Nz = e/t

where £ is a random drawing from the standardized normal distribution.
Property 2
The value of Az for any two disjoint time intervals are independent.
Thus Az is a normal distribution with zero mean and its standard deviation is
equal to /At by property 1. Property 2 implies that z follows a Markov process.

1

Generalized Wiener Process The standard Wiener process is a stochastic pro-
cess with mean zero and variance 1. A generalized process can be defined in terms of
a standard Wiener process dz as follows:

dr =adt+bdz (2.1)

IStandard normal distribution is a normal distribution with mean zero and standard deviation
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where a and b are constants.

2.1.2.2 Ito Process

In this subsection, I will introduce a powerful tool, developed by Ito [3], to handle
stochastic processes. An Ito process is a stochastic process X = {X;,t > 0} satisfying

t t
Xt=X0+/ a5+/ bydW,ds, t > 0, (2.2)
0 0

where X, is ”starting point,” and a; and b; are two stochastic processes satisfying
fot las|ds < oo and fot |bs|ds < oo, respectively, almost surely for all ¢ > 0. A shorthand
for (2.2) is the following Ito differential,

dX, = audt + by\/di€ (2.3)

where £ is again a random variable from the standard normal distribution. From
(2.3), it is easy to find that dW in (2.2) is a normal distribution with mean zero
and variance dt. It is easy to see that (2.3) reduces to (2.1) when a; and b; are all
constants.

Ito’s Lemma The central tool in the Ito integral is Ito’s lemma. It says that a
smooth function of an Ito process is also an Ito process. Assume X; is an Ito process
of (2.1), and f is a smooth function, then the following follows from Ito’s lemma:

dF(X) = F(z)adt + F(z)bdW + % (@)t (2.4)

Ito’s process can be generalized to higher dimensions for handling multi-dependent
or independent Winner processes. Consult [3] for more information.

2.1.3 Log-normal Model for Stock Price

A log-normal distribution for the stock price is the standard model used in financial
economics. This is because its properties can satisfy reasonable assumptions about
the random behavior of stock prices. The stochastic log-normal model for the non-
dividend-paying stock is
ds
— = pdt + odz (2.5)
S
Equation (2.5) is also known as geometric Brownian motion where S is the value of
stock. The variables p and o are referred to as the expected return and volatility,
respectively.
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Clearly, the return rate? of stock is a random variable with a normal distribu-
tion. That is why we call it log-normal. The stock price realized by this model will
never become negative, and the percent changes of S are independent and identically
distributed. These nice properties make it a good model for simulating the stock
price.

2.1.4 Term Structure Models

While there is a standard model for the stock prices, there is still no standard model
for the interest rate. This is because of the complex nature of the term structure. In
this section, I will just introduce two interest rate models, says Vasicek model [18]
and Hull and White model [8], which are related to this thesis. This is not because
that these models have better performance for simulating exact term structure, but
we can utilize these models for pricing some sophisticated derivatives, says Asian-like
interest rate derivatives.

Before surveying the term structure model, I will introduce the underlying math-
ematics model first. The numerical methods applying to these term structure models
will also be introduced in this chapter.

2.1.4.1 The Ornstein-Uhlenbeck Process

The Ornstein-Uhlenbeck process has the Ito differential,
dX = —kXdt + odW
where k,o > 0. Given X(t9) = zo, it can be shown that

E[X ()] = e ¥t 0 B(z)

2

Var[X(t)] = ﬂ(l

. e—2k(t—to)) + e_Zk(t_tO)VCLT[fEO]
for tg < s < t. It can be shown that X (¢) is normally distributed if z¢ is a constant
or normally distributed while X, is also stationary. See figure 2.2 for a plot.

A good property of mean reversion is in the Ornstein-Uhlenbeck model. When
X > 0, the dx term tends to be negative, pulling dx towards zero. If X < 0, dz tends
to be positive, pulling X towards zero again. It is also an important property found
in real world term structures. ® For term structure models, the following version is
used,

dX = k(p — X)dt + cdW

2Using continuous compounding formula.
3The interest rate in the real world appears to pulled back to some long-run average level over
time.



Backgrounds 8

Figure 2.2: SAMPLE PATH OF ORNSTEIN-UHLENBECK PROCESS. Assume the
underlying stochastic process is dY = —0.15Y dt+0.15dW with the initial condition Y (0) =
2. The envelope is used to show the standard derivation. This process will converge to a
stationary distribution

where o0 > 0. The mean and variance of this process are:

E[X(8)] = p + (0 — e

Var[X(t)] = = (1 — e 2k(t—to))

2.1.4.2 The Vasicek Model

Two short rate models are introduced in these two subsections. The short rate will be
the only source of uncertainty in these models. Both models, following the Ornstein-
Uhlenbeck model, have some good properties in their discrete-time versions [9]. These
properties will be helpful in solving Asian-like American-style derivatives.

The risk-neutral process in this model for r is

dr = a(b—r)dt + odz

where a,b and o are constants [18]. This model incorporates mean reversion. The
short rate is pulled to a level b at rate a. Superimposed upon this pull is a normally
distributed stochastic term odz.

Let P(t,s) denotes the price at time t of a discount bond maturing at time s
(t < s). It can be shown that the yield to maturity, R(¢,T),* will follow

Tt as internal rate of return at time ¢ on a zero-coupon bond maturing date at time s =t + T
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~1
R(t,T) = = log P(t,t +T), T > 0.

The relation between the short rate r(t) and R(¢,7T) is

R(,T) :Et(%l /t r(7)dr) + 7t T, r(t)), (2.6)

It may be noted that different term structure theories, like expectation hypothesis,
market segmentation hypothesis and liquidity preference hypothesis, can all satisfy
equation 2.6 with various specifications for the function 7. Consult [15] for more
information about term structure theories.

The fatal disadvantage in the Vacicek model is that this model can not fit today’s
term structure automatically. Even choosing the parameters judiciously, significant
errors may be caused in some case when we try to fit the exact term structure. In
the following subsection, another term structure model by Hull and White will be
introduced that exactly matches the real world term structure.

2.1.4.3 The Hull and White Model

This term structure model [8] can be treated as an extension of the Vasicek model.
The Ito differential of this model they suggest is

dr = (0(t) — ar)dt + odz
or

dr = a[? —r|dt + odz

where a and o are constants. This model is basically the Vasieck model with a time-
dependent reversion level. At time ¢ the short rate reverts to eg_t) at rate a. The 0(t)
function can be calculated from the initial term structure:

2

0(t) = F,(0,1) + aF(0,t) + ;’—au — 2t (2.7)

where F'(t,T) denotes the instantaneous forward rate as seen at time ¢ for a contract
maturity at time T. F(¢,T) denotes the differential with respect to ¢. The last term
in (2.7) are usually fairly small in practice, which implies that the drift of the process
for r at time ¢ is approximately F;(0,t) + aF'(0,t). This shows that on average r
approximately follows the slope of the initial instantaneous forward rate curve.
These two short rate models are normally distributed with some good properties
described before. Hull and White provided a general two steps tree-building proce-
dures [10], which can be used to represent some one-factor term structure models.
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2.2 Derivatives Basics

In this section, I will introduce fundamental knowledge on derivatives. This includes
the payoffs of various derivatives, like standard options, exotic options and interest
rate options.

2.2.1 Option Basics

An option, as the name implies, is the right to buy or sell the underlying asset for
a limited time span with a specific price. Generally speaking, the options can be
classified into three groups:call options, put options and the combination of the above
two. Call options gives the holder the right to buy the underlying asset with a specific
price at some certain time, while put options give the holder the right to sell it. The
price which holder can buy or sell something is called the exercise price or the strike
price. The date on the contract is known as the expiration date, erercise date or
maturity.

The options can also be classified based on the time period in which they can
be exercised. An American option can be exercised at any time up to maturity; in
contrast, a Furopean option can be exercised only at maturity. Thus, an American
option gives all the advantages that a European option possesses, plus the advantage
of early exercise. For this reason, the value of American options is at least as great
as that of European ones, other conditions being equal.

There are two sides to every option contract. On the one side is the investor who
take the long position (i.e., he buys the option), while on the other side is the investor
who takes the short position (i.e., he sells the option).

2.2.2 Payoffs on Standard Options

An option provides its holder the right of gaining benefit without any obligation.
Options will be exercised only when the best choice for the holder to gain maximum
benefit 5. Let me illustrate the standard European option as a example. Assume the
value of the underlying asset is S, the strike price is X, and the premium of option is
represented by O. Then the payoff for the long position at expiration is max(0, S —X)
for call options; max(0, X — S) for put options. So the profit for a long position in
call options at expiration is approximately

max(0,S — X)— O
The profit for a long position in put options is approximately

max(0,X —5) -0

5See page 3, we assume that all individual will behave rationally, and they will try to maximize
their benefit as possible.
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Figure 2.3: PROFIT/LOSS OF OPTIONS. (a) Long a call. (b) Short a call. (c) Long a
put. (d) Short a put.

So the profit for a short position in call options is
—(maz(0,S — X) — 0) =min(0,X —S)+ O
while the profit for a short position in put options is
—(maz(0,X — S) — 0) =min(0,S — X)+ O

Figure2.3 illustrates profit/loss graphically.

2.2.3 Payoffs on Exotic Derivatives

Exotic derivatives have complicated payoffs than the standard derivatives. These
sophisticated derivatives are usually designed by financial institutions to meet the
requirements of their clients. Pricing these exotic derivatives are usually very hard
because the payoff functions are usually ergodic (path-dependent.) I will introduce
the payoff rules of some exotic derivatives related to this thesis.
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2.2.3.1 Barrier Options

Barrier options are options whose payoff depends on whether the underlying asset’s
price reaches a certain level during a certain period of time. There are two types
of barrier options: knock-out and knock-in options. A knock-out option is similar
to a regular option except that when the underlying asset’s price reaches a certain
barrier, H, the option ceases to exist. The knock-in comes to existence only when
the underlying asset price reaches the barrier.

2.2.3.2 Geometric Average-Rate Options

Just as the name suggests, the payoff of a geometric average-rate option depends on
the geometric average of the underlying asset’s values. Assume °

where N is the number of periods and S; is the value of the underlying asset at period
t. The payoff of a European-style call is

max(Sgyy — X, 0) (2.9)
while the payoff of a put is
max (X — Sgyg, 0) (2.10)

2.2.3.3 Arithmetic Average-Rate Options

They are very similar to geometric average-rate options except that we use arithmetic
average instead of geometric average. Rewrite Sy, in (2.8) as

SN, S
= === 2.11
Sawg = N7 (2.11)

The payoff of call and put options are as ( 2.9) and ( 2.10) for European-style options.

2.3 Pricing Methods

Some important pricing methods used in this thesis will be introduced in this section.
They include the Black-Scholes formula, tree simulation like Jarrow and CRR models
for stocks, and Hull and White tree constructions [10] for term structure models.

6There are other types of geometric average option with different payoffs.
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2.3.1 The Balck-Scholes Formula

In the early 1970s, Fischer Black and Myron Scholes made a major breakthrough by
deriving a differential equation that must be satisfied by the price of any derivative
security dependent on a non-dividend-paying stock. They solved this equation and
obtained the closed-form solution for European call and put options on stock. This
formula, known as the Black-Shcoles formula, is one of the most significant tools for
pricing financial instruments. This formula will be treated as a benchmark for pricing
some European options in this thesis.

2.3.1.1 Assumptions

The assumptions used to derive the Black-Scholes differential equation are listed
below:

1. The value of the underlying assets follows the log-normal distribution.

2. The rate of return on stock, p, and the volatility of stock price, o, are constant
throughout the option’s life.

3. The short selling of securities with full use of proceeds is permitted.

4. The are no transaction costs or taxes. All securities are perfectly divisible.
5. No dividends are paid during the life of the derivative security.

6. No arbitrage opportunity.

7. Security trading is continuous.

8. The risk-free rate of interest, r, is constant and unchanged during the life of the
security.

2.3.1.2 The Black-Scholes Differential Equation

By eliminating the random source of the underlying stochastic process [5], the final
equations emerges as

of 1 o0 f

- S— 4+ —g?5% = = 2.12
ot T 27 Ve =1 (2.12)
where f is the price of a derivative security, S is the stock price, o is the volatility of

the stock price, and r is the continuously compounded risk-free rate.
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2.3.1.3 The Closed Form Solution for Black-Scholes Formula

The closed form solutions for the price of European calls and puts by solving (2.12)
can be described as below,”

C = SN(d)) — Xe ™" N(dy)

P = Xe_'"TN(—dg) - SN(—dl)

where
In(S/X) + (r+0%/2)T

oVT

_ In(S/X) + (r—0%/2)T _ .
dy = 7 =di—oVT

The notations for the above equation are described as below.

N(z) = Probability distribution function for standard normal distribution
0? = Annualized variance of the continuously compounded return on stocks
r = Continuously compounded risk-free rate

T = The time to maturity

d1:

Closed-Form Solution for Geometric Average-rate Options. The price for
geometric average-rate European-style options can be expressed easily with the above
formula [12]. The stocks expected return is set at (r—o?/6)/2 with its volatility set at
o/+/3. In others words, a geometric average-rate option can be treated like a regular
option with the volatility set equal to o/v/3 and the dividend yield equal to

1 2 1 2

7“—5(7'——):5(7“4‘?)

2.3.2 Tree Models

The basic idea behind tree model is that we construct a tree simulating the movements
of some underlying stochastic financial variables at discrete times steps At, 2At,
3At, ... . If the toal time span is T" and the periods is n, then At = % In each
period, we need to calibrate the first and the second moments. Use Figure 2.4 as the
example. Assume the interest rate model follows (2.7) with (¢) equal to zero. Then
the variables in Figure 2.4 satisfy the following equations,

7C denotes the call price, P denotes the put price.
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TN
Future State (1)
R_Up(t)

Current State Future State(2)
R(0) R_Mid(t)

Future State(3)
R_Down(t)

Figure 2.4: A ONE PERIOD TRINOMIAL TREE EXAMPLE. Assume the interest rate
today is R(0) in the current state. There are three possible future states at next time step.
Each state represents the up, middle or down movement of the interest rate. P(u), P(m)
and P(d) denote the respective probabilities.

—aAtR(0) = P(u)R_Up(t) + P(m)RMid(t) + P(d)RDown(t) — R(0)  (2.13)

o? = P(u)[R_Up(t) — R(0)M]? + P(m)[RMid(t) — R(0)M]*> + P(d)[R_Down(t) — R(0)M]?
(2.14)

where M =1+ a/\t,
1 = P(u) + P(m) + P(d) (2.15)

and 0 < P(u), P(m), P(d) <1

Equation (2.13) and (2.14) calibrate the mean and the variance of the original
stochastic process. Equation (2.15) is the basic axiom of probability. There are more
unknown variables than the equations. This gives us chance add the other constraints
to make the tree models satisfying other requirements.

Pricing the derivatives can be illustrated by dynamic programing as follow (use
Figure 2.4 as example),

V (Current_State) = P(u)V (F.S5.1)D; + P(m)V(F.5.2)Dy 4+ P(d)V(F.S.3)D;
(2.16)

where V denote the value of the derivative at a specific state, F.S. is the abbreviation
of Future State, and D; denotes the discount factor for each state.
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2.3.3 A General Tree Building Procedure for Term Structure

This tree structure is a good approach for constructing no-arbitrage short rate models
of the term-structure [10]. This approach, making use of the trinomial tree, is appro-
priate for models where there is some function x of the short rate r that follows a
mean-reverting arithmetic process. The key element of this process is that it produces
a tree that is symmetrical about the expected value of x. The Vasicek and Hull and
White models, for example, will take advantage of this tree building procedure.
There are three types of sub-trees, illustrated at Figure 2.5, for the tree building
procedure. Assume the length for each time step is At and the variance for each time

4 VAR
NI N

(a) (b) ©

Figure 2.5: ALTERNATIVE BRANCHING PROCESS FOR INTEREST RATE TREE.

step is V. We can set the size of the interest rate step, Ar, at v/3V. Then the tree
can be built by the following two steps.

First stage: building a preliminary tree

Setting 6(t) in (2.7) and the initial value of r at zero suggest the following equation,
dr = —ardt + odz (2.17)

Building an interest rate tree for (2.17) is the goal for first stage. This can be illus-
trated an example. Define (4, ) as the node for which ¢t = iAt and r = jAr. Assume
we need to compute the type-a sub-tree. Then we can set R_Up(t) to R(0) + Ar,
R_Mid(t) to R(0) and R_Down(t) to R(0) — Ar in equations (2.13), (2.14) and (2.15).
The solutions for P(u), P(m) and P(d) can be solved as

1 2M2 4+ M

Py) = - + 22 I
(W=5+"7>
2 oy
P(m)Zg—jM
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The probability for the type-b sub-tree can be solved by setting R_Up(t) to R(0) +
2Ar, R Mid(t) to R(0) + Ar and R_Down(t) to R(0)to get

1 2M?%— M

7T jEM?—3;M
6 2

For the type-c sub-tree, we set R_Up(t) as R(0), R-Mid(t) as R(0)—Ar and R_Down(t)
as R(0) — 2Ar respectively and obtain

7 M2 +35M

L oqm :
P(m):—g—j M* —2jM

1 °M?+ M
P(d)zé—i_f

In order to make sure that the inequalities 0 < P(u), P(m), P(d) < 1 hold, the
range of j can be shown as follow,

—0.816 << —0.184
M - - M

and —J < j < J. A sample tree constructed by this step is illustrated in Figure 2.6.

2.3.3.1 Second stage: calibration with the real term structure

Fitting today’s term structure is the main goal of this stage. I will provide a shortcut
method for fitting the spot rate curve. The exact method for this problem can be
found in [10].® Assume the term structure function today is

0.08 — 0.05¢ %18 (2.18)

and the interest rate tree being calibrated is illustrated in Figure 2.6. Obviously, the
average interest rate for the first period can be obtained by subtracting ¢ in (2.18)

8Because of the symmetry of probability at the tree we construct in the first stage (see Figure
2.6), we can use this shortcut method instead of the original complex method.
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Node A B C D E F G H |
r(%) 000 173 000 -1.73 346 173 000 -173 -346
P(u) 0.167 0122 0.167 0222 0.887 0.122 0.167 0.222 0.087

P(m) 0.666 0.656 0.666 0.656 0.026 0.656 0.666 0.656 0.026
P(d) 0.167 0.167 0.122 0.122 0.087 0.222 0.167 0.122 0.887

Figure 2.6: SIMPLE TRINOMIAL TREE FOR THE HULL-WHITE MODEL. Parameters
are set as follows, a = 0.1, ¢ = 0.01 and /At =one year.

with At. We can get the average interest rate for period-n by the following recursive
formulas,

R,, = 0.08 — 0.05e 018741

n—1

Su=Run—>_5;

i=1

The calibrated interest rate for each node can be obtained by adding the original
interest rate of that node and the average interest rate of the period the node belongs
to. The difference between the calibrated interest rate tree and the original interest
rate tree is illustrated below(compared with Figure 2.6).

Node | A B C D E F G H I
r(%) | 3.82 | 6.93 | 5.20 | 3.47 | 9.71 | 7.98 | 6.25 | 4.52 | 2.79

2.3.4 Binomial Tree Building Method

In this section, I will show how to build a binomial tree for the log-normal distribution.
Just as described above, we calibrate the first and the second moments similar to
equation (2.13) and (2.14). The generalized three-period binomial tree is illustrated
in Figure 2.7.

Let P, and P, indicate the probability of upward and downward moving proba-
bility, respectively, then the equations can be described as follow,

Ry =InuP, +1IndP;
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Figure 2.7: BINOMIAL MODEL FOR THREE PERIODS. Stock price movements over
three time periods using binomial model. S is the stock price at period 0 and u and d are
constants indicating the upward and downward ratios of the stock movement.

V= (lnu — Rf)QPu + (lnd - Rf)QPd

P,+FP;=1

where Ry denotes the risk-free rate and V' denotes the variance of the stock return.
Certainly, these four unknown variables can not be determined by the above three
equations. For the convenience of pricing in tree models, Proper constraints are
selected to achieve some good properties. Some examples are: the constraints we add
in the CRR model is u x d = 1, and P, = 0.5 in the Jarrow’s model.



Chapter 3

Combination of Pricing Tree with
State Variables

In this chapter, I will investigate state variables into a pricing tree." The systematic
method about constructing special pricing trees for pricing general path-dependent
options is also provided. It can be shown that most of these numerical pricing methods
can be computed in polynomial time. This is a important property for an algorithm,
otherwise, its usefulness will become limited if it takes so much time.

3.1 Discuss State Variables

In this section, I will discuss why we need state variables. In order to describe how the
state variables work, I will give a simple example using the forward-tracking method
on the CRR tree. Trying to keep the functionality for American-style options, I
will show how to convert it to a backward-tracking method. See [6] for some similar
examples.

3.1.1 Forward-Tracking Method on a Simple Example

Let’s use barrier option as a example (See Figure 3.1). Assume the tree we simulated
has just 4 periods long. The stock price at node A is denoted by S4. Assume this
option is a down-and-out call option. The payoff for a path start from A to B is

_ SB_Xa lf Smin>H-
ViB) = { C,  if Swin < H. (3.1)
while H is the value of barrier, Sy, = info<;<7(S(%)), Sp is the stock price at node B,
and C is any constant. It is hard to price these options with the dynamic programming

I Pricing tree is used to indicate the tree structure described in Chapter 2 for pricing derivatives.

20
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1 2 3 — Not Hit
0 1 3 — Hit
D C B 4
1 0
1
1 3 U
A B 0 P
1 0 0
0 1 1
A
P>
Barrier Down

Figure 3.1: STATE VARIABLES IN THE CRR TREE MODELS The left part of this
figure illustrates a CRR tree model with the barrier. The right part counts all the paths
from A to B. The up movements in the right figure correspond to the up movements in the
left figure while right movements correspond to the down movements.

methods in Chapter 2. This is because we don’t know the derivative value at node
B. The forward-tracking method below provides a good solution for this problem.
The barrier H, which is a constant, will be hit if the stock price starts form S and
moves down for one period.? Each node has two states. The upper state represents
the number of paths which start from A and don’t hit the barrier, while the lower
state is the number of paths which hit the barrier. The state variables for each node,
says N., can be computed by Algorithm 1. In that algorithm, N; is the node that

Algorithm 1 State Variables Evaluation
if S(N;) > H then
N..State[0]=N,.State[0]+N,.State[0];
N,..State[1]=N,.State[1]+N,.State[1];
end if
if S(N.)<=H then
N..State[0]=0;
N..State[1]=N,.State[1]+ NV, .State[1]+Ny.State[0]+ N, .State[0];
end if

can reach N, with a up movement, while N, is the node that can reach N, with a

2The pricing tree used here follows the CRR model.
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down movement, S(N,) represents the stock price at N,, State[0] represents the upper
state, and State[l] represents the lower one.

The total sum of the payoff of the barrier option for the paths from A to B, denoted
by V(A — B), is V(B) x Np.State[0]/(Np.State|0] + Np.State[1]). The contribution
of V(A — B) to the price of the barrier option is then V(A — B) x P(A — B) where
P(A — B) is the probability of a path from A to B occurring. The undiscounted
option price is finally

ZV(A—)S)*P(A—MS’)

VSER

where R denotes the set of terminal nodes.

3.1.2 Backward-Tracking Method

The barrier option we described above can be solved in O(n?) time with the forward-
tracking method. This is an acceptable performance for the European-style barrier
options. But this algorithm can’t price American-style options. For American-style
options, we will exercise the options early if the benefit we get from early exercise
exceeds the expected return by keeping them alive. The backward-tracking strategy
provides the solutions for this problem.

Algorithm 2 A Backward-Tracking algorithm on Single Barrier Options

].: if Nc S H then
2: Ncstate[o]:DOn7t Care.;
3- N State[l]:Pu><Nu.State[l}(+1’)d><Nd.State[1}_
’ . R(N¢ 3
4: end if
5: if ((N. > H)&&(Nqg < H)) then
6: NC_State[O]:PuXNu.StateEg}(;rVSdXNd.State[O} :
7. N_..State[l]= PuXNu-State[l](-FP)dXNd.State[l]_
) ‘. R(N, )
8: end if
9: if N; > H then
P, x N,,.State[0]+ Py x Ng.State[0
10:  N,.State[0]=TuxNuStal [R}(—l]\—]c)dx a-State[0],
11: N State[l]:P“XN“'Statem('i'P)dXNd'Statem-
’ ¢ R(N, )
12: end if

Using backward-tracking strategy with dynamic programing similar to (2.16) can
we get Algorithm 2. N, is the node we want to evaluate, and N, and N, can be
reached form N, by the up and down movements, respectively. R(N,) is the riskless
yield for At period time at node N.. Don’t care denotes that the state is useless.
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The American-style options can be evaluated by adding the following statement
at the bottom of Algorithm 2, 3

N..State[0] = max(N,.State[0], Sy, — X) (3.2)

Constructing a pricing tree systematically will be the main focus in the next section.
We will get some ideas about how state variables are defined and used.

3.2 Systematic Approach

State variables design and discussion on reasonable trading strategies are two main
concepts in this section. With these two ideas we can construct different pricing
trees for pricing general path-dependent derivatives® by just applying sophisticated
dynamic programing techniques to these pricing trees.

3.2.1 Determination of State Variables

How many state variables does a node of a pricing tree need to keep for pricing
arbitrary options? It goes without saying that for an n-periods binomial pricing tree,
any terminal node V need to keep at most C} states where k represents the number
of up movements form the beginning node to V' and n is the total number of the
periods. That means we need a total of 2" states at maturity because y ,._, Cy = 2".
This pricing problem has been proved to be a § P-hard problem in [2]. So we can
only hope to construct different pricing trees for specific derivative(s) because there
should be no acceptable pricing tree algorithms for arbitrary derivatives.

The state variables we need on any node of the pricing tree depends on how many
pay-off functions we need for that node. Before describing this idea, I would like to
define an information set Iy for node N, as follows,’

Definition 3.2.1 (Information set Iy )
The information set Iy (for node N ) includes the following information.

e The information which we get at the derivatives issuing day, such as the value
of the underlying asset, the volatility, the risk free rate, the strike prices, the
number of the periods of this pricing tree and the maturity date.

e Specific information that belong to node N, like the interest rate at that node
and the value of the underlying asset at that node.

3 Assume the options holders lose the right to exercise the options early if S has hit the barrier.

4There are still some derivatives, like Asian options, that can not be priced by simply applying
these tricks. The technique of reducing the complexity for pricing these derivatives will be discussed
later.

5This definition is incomplete due to some facts I will introduce in the future. See page 27 for
the modification.
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o User’s assumptions.

e (For Backward tracking method) The state values we can get from the nodes of
next period by dynamic programming.

e Nothing else belongs to Iy.
Define proper pay-off function for node N as follows,

Definition 3.2.2 (Proper pay-off function for node N)
A pay-off function is said to be proper if we can get a constant value by applying Iy
to that pay-off function.

We can show a simple example about the proper pay-off function. If there is no
user’s assumption in set Iy, then ( 3.1) is not a proper pay-off function since we can’t
determine the relationship between S,,;, and H. But it will become a proper pay-off
function by adding a user’s assumption Sp,;, > H to Iy.

After defining proper pay-off function, we can define the node pay-off function set
for Node N as follow,

Definition 3.2.3 (Node pay-off function set Fy)
A node pay-off function set Fi for node N satisfies the following constraints.

o All the elements in Fy must be proper pay-off functions for node N.

o Any pay-off value generated by any path reaching node N can be determined by
one and only one pay-off function which belongs to Fl.

Clearly, the number of state variables we need for node /N can be described as
|F|. We can use the node C in Figure 3.1 as a example. Assume that we are
pricing a European-style single barrier option. We can construct a set F¢ including
the following proper pay-off functions.

Vp.State[0]x P,

R(C)
User’s assumptions— The paths don’t hit the barrier, and they will reach D.

Vp.State[0]x P,
R(C)
User’s assumptions— The paths don’t hit the barrier, and they will reach B.

Vp.State[1]xP,
R(C)
User’s assumptions— The paths hit the barrier, and they will reach D.

Vg.State[1]x P,
R(C)
User’s assumptions— The paths hit the barrier, and they will reach B.
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where R(C) is the riskless yield to maturity at node C, V;.State[0] denotes the payoff
at node i if the historical path doesn’t hit the barrier, V;.State[1] represents the payoff
at node 7 if the paths hit the barrier, P, and P, represent the probabilities of upward
and downward movements, respectively. Since we need four proper pay-off functions
for describing the pay-off at node C, we will need four states for keeping all possible
values at node C.

3.2.2 Reasonable Trading Strategies

Before discussing this issue, let’s see a simple example about a two periods pricing
tree used in pricing a standard call option. For simplicity, the risk-free rate is set to
zero, the probabilities for up movement and down movement are equal to 0.5, and
the exercise price is equal to 102. The value of underlying asset for each node is set
arbitrarily so that you needn’t make so much effect checking this example.® This
example is illustrated in Figure 3.2. The state variables in the left part of the figure
can be trivially described as follows,

2 ?

N — NutNa  European — style
c max(Sy, — X, 284 American — style

where N, is the node we want to evaluate, N, and Ny can be reached form N, by
an up or a down movement, respectively. Sy, is the value of the underlying asset at
node N,.

The difference between the pricing tree in the left part of Figure 3.2 and that in
the right part of that figure is that node the X in the right part will contain one more
state variable than that in the left part. Let me give definitions for the two states of
node X. The upper state of X is the value of node X if S moves up (i.e., S = 110
in the next period), while the lower state of X is the value of the node X if S moves
down (i.e., S = 110 in the next period). For European-style options, the value of the
upper state is equal to 0.5 x 8, where 0.5 is the probability of the up movement and
8 is the benefit by exercising the call option. The value of the lower node is equal to
zero since nobody will exercise the call option when S = 100. Then we can get the
same value as we computed in Figure 3.2(A). This can be described by the following
formula,

OptionValue = (X.State[0] + X.State[1l] + V(Y)) * 0.5

where X.State[0] and X.State[l] represent the up and down states of node X and
V(Y) denotes the state value for node Y. For American-style options, we will just
need to check whether we can make more benefit by early exercise. It can be shown
that we will exercise the call option early if S reaches the lower state of node X. The
value for the lower node is equals to 3 0.5, where 3 is equal to the benefit we exercise

6Notice that the tree may not satisfy the constraints in Chapter 2.
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Figure 3.2: A SIMPLE EXAMPLE OF A NON-REASONABLE TRADING STRATEGY
(A) Pricing European call options by applying a traditional pricing tree methods. (B)
Pricing European call options by applying a multi-state-variables pricing tree. (C) Pricing
American call options by applying a traditional pricing methods. (D) Pricing American call
options by applying a multi-state-variables pricing tree. I only add one more state variable
to the node X in the right part of this figure so that only the node X will contain two state
variables. All the state variables are put in the parentheses. The value of the American call
is different between (C) and (D). This is because the trading strategy is not reasonable in
the node X of (D).

the options, 0.5 is the probability that S starts from X and moves down at period 2.
We will get 2.75 by applying (3.3). This answer is different from the answer we may
get by applying traditional pricing method.

Why could this happen? Formally speaking, our trading strategy for early exercise
is not a stopping time. In other words, we have used the information which we
shouldn’t know at some stage when making early exercise decisions. In this case,
we shouldn’t know exactly S will move up or down from node X. So we can’t make
early exercise decisions with this information. Before introducing the theorem on the
stopping time and trading strategy, I would give some definitions you need for reading
this theorem.

Definition 3.2.4 (0 — algebra[13])
A o—algebra, says F, is a field which is closed with respect to countable intersections
of its members, that is a collection of subsets of w that satisfies
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o o, welF
eacF=acF
& Oy, Q... ... €eF=Uy,anv€eF

The above definition is very important for probability theorem, but the detail
of this issue is not our main point. You may just treat F;, a o — algebra, as an
information set which contains all the information about the stochastic process (of
the value of underlying asset) up to time ¢. For example, Fjy4q, is an information set
containing all the information about the events happened up to today. But we can’t
know what will happen tomorrow with Fj,qqy -

A stopping time can be defined as follows,

Definition 3.2.5 (Stopping time [13])

A random time T is called a stopping time for some stochastic process B(t), t > 0,
if and only if for any t it is possible to decide whether T has occurred or not by
observing B(s) where 0 < s < t. More rigorously, for ant t, the set {T <t} € F}, the
o — algebra generated by {B(s), where 0 < s < t}.

Stopping time can be treated as decision making by simply observing the informa-
tion set F}, and we can make a decision by the information we know up to now. The
following theorem describes an important property of reasonable trading strategies.

Theorem 3.2.6 (Rational trading Strategies)
A trading strategy must be a stopping time. That is to say, all trading behaviors By
must be predictable by observing Fj.

This theorem can be explained more intuitively as follows. The decision we have
to make today” should only depend on the information we can get up to now. For
example, we can’t decide a trading strategy as follows,

I would like to early exercise the options today if the stock price will fall
under the exercise price at maturity, otherwise, I would hold the options.

The reason is that we can’t get predictable trading behavior by applying above trading
strategy.

Do you find the error I make on purpose in Figure 3.27 The value of European-style
options is the same whether by applying the traditional pricing tree or by applying
the multi-state variables version. This is because we don’t make any trading decisions
during the life of the options. So violation of theorem 3.2.6 has no influence on the
value. But it does influence the value of American-style options since we can’t know
exactly whether S will go up or down at node X.

Theorem 3.2.6 gives us some constraints in defining the state variables. To satisfy
this theorem, one item, User’s Assumptions, in definition 3.2.1 needs to be modified
as follow,

"The decision is to exercise the options early or not in the above example.
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e User’s Assumptions must be determined by F}, where ¢ is the time that we could
reach the node.

3.2.3 Creating Proper Recursive Formulas

The tricks about evaluating the state variables by recurrence are discussed as follow.

Definition 3.2.7 (Action set)

An action set Ay is composed of all actions that the underlying asset value S, which
starts from node N, could take during the next period. For examples, An contains
the up movement and the down movement in a binomial tree model.

With this definition, we introduce the following notations. Assume a is an action
that belongs to Ay. Then N, is the node that will be reached in the next period by
taking action a. P(a) is the probability that this action would be taken. Assume the
state we want to evaluate is u (at node N). S(N,,u) is the state at node N, that
may be reached from state u by taking action a, and Value(i) is the value for state
1. Then the value of u can be calculated as follows,

Value(u) = Z P(a) * Value(S(Ng,u))

a€AN

3.2.4 Creating a Sample Pricing Tree

I will give a simple example on constructing a pricing tree and an algorithm for pricing
a specific derivative below. General examples will be introduced in the next chapter.
The option I use here is the barrier option of (3.1).

1. Determine the proper pay-off functions we need for each node.

e For the nodes at maturity, we need two proper pay-off functions described
in (3.1). We need one proper pay-off function for the node which the value
is below the barrier.

e For the nodes we may reach before maturity, we divide them into two
classes.

— The value of that node is below or equal to the barrier:
This case is trivial, since the path of the underlying asset value must
hit the barrier at least once. We just need one proper pay-off function
to describe the pay-off when hitting the barrier.

— The value of that node is above the barrier:
Two proper pay-off functions are required in this case. This is because
there may be two kinds of paths that may reach this node. Some paths
might hit the barrier before reaching this node, while others don’t.
The pay-off for these two kinds of paths are different. So we need two
proper pay-off functions.
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2. Design proper recursive formulas for evaluating the value of each state variable.
See Algorithm 2.

3. Implement this algorithm by programming.



Chapter 4

Pricing Geometric and Arithmetic
Interest Rate Average-Rate
Derivatives

Some complex path-dependent derivatives, which are hard to solve by applying the al-
gorithms in Chapter 3, will be solved in this chapter. They include geometric average-
rate options and arithmetic average interest rate options. The pricing methods for
arithmetic average-rate option, whose underlying asset value follows the log-normal
distribution, will be introduced in the next chapter.

Besides giving the solutions to these derivatives, there are two important phe-
nomena worth discussing. One is the early exercise property, and the other is the
characteristics of the convergence behavior. Some reasonable explanations will be
given for these unexpected properties.

4.1 Some Background Knowledge

Some background knowledge, like the early exercise property of call options and the
convergence characteristics of pricing trees [17] is surveyed in this section. Discussions
on these properties will give us more insights into these derivatives.

4.1.1 The Early Exercise Property

Before discussing the properties of early exercise, let’s list some needed definitions.

Definition 4.1.1 (Martingale)

A stochastic process {X(t),t < 0} adapted to a filtration F is a martingale if for
any t it is integrable, E|X (t)| < oo, and for any s <t

E(X(t)|F) = X(s)

30
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In a risk-neutral environment without arbitrage opportunity, the following equa-
tion holds [11],
S()
=L = ER[S(T)/A(T 4.1
A0) i [S(T)/A(T)] (4.1)
where S(t) is the value of the underlying asset at date ¢, A(t) represents the value
of the money market account at date ¢, E¢ denotes that we compute the expected
value by equivalent martingale probabilities. In simple words, the stochastic process
of discounted stock price follows a martingale process.
The early exercise property for the standard call option can be described as follows.

Theorem 4.1.2 (Early Ezercise Property of Standard Call Options)

Given no dividends on the underlying stock and positive interest rates, a standard
American call option will never be prematurely exercised, so an American option will
be priced the same as a Furopean option.

The following equations can be derived by applying Jensen’s inequality! and (4.1),

max (0, Sy — K) St K. K
R f) E) = max(0, S E)

where ”A.C.” is the value of a standard American call, "E.C.” is the value of a
standard European call, S; is the value of underlying asset at time ¢, K is the strike
price, and R is the risk-free yield form today (¢ = 0) to maturity. If we exercise the
option immediately, the payoft is Sy — K. Since the following inequality holds under
the assumptions in Theorem 4.1.2,

A.C > E.C.= E9( ) > max(0, E9(

S(0) - % > S(0) - K

an option holder would like to keep or sell the option than exercise the option early.

Because different payoff functions are used by various sophisticated options, the
property in Theorem 4.1.2 may not hold general. The discussion on this phenomenon
will be postponed.

4.1.2 Convergence of Pricing Trees

The oscillation of the values produced by the pricing tree are discussed by Edward
Omberg [17]. He argues that the oscillations are a by-product of approximating the
stochastic process. He also shows a proof that this phenomenon will also occurs
when pricing American-style options. Through the examples he used for pricing are
standard options, this phenomenon also occurs on some path-dependent derivatives,
like barrier options. The experiments provided in this chapter, however, show that the
results produced by the pricing tree may converge monotonically on some derivatives.
And this property is also verified by applying the combinatorial method.

IThe interest rate is constant here.
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4.2 Pricing Geometric Average-Rate Options

For pricing geometric average-rate options, a sophisticated design for the pricing
tree is introduced here. The figure for describing the early exercise behavior is also
illustrated here. Some explanations will be given for this phenomenon. A much
faster O(n®) combinatorial approach is then introduced for European-style options.
As argued in [16], this type of algorithm is useful for pricing European-style geometric
average-rate options which have non-standard payoff functions.

4.2.1 Generation of Pricing Tree

Constructing a proper pricing tree for geometric average-rate options is harder than
the examples given in Chapter 3. Selecting a proper pricing tree is the key step to
this problem. The underlying model we used in this case is the CRR binomial tree.
We construct this pricing tree following the approach in Chapter 3.

Determining the proper payoff functions

Define N(i, j) as the node of the pricing tree for which i is its time and j is the number
of down movements needed to reach it. Assume S is the value of the underlying asset
and u is the upward factor. Then the maximum geometric sum by path from time
0 to time i is Su" 5", while the minimum geometric sum is Siu~ "7 ~. With the
properties provided by the CRR model,? the set of all possible geometric sums at

time 7 is

i(i+1)

. . i(i+1) . i(i+1)
Gi — {Sz+1u72 ’Sz+1u72 2’ Sz+1u72 4,

. i(i+1) . i(i+1)
L TR LA T A

}

Note that the sum take the form of S*!u* for some integer k. For a node at time 3,
the payoff function for an American-style geometric average-rate call is

max( VSi+luk — X, D) (4.2)

where X is the exercise price and D is the value if the options is kept a(liV?, the
i(i+1) ii+1

number of states for any node at time ¢ is at most =5~ + 1 since |G;| = “5— + L.
The required space for the whole is therefore O(n?), and the computation time is
O(n?).

It should be clear that some states are not necessary. For example, the state
. (i1
that represents Si™lu -2 i5 useless for node N(i,0) because there can be no paths
ii+D) o
2

that reach N(7,0) with geometric sum S+l We can therefore cut useless
states instead of keeping exactly |G;| states for each time-i node. The experiments

2ud = 1. d is the downward factor.
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data listed in this section show the savings with this idea, respectively. Formally, the
maximum and the minimum geometric sums at N(i, ) can be narrowed down to

Nmax(i,j) — Si+1uz'(z'+1)/2—j(j+1)
Nmin(i,j) = Gitly, —iet1)/2+(i=5)(i—j+1)

The set composed of the necessary states for N (7, ) can be described as

GN(i,j) = {A tAeGi, A< Nmax(iaj)aA > Nmin(iaj)} (43)

Creating proper recursive formulas

For the terminal nodes N(n,j), where n is the number of periods, the call value for
each state of N(n,j) is

max( "VSn+luk — X, 0) (4.4)

where k represents the exponent of u for that state. For non-terminal nodes, the
value D for state S**uf at N(i, j) is

(P % Vi1, (S22 4 Py x Vi o (S 205772 70) /R (4.5)

where V,,(s) represents the option value for state s at node n and R is the one-period
risk-less return. American-style options and put options can be obtained by simply
modifying the above formula.

4.2.2 The Combinatorial Method

European-style geometric average-rate options can be priced by a much faster algo-
rithm. Since the property P, = P; = 0.5 is useful here, the Jarrow-Rudd tree model
is employed here.

The number of paths of length n having the same geometric average is precisely
the number of (unordered) partitions of some integer into unequal parts none of which
exceeds n. This claim can be verified as follows. Let ¢(m) denote the number of such
a partition of integer m. Any legitimate partition of m, say A = (z, 29, ... ,xx), then
satisfies ), x; = m, where we impose n > z; > x5 > --- > X > 0 for convenience.
Now, interpret A as the path of length n that makes the ith up move at n — x;.
Each up move at step n — x; contributes x; to the sum m. This path has a terminal
geometric average of SMY "+ where

M= umdn(n—l—l)/Q—m

in which the 7th up move contributes u* to the u™ term.
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It can be shown that, in fact,

n(n+1)/2
L+a)A+2?)(1+a%) - (L+a") =1+ > qli)a"
=0

The probability for each path is 27" in this model. So the derived value is the
present value of Z?:(gﬂ)/? 27"q(1) maux(SMn%L1 — X, 0) for the call. Since the ¢(i) can
be computed in O(n?) time, pricing European-style options can be solved in time
proportional to n®.

4.2.3 Experimental Data

Experimental data about pricing using trees and combinatorial methods is illustrated
here. Simple discussion on the computation time, the convergence of the pricing
value, and the behavior for early exercise are also given. The European-style options
analytical value is obtained by the Black-Scholes formula listed on Page 14.

4.2.3.1 European-style options

The options priced in this section use the following assumptions: The underlying
asset value is 100, the strike price is equal to 100, the volatility is 20%, the risk free
rate is 10%, and the time from the issuing day to maturity is 1 year. The analytical
value is 6.769955. The result of pricing are illustrated in Figures 4.1, 4.2 and 4.3.
Skipping useless states can save the computational time dramatically. The tree and
the combinatorial methods converge quickly and correctly, but the combinatorial
approach requires much less computational time. This is because the tree algorithm
is an O(n*) algorithm, which is one degree higher than the combinatorial approach.

400
350
300
250
200
150
100
50
0

+ Origin
- Enhance

1 18 35 52 69 86 103120137 154171

Figure 4.1: COMPUTATION TIME. The z-axis is the number of periods, and the y-axis
is the computation time in seconds. “Origin” and “Enhance” denote the computational
times whether we do not or do skip the useless states, respectively.
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Figure 4.2: COMPUTATION TIME. TREE VERSUS COMBINATORICS. The z-axis is
the number of periods, and the y-axis is the computation time in seconds.
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6.745
6.74
6.735 .
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6.725
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Method
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20 35 50 65 80 95 110125140155170

Figure 4.3: CONVERGENCE. The z-axis is the number of periods, and the y-axis is the
option value.

Since the tree method performs well in pricing European-style options, it can be
used for valuing American-style options.

4.2.3.2 American-style options

To price American-style options, only (4.2) needs to be added to the original pric-
ing tree (for European-style options). The pricing results are illustrated in Figure
4.4. The pricing results also converge quickly and monotonically, which implies that
this approach should be adequate for pricing American-style geometric average-rate
options.

An interesting fact to observe is the early exercise strategy. For a standard call
option, the holder may not exercise the option early (for non-dividend paying stock)
or exercise the option when the value of the underlying stock is high. But the exper-
imental results we get from pricing geometric average-rate options are nothing like
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Figure 4.4: COMPARE THE OPTIONS VALUE The z-axis is the number of periods, and
the y-axis is the option value.

that. The holder will not exercise the options just because the value of underlying
stock is high. This interesting fact can be observed in Figure 4.5.

Figure 4.5: EARLY EXERCISE BEHAVIORS. The triangle denotes the tree. The darker
the point is, the more likely the option will be exercised there.

Notice that the darkness for each point is not computed by the real probability
measure. I compute the grey level of that point with the following formula:

|[EG N

V =955 —
1G]

(4.6)

where EG yj) is the states that the holders will exercise the options when N(3, j)
is reached. V denotes the grey level of that point (255 is pure white and 0 is pure
black.)

Another interesting fact is that oscillations are not found in the results. It has be
proven that oscillations are inherent when pricing standard American-style options
with binomial tree. [17]. Edward Omberg claims that oscillations are a by-product of
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approximating the stochastic process. The reason that we get the different conclusion
is that the payoff function of geometric average-rate options is far different from that
of standard options; the geometric average-rate options are strongly path dependent.
This phenomenon also happened when pricing other strongly path dependent deriva-
tives, like arithmetic average-rate interest rate options. To converge monotonically
or converge without oscillation means we lose the chance of getting a good estimate
by taking the average of an upper and a lower bound.

4.3 Arithmetic Average-Rate Options

With the tree method described above, we can price arithmetic average-rate interest
rate options under the Hull-White models [10]. The results we get from this model
converge are monotonic but not quick convergence. The behavior of the early exercise
is also different from what we observed before.

4.3.1 Generation of the Tree

Determine the proper payoff functions

Before describing this method, one interesting property is observed about the term
structure tree model (see Figure 2.6). The difference of the short rates between
adjacent nodes of the same period, say AR, are all equal (AR = 1.73 in this example).
This is an important fact, since the possible arithmetic sums of interest rate at time
1 must be a subset of I;. I; can be described as
i(i+1) i(i+1) —i(i +1)

2 2 2
where S is the sum of interest rates from time 0 to ¢. It can be shown that S = 9.02%
when ¢ = 1 in this case. (see the table in Page 18) For each I;, the proper payoff
function for an American-style geometric-average call options is
S+ARXk

141
where X is the exercise price, D is the option value if we keep the option alive, and
k is a given integer that makes S + kAR an item in ;. It can be shown that the
maximum number of states for an-i-time node need to keep is i(i + 1) + 1. The space
is O(n?), and the computational time is O(n?).

Similar to what we do in pricing the geometric average-rate options, some un-
reachable states can be cut in the tree. Define N (3, ) as the node for which ¢ = iAt
and r = jAr. The set of necessary states for N(i,j) can be described as

IN(i,j) = {A t A€ IzaA < INmax(iaj);A > INmin(iaj)}

where Iy max(i,7) and Iy min(7,7) are the maximum and the minimum arithmetic
interest rate sums from the root to n(i, j), respectively.

I={S+ AR, S + ( —1)AR,...,S+ AR}

- X, D) (4.7)

max(
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Creating proper recursive formula

For the terminal nodes N(n, j), the call option value for each state of N(n,j) is

where k is a given integer.
The value D (see (4.7)) for state S + kAR at N(i,j) is?

(Pux VnGr1,j40)(S+s+ (E+j+1)AR) + (4.8)
Pm X VN(’H-l,j)(S + s+ (k‘ +])AR) +
Py x Vn(ir1,j-1)(S+s+ (k+j—1)AR))/R

where V,,(S) represents the option value for S at node N, R is the discount rate for
that period, and s is the calibrated interest rate at period 7. American-style options
and put options can be obtained by modifying the above formulas.

4.3.2 Experimental Results

- European
Option

+ American
Option

1 13 25 37 49 61 73 85 97 109121133145

Figure 4.6: EUROPEAN AND AMERICAN INTEREST RATE OPTIONS UNDER THE
HuLL-WHITE MODEL.

A numerical experiment is illustrated here. The parameters for the tree are: a =
0.1, o = 0.01, the t-year continuous compounded zero coupon rate is 0.08 —0.05¢ =018,
and the time from the issuing day to maturity is one year. (See [10] for the definitions
of these parameters.) The payoff at maturity for this call option is defined as

100 x max(A(n) — X, 0)

3Modification is needed when the node is the root of the type B and C sub-trees (see Figure 2.5).
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Figure 4.7: COMPUTATIONAL TIME OF PRICING EUROPEAN AND AMERICAN OP-
TIONS

Figure 4.8: THE EARLY EXERCISE BEHAVIOR. The triangle denotes the tree. The
darker the point is, the more likely the option will be exercised there.

where X is the strike value, A(7) is the arithmetic average of the interest rates from
time 0 to time 7. The payoff at time j if the option holder exercises the option is
defined as 100 x (A(j) —X). The numerical results of European and American options
are illustrated in Figure 4.6.

The pricing results still converge monotonically but slowly. The computation time
also grows dramatically. See Figure 4.7 for a plot. Since there is no oscillation in the
pricing results, it may be hard to estimate the upper bound of the option value (in
this case). Only the lower bound of the option value can be estimated.

The early exercise behavior for the arithmetic interest-rate options is shown in
Figure 4.8.* This figure is similar as Figure 4.5 except that the options holders will

4The equation for the grey level of that point is computed by (4.6).
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also exercise the options when the interest rate is high (for call options).

40



Chapter 5

Pricing Arithmetic Average-Rate
Options

Pricing arithmetic average rate options is a well-known hard problem. This is because
we can’t derive a proper formula for describing the distribution of the sum of log-
normal random variables. Various approximation approaches have announced. But
there are at least two problems on most of these approaches. First, they may not
be applicable to pricing American-style options. Secondly, most approaches fail to
get acceptable results on some extreme cases [4]. A new lattice model, designed for
pricing the arithmetic average-rate options is introduced in this chapter. This new
approach can perform well and solve the American-style options accurately.

The method for building the lattice are discussed in first section. We try to
calibrate the stochastic process of the underlying asset values. Experimental results
are tabulated later. We will also examine the convergence of this algorithm. This
algorithm also passes statistical tests of the extreme cases provided in [4].

5.1 Building a New Lattice Model

5.1.1 The Intuition

Let’s begin with a simple problem, how many possible arithmetic sums may occur
at node N(1z,7)? . There are CJZ: paths that would reach N (%, j), which implies that
they must be at most C} different arithmetic sums. This is an unacceptable result
since Z;-:o C? = 2, which implies totally 2’ states are needed for keeping all possible
options values at period 7. Can we decrease the number of states we need to an
acceptable size? The answer is probably not, if we follows the current lattice models.

Another approach is to reconstruct a lattice model. We use the pesudo-polynomial
technique to solve this problem. A new lattice is therefore constructed.

!Reference the definition in page 32
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5.1.2 Building a New Lattice Model

The lattice here is a trinomial model. Redefine N(i,7) as the node that has j-th
biggest value at time 7. The symbols pu(s), v(s),w(s) denote the three branches from
S’

u(N(,5)) = N(i+1,5)
v(N( 7)) = N(@+1,7+1)
w(N(i,j)) =N(i+1,j+2)
Define At = L. V(N) is the underlying value of node N, M (N, At) and Var(N, At)

are the mean and variance at the next period if the current state is N, respectively,
and P,(N), P, (N), Piy(N) denote the up, flat and down probabilities from N. See
Figure 5.1. Since we need to calibrate the first and second moments of the underlying

asset values, the variables for any node N must satisfy the following equations:

Stut+v

Figure 5.1: A NEwW LATTICE MODEL

V(p(N)) x Py(N) +V(v(N)) x P (N) + (5.1)
V(w(N)) x Py(N) = M(N, At),

(V(u(N)) = M(N, At))? x P,(N) (5:2)
+(V(v(N)) — M(N, At))? x Py, (N)
+(V(w(N)) = M(N, At))? x Py = Var(N, At),

Py(N) + Pu(N) + Py(N) = 1

V(N) =V (v(N)) is imposed for simplifying algorithm design. Since P,(N), P,,(N),
P;(N) are probabilities, the following inequalities must hold,

OSPU(N)’Pm(N):Pd(N)Sl
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Figure 5.2: TEST ON STANDARD OPTIONS Use the lattice model on pricing the standard
call options. The initial stock value is 100, the strike price is also equal to 100, the volatility
is 0.2, the risk free rate is 0.06, and the time to maturity is equal to 1 year. The benchmark
value derived from Black-Scholes formula is 10.989547

We finally impose the condition that the nodes combine.

For example, assume the initial node is A in Figure 5.1. Then u and d can be
solved by imposing further that v = d. For the nodes whose underlying asset value
is larger then S, like node B, the equation e = u must hold. The value of v can
therefore also be determined. 2 For the nodes whose underlying asset value is smaller
than S, similar steps must be applied.

5.2 Experimental Results

First, we price a standard option with our method. It is a good benchmark to see
if it works at least for the simplest problem. Figure 5.2 shows performance is good.
The convergence is quick which implies that the lattice model can approximates the
distribution of the underlying asset value well.

Let’s test the convergence of this algorithm. The numerical data are the same as
what in Figure 5.2. The pricing results of the European and the American-style call
options are illustrated in Figure 5.3. We find that the pricing results of the European-
style options converge quickly and stably. The converge speed of the American-style
options are slower then the European-style options. But the results still converge
almost uniformly and stably. So this approach should be a reliable approach in this
case.

We will compare this algorithm with the similar algorithm announced by Hull and
White [7]. These data are listed in Table 5.1. The numerical data about the Hull
and White method and Monte Carlo simuations are copied from [1]. The number of
the periods we use on the new lattice model is only 30. It takes almost 2 seconds

2You have to modify the up and the down displacements lightly if one of the probabilities we get
by applying the above equations is negative.
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Figure 5.3: TEST ON EUROPEAN AND AMERICAN-STYLE ASIAN OPTIONS
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Figure 5.4: EXPERIMENT ON THIS NEW LATTICE MODEL(OPTION VALUES)

for a pentium-pro computer valuing a option. Most of the values computed by this
algorithm are approximate to the value computed by Monte Carlo simulations. Only
two value are out of the range of 95% confidential interval(These value are marked
with “*7).

To verify the convergence of this algorithm, we will test this algorithm by selecting
one of the worst pricing result listed in Table 5.1. See Figure 5.4 for a plot. You may
find that the algorithm still converge well. The pricing results approach the bench
mark value when the number of periods is large. We also find that the pricing results
are within the range of the 95% confidence interval when the number of period is larger
then 50, which implies that the oscillations of the pricing results are acceptable.

The computation time grows dramatically when the number of periods go large.
See Figure 5.5 for a plot. By the numerical results in Table 5.1, we know that this
algorithm converge quickly. But we will get into great trouble if we try to seek more
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Figure 5.5: CoMPUTATION TIME USED BY THE NEW LATTICE MODEL.

accurate answer. A tricky method for speeding up this algorithm might be useful
here.

Another experiment will focus on some extreme cases mentioned in [4]. In this
paper, The authors claim that some approximate algorithms may fail at extreme
cases. We will test these extreme cases listed in Table 5.2 and show that our lattice
model performs well at these cases.
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Table 5.1: The Value of Arithmetic Average-Rate Options Derivated by
Various Algorithms.

Maturity Exercise = Exercise FExercise Exercise Exercise
(Years) | Algorithm Price=40 Price=45 Price=50 Price=55 Price=60
0.5 H-W 10.755 6.363 3.012 1.108 0.317

M.C. 10.759 6.359 2.998 1.112 0.324
S.D. 0.003 0.005 0.007 0.005 0.003
A.(30) 10.754 6.356 2.997 1.104 0.317*
Levy 10.765 6.386 3.024 1.105 0.313
1.0 H-W 11.545 7.616 4.522 2.420 1.176
M.C. 11.544 7.606 4.515 2.401 1.185
S.D. 0.006 0.008 0.01 0.009 0.007
A.(30) 11.547 7.616 4.517 2.412 1.170*
Levy 11.576 7.662 4.557 2.431 1.172
1.5 H-W 12.285 8.670 5.743 3.585 2.124
M.C. 12.289 8.671 5.734 3.577 2.135
S.D. 0.008 0.01 0.012 0.012 0.01
A.(30) 12.284 8.674 5.750 3.585 2.118
Levy 12.337 8.738 5.801 3.619 2.133
2.0 H-W 12.953 9.582 6.792 4.633 3.057
M.C. 12.943 9.569 6.786 4.639 3.055
S.D. 0.01 0.013 0.014 0.015 0.013
A.(30) 12.944 9.577 6.786 4.625 3.045
Levy 13.024 9.671 6.874 4.691 3.087

The initial underlying asset value is 50; the risk free rate is 10% per year; the volatility
is 0.3 per year; averaging is between the beginning of the life of the options to maturity.
H-W denotes the Hull and White algorithm based on 40 time steps and A = 0.005.
Monte Carlo simulations are based on 40 time steps and 100,000 trials. A.(30) is our
lattice method with the number of periods equal to 30. Levy denotes Levy’s approach
described in [14].
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Table 5.2: Testing the Lattice Model under Some Extreme Cases

47

r | o |T|S0)| GE | Shaw | Euler | PW | TW | MC10 | MC100 | S.E. | A.(30)
0051051 19 [0.195| 0.193 | 0.194 | 0.194 | 0.195 | 0.192 0.196 | 0.004 | 0.193
0.05]05 | 1] 2.0 |0.248 | 0.246 | 0.247 | 0.247 | 0.250 | 0.245 0.249 | 0.004 | 0.246
0051051 21 |0.308| 0.306 | 0.307 | 0.307 | 0.311 | 0.305 0.309 | 0.005 | 0.306
0.02101 1| 2.0 |0.058| 0.520 | 0.056 | .0624 | .0568 | .0559 0565 | .0008 | 0.056
0.1810.3 |1 2.0 |0.227| 0.217 | 0.219 | 0.219 | 0.220 | 0.219 0.220 | 0.003 | 0.218
A25 .25 2| 20 |0.172 | 0.172 | 0.172 | 0.172 | 0.173 | 0.173 0.172 | 0.003 | 0.172
0.05105 |2 2.0 |0.351] 0.350 | 0.352 | 0.352 | 0.359 | 0.351 0.348 | 0.007 | 0.351

The exercise price is 2.0, 7 is the risk-free rate, 7" is the life of the options from the issu-
ing day to maturity, o is the volatility, S(0) is the initial price of the underlying asset,
and A.(30) denotes our method. The other approximation methods for comparison
are: Geman-Eydeland (GE), Shaw, Euler, Post-Widder(PW) and Turnbull-Wakeman
(TW). The benchmark values (M C10 and MC100) and the approximation values are
copied from [4]. S.E. is the standard error, also from [4].




Chapter 6

Conclusion and Future Work

This thesis presents a systematic approach for pricing path-dependent derivatives.
We also show how this approach works through some examples. Some interesting
properties are found by reviewing the experimental data, such as the early exercise
property and the convergence of the results. These properties might be worth further
study. The pricing results on the arithmetic average interest-rate options converge
monotonously but slowly. Speeding up the algorithm is also a topic worth study-
ing. A sophisticated pricing tree model for arithmetic average rate options is also
investigated. The experimental data show that this algorithm converges quickly and
correctly, but the required computation time grows dramatically when the number of
periods become large. A method for speeding up this algorithm will be very useful.

My troops are always in the front line, run the biggest risks,
suffer the greatest loss. The price of victory is never cheap.
—by a Great Panzer General in Germany
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