On Hull-White Models:
One and Two Factors

Chia-Jen Cheng
Department of Computer Science and Information Engineering
National Taiwan University



Contents

1 Introduction

1.1 Introduction . . . . . . . . ..o
1.2 One-Factor No-Arbitrage Models . . . . . .. ... ... ... ....
1.3 The Trinomial Tree . . . . . . . . .. ... ... L.
1.4 Organization of The Thesis . . . . . .. ... .. ... ... . ....

2 The One-Factor Hull-White Model

2.1 Imtroduction . . . . . . .. . L L
2.2 Tree Building for the Hull-White Model . . . . . . . ... .. ... ..
2.3 Convergence of the Tree . . . . . . . ... ... ... ...
2.4 Stability of the Tree . . . . . . . .. ... Lo

2.5 Conclusion

3 Two-Factor Hull-White Model

3.1 Imtroduction . . . . . . . . . L Lo
3.2 SWap . . ..
3.3 Building and Adjusting the Tree . . . . . . . . ... ... ...

3.3.1 Relating Two Economies . . . . . . .. .. ... ... .....
3.4 Arbitrage Opportunities . . . . . . . ... ... ... .

3.5 Conclusion
4 Conclusion

Bibliography

© O A~ s

11

13
13
14
22
23
25

27
27
27
29
31
33
36

39

41



List of Figures

1.1
1.2

2.1
2.2
2.3
24
2.5
2.6
2.7

3.1
3.2
3.3
3.4

The Volatility Structure in the Hull-White Model. . . . . . .. . . .. 9
Alternative branching processes in trinomial tree. . . . . ... .. .. 10
Alternative Branching Processes. . . . . . . . . ... ... ... ... 14
Trinomial Tree. . . . . . . . . . . oL 15
Adjusted Trinomial Tree. . . . . . . . .. . .. ... 18
The Execution Time of Hull-White Procedure. . . . . . . ... .. .. 23
The Difference Between The Adjustment of Short Rates(I). . . . . . . 24
The Difference Between The Adjustment of Short Rates (II). . . . . . 25
The Difference Between The Adjustment of Short Rates (III). . ... 25
Borrowing Rates. . . . . . . . . ..o o oo 28
A Direct Swap Agreement Between A and B.. . . . . .. ... .. .. 29
The Relationship Among Three Economies. . . . . . ... ... ... 36
The Relationship Among N Economies. . . . . .. ... ... .. ... 37



Introduction

Abstract

This thesis contains two main parts. In the first part, we implement a
new approach for constructing no-arbitrage models of the term structure
in terms of the process followed by the short rate, ». The approach, which
makes use of trinomial trees, is relatively simple and computationally
more efficient than previous procedures. The procedure is appropriate for
models where there is some function = of the short rate r that follows a
mean-reverting arithmetic process. The key element of the procedure is
that it produces a tree that is symmetrical about the expected value of x.
A forward induction procedure is used to find the positions of the central
nodes at the end of each time step.

In the second part, the new tree-building procedure is extended to
model the yield curves in two different economies simultaneously. We
focus on the adjusted short rate trees, which are constructed from the
viewpoint of a risk-neutral investor in the economy in which the cash
flows are realized. We then increase the number of economies and discuss

arbitrage pricing therein.



Chapter 1

Introduction

1.1 Introduction

The traditional approach to modeling the term structure involves starting with a
plausible stochastic process for the short rate, r, in a risk-neutral world and exploring
what process obtains for bond prices and option prices. It is important to emphasize
that it is not the process in the real world that matters.

In a number of models, Brennan and Schwartz [1979, 1982], Courtadon [1982],
Cox, Ingersoll, and Ross [1985], Dothan [1978], Langetieg [1980], Longstaff [1989],
Richard [1979], and Vasicek [1977], it is assumed that there is only one underlying

stochastic variable (or factor); so the risk-neutral process for r is of the form
dr = m(r)dt + s(r)dz

The instantaneous drift, m, and instantaneous standard deviation, s, are assumed to
be functions of r, but independent of time. The assumption of a single factor is not
as restrictive as it might at first appear to be. It does not, as is sometimes supposed,
imply that the term structure always has the same shape. A fairly rich pattern of
term structures can occur under a one-factor model. The essence of a one-factor
model is that it implies that all rates move in the same direction in any short time
interval; it does not imply that all rates move by the same amount.

The disadvantage of these term structure models is that they do not automat-

ically fit today’s term structure. Choosing the parameters judiciously provides an
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approximate fit to many of the term structures that are encountered in practice. But
the fit is not usually an exact one and in some cases there are significant errors. Most
traders find this unsatisfactory. Not unreasonably, they argue that they can have
very little confidence in the price of a derivative security when the model does not
even price the underlying correctly. A one percent error in the price of the underlying
can lead to a 50 percent error in an option price.

In the past few years, many term structure models have been developed, that take
the initial term structure as an input rather than output. These models are often
referred to as no-arbitrage models.

The first no-arbitrage model was proposed by Ho an Lee [1986] in the form of a
binomial tree of discount bond prices. The model is automatically consistent with
any specified initial term structure. The Ho and Lee model involves one underlying
factor and it assumes an arithmetic process for the short rate. Their work has been
extended by a number of researchers, including Dybvig [1988], and Milne and Turnbull
[1989]. Heath, Jarrow, and Morton [1992] present a general multifactor interest-rate
model consistent with the existing term structure of interest rates and any specified
volatility structure. Another popular no-arbitrage model was proposed by Hull and
White [1990]. Hull and White refer to this as the extended Vasicek model. In fact
the Hull-White model generalizes the Ho and Lee model to include mean reversion.

Black, Derman, and Toy [1990] have developed another one-factor no-arbitrage
model. In their model, the short rate follows a lognormal process. Another model
where the term structure is in terms of the processes followed by forward rates has
been proposed by Heath, Jarrow, and Morton [1992].

There are so many no-arbitrage models. It’s a difficult trade-off to make a choice
from these models. The Heath, Jarrow, and Morton model may provide the most
realistic description of term structure movements, but it has the disadvantage that it
is non-Markov (meaning the distribution of interest rates in the next period depends
on the current rate and the rates in earlier periods). It’s a very serious problem,
because this means Monte Carlo simulation and a non-recombining tree are the only

alternatives. Computations hence become very time-consuming, making it difficult



Introduction 6

to value American-style derivatives accurately.

1.2 One-Factor No-Arbitrage Models

A number of authors have proposed one-state-variable models of the term structure

in which the short rate, r, follows a mean-reverting process of the form
dr = a(b —r)dt + orPdz

where a,b,0, and ( are positive constants and dz is a Wiener process. In these
models, the interest rate, r, is pulled toward a level b at rate a. Superimposed upon
this “pull” is a random term with instantaneous variance o%r?%.

The situations where 8 = 0 and # = 0.5 are of particular interest because they
lead to models that are analytically tractable. The 8 = 0 case was first considered
by Vasicek [1977], who derived an analytic solution for the price of a discount bond.
Jamshidian [1989] showed that, for this value of 3, it is also possible to derive relatively
simple analytic solutions for the prices of European call and put options on both
discount bonds and coupon-bearing bonds. One drawback of assuming = 0 is
that the short rate, r, can become negative. Cox, Ingersoll, and Ross considered the
alternative 8 = 0.5. In this case, r can, in some circumstance, become zero but it
can never become negative. They derives analytic solutions for the prices of both

discount bonds and European call options on discount bonds.

The Ho and Lee Model

Ho and Lee proposed the first no-arbitrage model of the term structure in a paper in
1986. They presented the model in the form of a binomial tree where there were two
parameters, one concerned with volatility the other with the market price of risk. It

has since been shown that the continuous time limit of the model is
dr = 0(t)dt + odz

where o, the instantaneous standard deviation of the short rate, is constant and 6(t)

is a function of time chosen to ensure that the model fits the initial term structure.
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Define F(¢,T) as the instantaneous forward rate at time ¢ for a contract maturing at
T. The equation for (¢) is
0(t) = F,(0,t) + ot

where the subscript denotes partial derivative. It is interesting to note that Ho
and Lee’s parameter concerned with the market price of risk is redundant. This is
analogous to risk preferences being irrelevant in the pricing of stock options.

In the Ho and Lee model, discount bonds and European options on discount bonds
can be valued analytically. The expression for the price of a discount bond at time ¢

in terms of the short rate is
P(t,T) = A(t, T)e "™

where
PO, T dln P(0,t 1
(Oa ) n (0: ) - Qt(T t)2

P(0,) dt 2

European options on coupon-bearing bonds can be valued by decomposing them into

InA(t,T) =In — (T -1)

a portfolio of European options on discount bonds using the approach suggested by
Jamshidian [1989]. American options can be valued by drawing a tree in either the
way described by Ho and Lee or by using trinomial trees as will be described later in
this chapter.

The Ho and Lee model has the advantage that it is a Markov, analytically tractable
model. It is easy to apply and provides an exact fit to the current term structure
of interest rates. One disadvantage of the model is that it gives the user very little
flexibility in choosing the volatility structure. All spot and forward rates have the
same instantaneous standard deviation, o. Another related disadvantage of the model
is that it has no mean reversion. This means that regardless of how high or low interest
rates are at a particular point in time, the average direction in which interest rates

move over the next short period of time is always the same.

The Hull and White Model

In a paper published in 1990, Hull and White explored extensions of the Vasicek and

Cox, Ingersoll, and Ross models that provide an exact fit to the initial term structure.
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One version of the extended Vasicek’s model is
dr = (0(t) — ar)dt + odz

where a and o are constants. We will refer to this as the Hull-White model. It can be
characterized as the Ho and Lee model with mean reversion at rate a. Alternatively
it can be characterized as the Vasicek model with a time-dependent reversion level.
The Ho and Lee model is a particular case with a = 0.

The model has the same amount of analytic tractability as that of Ho and Lee.

The bond price at time t can be determined analytically as a function of the short

rate,
P(t,T) = A(t,T)e B&:Dr
where -
1—e %~
B(t,T) =
(1) = —=
and
P(OvT) dlnP(O,t) 1 o —at\2/ 2at
mhAGt.T)=In —* -B(t,T)————% — — o _e “@_1
n ( Y ) n P(O,t) ( bl ) dt 4@30— (6 € ) (e )

The volatility structure in the Hull-White model is determined by both ¢ and a. The
model can represent a wider ranger of volatility structures than Ho and Lee. The

price volatility at time ¢ of a bond maturing at time 7T is

%[1 . 6—a(T—t)]

The instantaneous standard deviation at time ¢ of the zero-coupon interest rate ma-

turing at time 7' is
o

a(T —t)

and the instantaneous standard deviation of the T-maturity instantaneous forward

[1 _ e—a(T—t)]

rate is ce %" These functions are shown in Figure 1.1.
The parameter o determines the short rate’s instantaneous standard deviation.
The reversion rate parameter, a, determines the curvature in Figure 1.1(a) and the

rate at which standard deviations decline with maturity in Figure 1.1(b) and 1.1(c).
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Bond Price Vol
Spot Rate S.D.

Maturty Maturity
@ (b

Forward Rate S.D.

Maturity
©

Figure 1.1: THE VOLATILITY STRUCTURE IN THE HULL-WHITE MODEL.

The higher a is, the greater the curvature and the decline are. When a = 0, dis-
count bond price volatilities are a linear function of maturity, and the instantaneous

standard deviations of both zeroes and forward rates are constant.

1.3 The Trinomial Tree

Hull and White [1990] had shown how trinomial trees can be used to value American
bond options and other interest rate contingent claims in Vasicek’s model. The value
of r on the tree at time zero is the initial short rate, ro. The values of r considered at
other nodes have the form ry + kAr where k is an integer. The relationship between

Ar and the time step, At, is chosen to be
Ar = oV 3At

The trinomial tree is constructed so that the change in r has the correct mean and
standard deviation over each time interval A¢. The tree is more complicated than
the binomial tree in three ways:

1. There are three branches emanating from each node, not two.

2. The probabilities on the branches are different in different

parts of the tree.
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3. A branching process is liable to vary from node to node.

The alternative branching processes are illustrated in Figure 1.2. Figure 1.2(a) is
the normal branching process. The alternative changes in r are: move up by Ar, stay
the same, and move down by Ar. When r is high, it is sometimes necessary to use the
branching process in Figure 1.2(c). The alternative changes in r are: stay the same,
move down by Ar, and move down by 2Ar. When r is low, it is sometimes necessary
to use the branching process in Figurel.2(b). The alternative changes in r are then:
move up by 2Ar, move up by Ar, and stay the same. Other branching processes that
are occasionally necessary in applications of the trinomial tree approach are indicated

in Figure 1.2(d) and 1.2(e).

SZ Y

@ (b) (©
Figure 1.2: ALTERNATIVE BRANCHING PROCESSES IN TRINOMIAL TREE.

Consider the node at time 1At where r = 7o+ jAr. To choose a branching process,
we first calculate the expected value of r at time (i + 1)At given that we start at this
node. We then choose the value of k£ which makes o+ kAr as close as possible to this
expected value of » and draw the tree so that the three possible values of r that can be
reached at time (i +1)At are 7o+ (k— 1)Ar, ro + kAr, and ro + (k+1)Ar. If the drift
in r is such that the expected change in 7 in time At is between —Ar/2 and +Ar/2,
the normal branching process in Figure 1.2(a) is appropriate; if the expected change
is between Ar/2 and 3Ar/2, the branching process in Figure 1.2(b) is appropriate;
and so on.

Bond prices are known analytically at each node of the tree. When an American

bond option is being valued, it is therefore necessary for the tree to extend only to
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the end of the life of the option (not to the end of the life of the bond).

1.4 Organization of The Thesis

There are two main purposes in this thesis. The first one is to implement the Hull-
White model and explore its stability. The second one is building the short rate trees
for three different economies, and discussing the arbitrage opportunity between them.
In Chapter 2 of this thesis, we discuss the single-factor Hull-White model, implement
the tree building algorithm, and then test the relationship between the time period
and the computing time to understand the convergence of the algorithm. Then we
introduce a method to test the stability of the Hull-White model. Although the
stability of the model has not been discussed before, it is an important issue for the
model. To understand the stability of the Hull-White model, we implement another
program named the Inverse Hull-White. The program just is essentially the inverse of
the Hull-White model. By cascading the two programs together, we expect to obtain
the input precisely if the Hull-White model is stable.

In Chapter 3, the major discussion is on the two-factor Hull-White model, and
the main application is in modeling two correlated interest rates when each follows a
process chosen from the family of one-factor models.

We introduce the swap in the beginning of Chapter 3. When the diff swaps and
options on diff swaps are negotiated, the yield curves in two different countries must
be modeled at the same time. Understanding the operation of the simple swaps can
help us to understand the advantages of the two-factor Hull-White model. In the
following section of Chapter 3, we discuss processes in two economies. In particular,
the adjusting value of the DM short rate tree is calculated so that it reflects the
evolution of rates from the viewpoint of a risk-neutral U.S. investor rather than a
risk-neutral DM investor.

Besides the original two economies, Deutschemark (DM) and U.S. dollar (USD),
a third economy, Pound Sterling, is later introduced. The Pound Sterling tree can be
adjusted so that it reflects the evolution of rates from the viewpoint of a risk-neutral

U.S. investor. But what interests us is the relationship between these two processes
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to prevent any arbitrage opportunities when the Pound Sterling tree is adjusted from

the viewpoint of a DM investor as viewed from a U.S. investor.



Chapter 2
The One-Factor Hull-White Model

2.1 Introduction

Heath, Jarrow, and Morton [1992] provide the most general approach to constructing
a one-factor no-arbitrage model of the term structure. Their approach involves speci-
fying the volatilities of all instantaneous forward rates at all times. This is sometimes
referred to as the volatility structure. The following equation can be used to calculate
the drift of each instantaneous forward rate from which a binomial tree describing

the evolution of the term structure of forward rates is constructed,
T
m(t,T) = s(t,T) / s(t,7)dr.
t

The expected drifts of forward rates in a risk-neutral world are calculated from their
volatilities, and the initial values of the forward rates are chosen to be consistent with
the initial term structure.

Unfortunately, the model that results from the Heath, Jarrow, and Morton ap-
proach is usually non-Markov. It means that the HJM tree is, in general, nonrecom-
bining in the sense that an up movement followed by a down movement does not
lead to the same term structure as a down movement followed by an up movement.
Generally, in the HJM tree, there are 2" nodes after n time steps. This severely limits

the number of time steps that can be used.

13
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2.2 Tree Building for the Hull-White Model

The Hull-White model is
dr = [0(t) — ar]dt + odz

Hull and White [1993] construct a trinomial tree to represent movements in r by using
time steps of length At and considering at the end of each time step r-values of the
form ro+ kAr, where £ is a integer, and rg is the initial value of r. The tree branching
can take any of the forms shown in Figure 2.1. Here we arrange the geometry of the
tree so that the central node always corresponds to the expected value of . Doing this
can lead to faster tree construction, more accurate pricing, and much more accurate

values for hedge parameters.

@ (b) (©
Figure 2.1: ALTERNATIVE BRANCHING PROCESSES.

There are a few stages to build a Hull-White model tree. The first stage is to
build a preliminary tree for r, setting #(¢) = 0 and the initial value of r = 0. The

process assumed for r during the first stage is therefore
dr = —ardt + odz

For this process, r(t + At) — r(t) is normally distributed. For the purpose of tree
construction, we define r as the continuously compounded At-period rate. We denote
the expected value of r(t + At) — r(¢) by M and the variance of r(t + At) — r(t) by
v,

E[r(t+At) —r(t)] =M

var(r(t+ At) —r(t)) =V
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We first choose the size of the time step, At. Then set the size of the interest rate

step in the tree, Ar, as

Ar =3V

Theoretical work in numerical procedures suggests that this is a good choice of Ar

from the standpoint of error minimization.

r 000 173 000 -173 346 173 0.00 -173 -3.46(%)

Pu 0.167 0.122 0.167 0.222 0.887 0.122 0.167 0.222 0.087
Pm 0.666 0.656 0.666 0.656 0.026 0.656 0.666 0.656 0.026
Pd 0.167 0.167 0.122 0.122 0.087 0.222 0.167 0.122 0.887

Figure 2.2: SIMPLE TRINOMIAL TREE.

Our first objective is to build a tree similar to that shown in Figure 2.2, where the
nodes are evenly spaced in r and ¢. To do this, we must resolve which of the three
branching methods shown in Figure 2.1 will apply at each node. This will determine
the overall shape of the tree. Once this is done, the branching probabilities must also
be calculated.

Define (7, j) as the node for which ¢ = iAt and r = jAr. Define py, pm, and pqy
as the probabilities of the highest, middle, and lowest branches emanating from a
node. The probabilities are chosen to match the expected change and variance of the
change in r over the next time interval A¢. The probabilities must also sum to unity.
This leads to three equations in the three probabilities. When 7 is at node (3, j), the
expected change during the next time step of length At is jArM, and the variance
of the change is V.

If the branching from node (4, j) is as in Figure 2.1(a), we can list three equations

below,

Pyt Pm+pa=1



Hull-White One-Factor Model

(Ar)py + 0+ (=Ar)pg = jArM
1
(A7)2py + 0+ (=A7r)2pg = (AT M)? + gmﬂ
and the solution of the three equations above is

1 P2M?+ M
R M i

2 -2 2
= i°M
p 3 J
1 2M2?— M
pd—é-i- 9

respectively.

If the branching has the form shown in Figure 2.1B, the equations are:

(2A7)py + (AT)pm + 0 = jAFrM
1
(2A7)py + (Ar)Ypp +0 = (JATM)* + SAr?

and the solution is

1 2M? — i M
6 2
1 -2 2 2 .
Pm=—3 = J M +2jM
_7+j2M2—3jM
pd—6 5

Finally, if it has the form shown in Figure 2.1C, the equations are:

Pu+ Dm +DPad = 1

0+ (—AT)pm + (—2A7)py = jATM
1
0+ (—A7)?p,, + (—2A7)°pg = (JATM)? + gAr2
and the solution is
T n G2M? + 35 M
6 2

16
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_1+j2M2+jM
pd—6 5

Most of the time the branching in Figure 2.1(a) is appropriate. When a > 0, it
is necessary to switch from the branching in Figure 2.1(a) to the branching in Figure
2.1(c) when j is large. This is to ensure that the probabilities py, pn, and p,; are all
positive. Similarly, it is necessary to switch from the branching in Figure 2.1(a) to
the branching in Figure 2.1(b) when j is small (i.e., negative and large in absolute
value).

Define jnq, as the value of j where we switch from the Figure 2.1(a) branching
to the branching in Figure 2.1(c), and ji, as the value of j where we switch from
the Figure 2.1A branching to the Figure 2.1(b) branching. It can be shown from
the equations that p,, pm, and py are always positive, provided j,q. iS chosen to be
an integer between —0.184/M and —0.816/M, and j,, is chosen to be an integer
between 0.184/M and 0.816/M. That is :

0 < pg, Pm,pu <1

—0.816 , —0.184
S ]maw S

0.184 : 0.816
7 S Jmin < 5
M M

Note that when a > 0, M < 0. In practice it is most efficient to set j,,4» equal to the
smallest integer greater than —0.184/M and j, equal t0 —jimaz-

We illustrate the first stage of the tree construction by showing how the tree in
Figure 2.2 is constructed for o = 0.01,a = 0.1, and At=one year. In this example
we set M = —aAt and V = o?At. This is accurate to order At. The steps in the

construction of the tree can be described as below:

1. Calculate Ar from At. In this case Ar = 0.01v/3 = 0.0173.

2. Calculate the bounds for j,,;4,. These are 0.184/0.1 and 0.816/0.1,
or 1.84 < jiae < 8.16. We set jpar = 2. Similarly, jmin = —2.
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3. Using the equations for p,, p,,, and py to calculate the probabilities on the branches
emanating from each node.

Note that the probabilities at each node depend only on j. For example, the
probabilities at node B are the same as the probabilities at node F. Furthermore,
the tree is symmetrical. The probabilities at node D are the mirror image of the
probabilities at node B.

This completes the tree for the simplified process. For the next stage in the tree

construction, we perform the following.

4. Introduce the correct, time-varying drift.

To do this, we displace the nodes at time iA¢ by an amount «; to produce a new tree;
see Figure 2.3. The value of r at node (4, ) in the new tree equals the value of r at
node (7, ) in the old tree plus a;. The probabilities on the new tree are unchanged.
The values of the ;s are chosen so that the tree prices all discount bonds consistently

with the initial term structure observed in the market.

r 382 693 520 347 971 798 625 452 279
Pu 0.167 0.122 0.167 0.222 0.887 0.122 0.167 0.222 0.087
Pm 0.666 0.656 0.666 0.656 0.026 0.656 0.666 0.656 0.026
Pd 0.167 0222 0.167 0.122 0.087 0.222 0.167 0.122 0.887

Figure 2.3: ADJUSTED TRINOMIAL TREE.

The effect of moving from the tree in Figure 2.2 to the tree in Figure 2.3 is to

change the process being modeled from

dr = —ardt + odz
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to

dr = [0(t) — ar]dt + odz

If we define A(t) as the estimate of § given by the tree between times ¢ and t + At,
as the drift in r at time At at the midpoint of the tree is A(t) — aqy;, the average rate

change in period At equals to

{0(t+ At) —a(r + oy)} — {6(t) — ar}

=0(t) — aq;
so that
[0(t) — acs)At = ; — o4
or
o(t) = O”_T‘I?"'*l + aoy

This equation relates the fs to the a;s. In the limit as At — 0, 8(t) — 6(¢).

To facilitate computations, we define (); ; as the present value of a security that
pays off $1 if node (i, j) is reached and zero otherwise. The ¢; and @), ; are calculated
using forward induction. We illustrate the procedure by showing how the tree in
Figure 2.3 is calculated from the tree in Figure 2.2 when the ¢-year continuously

compounded zero-coupon rate is 0.08 — 0.05¢~9-18¢

. (This corresponds approximately
to the U.S. term structure at the beginning of 1994, with one-, two-, and three-year
yields of 3.82%, 4.51%, and 5.09%, respectively.)

The value of (oo is 1. The value of g is chosen to give the right price for a
zero-coupon bond maturing at time At¢t. That is, «aq is set equal to the initial At
period interest rate. Since At =1 in this example. ap= one-year-yield= 0.0382. The
next step is to calculate the values of ()11,@1,, and @, ;. There is a probability
0.1667 that the (1,1) node is reached and the discount rate for the first time step is

3.82%. The value of ()1 ; is therefore
Q11 = 0.1667¢ %932 = 0.1604

Similarly
Q10 = 0.6667¢~ 2932 = 0.6417
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and

Q11 = 0.1667¢ %982 = 0.1604

Once Q1,1, @10, and Q1,1 have been calculated, we are in a position to determine
ay. This is chosen to give the right price for a zero-coupon bond maturing at time
2At. Since

Ar = V3V = oV3AL = 0.0173

and At = 1, the price of this bond as seen at node B is

ef(al +Ar) _ ef(a1+0.0173)

Similarly, the price as seen at node C is

e—(aﬁ—OAr) — e ™ ’

and the price as seen at node D is

e—(aﬁ—(—Ar)) — e—(al —0.0173) ]

The price as seen at the initial node A is therefore
P(0,2) = Qe (@00 4 ) o= 4 Q) e(01—00173)

where P(0,2) is the zero-coupon bind price maturing at time 2A¢.
From the initial term structure, this bond price should be e=0-0451*2 = (.9137.

Substituting from the ()s in the equation above, we can obtain
0.1604e~(@1+00178) 1 (0.6417e 4 0.1604e (2 =0-0173) — .9137

This can be solved to give a; = 0.0520.

The next step is to calculate @22, @21, Q2,0, Q2,—1, and Q2 _2. These are found by
discounting the value of a single $1 payment at one of E-I nodes back through the
tree. This can be simplified by using previously determined () values.

Consider as an example ()2 ;. This is the value of a security that pays off $1 if

node F is reached and zero otherwise. Node F can be reached only from nodes B
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and C. The interest rates at these nodes are 6.93% and 5.20%, respectively. The
probabilities associated with the B-F and C-F branches are 0.656 and 0.167. The
value at node B of $1 received at node F is therefore 0.656e79%6%_ The value at node
C is 0.167e7%920 and the present value is the sum of each of these weighted by the

present value of $1 received at the corresponding node. This is

Q21 = 0.656e *%9 x Q11 +0.167e > x Q1
= 0_6566*0.0693 x 0.1604 + 0.167670.0520 x 0.6417

= 0.1997
Similarly
Qoo = 0.122e700 x @y,
— .19 0-0693x0.1604
= 0.0183
and

Q20 = 0.222e7%% x Q1 + 0.666e7°%% x Q9 + 0.222e70%Y x @ 4
= 0.222¢7%99 % 0.1604 + 0.666e7°%20 x 0.6417 + 0.222¢ %9347 x 0.1604
= 04737

in the same way, (Q2,—; = 0.2032, and (2,2 = 0.0189.

The next step is to calculate as.
P(0,3) = Q2,2€7(a2+2m) + Qz,lef(aﬁm) + Q20 *

+Q2,_16—(a2—A1') + Q2,26—(a2—2Ar)
where P(0,3) = 0.8584 is the bond price discounted from period 3, and Ar = 0.0173.

Substituting for these values in the equation above, we obtain

0.0183¢ (2210.0346) 4 () 1997 (22+0.0173) | () 4737,
+0.2032¢ (22700173) 4 ) 0189 (@2—0-0346) _ () 8584
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This can be solved to give a. After that the ()5 ;s can then be calculated. Then as
can be computed; and so on.

To express the approach more formally, suppose the (); ;s have been determined
for i < m (m > 0). The next step is to determine «,, so that at time 0 the tree
correctly prices a discount bond maturing at (m + 1)A¢. The interest rate at node
(m, j) is a, + jAr so that the price of a discount bond maturing at time (m + 1)At
is given by

PO,m+1) = nfj Qm jexp|—(am + jAT)At]

Jj=—nm
where n,, is the number of nodes on each side of the central node at time mA¢. The
solution to this equation is

(S0, Qmje 2 —In P(0,m + 1)
At

Oy =
Once a,, has been determined, the @); ; for ¢ = m + 1 can be calculated using
Qm—l—l,j = Z Qm,kQ(ka j)ea:p[—(am + kAT)At]

k

where ¢(k, j) is the probability of moving from node (m, k) to node (m + 1, j), and

the summation is taken over all values of k& for which this is non-zero.

2.3 Convergence of the Tree

As we described in the last section, the Hull-White model tree can now be con-
structed. But the critical questions are: Does the algorithm converge fast? What is
the computing time? And is the tree stable?

In the first experiment, we implement the algorithm, and then obtain the relation-
ship between time period n and the computing time. The result is shown in Figure
2.4 below.

In Figure 2.4 we can see that the relationship between n and computing time is
essentially linear. The result is as expected. A linear-time model has the distinct
advantage that the tree can be built with fine partitions. But, does the resulting tree

the one we are after? We turn to this question next.
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Figure 2.4: THE ExXxEcUuTION TIME OF HULL-WHITE PROCEDURE.

2.4 Stability of the Tree

As we have seen in the introduction, there is much research activity in no-arbitrage
models in recent years. When a new model is proposed, everyone is concerned about
the model’s convergence, the computing time, and the complexity? Besides these
issues, we bring up another equally important question, the stability of the model.

In the single-factor Hull-White calibration model algorithm, we first input the
initial zero rate, then calculate the expected value and variance of (¢t + At) — r(t),
and the size of the interest rate step in the tree, Ar. The next step is to calculate the
probabilities of branches of each node according to the three alternative branching
processes. Then introduce a new variable (); ; as the present value of a security that
pays off $1 if node (3, j) is reached and zero otherwise. Using forward induction, the
Qi; of each node and the «; of each period can then be calculated. After the o;s
have been calculated, the new interest rate tree can be constructed.

So in our implementation of the one-factor Hull-White model, the input is the
initial spot rates, and the output is the adjusting amount a;s. By the output, «;, we
can construct the whole Hull-White model tree.

In the algorithm above, we need the initial spot rates as the input of the program,
and proceed to the output, o, to build the whole tree. According to the tree, the

present value of $1 at maturity can then be calculated. From which we can get the
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yield curve. In principle, the new yield curve should fits the initial yield curve. Our
question here is: Is the Hull-White model algorithm stable in the sense that the a;s
being reverse engineered are close to the o;s that produce the yield curve in the first
place?

To test the stability of the Hull-White model, we implement another program.
This program does the reverse work of the Hull-White model program, named Inverse
Hull-White model program. In the Hull-White model program, the yield curve is the
input needed to produce the output, «;. In the Inverse Hull-White model program,
we suppose that the same tree has been constructed with the input «; (here we
don’t care how to produce the «;s), and it produces the output, r; (spot rates). The
spot rate will feed the Hull-White model program to produce &;. We collect the &;s
produced here and compare them with the original input of the Inverse Hull-White

model program, «;, to measure the stability of the Hull-White model algorithm.

2.5E-10

P

2E-10
1.5E-10 //
1E-10 P
5E-11 o
7Y 1 1
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time period

Figure 2.5: THE DIFFERENCE BETWEEN THE ADJUSTMENT OF SHORT RATES, WITH

By Figure 2.5, we can see that, when the period n increases, the value of [} (&; —
@;)?]/n is only between 0 and 3.00% 107!, It means that when the period n increases,
the sum of the difference between ¢;s, and «;s remains small. So we are sure that
when n increases, the value of &; is almost the same as «;.

After that, we try different a;s to see if it makes the difference. Figure 2.6, and

Figure 2.7 show the results from two different «;s.
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Figure 2.6: THE DIFFERENCE BETWEEN THE ADJUSTMENT OF SHORT RATES, WITH
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Figure 2.7: THE DIFFERENCE BETWEEN THE ADJUSTMENT OF SHORT RATES, WITH
;=0.06.

In Figure 2.6, and Figure 2.7, different values of a; do not change the basic re-
lationship between «;s, and &;s. So, different o;s do not destabilize the value of

[>(&; — @;)?]/n. The Hull-White model is therefore stable.

2.5 Conclusion

In this chapter, we first introduced the tree building process for the Hull-White model.
In that process, the expected value of r(t+At)—r(t) and the variance of r(t+At)—r(t)

are used to calculate the interest rate process. After that, the probabilities of each
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branching are calculated by the three different types of branching. In the calculation
of forward rates of each nodes, we define a variable (); ; as the present value of a
security that pays off $1 if node (¢, j) is reached and zero otherwise. And the variable
«; is the value of adjustment of period 7. The o; and @Q); ; are calculated using forward

induction. After the calculation of «y, the value of forward rate of node (i, ) is
T(i,j) = Q; +jA’f‘

Then we have probabilities and forward rates of all the nodes of the whole tree.

After building the tree, what interests us is the convergence and stability of that
the Hull-White model. To test the efficiency of the Hull-White model, we add an
extra code in the original program to obtain the executing time of the calculation of
Qi;- By the result of the test, the running time is linear. The relation is shown in
Figure 2.4.

The next step is to test the stability of the Hull-White model tree, a new idea. To
do this, we implement another program named Inverse Hull-White model program.
In this program, the input is the oy, and the output is the spot rates. Then, this
output is used to be the input of original Hull-White model program. The Hull-White
model program will then output the adjusting value, &;. We compare the input of
the Inverse Hull-White model program, «;, and the output of the Hull-White model
program, &;, using mean square error |3 (d; —;)?|/n with increasing n. In Figure 2.5,
when n increases to 80 years, the boundary of the curve is between 0, and 3.00% 10 *°.
It means that when n increases, the output of the Hull-White model program, ¢;, is
still almost the same as the input of the Inverse Hull-White model program, «;. In
other words, the Hull-White model is very stable.

Does the positive result above somehow depend on the «;? To test this, we fix
the input of the Inverse Hull-White model program, «;s, at 0.04 first, and then 0.06.
Collecting the results of these tests, the curves are shown in Figure 2.6, and Figure
2.7. We find that the three curves are similar. The curve doesn’t change because
of different ;5. Concluding from the above two tests, the Hull-White model can be

regarded as a stable model.



Chapter 3

Two-Factor Hull-White Model

3.1 Introduction

Certain types of interest rate derivatives require yield curves in two different coun-
tries be modeled simultaneously. Examples are diff swaps and options on diff swaps.
Here we explain how the procedure in Hull and White [1994] can be extended to
accommodate two correlated interest rates.

Before introducing the two-factor Hull-White model, we first describe how swaps

work. After that we will show why a two-factor Hull-White model is needed.

3.2 Swap

In the last decade there has been a dramatic increase in the number of derivative
securities traded on organized exchanges. In a world characterized by volatile interest
rates, the limitation of existing techniques to cope with such risk has resulted in the
development of new products, such as futures and options written on short-term and
long-term interest rates, and swaps.

Swaps are private agreements between two companies to exchange cash flows in
the future according to a prearranged formula. They can be regarded as portfolios of
forward contracts. The study of swaps is therefore a natural extension of the study
of forward and futures contracts.

An interest rate swap in its basic form occurs when a firm that has issued one

27
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type of debt instrument agrees to swap interest payments with a firm that has issued
another type of debt instrument. For example, a firm that may have issued fixed debt
agrees in a swap to make floating rate payments to a firm that issued floating rate
debt. In return, this latter firm agrees to make fixed rate payments to the former
firm.

Why should two companies enter into such an agreement? The most commonly
reason is comparative advantages. Some companies appear to have a comparative
advantage in fixed rate markets, while others have a comparative advantage in floating
rate markets. A swap has the effect of transforming a fixed rate loan into a floating
rate loan and vice versa.

We now give an example of how comparative advantages can lead to an interest
rate swap. Suppose that two companies, A and B, both wish to borrow $10 million for
5 years and have been offered the rates shown in Figure 3.1. Assume that company
B wants to borrow at a fixed rate of interest, while company A wants to borrow
floating funds at a rate linked to 6-month LIBOR. Company B clearly has a lower
credit rating than company A since it pays a higher rate of interest than company A

in both fixed and floating markets.

Fixed Floating
Company A 10.00% 6-month LIBOR+0.30%
Company B 11.20% 6-month LIBOR+1.00%

Figure 3.1: BORROWING RATES.

A key feature of the rates offered to companies A and B is that the difference
between the two fixed rates is greater than the difference between the two floating
rates. Company B pays 1.20 percent more than company A in fixed rate markets,
and only 0.70 percent more than company A in floating rate markets.

Obviously, company B has a comparative advantage in floating rate markets, while
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company A have a comparative advantage in fixed rate markets. A profitable swap
can be negotiated. Company A borrows fixed rate funds at 10 percent per annum.
Company B borrows floating rate funds at LIBOR plus 1.00 percent per annum. They
then enter into a swap agreement to ensure that A ends up with floating rate funds
and B ends up with fixed rate funds.

As an easy step in understanding how the swap might work, we assume that A
and B get in touch with each other directly. The sort of swap they might negotiate is
shown in Figure 3.2. Company A agrees to pay company B interest at 6-moth LIBOR
on $10 million. In return, company B agrees to pay company A interest at a fixed

rate of 9.95 percent per annum on $10 million.

9.95%

Company < Company
A - B

Libor

Figure 3.2: A DIRECT SWAP AGREEMENT BETWEEN A AND B.

3.3 Building and Adjusting the Tree

For ease of exposition, we suppose the two countries are the United States and Ger-
many, and that cash flows from the derivative under consideration are to be realized
in U.S. dollars (USD). We first build a tree for the USD short rate and a tree for the
Deutschemark (DM) short rate using the procedure introduced in Chapter 2. As a
result of the construction procedure, the USD tree describes the evolution of USD
interest rates from the viewpoint of a risk-neutral USD investor, and the DM tree
describes the evolution of DM rates from the viewpoint of a risk-neutral DM investor.

Since cash flows are realized in USD, the DM tree must be adjusted so that it
reflects the evolution of rates from the viewpoint of a risk-neutral U.S. investor rather

than a risk-neutral DM investor. Define
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r1: USD short rate from the viewpoint of a risk-neutral U.S. investor

r9: DM short rate from the viewpoint of a risk-neutral DM investor

r3: Pound Sterling short rate form the viewpoint of a risk-neutral Pound Sterling

investor

75,2 DM short rate from the viewpoint of a risk-neutral U.S. investor

T35: Pound Sterling short rate from the viewpoint of a risk-neutral DM investor

r3: Pound Sterling short rate form the viewpoint of a risk-neutral U.S. investor

r391: Pound Sterling short rate from the viewpoint of a DM investor as viewed from

a USD investor

Xio: the exchange rate of USD and DM (USD/DM)

Xi3: the exchange rate of USD and Pound Sterling (USD/Pound Sterling)

Xos: the exchange rate of DM and Pound Sterling (DM/Pound Sterling)

012: volatility of exchange rate X9

a13: volatility of exchange rate X3

do3: volatility of exchange rate Xo3

p1o: instantaneous coefficient of correlation between the exchange rate, X,
and the DM interest rate, ro

p13: instantaneous coefficient of correlation between the exchange rate, X3,
and the Pound Sterling interest rate, r3

po3: instantaneous coefficient of correlation between the exchange rate, Xo3,
and the Pound Sterling interest rate, r3

p12: instantaneous coefficient of correlation between the interest rates, r; and ro

p13: instantaneous coefficient of correlation between the interest rates, r1 and r3

po3: instantaneous coefficient of correlation between the interest rates, ro and r3

Because USD and DM follow the Hull-White model, the processes for r; and r
are

dl‘l = [01(15) — alxl]dt -+ O'1d21

and

dl‘Q = [02(t) — azl'g]dt -+ O'QdZQ
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The two processes above are interest rates from the viewpoints of USD and DM
investors, respectively. Here z; = fi(r1) and zo = fy(re) for some functions f; and
f2, and dz; and dzo are Wiener processes with correlation p;5. The reversion rate
parameters, a; and ao, and the standard deviations, o; and o9, are constant. The
drift parameters, 6; and 65, are functions of time. We want to calculate the process

for the DM interest rate from the viewpoint of a USD investor.

3.3.1 Relating Two Economies

Define Z as the value of a variable seen from the perspective of a risk-neutral DM
investor and Z* as the value of the same variable seen from the perspective of a
risk-neutral USD investor. Suppose that Z depends only on the DM risk-free rate so
that

dZ = (Z)Zdt + 0(Z)Zdz,

where dzo is the Wiener process driving the DM risk-free rate, and p and o are
functions of Z. The work of Cox, Ingersoll, and Ross [1985] and others shows that

the process for Z* has the form:
dZ* = [u(Z*) — Ao (Z7)| Z*dt + o(Z7)d 2z,

where the risk premium, A, is a function of Z*.

We first apply this result to the case where the variable under consideration is
the DM price of a DM discount bond. Define P as the value of this variable from
the viewpoint of a risk-neutral DM investor and P* as that from the viewpoint of a
risk-neutral USD investor. From the perspective of a risk-neutral DM investor, the

variable is the price of a traded security so that:
dP = ryPdt + 0, Pdz,
where o, is the volatility of P. Hence:

dP* = [ry, — Aop|P*dt + 0,P*dzy (3.1)
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The risk-neutral process for the exchange rate, X, from the viewpoint of a risk-neutral
USD investor is

dX = (7‘1 - T;l)th + 612Xdz$ (32)

where dz, is a Wiener process.
The variable X P* is the price in USD of the DM bond. The drift of X P* in a
risk-neutral USD world must therefore be r; X P*. From Equations (3.1) and (3.2),

this drift can also be written as
XP*(Tl — )\O'p + ﬁ125'120p)
It follows that
A = p12012
When moving from a risk-neutral DM investor to a risk-neutral USD investor, there
is a market price of risk adjustment of pi251s.

We can now apply the general result given for Z at the beginning of this solving

process to the variable f(ry). We are assuming that:
dfa(ra) = [02(t) — afa(re)]dt + o2d2e

Hence
dfa(r3,) = [02(t) — p12G1202 — afo(ry;)]dt + o2d2;

By relating the two economies above, we know that dz3, follows
dzs, = [02(t) — p1202G12 — axx5;]dt + 02d 2,

where 25, = fo(r3;). The effect of moving from a DM risk-neutral world to a USD
risk-neutral world is to reduce the drift of x5 by pi1202012. The expected value of z-
at time ¢ is reduced by

ax(t—7) g — P1202012 (1 = e~)

¢
/ P1201202€
0 a2
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To adjust the DM tree so that it reflects the viewpoint of a risk-neutral U.S. investor,
the value of 75 at nodes at time iAt (i.e., after i time steps) should therefore be

reduced by
P1202012 1- e—aziAt)
a2

Note that this is true for all functions fs, not just fo(r) = r.

3.4 Arbitrage Opportunities

In the case of building the DM short rate tree from the viewpoint of a USD investor,
we know that the DM short rate must be reduced by %(1 — e~ %), Now another
country, England, is introduced, and that the cash flows from the derivative under
consideration are to be realized in U.S. dollars (USD) as described in the last section.
The Pound Sterling short rate tree will be built first using the procedure outlined
in the previous chapter. By the construction, the Pound Sterling tree describes the
evolution of the Pound Sterling interest rates from the viewpoint of a risk-neutral
Pound Sterling investor.

By the result of the previous section, the DM interest rate tree must be adjusted
so that it reflects the evolution of rates from the viewpoint of a risk-neutral U.S.
investor rather than a risk-neutral DM investor. Similarly, the Pound Sterling short
rate tree must be adjusted to reflect the evolution of rates from the viewpoint of a
risk-neutral U.S. investor rather than a risk-neutral Pound Sterling investor.

But, there are two ways to adjust the Pound Sterling short rate tree: adjust the
tree by the Pound Sterling short rate from the viewpoint of a risk-neutral U.S. in-
vestor or by the Pound Sterling short rate from the viewpoint of a DM investor as

viewed from a USD investor. Could these two ways be different?

The discussion in the last section involves the processes for r1 and ry
del = [Hl(t) - alxl]dt + oldzl

d.’L‘Q = [Hg(t) — Clg.fl?g]dt + O'QdZQ
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Suppose the process for r3 is
deg = [03(t) — a3$3]dt + 0'3d23

where x3 = f3(r3) for some functions f3, dzz is Wiener process, p3 is the correlation
between dzz and dz;, and py3 is the correlation between dzz and dz,. The reversion
rate parameter, az, and the standard deviation, o3, are constant. The drift parameter,
03, is a function of time. The other parameters in the processes for r; and r, are as
described in the previous discussion.

As discussed in the last section, the process for r3; is
dzs) = [02(t) — 1202012 — x5 |dt + 02d2y

where 23, = fo(r3,). Reducing the drift of x5 by p1209612 makes the tree move from
the DM risk-neutral world to the USD risk-neutral world. Similarly, we can reduce
the drift of x3 by some value to move the Pound Sterling tree from the Pound Ster-

ling risk-neutral world to the DM risk-neutral world, or to the USD risk-neutral world.

In the previous section, we have calculated the reducing factor of the process
dZ = (Z)Zdt + 0(Z)Zdz,

In the same way, the reducing factor of the Pound Sterling short rate tree moving from
the Pound Sterling risk-neutral investor to the USD risk-neutral investor is p;303013,

and the process for rj; is
dxy) = [03(t) — p1303013 — 3wy |dt + o3dzs

where 2%, = f3(r3;). The expected value of z3; at time ¢ is reduced by

as(t-7) g — P1303013 (1— e at)

t
/ P1303013€
0 as

and the value of 3 at nodes at time ¢At (i.e., after 7 time steps) should therefore be

reduced by
P1303013 (1— e a2id)
as
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As mentioned before, this is true for all functions f3, not just f3(r) = r.
Similarly, when we want to move the Pound Sterling short rate tree from the
Pound Sterling risk-neutral world to the DM risk-neutral world, we can produce the

process for r3, as
dxsy = [03(t) — 2303023 — a373,|dt + o3dz3

where %, = f3(r3,), and the expected value of z3; is reduced by

az(t—T)dT — P2303023 (1 _ ee—%f)
as

/Ot P2303023€
T3, 1s now the Pound Sterling short rate from the viewpoint of a risk-neutral DM
investor. It means that r3, is the short rate in the risk-neutral DM world. In the
last section, we move the short rate tree from the risk-neutral DM world to the risk-
neutral USD world by reducing the drift of process z3; by pi1209612. Similarly, to
move the Pound Sterling interest rate tree from the risk-neutral DM world to the
risk-neutral USD world requires reducing the drift of process z3, by pi202012.

So we have the Pound Sterling short rate from the viewpoint of a DM investor as

viewed from a USD investor, and the process for the short rate, 735, is
dr3 = [03(1) — P2303023 — P1202012 — A3T35| + 03d23
The expected value of x35; is reduced by

t
/0 (p2303023 + ,51202512)67'13(':4)6”

_ P2303012 + ﬁ1202512(

1 _ ,—ast
as ¢ )

The Pound Sterling short rate from the viewpoint of a risk-neutral USD investor
is 73;, and the result of Pound Sterling short rate from the viewpoint of a DM investor
as viewed from a risk-neutral USD investor is r},,. By triangular arbitrage theory,
r3, must be equal to 73,;, which is proved below.

Casel: rj; is greater than rj,,. In this case, the investors in the USD market will
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borrow money at the rate r3,; to invest at the rate r3;. These trades will push the
rate r3,; high, and lower the rate r3;.

Case2: r3; is smaller than r3,,. In this case, the investors in the USD market will
borrow money at the lower rate r3; to invest at the higher rate r3,;. These trades
will push the rate r3; high, and lower the rate 73,,.

Therefore, the triangular relation among ry,r, and rs is shown in Figure 3.3
below. Once we understand the relation among the three economies, the relation
among four economies is straightforward. By the process above, the relation among
four economies should be similar to that among three economies, and the relation
among five economies should be the same as that one, too, and so on. The relation

among n economies is shown in Figure 3.4.

In the viewpoint of USD

i"veﬁm'/ \
Pound Sterling
market

In the viewpoint of USD
investor

In the viewpoint of DM investor

Figure 3.3: THE RELATIONSHIP AMONG THREE ECONOMIES.

3.5 Conclusion

At the beginning of this chapter, we introduced the derivative, swap, which requires
the yield curves in two different countries to be modeled simultaneously. When the
yield curves in two different countries are modeled simultaneously, the interest rate
tree can not be constructed merely by the simple tree-building algorithm, because
the tree of short rates involves the change of the short rates of another country.

After the introduction of swaps, we described the process of building and adjusting
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Economy Economy Economy
1 2 n

e

Figure 3.4: THE RELATIONSHIP AMONG N ECONOMIES.

the short rate tree. Three economies, USD, DM, and Pound Sterling, result in a
number of variables, the definition of which are listed at the beginning of Section 3.1.
In that section, we show how to relate two economies. Two yield curves can then be
modeled at the same time. Reducing the short rate tree by p;;0;;0; can move the
short rate tree from the viewpoint of the original economy i risk-neutral investor to
the viewpoint of another economy j risk-neutral investor.

By the result of Section 3.1, we extend the number of economies from two to three.
When there are three economies, USD, DM, Pound Sterling and considering Pound
Sterling from the viewpoint of a USD risk-neutral investor, there are two ways to move
the short rate tree from the Pound Sterling risk-neutral world to the USD risk-neutral
world: (1) We can just consider the Pound Sterling risk-neutral world, and the USD
risk-neutral world, or (2) we can adjust the short rate tree from the Pound Sterling
risk-neutral world through the DM risk-neutral world to the USD risk-neutral world.
In the first case, the process of Pound Sterling short rate was reduced by p;361303.
In the second case, the process was reduced by (p1251202 + P23G2303).

According to triangular arbitrage, the two adjusted process must be identical. It

means that the adjusted value must be the same, in other words,

P1301303 = (P1201202 + Pa3023073)

If the instantaneous coefficients of correlation between each two exchange rate do not
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satisfy the condition, there will be arbitrage opportunity. By the arbitrage theory,
the opportunity will not hold forever, because everyone will make the same decision
to take the arbitrage opportunity, and the opportunity will disappear. The instan-
taneous coefficients of correlation between two exchange rates therefore satisfy the
above condition. The relation among three economies is shown in Figure 3.3.

After discussing the arbitrage opportunity among three economies, we extend the
number of economies from 3 to n. The circumstance may be more complex, but the

adjustment of each way must be the same, or there will be arbitrage opportunities.



Chapter 4

Conclusion

The Hull-White tree-building procedure is a flexible approach to constructing trees
for a wide range of different one-factor models of the term structure. The tree is
constructed to be exactly consistent with the initial term structure.

In the first part of this thesis we implemented the tree building procedure and
benchmarked the convergence of the produce. The result is excellent, the execution
time being linear in the time period n.

We have introduced a method for testing another character of a model in Chapter
2, the stability of the model. This is an important feature of the model not discussed in
the literature before. We use another procedure, named Inverse Hull-White procedure
doing the opposite work to the original Hull-White procedure, to test the stability
of the Hull-White model. The result is reassuring. This means that the Hull-White
model is stable.

In the second part of this thesis, we devoted some time to a discussion of the
two-factor Hull-White model. We focused on the adjustment of interest rates when
modeling two correlated interest rates following processes chosen from a family of
one-factor models.

Arbitrage concern forms the last section of this thesis. We consider the situation
of three correlated interest rates, USD, DM, and Pound Sterling. The three interest
rates follow processes chosen from a family of one-factor models. There are two ways
to adjust the Pound Sterling interest rate so that it reflects the evolution of rates from

the viewpoint of a risk-neutral U.S. investor rather than a risk-neutral Pound Sterling
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investor. By the triangular arbitrage theory, the adjustments of both ways must be
the same or arbitrage opportunity will appear. Then we extended the number of

economies from three to n by using exactly the same principle.
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