On the Furthest-Distance-First
Principle in Scattering and
Gathering

Jyh-Pin Tsai
Department of Computer Science and Information Engineering
National Taiwan University

Contents

Introduction
Definitions and Terminology

Optimality of FDF and Some Preliminaries

3.1 FDF and optimal schedules
3.2 How delays happen and manifest themselves
3.3 Maximum congestion at a buffer 000000
3.4 Handling queueing delays for FDF schedules on linear arrays

3.5 Any breadth-first tree is optimal

Data Scattering On Trees
4.1 Scattering on trees and the FDF principle

4.2 Zeroset-up time Lo e

How To Do Packetization
5.1 Best distribution of packet sizes under the FDF discipline

5.2 Finding the best size distribution when there are no inter-message delays
A Polynomial-Time Solution to a Special Class

Data Gathering on Trees

7.1 The Nearest-Receive-First Principle
7.2 The counter-example violating NRF with packetization.
7.3 Packetization & set-up time oo Lo
7.4 A special class of gathering problems,

17
17
18

20
20
23

27

8 Conclusion

Bibliography

ii

42

44

Chapter 1

Introduction

In many parallel algorithms, factors such as the message size, packetization (how to split
a message into packets to various sizes), the set-up time for sending a packet, queueing
delays, and the order of dispatching packets can interact with one another in complicated
ways to affect performance of transmission. In this thesis, we investigate these issues that
arise from the scattering problem. In the data scattering problem a designated processor
sends distinct packets of arbitrary sizes (including zero) to every other processor in the
network [29]. This is an important parallel primitive and has been studied under various
names such as one-to-all personalized communication [15] and distributing problem [30].
A more general operation is multiscattering, where a scattering operation is performed by
every node [29]. Data gathering problem is another major subject besides data scattering.
The reverse of the data scattering problem, the data gathering problem means that every
other processors except the designated processor transmit distinct packets of arbitrary sizes

to the designated processor. It is called all-to-one communication problems in the literature.

A realistic and widely accepted model assumes the time to transmit a packet of size
L (measured in, say, bytes) across a link is § + L7, where 3 is the set-up time, which ac-
counts for the start-up and termination time, and 7 is the bandwidth of the link expressed
in, say, bytes per second [9], [15], [28], [29]. Typically, 8 > 7. We will use flit instead of
byte to denote the unit of transmission. The concept of flit (flow control digit) comes from
the work on wormhole routing [6]. From now on, the size of a packet or message will be
measured in flit, and 7 in flits/second. Without loss of generality, we may assume 7 to be
unity, for we can multiply the whole expression by 1/7 to make it true and multiply the

final timing result by a factor of 7. Hence, from now on, our timing model is simply this:

it takes 8 + L time to transmit a packet of size L across a link.

In the single-port (also called processor-bound [30]) model, a node can send and
receive information from only one of its immediate neighbors during each communication
step. This is in contrast to the multi-port model (also called link-bound [30]) where a
node can exchange information along all its links at the same time. We shall assume the
single-port model, which is a more realistic one. We also assume the store-and-forward or
packet-switched model, where a node receiving a packet must finish receiving it before any

of its contents can be sent; this is in contrast to the circuit-switched model.

A well-known heuristic for efficient data scattering is the furthest-distance-first (FDF)
principle whereby the messages, without any splitting or regrouping during the process, are
sent in reverse order of their distance from their destinations. This is proposed for scat-
tering data on a ring by Saad and Schultz [29]. Fraigniaud, Miguet, and Robert [9] show
that the above scheme is optimal, even if one allows arbitrary splitting or regrouping in the
process, as long as each message is of equal size and every node has to receive a message.
Bhatt, Pucci, Ranade, and Rosenberg [2] show that every FDF scattering scheme on a tree
is optimal. Note that a linear array is a special kind of tree. They allow messages to vary
in sizes (including zero). However, they disallow buffering and queueing delays by requiring
that each message be split into single-flit packets and that flits from the same packet be
send contiguously without interruption. Under such assumptions, of course, set-up time is
irrelevant (indeed, 8 = 0 is assumed for simplicity). Scattering on the hypercube has been

studied by Johnsson and Ho [15].

In the data gathering problem, the nearest-receive-first (NRF) principle is bene-
fitial. The NRF principle suggests that the dispatch time (dispatch order) of those packets
sent by the processors other than the designated processor is decided by the distance of the
path from the source processor to the destination processor (the designated processor). The
nearer the distance of the path is, the earlier the packet of that source processor is sent.
Bhatt, et al. also show that the NRF principle is optimal on a linear array. But it doesn’t
work on a general tree. As a result, they propose a new algorithm — Transmission Certi-

fication — to solve it [2]. That algorithm is also useful when setup time and packetization

are involved.

Whatever the problems, our results can be summarized as follows. The issue of queue-
ing delay can be handled easily, and the maximum buffer size needed for any scheme is at
most that of the largest packet, the tightest bound possible. We show that not only the
FDF principle but also the NRF principle no longer produces optimal running time on trees
when the set-up time and packetization are allowed. On the other hand, the FDF and NRF
principles still work when applied to linear arrays. We develop a general approach that used
the theory of continued fractions to compute packetizaiton efficiently, taking into account
the set-up time, so that a message uses the least amount of time to reach its destination
in the absence of other messages. We consider a special class of data scattering problems
where every node receives a message of the same length (this is more general that the sit-
uation considered by Fraigniaud, et al. [9]) and show that messages going to contiguously
located nodes have to be split into the same number of packets. If, in addition, nodes that
receive a message are all contiguously located on the linear array, then the problem can be
solved in polynomial time. Packetization and queueing delays are allowed. Finally, given an
arbitrary network, among all its spanning trees, the FDF and NRF principle can be applied
to any breadth-first ones to produce the optimal schedule, again in the absence of set-up

time, thus extending the result of Bhatt, et al. [2]

Clearly, the set-up time is never zero, as it reflects the fixed cost of setting up com-
munication between two neighboring nodes. Indeed, set-up time can easily be two orders
of magnitude larger than the time to transmit a single byte; see Table 1 of [25] for data
on the NCUBE, Table 2 of [28] and Figure 4.2 of [8] for data on the Intel iPSC and the
Ametek S/14, and [3] for data on the Connection Machine CM-5 and the Intel Paragon. As
the message gets bigger, such as a file, splitting it is also a good strategy, which is why it is
used in the APARNET [31]. When multiple paths exist between two nodes, packetization

is also beneficial [15].

The set-up time affects how a message is to be split into smaller packets, a pro-
cess called packetization. We will not allow information from different messages to form

a packet. The set-up time and the ability to split packets can complicate things a lot.

Intuitively, transmitting smaller packets instead of the original longer message can lead to
shorter total transmission time due to the pipelining effect. However, since each packet
incurs a set-up time of magnitude (3, the benefit of splitting tends to diminish as the set-up
time or the number of packets a message is split into increases. A simple example can make
this point clear. Suppose we are required to send a message of size L to a node located [
nodes away. Without splitting , this obviously takes (3 + L) time. Now, suppose we split
it into a packets of equal size, L/a (forget about the complex integrality issue for simplicity
now). The running time becomes (I + a — 1)(8 + L/a), which is minimized when a is equal
to /L(I —1)/B . One can easily see that, if a is chosen optimally as above, the resulting
running time can be smaller or larger than /(5 + L), which corresponds to the case where
a = 1, depending on the values of L, [, 3; see Figure 1.1. The general trend is that, if 8
is big, making each transmission across a link very expensive to set up , then a message
should not be split into too many packets (i.e., a smaller a is favored). On the other hand,
if either L or [is big, then the opposite is true. Similar observations have been made by
Saad and Schultz [29]. There, as here, the issue of integrity is ignored; in fact, most, if not
all, previous authors ignore the effects of rounding or truncating [15], [29], [30]. Indeed, as
in the case of linear and integer programming [18], [26], the choice of optimal a under the
integrality constraint gives rise to complications. The integrality problem is basically the
optimization of a linear function on a convex set defined by a quadratic function, all in two

variables. We shall show that this problem is polynomial-time solvable.

transmission time
2000
1800+
1600+

1400+

a

1 1 1

1 1
_200° 400 600 800 100

Figure 1.1: The trade-off between large packets (smaller a) and small packets (larger a). When
a =1, it corresponds to the case where the message is not split. In this particular example with
L = 1000, I = 10, and 8 = 0.5, such does not produce minimal transmission time; nor does
very large a.

This thesis is organized as follows. In Chapter 2, definitions and terminology are given.
We prove in Chapter 3 several lemmas that turn out to be useful later. We also prove that
the FDF principle can produce optimal performance on a linear array as well as analyze
the queueing delay and buffer congestion. Finally, we prove that any breadth-first tree
can be used with the FDF principle to produce optimal results as long as the set-up time
is zero. In Chapter 4, the non-optimality of the FDF principle for trees is demonstrated
by a counter-example, and we show that, in the absence of set-up time, allowing queueing
delays and splitting a message into packets of size greater than one flit do not help in
lowering the running time. In Chapter 5, several lemmas are proved to lead ultimately to
an integer optimization problem, which is equivalent to the packetization problem when
there is only one message to send. In Chapter 6, the packetization problem for a special
class of data scattering problems is analyzed and solves in polynomial time. After solving
the data scattering problem, we focus on the data gathering problems in Chapter 7. Those
issues appeared in previous chapters will be discussed again about gathering problem on a
general trees, such as packetization, set-up time and so on. The Transmission-Certification
algorithm in [2] will be adjusted to the new conditions, especially with regards to the
packetization. As a consequence, we can also find the special solution for the special case

about linear arrays. Finally, a conclusion is given in Chapter 8.

Chapter 2

Definitions and Terminology

Let processors Py, P, - -+, P, form the nodes of a tree with P, as the root. Node P is to
send message M; of size L; to node F; with each L; being a non-negative integer. Before the
scattering operation begins, a message of positive size may be split into small packets. We
do not consider the more general case, unless noted otherwise, where those packets may be
grouped with other packets from other messages to form a single packet or be split further
in the process. A packet of size one, or one flit, is the smallest unit of communication; that
is, the size of each transmitted packet must be some positive integer. As mentioned before,

a packet of size L take 8+ L time to cross a link, where 3 is the set-up time.

Each node has a buffer for storing packets which have to await other packets to cross
the link. A node extracts those of the incoming packet’s contents that are destined to it
first before depositing the rest of its contents into the buffer. A queueing strategy at a
node is simply a procedure that decides which bits in its buffer to form the next packet
and when to send it. A queueing strategy is first-come-first-serve (FCFS) if incoming
packets are treated as atomic without being split or grouped with other packets’ contents.
From now on, unless stated otherwise, we shall only concern ourselves with FCFS queueing

strategies.

Root node Py sends out a sequence of packets, S1, So, - - -, where each S; is a packet from
some message, say M}, but cannot contain information from more than one message(i.e., no
grouping). Let § = {S1,S,---} be the dispatching strategy and M = {M;, Ms,---}
denote the set of messages to be sent by the root. A schedule for scattering M is com-

pletely described by the dispatching strategy and the queueing strategy at each node. We

use |P| to denote the size of packet P. A packet’s dispatch time at a node is defined to
be the time when it starts being set up for transmission. A packet’s departure time at a
node is the time when it is completely received. Hence the departure time of a packet at a
node is equated with its arrival time at the next node. A packet’s arrival time will mean

the time it arrives at its destination. Clearly, packet S;’s departure time from the root is
i

> (B+1S5)).
j=1

A schedule satisfies the FDF principle if a packet to a further node is dispatched
before a packet to a nearer node. Note that, with FCFS queueing strategies, if the FDF
strategy is applied at the root, then the FDF principle is automatically satisfied for each
node as well. A dispatching or a queueing strategy is greedy if it sends out the next packet
the moment the link is free. Apparently, greedy strategies do not increase the running time;
hence, without loss of generality, all strategies are greedy in this paper. We say packets
S; and S;y1 are out of order or violate the FDF principle if the former’s destination is

nearer the root than the latter’s ; see Figure 2.1.

— — —

(&] [&] |s1|./
@

P, P (0]

Figure 2.1: Packets S and S5 violate the FDF principle if P is So’s destination and @) is S3’s.

As a packet travels, it may encounter arbitrary queueing delays. A packet of size L with
dispatch time ¢ will reach a node located [nodes away from the root at time ¢+1(5+ L) and
be dispatched from there at the same time, if there are no delays. We say it is delayed by
T(steps) at a node P if its departure time is T+ ¢ + (8 + L), where ¢ is its arrival time at
P and L its size. Here we allow T' to be zero or even negative, to be general. It is delayed
by packet b by the amount of T if, furthermore, it is dispatched immediately after b at P
and T > 0. Finally, we simply say it is delayed by packet b at P if T > 0. We shall assume

S1’s dispatch time from the root is 0.

Chapter 3

Optimality of FDF and Some
Preliminaries

This section contains results that will be used later. These results are mostly about how

queueing and the order of dispatching packets affect the running time.

3.1 FDF and optimal schedules

The following lemma show we can exchange the dispatch order of two adjacent packets that
violate the FDF principle without increasing the running times, as long as they lie on the

same branch of the tree.

Lemma 1 If S;’s destination is between the root and S;11’s destination, violating the FDF

principle, their dispatch order can be exchanged without increasing the running time.

Proof:

Suppose in schedule p, packet S; and S;11 violate the FDF principle; that is, S;’s desti-
nation is P and S;41 is @, but P is closer to the root than Q and Py - Py - P — -+ — Py,
where P = P;, Q = P, and j <k.

Consider schedule p* that is the same as p except that S;’s and S;11’s dispatch or-

der are switched.

We consider that p*’s running time does not increase. Apparently, those packets S

with [< i are not affected by such a switch, as they are dispatched earlier and the queueing

strategy is FCFS. So we only have to concern ourselves with the arrival times of those S
with [> 1.

Case 1: |S;11| > |Si| (see Figure 3.1). We first claim that

(a) in both p and p*, the arrival time of S;;1 at its destination is at least as large as

that of S; at its destination.

Clearly, in p, this is the case, as S;41 is dispatched later than S; and has to go further.
For p*, on the other hand, although S; is dispatched ahead of S;, it arrives at a node P,
at least as late as S; arrives at a previous node F,,_; for 2 < m < j + 1, because its size is

as least as big. Hence, when S; arrives at P;, S;y1 can at best arrive at Pj1.

U@

Figure 3.1: Case 1 of Lemma 1’s proof

We further claim that

(b) Si+1’s departure time from a node P in p is exactly S;’s departure time from P in
p for P < P;, S;’s destination,
and

(c) Sit1’s departure time at a node P in p* is exactly 8+ |S;| less than S;;’s departure

time at P in p for P < P;.

As the size of S; is at most that of Sjy1, it is clear that, in p*, S;’s arrival time at
a node is at most S;11’s departure time at the same node; that is , S; follows S; 1 without
“gaps”, intuitively speaking. Therefore, in p*, the departure time of S; at a node is exactly
that of S;+1 plus 8+ |S;|, the time needed to transmit S;. So, we only have to argue for
(c), and (b) will follow.

Now, (c) certainly holds at the root node P;. Consider, using induction, node P,

for m < j. If S;;1 in p* is delayed by earlier packets at that node, then, as it cannot move

faster than S; of p because it is not shorter, S; is also delayed there. In such a case, both
will be dispatched from that node at the same time when earlier packets are cleared, and
Si+1 of p arrives at the node exactly 8+ |S;| after S;;1 of p*. Suppose, on the other hand,
Si+1 in p* is not delayed at P,. By the induction hypothesis, S;;; departs from P,,_; in
p exactly 8+ |S;| after S;j+1 of p* does. Hence, when it arrives at P, packet S; is already
cleared, which is true because, not longer than S;,packet S; in p is dispatched at least as
early as S;11 in p*. As a consequence, S;i1’s departure time from that node in p is again

exactly B+ |S;| less than S;11’s in p*.

Claims (b) and (c) say up to the time when S;;; of p arrives at node P;, the very
time when S; of p* arrives at the same node, packets that are dispatched later, that is
{Sit+2,Si+3,- -}, have exactly the same departure times up to node P; in either schedule.
From that point on, since S; 11 of p* arrives at node P; earlier than S; . of p (by the amount
of B+ 1S;]), it will be dispatched no later. This means it will reach its destination, Py, no
later and packets dispatched later than S; in p* that go beyond P; will be dispatched no
later than those same packets in p and reach their destinations no later. This combined
with (a) establishes the lemma for Case 1.

Case 2: |S;11| < |Si| (see Figure 3.2). We first claim that

(d) S;41’s departure time from a node P in p is exactly S;’s departure time from P in

p* for P < P;, S;’s destination.

— —
P o— o
— — i
s | [se
p oo
B R

Figure 3.2: Case 2 of Lemmal’s proof

Using the same argument as leads to (c), we can easily show that S;’s departure time
at a node P in p* is exactly §+ |S;;1| larger than S;’s departure time at P in p for P < P;.

Now, (d) is clear as S; 1 follows S; in p without “gaps”, it takes 5+ |S;+1| time to transmit.

Claim (d) and the simple observation that S;;; of p is dispatched later than S;; of p*

10

mean the arrival time of S;y; in p is no earlier than that of S;;; in p*. Furthermore, we
have seen that the arrival time of S; in p* at its destination, P, is exactly that of S; 1
in p at P;. Hence we know that the larger of the arrival times of S; and S;1 in p*. To
complete the proof for Case 2, we only have to show that packets dispatched after S; in
p*, {Sit+2,Sit+3,---}, reach their destinations at least as early as those in p. Surely, (d)
guarantees that those packets in either schedule have the same departure times from any
node P < P;. From node P; and beyond, as Sj;1 of p* is at least as ahead as S;11 of p,
those packets under consideration will be less restrained in p*, in the sense that it is easier

for them to catch up with S;;; and get delayed in p than in p*.

So in either case, we find we can exchange out-of-order dispatches without increas-

ing the running time. This proves the lemma. |

We note that the above lemma is applicable to trees and can be easily employed to prove

that, for any message set M, there exists an optimal FDF schedule on linear arrays.

Theorem 2 On a linear array, there exists an optimal FDF schedule for any data scattering

problem.

Proof:
Apply Lemma 1 to every pair of out-of-order packets. After O(|S|?) exchanges, we will
get an FDF schedule that is as good as the original schedule. O

3.2 How delays happen and manifest themselves

We say (T1,T5,T5, ..., Ty),; forms a delay sequence if T} delays T} 11 at node i. Note that all
packets in such a delay sequence must pass through node 7 in the order as specified in the
sequence on their way to their destinations. Note also that, although it means T}, ; must
be dispatched by node 7 right after 7}, this may not be true at other nodes that they both
pass through, as a packet may be dispatched between them but to a different branch, and
T;11 catches up with T} later at node i. A packet is a leader at node ¢ if it is not delayed
by any other packet at node i. Clearly, if a packet P is a leader at a node, then it will reach

the next node exactly § + | P| time after it arrives at the current node.

11

Lemma 3 Let (T1,T2,T5,...,Tr,); be a delay sequence. If Ty is dispatched from node i at

time t, then Ty is dispatched from node i at time t + jzl(ﬂ + [Tk])-
k=1
Proof:
By the definition of (2ielay, node ¢ will be continuously sending out packets from time
t. Surely, at time ¢ + jZ(ﬂ + |T%|), it just dispatches packet T;_;, which departs at time
i1 k=1
t+ Y _(B+ |Tk|), at which time T will be dispatched. m
k=1

Corollary 4 Let (T1,T5, T3, -+ ,Tm); be a delay sequence where Ty is a leader. (a) T; will
depart from node i at most |T1| — |T}| after it arrives there. (b) This number is exact if
(T1,T2,T3,---,Tr), is also a delay sequence, T1 arrives at i from [, no packets dispatched

between T1 and Ty, atl leave it without going to 1.

Proof:
We only have to prove the corollary for (b), as any packet leaving [without going to 4
can only delay some packet T}’s arrival time at node ¢, potentially shortening its stay, hence

delay, at .

Let 17 be dispatched from node % at time ¢. Then 77 is dispatched from node [at

time ¢’ =t — 8 — |T1| because it is a leader. Lemma 3 says T is dispatched from node [at

j-1 J
time ¢ + Y (8 + |Tx|), hence arriving at node i at time ¢’ + Y (8 + [T}|). Lemma 3 also
k=1 k=1

says T; will be dispatched from node 7 at time ¢+ Ei; B+ |Tx| . Hence the delay is exactly

t+<]§:(ﬁ+\Tk|) (Zj:ﬂ+|Tk|>=|T1\—|Tj|

k=1

We have the following simple yet useful corollary, whose validity is immediate from

Corollary 4.

Corollary 5 If <T1, TQ,Tg, ceny Tm)

; is a delay sequence and T is a leader, then |T1| > |Tj|

for1 <j<m.

12

3.3 Maximum congestion at a buffer

We show that if S = (S1,52,...) is the dispatching sequence, and greedy FCFS queueing
strategy is used (for trees), then a buffer has at most max |S;| flits at any point in time,
j

which surely is the tightest bound possible.

Apparently, we only have to show it to be true for any node ¢ and any delay sequence

<T17 T2aT37 aTm>

; with T7 a leader. Furthermore, we can assume that every T}, is dis-

patched by some node [, neighboring 4, right after T}, for if a packet dispatched between
Ty and T,, leaves [without going to i, then it can only delay some packet’s arrival time at

node %, making 7’s buffer potentially less congested.

<:_‘ Bl

‘|T3|‘,‘B T | ﬁ Ml g

Tl ﬁ L ‘,‘B

Figure 3.3: Analyzing the maximum buffer size, used in the proof of Theorem 6.

As T arrives, it occupies |T7| flits. It is sufficient that we show the buffer size never
contains more than |71 flits throughout this sequence. In the next g time, it sets up 7 for
transmission without delay as 77 is a leader. Similarly, it does not receive any flits yet, as 75
is also being set up for transmission. From there on, when i is sending out real flits, surely
the flit rate from the input end cannot be higher; hence the buffer size does not increase.
On the other hand, when ¢ is working on the set-up, the input may keep coming in. This

can be envisioned in Figure 3.3, where we move a stick of length 3+ |T1| to the left on top
m
of a stick of length Z(ﬂ + |Ty|) arranged as in the figure, denoting the total amount of

work to be done at rlig(lie 1 for the delay sequence. The right tip of this stick denotes what
the output end of node ¢ is doing, while the left tip of this stick denotes what the input
end of this node is doing. When a tip falls within a region denoted by 3, it means a packet
is being set up (“to be send out of node i” for the right tip and “to be sent to node ”
for the left tip). When it falls within a region denoted by |7}|, it means a packet is being
transmitted. Clearly, the number of flits (fraction allowed) falling under the stick is exactly
the number of flits in the buffer at that moment. From Corollary 5, this stick contains more

than 8 amounts of work devoted to the set-up time, leaving less than |T7| flits for storing

13

data. This proves the following theorem.

Theorem 6 For any schedule with an FCFS greedy queueing strategy, the mazimum buffer

size required is the size of the biggest packet.

3.4 Handling queueing delays for FDF schedules on linear
arrays

Allowing packets to have various sizes means queueing delays may develop. Fortunately, we
do not have to worry about them as the next lemma shows, because we can make a schedule

do away with queueing delay as far as possible without increasing its running time.

Lemma 7 For any FDF schedule on a linear array, if packet P is delayed by packet QQ by
T, and P is followed by another packet R going to the same destination as P, then one can
transfer up to T flits from R to P without increasing the running time. (P’s length may be

shorter than Q’s and @ may go to the same destination as P.)

Proof:

Since the leader of the delay seuence that contains P will not be changed before P
reaches its destination by Corollary 4(b), such transfer does not change P’s departure time
from any node. As R is now shorter, packets dispatched after R can only benefit by having,

possibly, earlier departure times. O

Remark 8 This procedure can certainly be applied repeatedly until either such an R no
longer exists, or P is no longer delayed by Q. In the process, we may actually decrease the
number of packets into which the message P belongs to is split, thus potentially shortening
the running time. Although a more sophisticated scheme for balancing is given in Section
5.1, this lemma will be sufficient alter in Chapter 6 when we consider a special case where

each message has the same length.

3.5 Any breadth-first tree is optimal

In Bhatt, et. al.’s scheme, we recall, each message is split into 1-flit packets to be sent

out according to the FDF principle. Note that a packet’s arrival time at its destination

14

only depends on its dispatch time at the root and its destination’s distance from the root
because there is no queueing delay. We show below that any breadth-first tree created out

of a general network will run as fast under Bhatt, et al.’s scheme.

Lemma 9 The running time of any FDF schedule which packetizes a message into single-

flit packets is the same and optimal for any breadth-first tree.

Proof:

Observe that every breadth-first tree contains the same set of nodes at the same level
by definition. Furthermore, due to the FDF principle, the last flit to reach any node at
a given level is the same for any breadth-first tree. This shows the scheme has the same

running time for any breadth-first tree.

The next step is to transform any spanning tree of a network into a breadth-first tree
without increasing its running time, even if the schedule is not changed. This done, the

claim is proved.

Let T be a spanning tree of a given network G and not a breadth-first tree. Note
that if a node’s distance to the root is 7' is larger than that in the original network (call
such a node misaligned), then the same holds for all of its descendants in 7. Find a
misaligned node v such that its distance to the root in 7' is the least among all misaligned
nodes. Then v must have a neighbor u is G that is not mialigned and closer to the root in

G as well. Detach the v-rooted subtree from T and attach it to w to form a new tree.

Now, observe that the arrival time of any packet to a destination not in the v-rooted
subtree is not changed. Secondly, a packet whose destination is in the v-rooted subtree now
reaches its destination earlier, because the distance between its destination and the root is

shortened. hence, the overall running time is not increased.

We can repeat the above detach-attach operation until a breadth-first spanning tree
develops. Such a tree will eventually appear because every such operation brings at least
one more node to its correct level. Hence, after a finite number of steps, every node will be

at the right level. O

15

The above result shows we can start with a network, find any of its breadth-first trees,
then apply an FDF scattering scheme to guarantee optimal running time, as long as each
packet is required to be only one flit long as in [2]. Such a strategy can be justified when

the set-up time is zero or negligible.

16

Chapter 4

Data Scattering On Trees

We first restate a known result due to Bhatt, et al.

Fact 10 ([2]) Every FDF schedule for scattering from the root of a tree is optimal if the

set-up time is zero and each packet has exactly one flit.

Their scheme is very simple. The root splits each message into single-flit packets before

sending those packets according to the FDF principle.

The first subsection to follow shows that the above fact no longer holds if the set-up
time is not zero and the packets may not be on flit long. Then, in the following subsection,
we show that if either requirement is dropped, then the above fact still holds. Hence their
result holds if we drop the first requirement (as is done in [2]) or the second on (see Claim

11), but not both.

4.1 Scattering on trees and the FDF principle

The general FDF principle no longer holds when scattering on trees is concerned. The
following is a counter-example. Let S;’s destination be P and S;j;1’s destination be Q. Let
the arrangement of the root, P, and) be as shown in Figure 4.1. Now let the root have
three flits for node P and one flit for node). Any FDF schedule then has to send the flit
to @ before any of the flits for P. We will construct a non-FDF schedule that out-performs
any FDF schedule p for some value of 8. There are four possible FDF schedules: (i) send
one flit to @, then one flit to P, then one flit to P, then one flit to P, using 68 + 6 time;
(ii) send one flit to @, then one flit to P, then two flits to P, using 53 + 8 time; (iii) send

17

Figure 4.1: The root P, has three flits to send to node P and one flit to send to). This is part
of the construction of a counter-example to the optimality of the FDF principle for scattering
on a tree.

one flit to @, then two flits to P, then one flit to P, using 55 + 8 time; (iv) send one flit to
@, then three flits to P, using 45 + 10 time. Consider the following non-FDF schedules, p*:
send three flits on P, then send one flit to @, using max (35 + 9,56 + 7) time.

If we pick 1 < 8 < 3, then p*’s running time is 58 4+ 7, and one can easily show
that

504+ T7<66+6

584+ 7 <56+ 8, and

56+ 7 <46+ 10

Hence p* out-performs each of the four FDF schedules.

For every non-FDF schedule on a tree where S;’s destination, P, is nearer the root
than Sji1’s destination,), we can exchange their dispatch order without increasing the
running time if P is on the path from the root to (). This observation follow from Lemma
1. So, in a limited sense, the FDF principle still works if we are only concerned with packets

going to destinations lying on the same branch of the tree.

4.2 Zero set-up time

Claim 11 Bhatt, et al.’s scheme remains optimal if we allow queueing and packets of more

that one flit, as long as 8 = 0.

Proof:

18

We prove this claim by showing that, if there is any packet of size more than on flit,
then we can split it into two smaller packets without increasing the running time. Clearly
this shows their scheme remains optimal when packets are allowed to be of size greater than

one, if the set-up time 3, remains zero as in their paper.

Let S; be a packet in schdule p with |S;] > 1. Construct another schedule p* such
that S; is replaced by two packets, one with size one, call it S’, and another one with size

|Si| — 1, call it S”, which we send first; see Figure 4.2.

il

Figure 4.2: Splitting of S; into two shorter packets.

Any packet dispatched before S; will reach its destination at the same time as before,
because it is not affected by the splitting. S;’s arrival time at its destination cannot be
earlier than S”’s, which can be argued as follows. Surely, S; and S’ depart from the root at
the same time. Inductively, look at a node j between S;’s destination and the root. If S; is
delayed at 7, then S§” is too (since it is shorter, hence running at least as ahead), in which
case S and S; will be dispatched from j at the same time; hence S; and S’ arrive at the
next node at the same time since S’ ,being at most as long, follow S$” without “gaps.” If, on
the other hand, S; is not delayed at j, then, by the induction hypothesis, S; arrives at j no
earlier than S’. However, S’ can only be delayed by no more that |S”| time. Consequently,
again, S’ will arrive at the next node no later than S;. This shows the flits that S; contains

will reach their destination no later in p* than in p.

Finally, as S’ arrives at any node no later than S; does, surely packets that follow

them will reach their destinations in p* no later than in p. O

19

Chapter 5

How To Do Packetization

This chapter discusses how to split a message into packets to minimize its delivery time on
trees. We show that each message can be split into packets as evenly in size as possible with-
out loss of generality. The decision, in the absence of other messages, ultimately depends
on optimizing a linear objective function over a convex set. The packetization problem for

the most general case considered in Theorem 2 seems intractable.

5.1 Best distribution of packet sizes under the FDF discipline

What is the best way to packetize messages of various sizes to send in an FDF manner on
trees? We can simplify the matter a lot by proving first that making the packets as even in

size as possible is one of the best strategies.

With a message of m flits to be sent in r packets , we want to distribute the flits
among these r packets (we will discuss how to pick r later). Suppose the i** packet has size

m; > 0 for 1 < i < r. Recall that the i*" packet is the " of these r packets to leave the

T
root. Certainly, Zmz =m. Call (m;)i1<i<, a size distribution.
i=1
Let by = [m/r], bo = |m/r|, and 0 < r; < r be the remainder of the division of
m by ba: m = rby + r1. Define 79 = r — r1; see Figure 5.1 for illustration. Consider a
schedule such that the it? packet is of size b for 1 < i <7y and by for r1 +1 <7 < 7.
Call such a size distribution p(m,r). In general, a message is said to use the even-size

distribution if it is packetized according to p(m, r) for some r where m is the message’s size.

20

Suppose we split a message into r packets according to the even-size distribution princi-
ple, and this message is to be sent to a node that is [nodes away. Its last packet’s departure
time from the root is m + 3. By Corollary 4(b), the last packet will be delayed by b; — bo

at each node for the next [— 1 hops, and its arrival time, hence the message’s, is

am,r) Em+rB+ (1 —1)(B+by+ (b —by)) =m+rB+ (I —1)(8 +by)
We summarize our finding as follows.

Lemma 12 If a message is packetized according to p(m,r), where m is the message’s size,
and there are no inter-message delays, then it will arrive at a node that is | nodes away

ay(m,r) steps after it is dispatched.

Figure 5.1: For any size distribution for the packets of a message of length m, we can transform
it into another one, which is basically a rectangle with area m (except possibly for a "dent” of
height one) which runs at least as fast; see Lemma 12.

Consider an FDF schedule p and look at one of its messages, P, which is split into r
packets such that the it? packet is of size m; > 0. We shall show in the next lemma that if
we, instead, split it according to p(m,r), where m is P’s size, to produce another schedule
p*, then the last packet of p* will depart from any node no later than that of P in p from
the same node. As a consequence, for FDF schedules, we only have to consider the case

where each message is split according to the even-size distribution principle.

Lemma 13 For any FDF schedule on a tree, we can produce another schedule as efficient

such that each message is packetized according to the even-size distribution principle.

Proof:

21

We proceed as follows. Let us focus on an arbitrary message, P, that does not satisfy
the even-size distribution principle. We can find a pair of packets sent in tandem, A and B,
where B is sent right after A by the root, such that either (i) |A| < |B| or (ii) |A| > |B|. We
show that in (i) we can move one flit from B to A without increasing the running time and
in (ii) we can move one flit from A to B without increasing the running time (see Figure
5.2). Apparently, this proved, we can step by step transform P’s size distribution so that
it satisfies the even-size distribution principle without increasing its running time, and the

lemma is prove.!

B A B A

Figure 5.2: When adjacent packets to the same destination have different sizes, balancing their
sizes by moving one flit to the shorter one does not increase the running time.

We use induction to prove first that balancing works for (i). B departs from the root
at the same time in both schedules. By the induction hypothesis, suppose B of the new
schedule arrives at a node at least as early as B of the original schedule. Since B’s size has
been decremented by one, it will depart at least one step earlier from that node than the
original longer B, and (i) is proved, unless it is delayed by A. So suppose it is delayed by A
in the new schedule. If A (of the new schedule) is also delayed at the same node, then the
original A, being shorter, must also be delayed there and both are dispatched at the same
time, in which case both Bs will depart from that node at the same time, too. On the other
hand, if A is not delayed, then B, delayed by A, must be shorter than A by one flit after
the balancing, which means B will be delayed on step at that node, hence still departing

from it at least as early as the original, longer B.

We now turn to (ii). B departs from the root at the same time in both schedules.
By the induction hypothesis, suppose B of the new schedule arrives at a node at least as

early as B of the original schedule. Now suppose A of the new schedule is delayed at that

!We comment that, in fact, this can be used to prove that, given r, any size distribution will do as long
as the largest packet and the smallest one differ in size by at most one.

22

node. A, being shorter, will be dispatched no later than the original A. Hence, in the worst
case where both As are dispatched at the same time, B will depart at the same time as
the original B. Suppose, on the other hand, A of the new schedule is not delayed. There
are two cases to consider. If |A| > |B| + 1, then, although B’s size has been incremented
by one, it will depart at least one step earlier from that node than the original shorter B
because B is delayed by A by an amount two flits less than the original shorter B is delayed
by the original longer A. If, on the other hand, |A| = |B| + 1, then, although B of the new
schedule takes one more step to transmit, B of the old schedule is delayed by at least one

flit by A, hence arriving at the next node no earlier. O

Remark 14 This lemma also proves that, given a packetization, we can always re-packetize
any message according the even-size distribution principle using the same number of packets

without increasing the running time of the resulting scheme.

We comment that Lemma 13 can be applied to broadcasting, where the root sends the
same message to every other node in the tree. If one assumes the multi-port model and hot
potato forwarding [12], in which once a packet is received by a node, it is transmitted to all
of its other neighbors in the tree, then of course the time is dominated by the arrival time
of the message’s last packet to the furthest node from the root. If the message size be m
and the depth of the tree be d, then what remains is to determine the r such that agy(m,r)

is minimized. This kind of optimization is formalized in the next subsection.

5.2 Finding the best size distribution when there are no
inter-message delays

Previously, we showed that for any given r, the number of packets a particular message
is split into, we can choose a size distribution for a packet of size m just by dividing and
rounding to get by = [m/r]|, and be = |m/r]; see Figure 5.1 again. Now we have to find

the right r for each message.

Consider each message in isolation as if there were no other messages, i.e., assume
there are no inter-message delays. We want to minimize the following over all integers r

between 1 and m:

23

ay(m,r)=m+rB+ (1 —-1)(8+b)

But it is easy to see that this problem is equivalent to minimizing

rB+ (1 —-1b+p(l—-1)+m

with the constraint r3 < m where both r and b are positive integers not exceeding m. We
use the following notation to denote the optimal value (note that the last two terms above

are constant)

ot (m) % min {rﬁ+ (= 1)b+ B —1) -I-m} (5.1)
m>r>0
m>b>0
rb>m

We shall assume (3 to be a rational number.

This problem in principle can be solved in polynomial time by the basis-reduction algo-
rithm and the Ellipsoid method. In fact, this is an easy corollary of Theorem 2.5.1 of [20]
(p-62). In the next section we shall describe a more direct and practical method with some
ideas from [4] and continued fractions approximation to real numbers [10], [11], [14]. In this

subsection, we are mainly interested in formulating the problem.

We mention that problem (5.1) becomes trivial when r and b can be real numbers,

as the solutions are simply

F=1/m(l—1)/8 and b= \/mB/(l—1) (5.2)

(Here we assume neither exceeds m; if either exceeds it, just make it m and the other one.)
As mentioned before in the Introduction, previous authors who consider set-up time make
real numbers acceptable solutions; see; for example, [15], [28], and [39]. Surely, this is not

satisfactory as packets cannot contain fractional number of bits.

As (I — 1) + m is constant given [and m, we can assume without loss of general-

ity that we are minimizing

24

B+ (I—1)b (5.3)

subject to 7b > m with both r and b begin positive integers not exceeding m. We note that
the restriction on r and b not exceeding m is redundant. This is because, if either variable
exceeds m, then we can always make it m without disturbing the other variable’s value and
produce an even smaller value for (5.3). The special class of data scattering problems we

shall consider in Chapter 6 can also be reduced to the above optimization problem.

This optimization problem has a simple geometric interpretation. Let L(z,y) denote
the equation fr + (I —1)b = Bz + (I — 1)y, i.e., the line with slope —(/(l — 1) that passes
through point (z,y). What we want is simply a lattice point (points with integral coordi-
nates), (r*,b*), on the upper-right of the r-b plane such that r*b* > m and there are no
other such lattice points to the left of the line L(r*,b*); see Figure 5.3. In other words,
we slide a line with slope —(/(I — 1) from positive infinity towards the origin until it hits
a lattice point to the right of, or on, the hyperbola, rb = m, such that there are no more

lattices points satisfying rb > m to the left.

25

A

25 4- e 0o 0 0 0 oo ° ° . ° o e 0o 0 0 0
e 0006000 00 ° . o o e o0 0 0
201 ol ¢ 6 0606060000 ° ® e o e o 0 0 o
15T ele 6 6 6060600 ¢ e 0o 0606000 0 0 ¢
° e 00060600 0 o0 © 0606060606000 00
10 4 o ®© © 060606060606 0606060600000 000000
\ . © 0060600606000 0600000000000
5 4 o) ®© 000000606006 06000000 000

° o 0o 0 0 e 6000000 0 0 Aj:m

.) : : ° ? e o o ? v '_E .

5 10 1 20 25

=

Pri(F1)b

Figure 5.3: Geometric interpretation of our optimization problem. In this figure we let m be
25. In this particular example, point (5,5), which we circle, is the optimal choice.

26

Chapter 6

A Polynomial-Time Solution to a
Special Class

Consider the following scattering problem on a linear array: The root Py wants to send a
message M; of length m to node P; where s < 7 < t. That is, all the messages have the same
length, and they go to contiguous nodes on the linear array. This generalizes the situation
considered in [9] and [28]. Our goal is to find the packetization, i.e., a size distribution

mk for each message M;, and the schedule that minimizes the transmission time.

1<j<m
We will consider a slightly more general case at the end of this section.

By Lemma 13 of Section 5.1, we can restrict ourselves to even-size distributions for

each message. So assume each (m’) is an even-size distribution p(m,r;) for some
1<j<m

r; > 0. Furthermore, by Theorem 2 of Section 3.1, we can restrict ourselves to FDF sched-

ules. Hence assume packets are sent according to their distance from the sender, the root F;.

We first prove that we can without loss of generality consider only size distributions
where a message is split into at most as many packets as its predecessor going to a further

node.
Lemma 15 There is an optimal FDF schedule such that rs < rsqy1 < --- < 140

Proof:
Consider any two messages destined to two adjacent nodes: My and My 1, but rp > 7541.
The first packet of M} , say P, must be delayed by the last packet of My by an amount at

least as large as the difference in size between P and M,;’s first packet, say @ (see Corollary

27

4(b)). Recall that the first packet of a message of an even-size distribution is always the
longest of packets. Apply Lemma 7 to P to make its length as large as @), which is always
doable because each message has the same length. Apply Lemma 7 to the rest of M;’s pack-
ets. Because each message has the same length, in the end, the number of packets that M,
is split into will be 7441 , that is r, = rp+1. Finally, apply Remark 14 to M, to make it con-
form to the even-size distribution principle. As each operation does not increase the running

time and we can apply them iteratively to any offending pairs, we have proved the lemma. O

As a consequence, we assume the schedule further satisfies Lemma, 15; see Figure 6.1.

Figure 6.1: After many transformations, we narrow down to FDF schedules such that each
message is split into no more packets than its predecessor going to a further node.

Corollary 16 In any optimal FDF schedule that satisfies Lemma 15, My is the last message

to reach the destination.

Proof:

From Lemma, 15, it is clear that there is no inter-message delay. As the messages go to
contiguous nodes and the schedule is FDF, it is easy to see that M reaches its destination
as least as early as My for s < b < t. Hence the last packet to issue is the last to arrive at

its destination. O
Now we present the main theorem, showing that one of the best schedules is to split

every message into the same number of packets (see Figure 6.2(a)).

Theorem 17 There is an optimal FDF schedule with rs =rs41 =--- =1

Proof:
By Lemma 15, we consider an optimal FDF schedule that satisfies 7y < 7411 < --- < s4.

Let b be the least integer such that r,_1 < 7. If we now apply p(m,r,_1) instead of p(m,ry)

28

to My, the dispatch time of the last message will be earlier by (r, — rp_1)3 and, hence, it
will arrive earlier by the same amount of time as there is still no inter-message delay. By

Corollary 16, this schedule runs faster, a contradiction. Hence no such b exists. O

Equipped with the above theorem, we can now proceed to analyze the running time of
an optimal schedule. Let each message be split into r packets. The last packet’s dispatch
time is

(t—=s)(rB+m)+(r—1)B+ (m—[m/r])

From there on, it takes 8 + | m/r] time for it to traverse a link. Hence it reaches its

destination at time

t—s)(rf+m)+ (r—1)B+(m—[m/r])+ B+ [m/r])s = Ar+ B[m/r|+C

where A=(t—s+1)8. B=(s—1)[m/r],and C=(t—s+1)ym+ (s—1)8. AsC is a
constant, the problem can be reduced to solving
min {Aw + By}
m> x>0

m>y>0
TY>m

where z and y are positive integers.

The above theorem generalizes Fraigniaud, et al.’s result for the linear array in that
they consider the more limited case where every node receives a message of equal size. On
the other hand, they prove the optimality of FDF schedules under a more general condition
which allows a packet to contain flits from various messages [9]. It is not hard to see that
this relaxation can lead to better running time; see Figure 6.2.

Lemma 15 actually holds without modification in a more general context where the
messages may not be destined to contiguous nodes on a linear array, as long as they have

the same length. That is, Py sends a message M; of length m to node P; where

s1< i< t,orse < 1< tg,0r, -, S < 1< g

29

’J S50 e NN YR S

Figure 6.2: Allowing packets to contain flits from different messages may lead to better running
time. (a) shows an optimal FDF schedule. In schedule (b), the first two messages’s packets
carry some of the third one’s flits, and it is clear that it runs faster because it has less packets
in total.

In this case, the messages can be partitioned into k sets, M; = {Mi|sj < i< tj},
where 1 < j < k, such that the messages in the same set go to contiguous nodes. Corollary

16 now needs nominal changes, and now reads:

“in any optimal FDF schedule that satisfies Lemma 15, message Mj; is the last

one in M; to reach its destination, where 1 < j < £.”

This clearly generalizes the older version and uses the same proof. Finally, Theorem 17 can

now be generalized as follows (see Figure 6.3).

Theorem 18 There is an optimal FDF schedule with Ts; ==y for1 < i<k

= Tsjm

M, M. M, M, M, M,

el
—>

Figure 6.3: If every message has the same length, one optimal FDF schedule will split the
messages that go to contiguously located nodes into the same number of packets.

30

Chapter 7

Data Gathering on Trees

In this chapter, it introduces whether the similar result for the data gathering problem
would be achieved. Fortunately, it seems that every lemma and theorem about the NRF
(near-receive-first) principle still works for the data gathering problem. For a more general
tree, a new algorithm “Transmission Certification IT Algorithm ” will be applied to get the

optimal running time.

7.1 The Nearest-Receive-First Principle

The data gathering problem is the opposite of data scattering problem. By running an
FDF scattering algorithm “backwards” (nearest-receive-first principle). It is one way of
implementing gathering operation. The nearer distance between the root node and some
node is, the earlier the root node receives the packet from the node. The term “PE” shall

denote the other nodes different from the root node.

Of course, one can not literally run an FDF scattering algorithm “backward,” because
in the scattering operation, the PEs other than Py are passive, while in the gathering oper-
ation, they are active; they must initiate their message transmissions. To compensate for
this fact, any algorithm for a bufferless gathering operation must precede the transmission
of messages by a distributed protocol that schedules the dispatch times of the messages so
that no two collide in transit. We will introduce “Transmission Certification 1T Algorithm”
[2], which is readily adapted to general tree structures, but only at the cost of added time

for separate synchronization and scheduling activities.

31

At a result, the running time for gathering problem is more than the time for scat-
tering problems. It is obviously that each PE cannot safely begin transmitting its message
until that node gets the transit permission; otherwise, packets may collide at some node or

when crossing some link.

Theorem 19 For a linear array, there is only one schedule — the NRF — in which every

packet will be received in order, such as Si,S2,853,...,Sk_1,Sk. (see Figure 7.1

—

I Csa]]
.—.—ooo—.—.—ooo—.
P P

0 1 Pn Pi+1 Pk

Proof:

Figure 7.1: The root node Py receives packets 51,52, ..., Si, Sit1, ...in order.

For our basic structure network, the buffer size of every node is the size of the biggest
packet. When gathering operation starts, all nodes is ready to transmit their own packet.
For this reason, every packet should be delivered in order to avoid the insufficient buffer
size.

Noticeable, some overhead must be considered in order to prevent the conflict of packets.
For example, every node can’t deliver its packet to its parent node until its parent node

informs it. O

Theorem 20 For any schedule with an FCFS greedy queueing strategy, the mazimum buffer

size required is the size of the biggest packet.

Proof:

In a single-port network, any node can only transmit one packet over some link at one
time. By using the new Transmission-Certification algorithm (see section 7.3), the root will
give each message an individual free time gap stream. In other words, the situation won’t
happen that two packets arrive some intermediate node PE simultaneously. Note that no

matter when some packet begins transmitting at some node, it can’t be stopped until it

32

reach the destination node - the root Py. As a result, the maximum buffer size required is

the size of the biggest packet. O

Lemma 21 The running time of any NRF schedule which packetizes a message into single-

flit packets is the same and optimal for any breadth-first tree.

Proof:

This proof is similar to Lemma 9’s proof.

Observe that every breadth-first tree contains the same set of nodes at the same level
by definition. Furthermore, due to the NRF principle, the last flit to reach the root is the
same for any breadth-first tree. This means that the scheme has the same running time for

any breadth-first tree.

Next, we want to prove that we can transform any spanning tree of a network into

a breadth-first tree without increasing its running time, even if the schedule is not changed.

Let T be a spanning tree of a given network G and not a breadth-first tree. Note
that if a node’s distance to the root in 7' is larger than that in the original network (call
such a node misaligned), then the same holds for all of its descendants in 7". Find a mis-
aligned node v such that its distance to the root in 7' is the least among all misaligned
nodes. Then v must have a neighbor u in G that is not misaligned and closer to the root

in G as well. Detach the v-rooted subtree from T and attach it to u to form a new tree.

Now, observe that the receive time of any packet from the source node not in the
v-rooted subtree is not changed. By the NRF principle, each packet get its own gap-free
stream initially. Furthermore, the distance between the source node and the root is short-
ened. By detaching the v-rooted subtree from T' and attaching it to u, the free time slot are
also kept. We assume that the distance (or depth on that tree) between the root and some
node Py in v-rooted subtree is [and packet S; for Pj is delivered at time ¢. As we see, no
node except Pjs at the I depth can use this time slot [t,t + 3+ |S;|] on the tree, otherwise
some collision will occur at some node whose depth is less than /. Similarly, no node whose

depth is (I—1)" except Ps can use this time slot [t+(8+|S;|),t4+2(8+|S;|)]. Step by step, no

33

node whose depth is 15! except Ps can use the time slot at [t+ (I —1)(8+|S;|),t +1(8+]S:|)].

Now, we can trace back on the new path. The packet S; whose depth becomes I’
can just dispatch at time ¢ + (I —I")(8+ |S;|) where [> I'. Hence, we maintain the running

time of the new spanning time whose schedule is no longer the NRF principle.

By increasing the dispatch time of those packet whose depth is larger than I’ and de-
creasing the dispatch time of those packet whose position is changed in new spanning tree,
the NRF principle will be reborn. Therefore, the running time of the new one using NRF

is the same as the old one.

We can repeat the above detach-attach operation until a breadth-first spanning tree

develops. After a finite number of steps, every node will be at the right level. O

7.2 The counter-example violating NRF with packetization

In this section, we will show that the NRF principle would not work well in presence of

packetization and setup time for a general tree, but for a linear array.

The following is a counter-example that violates the NRF principle. Let S;’s depar-
ture node be P and S;;; be Q. Let the arrangement of the root, P, and) be as shown in
Figure 7.2. Now let node P have three flits for the root and node @ have one flit for the
root. Any NRF schedule then has to send the flits of P to the root before the flit of). We
will construct a non-NRF schedule that is much better than any NRF schedule for some .
There are four possible NRF schedules:

(i) the root receives one flit from P, then one flit from P, then one flit from P, then one

flit from @), using 68 + 6 time.

(ii) the root receives two flits from P, then one flit from P, then one flit from @, using

58 + 8 time.

(iii) the root receives one flit from P, then two flits from P, then one flit from @, using

58 + 8 time.

34

Figure 7.2: The node P sends three flits to the root Py and the node @) sends one flit to
the root Py.This is part of the construction of a counter-example to the optimality of the NRF
principle for gathering on a tree.

(iv) the root receives three flits from P, then one flit from @, using 46 + 10 time.

Now, consider the following non-NRF schedules, p*, which receives one flit from @), then
three flits from P, using max{383 + 9,50 + 7} time. If we pick 1 < 8 < 3, then p*’s running
time is 58 + 7, and it is easy to show that

504+ T7T<66+6
56+ 7<50+8
5347 < 46+ 10

Hence the performance of p* is better than each of the four NRF schedules.

7.3 Packetization & set-up time

The following algorithm is modified from the transmission certification algorithm developed
by Bhatt, et al. The concept of the new one is similar to the old one. The only difference
between two algorithms is the method computing the lag time, which means that some node
can start delivering their own message after the lag time. At the same time, the message

length must be adjusted because of packetization.

Transmission Certification II Algorithm

Phase 1: the root broadcasts “synchronization token” to all other nodes. This wakeup call

lets the PE’s know that P, is ready to “gather” their messages.

35

Phase 2: Each PE P, responds to the synchronization token by sending a “transmission
certificate” to its parent PE. The “transmission certificate” packet will give its parent

PE some useful and important information about its message size and lag time.

Phase 3: When P; receives its children’s certificates, it initiates a wave of TRANSMIT-
MESSAGE orders. P, must decide the receive order about its children because of
single-port network. We can just use the sorting algorithm for this phase, and the

parameter from its children. Figure 7.3 illustrates it.

Time

t

_. »
iy
K%y A

\ Lo n |

= [-

Time .

©l N [N [0]

Figure 7.3: Sorting the lag time of its children and Combining those messages into one message
and one lag time.

The TRANSMIT-MESSAGE orders :
(cii,mi1)s (Ci2om62), (€i3570,3)5 (Ciidy Mid;)
INITIAL: the leaf node ¢; =0

At node P; : we sort the lag time of its children to get the new lag time ¢;. It takes
d;(8+ 1) time for P; to transmit the new lag time to its children node. Also, because

of different message size, some changes must be considered.

Cik = Cijk + max (6 + [nip,l) + di(6+1),

36

where n; j ; means the 4t packet of the n; of the 74, child. Also, we combine those

messages of its children and itself into one message.
d;
ni =ri(B+ [Mi/ri]) + Y mij , ci=di(B+1),
=1
where d; means the number of P;’s children.

The time that last packet arrives the root is no more than

n n
cp + Z{ﬂJF |Mi|} =cy+ Z{TZ x (8 + fMi/Tﬂ)},
i=1 j=1
where ¢ is denoted to the receive time of the first packet received by the root Pj.

The n-number sorting problem is concerned, so the time complexity about sorting d;
number is

d;log, d;.

Phase 3.1: Repeat Phase 3, we can’t stop until the root Py also repeat one time. After
the computation for the root Fy, we can get the final lag time for each children of the

ro0t.

After dylog, dp times, each child of the root will be given a new dispatch time(lag
time s;), in other words, a free time interval, which the child can transmit. So the
root will transmit the exact time interval to each child. Corollary, the children of root
will correct their initial lag time. Repeat this phase until all information reach all leaf

node.

/ *
€,j = Co,j + S0 — Co,

where ¢y means the previous lag time at node P,.

cg,j =cCij+ 8 —C (7.1)

Earlier, when P;’s old certified lag time ¢; and its children lag time c; ;. After this
phase, P;’s parent gives P; the new lag time s;, so we must adjust the lag time for

optimality.

37

Phase 4: Finally, the PE’s follow the schedule of phase 3, transmitting messages in a free

gap time slot toward Py, via their parents.
Lemma 22 For general gathering problems, the running time equals 2B+ C + L+ M

Proof:

Let P; be some node of the tree and M; be the message of that node. And let the degree
of the node P; be d;, the maximum degree of the tree be d ,and the depth of the tree be A.
It is clear that each node can transmit the message “Synchronization token” to its children
nodes after it receives and each node at one time can only transmit one packet. According
the topology of the tree, each edge must be traveled at least one time, or some node may
not receive the “Synchronization token”. Let the length of the “synchronization token”
message be 1 flit. By the concept of the pipeline that two different level edges can be used

to transmit at same time, the broadcast time for Phase 1 at most:
B=(xd)(8+1)

The number of children of node P; be d;. Also, the complexity of sorting n-number problems
is nlogyn. So, the computation time for each node P; : ¢; = d;log,d;. Also, it takes
d; x (84 1) for P; to receive its children response packets. As a result, the total time

spending on computation is at most
C=dix(B+1)+ A x (dlogyd)

Each message M; is split into r; packets. And the setup time of each packet is 8. The

transmission time slot for message M; will be reconstructed from g + M; to r; x { 8+

[M;/r;] } As a consequence, the total message transmission time slot :

M = i{n x (8 + fMi/Tﬂ)}

According to the transmission certification II algorithm, we can easily estimate the run-
ning time of our gathering problem by the final lag time and the total message transmission
time slot. The Figure 7.3 is part of some simple example. The lag time means that the

receive time of the first packet at root node. It takes at least do(B+ 1)+ (8+ [M;/r;]) and

38

at most A x (B4 [M;/r;]) for the first packet to reach the root node. So, the worst case of

the lag time at the root node P :
L=)x {(maxdi) « (8 + 1) + max [Mi/ri]}
3 2
As a consequence, the running time for data gathering problem:

2B+C+L+M

7.4 A special class of gathering problems

Consider the following gathering problem on a linear array: the root Py wants to receive
each message M; of length m from node F; where s < ¢ < t. That is, all messages have
the same length, and the root receives messages from contiguous nodes on the linear array.
All we do is find the packetization,i.e., a size distribution (mé)lg j<m for each message M;,

and the schedule that minimizes the transmission time.

And, we can restrict ourselves to even-size distribution for each messages. So assume
each (mj)i< j<m is an even-size distribution p(m,r;) for some r; > 0. According the The-

orem xx, we can restrict ourselves to NRF schedules.

Without loss of generality, we first prove that we can consider only the size distri-
butions where a message is split into at most as many packets as its predecessor going to a

further node.
Lemma 23 There is an optimal NRF schedule such that rg > 131 > -+ 2> 134

Proof:

Consider any two messages dispatched from two adjacent nodes: M, and My, ;. Now,
at node My, the first packet of Mj, 1 must be delayed by the last packet of M, because of
the NRF principle. As a consequence, if we want to minimize the running time, the relation
between r, and 7541 must conform to the inequation r, > 7441. By the same way, we can

prove the other inequation like 1411 > Tpy2, T2 > Tht3, =+ T—1 > Tt

39

As a result, we can get 73 > rg11 > - > 1y O

Corollary 24 In any optimal NRF schedule that satisfies Lemma 23, My is the last message

to reach its destination.

Proof:
From Lemma 23, we observe that there is no inter-message delay. Applying NRF prin-
ciple, it is easy to know that the destination of each message is the root node. So, the last

packet that reaches the root must be dispatched from node M,;’s. O

Theorem 25 There is an optimal NRF schedule must have rs =rsp1 = --- = 1y.

Proof: By Lemma 23, we consider an optimal NRF schedule that satisfies ry > rg1q >+ >
ri. Let b be the least integer such that r, 1 < 7. If we now apply p(m,ry 1) instead of
p{m,rp) to My,the dispatch time of the last packet at node Mj_; be earlier by (ry —rp_1)8
and, hence, it will arrive earlier at the root node by the same amount of time as there is
still no inter-message delay. By the same way, we can show that any optimal NRF schedule

must have ry =rg4 1 =+ =1y a

According the about theorem, we can now analyze the running time of an optimal
schedule. Let each message be split into r packets. Let the depth of the linear array be A.
We observe that the degree of the linear array is 1. The last packet’s reach time at the root

node P is
2B+ C+L+M=2B+C+AB+1)+s(B+[m/r]) +(t —s)(rB+m)

,where B and C are constant. Let A' = (t —s)3, B'=s,and C' =2B+C+ X (8+1) +

sB+ (t —s)m. As C' is a constant, we can reduce this problems to

min {A'm + B'y},
m> x>0
m>y>0
TYy>m

where z and y are positive integers.

40

Theorem 26 actually holds without modification in a more general case where the mes-
sages sent by the contiguous nodes on a linear array, as long as each message has the same

length. So the root Py will receive messages M; of length m from node P; where s1 < 1 < tq,

or so < 1< tg,ors3< 1< t3,0r...,or s, < 1< 1.
Theorem 26 There is an optimal NRF schedule with rs;, = 15,41 =+ =1 for 1 < j <
k.

41

Chapter 8

Conclusion

Generally speaking, we can transform an arbitrary network to a breadth-first spanning tree
single-port network, which the FDF and NRF principle can be applied to produce the op-
timal schedule even in the presence of set-up time. For generalizing the data scattering
and gathering problems on an arbitrary network, any factors that affect our result will be

considered, such as packetization, multi-port, transmission rate, and et al..

When packetization is allowed, the data scattering and gathering problems would be

reduced to find solution (x,y) satisfying min {A:v + By}. The method solving (z,y) is a
> x>0
%i ;;0
TY>m

huge work which can be resolved by the information and reference from the mathematics

books.

The transmission rate of every link may be arbitrary on a account of the physical limits
of transmission media, such as optical fiber, twisted pair, coaxial cable,and et al.. As the
transmission media are different on our network, all we need to do is just time the measure
of message length (M; flits/sec) with some § where § is some ratio decided by the trans-
mission media. The FDF and NRF principle still work on the spanning tree network as
well as before. The only difference is that the running time varies according to the various

transmission media.

Finally, the multiport play an important role in optimalization on the network. With
the multiport, the running time of the data scattering seems no change, but the running

time of data gathering problem will be improved. As we see, in phase 2 of transmission

42

certification IT algorithm, paralleling the receive of the TRANSMIT-MESSAGE packet can
reduce the computation time C from d;(3 + 1) + d; log, d; to d;log, d; at most. Note that
the tree structure is just part of the arbitrary network, so there must exist some unused
links. One of the best way to improve the total running time is paralleling the message
transmission by using the remainder links. Since the uncertainty of the network structure
exists, there are two ideas which the one is transform the general network into several tree
networks, and the other is that every unused link is considered as the shared link. It would

be an interesting challenge for further research.

43

Bibliography

[1]

2]

3]

AHo, A.C., J.E. HOPCROFT, AND J.D. ULLMAN. The Design and Analysis of Com-
puter Algorithms. Reading, Massachusetts: Addison-Wesley, 1974.

BaATT, S.N., G. PUucci, A. RANADE, AND A.L. ROSENBERG. “Scattering and
gathering Messages in Networks of Processors.” In Proc. 1992 Brown/MIT VLSI Con-
ference, 1992.

Bozkus, Z., S. RANKA, AND G. FoX. “Benchmarking the CM-5 Multicomputer.”

In Proc. 4th Symp. on the Frontiers of Massively Parallel Computation, 1992, pp.
100-107.

BuLtMAN, W.J., AND W. MAASs. “Fast Identification of Geometric Objects with
Membership Queries.” In Proc. 4th Annual Workshop on Computational Learning The-
ory, 1991, pp. 337-353.

CHEN, Y.C., W.-T. CHEN AND G.-H. CHEN. “Efficient Median Finding and Its
Application to Two-Variable Linear Programming on Mesh-Connected Computers with
Multiple Broadcasting.” J. Parallel and Distributed Computing, 15, No. 1 (May 1992),
79-84.

DaLry, W.J., AND C.L. SE1Tz. “Deadlock-Free Message Routing in Multiprocessor
Interconnection Networks.” IEEE Trans. on Computers, 36, No. 5 (May 1987), 547
553.

DENG, X. “On the Parallel Complexity of Integer Programming.” In Proc. 1989 ACM
Symp. on Parallel Algorithms and Architectures, 1989, pp. 110-116.

44

8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Fox, G.C., M.A. JOHNSON, G.A. LYZENGA, S.W. OTTO, J.K. SALMON, AND D.W.
WALKER. “Solving Problems on Concurrent Processors Vol. I: General Techniques and

regular Problems.” Englewood Cliffs: New Jersey: Prentice-Hall, 1988.

FRAIGNIAUD, P., S. MIGUET, AND Y. ROBERT. “Scattering on a Ring of Processors.”
Parallel Computing, 13, No. 3 (March 1990), 377-383.

GROTSCHEL, M., L. LOVASz, AND A. SCHRIJVER. Geometric Algorithms and Com-

binatorial Optimization. Berlin: Springer-Verlag, 1988.

HarDY, G.H., AND E.M. WRIGHT. An Introduction to the Theory of Numbers. 5th
ed. Oxford: Oxford University Press, 1979.

HEDETNIEMI, S.M., S.T. HEDETNIEMI, AND A.L. LIESTMAN. “A Survey of Gossiping
and Boradcasting in Communication Networks.” networks, 18, No. 4 (winter 1988),

319-349.

HIRSCHBERG, D.S., AND C.K. WONG. “A Polynomial-Time Algorithm for the Knap-
sack Problem with Two Variables.” J. ACM, 23, No. 1 (january 1976), 147-154.

Hua, L.K. Introduction to Number Theory. Berlin: Springer-Verlag, 1982.

JOHNSSON, S.L., AND C.-T. HO. “Optimum Broadcasting and personalized Com-
munication in Hypercubes.” IEEE Trans. on Computers, 38, No. 9 (September 1989),
1249-1268.

KANNAN, R. “A Polynomial Algorithm for the Two-Variable Integer Programming
problems.” J. ACM, 27, No. 1 (January 1980), 118-122.

KANNAN, R. “Algorithmic Geometry of Numbers.” Ann. Rev. Comput. Sci., 2(1987),
231-267.

KARLOFF, H. Linear Programming. Boston: Birkhauser, 1991.

KNuTH, D.E. The Art of Computer Programming, Vol. II: Seminumerical Algorithms.
2nd ed. Reading, Massachusetts: Addison-Wesley, 1981.

LovA, L. An Algorithmic Theory of Numbers, Graphs, and Convezity. Philadelphia:
SIAM, 1986.

45

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

Lyuu YUH-DAUH “ On the Furthest-Distance-First Principle for Data Scattering with
Set-up Time” In Proceedings of the 5th IEEE Symposium on Parallel and Distributed
Processing Dallas, TX, USA, Dec 1993, 633—-640.

MEGIDDO, N. “Linear-time Algorithms for Linear Programming in R? and Related
problems.” STAM J. Computing, 12, No. 4(November 1983), 759-776.

NEMHAUSER, G.L., AND L.A. WOLSEY. Integer and Combinatorial Optimization.
New york: John Wiley, 1988.

NEWMAN, M. Integral Matrices. New York: Academic press, 1972.

N1, L.M., AnD C.-T. KING. “On Partitioning and Mapping for Hypercube Com-

puting. 7 International Journal of parallel Programming, 17, No. 6(December 1988),
475-495.

PapapiMmiTRIOU, C.H., AND K. STEIGLITZ. Combinatorial Optimization: Algorithms

and Complezity. Englewood Cliffs, new Jersey: Prentice-Hall, 1982.

PrEss, W.H., S.A. TEUKOLSKY, W.T. VETTERLING, AND B.P. FLANNERY. Nu-
merical Recipes in C: the Art of Scientific Computing. 2nd. Cambridge: Cambridge
University Press, 1992.

REED, D.A., AND M.H. ScHuLTZ. “The Performance of Multicomputer Interconnec-

tion Networks.” Computer, 20, No. 6(June 1987), 63-73.

SAAD, Y., AND M. H. ScHuLTZ. “Data Communication in Parallel Architectures.”
it Parallel Computing, 11, No. 2 (August 1989), 131-150.

Stout, Q.F., AND B. WAGAR. “Intensive Hypercube Communication.” Journal of
Parallel and Distributed Computing, 10, No. 2(October 1990), 167-181.

TANENBAUM, A.S. Computer Networks. Englewood Cliffs, New Jersey: Prentice-Hall,
1981.

46

