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Abstract

The space of financial innovation continues unabated. In particular, numerous vari-
ations on standard option payoffs have been proposed and traded in the over-the-
counter market. Barrier options represent one of the more popular forms of those
so-called ezotic options. A double barrier option is an option which is knocked in
or out the first time that the underlying asset touches one of two barriers prior to
expiration.

The main purpose of this thesis is to use the combinatorial method to value double
barrier options by the use of reflection principle. With this method, the convergence
speed in the double-barrier case is faster than the single-barrier case. We implement
algorithms in the C language and compile them by the Sun CC compiler running
under Solaris 5.6. The data are generated on the UltraSparc IT workstation with
300 MHz CPU and 256 MB DRAM. The resulting algorithm is highly efficient for
pricing this type of barrier option, which is at least an order of magnitude faster
than the binomial tree method with backward induction. The binomial tree method
with backward induction takes about 10 times than the combinatorial method with
identical parameters. The combinatorial method is clearly superior.



Chapter 1

Introduction

1.1 Puts and Calls

Payoff($)

X Terminal Stock
Price($)

Figure 1.1: CALL OPTION.

Put and call are two basic types of financial options. They were first traded on
an organized exchange in 1973. A call option gives the holder the right to buy the
underlying asset by a certain date called the expiration date for a certain price. A put
option gives the holder the right to sell the underlying asset by a certain date for a
certain price. This certain price is called the strike price. Options can be classified as
American or European. All the options discussed in the thesis are European, which
can be exercised only on the exercise date but not before, namely not early exercise.

Let X be the strike price and St the final price of the underlying asset. The payoff
from holding a European call option is

max(Sr — X, 0).

This is because, if St > X, the holder will exercise and receive St — X in effect, while
if S7 < X, the holder will not exercise and the call is worthless (Figure 1.1).

1



Introduction 2

Payoff($)

X Terminal Stock
Price($)

Figure 1.2: Pur OPTION.

Similarly, the European put option has a terminal value of
max(X — S, 0).

This is because, if X > S7, the holder will exercise the right and receive X — St in
effect, while if X < Sy, the holder will not exercise the right and the put option is
worthless (Figure 1.2).

1.2 Barrier Options

Barrier option is a kind of exotic path-dependent option. It differs from a standard
option in that it may expire before expiration or come into existence before expiration,
depending on the specification, when certain barriers are hit. In this thesis, barrier
price is constant, it never move during the option’s life.

There are two types of barrier options: knock-out and knock-in options. A knock-
out option is similar to a standard option except that, when the underlying asset’s
price reaches a certain barrier H, the option ceases to exist. In the case of a call
knock-out, the barrier is generally below the strike price (H < X). This option is
sometimes referred to as a down-and-out option. In the case of a put knock-out with
H > X, the option is sometimes referred to as an up-and-out option. The knock-in
option is similar. With reference to Figure 1.3, a down-and-in option is a call that
comes into existence only when the barrier H (H < X) is reached, and an up-and-in
option is a put that comes into existence only when the barrier H (H > X) is reached.

Generally speaking, the price of a barrier option is cheaper than a standard option.
This is because additional conditions are imposed on the barrier option (i.e., stock
price must either touch or not touch the barrier during the option’s life for it to be
eligible for exercise at expiration). An important issue is the frequency with which
the asset price S is observed for the purpose of testing whether the barrier has been
reached. Often the terms of a contract state that S is observed once a day.
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Figure 1.3: DOWN-AND-IN CALL AND BINOMIAL TREE.

In this thesis, we propose a combinatorial method to price barrier options is due
to Lyuu [9]. We then compare its performance against that of the standard backward
implementation. Numerical experiments show that Lyuu’s algorithm is substantially
better.

1.3 Double-Barrier Options

Some barrier options contain two barriers H and L with L < H (See Figure 1.4).
Depending on how the barriers affect the existence of the options, various barrier
options can be defined. For instance, the option may come into existence only if both
barriers are hit.

Figure 1.4: DOUBLE-BARRIER OPTION AND BINOMIAL TREE.

We will restrict attention here to the case that the option comes into existence
only if the underlying asset touches either barrier, and call it double barrier call if
the option is a call. Other variations include options that come into existence only
if both barriers are hit and options that knock-out when one or both barriers are
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hit. These variations can all be solved by the same method. We shall demonstrate in
this thesis that the reflection principle coupled with the inclusion-exclusion principle
can be applied to derive combinatorial formulae for double barrier options. These
formulae load to efficient algorithms.

1.4 Structure of This Thesis

There are some chapters in this thesis. We introduce the basic concepts and explain
the ideas in details in this Chapter. In order to understand the pricing methodology,
we also add background information about finance and mathematics and computer
science in Chapter 2. The kernel of the thesis, the combinatorial method and the
binomial tree method with backward induction used in pricing double barrier options,
appears in Chapter 3. We then have computational results about the combinatorial
method and compare the accuracy and efficiency of these two methods in Chapter 4.
Finally, we give conclusions and future work in Chapter 5.



Chapter 2

Some Backgrounds

2.1 The Black-Scholes Option Pricing Model

The year 1973 was a milestone in finance. In the year, the Chicago Board Options Ex-
change was founded and became the first organized facility for options trading. Also,
two professors at the Massachusetts Institute of Technology, Fischer Black and My-
ron Scholes, published an article in the Journal of Political Economy that contained
for option pricing formulae. The celebrated Black-Scholes option pricing model was
one of the most significant developments in the pricing of financial instruments. The
mathematics of this formula’s derivation is quite complex, so we shall omit it here.
See [5] for more detailed information. We review the model’s assumptions below.

1.

= W

6.

The stock price follows the log-normal distribution. This means that the log-
arithm of the stock price follows the normal distribution. The log-normal dis-
tribution is a convenient and realistic characterization of stock price because it
reflects stockholders’ limited liability.

There are no taxes or transaction costs.

There are no dividends during the life of the option.
There are no risk-less arbitrage opportunities.

The risk-free rate of interest, r, is constant.

The options are European.

Black and Scholes derived the following formula for the call option:

C = SN(dy) — Xe ™ N(dy),

and the following formula for the put option:

P = XeiTCTN(—dQ) — SN(—dl)

5



Some Backgrounds 6

Where (S/X) + (e + 0%/2)7

d =
dgzdl—a\/’;

N(z) = cumulative normal probability

0? = annualized variance of the continuously compounded return on the stock
r. = continuously compounded risk-free rate

S = current stock price

X = strike price

T = time to expiration of an option

2.2 The Merton Barrier Option Pricing Model

The value of a European down-and-in call is
Se™ " (H/S)**N(z) — Xe ™" (H/S)* >N (z — o/7)

where

o In[H?/(SX)] + (r. — q + 02/2)T
o\T
re—q+0%/2
o2
where S > H; q is the stock’s dividend yield; and 7 is the time to maturity.
Equation above assumes that the underlying asset price follows geometric Brow-

nian motion and is due to Merton [10]. A European down-and-out call can be priced
via the in-out parity relation. The value of a European up-and-in put is

A=

Xe"(H/S)*?N(—z + 0y/T) — Se” " (H/S)** N (—z)

Although closed-form solutions exist, the study of numerical methods based on
binomial models is still useful for the new insights it brings. It also has applications
to exotic options where the terminal payoff function is non-standard, and closed-form
solutions are hard to come by.

2.3 The Wiener Process

Models of stock price are usually in terms of the Wiener process. The Wiener process
is a particular type of Markov stochastic process. It has been used before in physics to
describe the motion of a particle that is subject to a large number of small molecular
shocks and is sometimes referred to as normalized Brownian motion.
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A process, z, which follows the Wiener process can be understood by considering
the changes in its value in small intervals of time. Let At be the length of a small
interval of time and Az be the change in z during At. To follow the Wiener process,
there are two basic properties Az must satisfy

Property 1.

If z is a variable which follows the Wiener process, then Az, the change of variable
z during a small interval of time At, satisfies

Az:e\/Kt

where € is a random drawing from the standardized normal distribution.
Property 2.

The value of Az for any two different short intervals of time At are independent.
By property 1, Az itself has a normal distribution, while Property 2 implies that z
follows a Markov process. The stock price under the Black-Scholes model then follows

dS = Sudt + Sodz.

This process is called the geometric Brownian motion [8]. It was used to structure
the binomial model in next section.

2.4 The Binomial Model

First, we review the discrete-time approximation to the geometric Brownian motion,

dS = Sudt + Sodz. For brevity, we use S in place of S(0), the current stock price.
Consider the stock price At time from now (time zero) S(At). Under the geomet-

ric binomial random walk model, in a period of At, the stock price either increases

to Su with probability p or decreases to Sd with probability 1 — p (See Figure 2.1).
First, we impose that

E[S(At)] = Se#® and Var[S(AL)] = §2(e2° — 1)e?2 — $262 At
The expected stock price at time At is given by
pSu + (1 — p)Sd.
Hence, our first requirement is the equality of expected price,

pSu + (1 —p)Sd = Se>.
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1p

Figure 2.1: BINOMIAL MODEL. After At, the stock price S either moves to Su with

probability p or Sd with probability 1 — p.

The variance of the binomial stock price at At is given by
p(Su)® + (1 —p)(Sd)® — (Set>)>.
So our second requirement is the equality of variance,

p(Su)? + (1 — p)(Sd)? — (Set2h)? = $262 At

or
pu® + (1 — p)d* — 22 = o At
Imposing ud = 1, we can get the solution
JT7AN 2 d
u=e VA d=e VA and p = :ﬁ'

In a risk-neutral economy, ;= r and

p— (1/2) + (1/2)#\/&

If we partition the time to expiration T into n periods, then At =
detailed analysis.

T
ot

See [8] for more



Chapter 3

Combinatorial Methods

3.1 The Binomial Tree Method with Backward In-
duction

The binomial method is widely used in pricing options. A standard algorithm for the
binomial model is the binomial tree method with backward induction. This method
values the option by running from the terminal nodes backward in time through the
tree. The value of double barrier options can be computed by this method as follows.
We will use the double barrier call as an example.

1p

Figure 3.1: BACKWARD INDUCTION FOR THE BINOMIAL MODEL. The first param-
eter inside the parentheses denotes time, while the second denotes state.

Let C(i,7) denote the call value at time ¢ and state j. Given C(i 4+ 1,7 + 1) and
C(i+1,j), backward induction for the binomial model (see Figure 3.1) says C(i, j) is

e_TAt(pC(i +Lj+10)+(1-p)C(i+1,7))

if barriers are not involved. If out state j corresponds to a stock price of H or L,
then C(%,7) should be zero instead. This incidentally shows the value of the double

9



The Combinatorial Method 10

barrier call at (i,7) is equal to that of the standard call minus that of the double
barrier knock-out call via the in-out parity. Backward induction will eventually reach
the initial node at (0,0), and our double barrier call is priced.

3.2 The Reflection Principle

A tool we should know to understand the combinatorial method is the reflection
principle [9].

Imagine a particle starts at position (0, —a), on the integral lattice and wishes to
reach (n, —b). Without loss of generality, assume a,b > 0. The particle is constrained
tomove to (¢ + 1,7+ 1) or (i+1,j — 1) from (7, ), the very way the price under the
binomial model is supposed to evolve:

(1,7) = (i + 1,7 + 1) associated with the up move, S — Su
(1,7) = (i + 1,7 — 1) associated with the down move, S — Sd

How many such paths can the particle take that touch or cross the z-axis? This
question can be rephrased as a variant of the ballot problem. Given that a candidate
starts with a fewer votes than the opponent (which is not uncommon in many parts of
the world) and ends up with b fewer votes, how many ways can the votes be counted
in which the winner’s vote count equals the opponent’s at least once?

5 |
| | | | | | | | | | | |

T‘
|
|
J—
|
|
|
-
|
|
L_
|
|
|
-
|
|
L
1
|
-
1
|
I
|
|
—
|
|
|
-
|
|
L
|
|
|

S
&

Figure 3.2: THE REFLECTION PRINCIPLE FOR BINOMIAL RANDOM WALKS.

Consider any legitimate path from (0, —a) to (n, —b) that either touches or crosses
the z-axis. Let J denote the first position it happens. By reflecting the portion of
the path from (0,—a) to J, a path from (0,a) to (n,—b) is thus constructed. Note
that this path crosses the z-axis at J. See Figure 3.2 for illustration. A moment’s
reflection leads to the conclusion that the number of paths from (0, —a) to (n, —b)
that touch the z-axis is exactly the number of paths from (0, a) to (n,—b). This is
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the celebrated reflection principle of André (1840-1917) published in 1887 (Lint and
Wilson[7]) [9].

Since any such path consisting of n moves must have b + a more down moves
(“-1”s) than up moves (“+1”s), the desired number equals the number of ways to
permute (n —a —b)/2 “+1”s and (n + a + b)/2 “-1”s, which is equal to

n i
<n+a+b) for even, non-negative n +a + b
2

and zero otherwise. The negative n 4 a + b case can be disregarded under the con-
vention,

<Z>:Ofork<00rk>n

3.3 The Idea of Combinatorial Methods

An alternative pricing method uses combinatorics. Counting the number of valid
paths that lead to a particular terminal price is the idea behind the highly efficient
combinatorial method to price European double barrier options. Its performance and
accuracy will be documented in Chapter 4. We derive below combinatorial formulae
for options that come into existence only if either barrier is hit.

Figure 3.3: REPEATED APPLICATIONS OF THE REFLECTION PRINCIPLE.  The
random walk from (0, —a) to (n, —b) must hit either barrier, and there must exists an L-hit
preceded by H-hit. In counting the number of such walks, reflect the path first at J and
then at K.

Like the reflection principle described earlier, consider a particle starts at position
(0, —a) on the integral lattice and is destined for (n, —b) which lies between the two
barriers. Without loss of generality, assume a,b > 0. As before, the particle is
constrained to move to (i + 1,5+ 1) or (i + 1,5 — 1) from (4,7). We claim that the
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number of paths in which a hit of the z-axis (i.e., the H-line) appears before a hit of
the L-line x = —s is

n .
nta_bros | fOr even, non-negative n +a — b (3.1)
2

In the above, we assume s > b and s > a to make both barriers effective.

We prove (3.1) with reference to Figure 3.3. Consider any legitimate path from
(0, —a) to (n, —b) that hits H. Let J denote the first position this happens. (The path
may have hit the L-line earlier.) By reflecting the portion of the path from (0, —a)
to J, a path from (0, a) to (n, —b) is thus constructed. Note that this path hits H at
J. The number of paths from (0, —a) to (n, —b) in which an L-hit is preceded by an
H-hit is exactly the number of paths from (0, a) to (n, —b) that hits L. The desired
number is thus as claimed by applying the reflection principle.

Equation (3.1) can be generalized. Let A; denote the set of paths that hit the
barriers with a sequence that contains H*L*H™ ... with i > 1. Here, Lt denotes a
sequence of Ls, and H' denotes a sequence of Hs. For instance, a path with the hit
pattern LLHLLH H belongs to Az. Similarly, let B; denote the set of paths that hit

—N—
the barriers with a sequence that contains LY HTL™ - - with ¢ > 1. Note that 4, B;
may not be empty. The number of paths that hit either barrier now equals

n

N(a,b, 5) = D _(=1)"""(|Ai| + | Bi]). (3.2)

i=1

The value of the double barrier call is now within reach. Let us first take care of
degenerate cases. If S < L, then the double barrier call is reduced to a standard call.
Similarly, if S > H, then the double barrier call is reduced to a knock-in call with a
single barrier H. So we will assume L < S < H from now on. Under this assumption,
it is again easy to check that the double barrier option is reduced to simpler options
unless L < X < H. So we further assume L < X < H. Let

. [In(X/(Sd™)) ] _ [In(H/S) +ﬁ-
In(u/d) 20t 2
b [In(H/(Sd")) ] _ [In(H/S) n]
In(u/d) 20/ 2

_ | In(Z/(Sd")) | _ |In(L/S) | n
"= u/d) J_{za\m—ﬁzJ

The barriers will be replaced by the effective barriers H = Su”d® " and L = Su'd™ .
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Note that by using (3.2), these terminal nodes were supposed to lie between L
and H (inclusive). These terminal nodes together contribute

A=R™ Enj N(2h — n,2h — 24,2(h — 1))p’ (1 — p)" 7 (Suw?d" 7 — X) (3.3)

j=a

to the option value by the risk-neutral methodology, where R = ¢ = ¢™T/™ is the risk-
less return per period. Here, apply the reflection principle repetitively to calculate

A; and B; as
Ai _ { (n+a+b§(i71)s for odd i

( @ ) for even i
2

B, = { (nabgi(m)s; for odd i

( @ for even i
for even n —a + b [9].

Equation (3.3) is the basis for our combinatorial method. We comment that, in
general, the combinatorial method implies an algorithm that uses O(n?) arithmetic
operations. This is in contrast to the single-barrier case, which allows an algorithm
that uses only O(n) operations [9].

See Figure 3.4 for the choice of arguments in N(-) above. As for these terminal
nodes outside the range, they constitute a standard call with a strike price of X. Let
its value be D. The double barrier call thus has value A + D.

H=8u'd"
SJ]dn-]
X = Su'd’

0

S 0
° L=sud"
0
2aln |2 2h |2
0

Figure 3.4: BARRIER CALL OPTION WITH TwO BARRIERS UNDER BINOMIAL
MODEL.



Chapter 4

Computational Results

4.1 Convergence Comparison

This Chapter compares the combinatorial method and the binomial tree method with
backward induction in terms of their actual performance when realized as programs.
Besides, there is a result worth to note. Let’s first see the comparison between single-
barrier and double-barrier cases.

The results in Figure 4.1 and Figure 4.2 work with identical parameters except
that the double-barrier case has an additional barrier (H = 120). The convergence
speed in the double-barrier case seems faster than the single-barrier case, as can be
easily confirmed by looking at the figures.

val ues
1

0.8

n

1000 2000 3000 4000
Figure 4.1: SINGLE-BARRIER CALL WITH COMBINATORIAL METHODS. The option
uses S = 95, Barrier = 80, X = 97, 0 = 0.25, T = 1 (year), r = 15%, ¢ = 5% (continuously
compounded). The analytical value is about 0.9760.

The option values of the combinatorial method oscillate as we increase number
of time periods n, because the method is based on the binomial model [3]. It leads

14
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to a sawtooth-like convergence. As with the binomial option pricing method, the
main reason of the swings is that the barrier lays between the binomial lattices. Our
choices of a, h and [ introduce specification errors in that effective exercise price,
Su®d™ ®, and effective barriers, Sud" " and Su'd"~!, are not exactly the original
exercise price, X, and barriers, H and L.

val ues
12
11
10
* * * * n
1000 2000 3000 4000
Figure 4.2: DOUBLE-BARRIER CALL WITH COMBINATORIAL METHODS. The

option uses S =95, H = 120, L =80, X =97, 0 = 0.25, T =1 (year), r = 15%, ¢ = 5%
(continuously compounded). The analytical value is about 12.30.

val ues

12.3}
12. 2}
12.1¢

12}
11.9¢
11. 8}

11.7

n
220 240 260 280 300
Figure 4.3: DOUBLE-BARRIER CALL WITH COMBINATORIAL METHODS (MAGNI-

FIED). The number of periods runs from 201 to 300 in Figure 4.2.

Let’s next see the accuracy of the combinatorial method and the backward induc-
tion method. The backward induction method has been introduced in section 3.1.
See Figure 4.4 for computational results of the binomial tree method with backward
induction.

The result in Figure 4.4 works with identical parameters in Figure 4.2. As ex-
pected, the convergence rate of the combinatorial method is slightly slower than
backward induction at the beginning. The reason is that we used the original L and
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val ues

12.5
12
11.5
11

10.5

n

1000 2000 3000 4000
Figure 4.4: DOUBLE-BARRIER CALL WITH BACKWARD INDUCTION. The option
uses S = 95, H = 120, L = 80, X = 97, 0 = 0.25, T = 1 (year), r = 15%, ¢ = 5%
(continuously compounded). The analytical value is about 12.30.

H for the backward induction scheme. The combinatorial method and the binomial
tree backward induction algorithm do converge as n increases.

Basically, the principle of the combinatorial method is identical with the back-
ward induction method, they are structured with binomial mode. The computations
of these two methods are dependent on the value of worthy paths on binomial tree.
Understandably, the computational result of the backward induction method will
closely approximate to that of the combinatorial method while the backward induc-
tion method also uses effective barriers, Su”d"~" and Su'd"~!, are not exactly the
original barriers, H and L. Let’s see some computational results of these two meth-
ods in Table 4.1.

NUMBER OF PARTITIONS COMBINATORIAL BACKWARD INDUCTION

1 14.602622 14.602622
2 12.480741 12.480741
3 8.780143 8.780143
4 12.882859 12.882859
3 10.896411 10.611719
6 8.680337 8.680337
7 11.851448 11.851448
8 10.362529 10.362529
4000 12.268334 12.268334

Table 4.1 SOME COMPUTATIONAL RESULTS OF THE TwO METHODS.

These two methods use effective barriers, Sud®~" and Su!d™~!.
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Visibly, most computational results of these two methods are identical while both
use effective barriers, Sud"~" and Su'd"~!. See Figure 4.5 for more detailed compu-
tational results of backward induction method with effective barriers, Su"d"~" and
Suldr .

val ues

12
11

10

n

1000 2000 3000 4000

Figure 4.5: DOUBLE-BARRIER CALL WITH BACKWARD INDUCTION (MODIFIED).
The original barriers, H and L, are adjusted to effective barriers, Sud"~" and Su!d"~.
The option uses S = 95, H = 120, L = 80, X = 97, 0 = 0.25, T = 1 (year), r = 15%,
q = 5% (continuously compounded). The analytical value is about 12.30.

4.2 Quadratic Running Times

We implement algorithms in the C language and compile them by the Sun CC com-
piler running under Solaris 5.6. The data are generated on the UltraSparc IT work-
station with 300 MHz CPU and 256 MB DRAM. See Figure 4.6 for quadratic running

times of the combinatorial method.
seconds

5

n

1000 2000 3000 4000
Figure 4.6: QUADRATIC RUNNING TIMES. The option uses S =95, H = 120, L = 80,
X =97, 0=0.25, T =1 (year), r = 15%, ¢ = 5% (continuously compounded).
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Different machines may lead to different running times. The calculating time of
the number of paths that hits either barrier for any terminal node is proportional
to n, while the number of terminal nodes is proportional to n. Consistent with our
theoretical analysis, the running time is quadratic in n.

The true comparison of algorithms should be based on the total running time. The
combinatorial method has an edge here. Running times behind the data in Figure
4.4 are plotted in Figure 4.7.

seconds

40
30
20

10

‘ n
1000 2000 3000 4000
Figure 4.7: THE PERFORMANCE WITH BACKWARD INDUCTION. It takes much more

time than the combinatorial method for the same number of periods.

The total time used by the combinatorial method is far less than that by the
binomial tree method with backward induction algorithm. In the above example, the
combinatorial method arrives at penny accuracy at n=3985 with a running time of
3517 ms, while the backward induction method takes about 10 times as much time.
The combinatorial method is clearly superior.

4.3 More Discussions

1. In this thesis, we mainly consider double barrier knock-in option that comes
into existence if either barrier is hit, and we use

n
N(a,b,s) = > (=1)"(|Ai| + |Bil)
i=1
to count the number of paths that lead to a particular terminal price between
L and H and hit either barrier. Had the double barrier knock-in option been
defined as an option that comes into existence only if both barriers are hit, then,

n

N(CL, b’ S) = Z(_l)l(‘Az| + ‘Bz‘)

=2

should have been used for similar purposes.
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2. As the number of terms can be huge, the straight forward calculations of
N(a,b,s) and p/(1 — p)"~J will quickly generate computer overflow and under-
flow, respectively. Combining these two calculations with Napierian logarithm
will avoid the problem. In the implementation of the combinatorial method,
factorial computation and p/(1 — p)" 7 use Napierian logarithm, and their com-
putations are actually combined as N(a, b, s)p’(1 —p)™ .



Chapter 5

Conclusion and Future Work

Combinatorial methods have found wide applicability in many fields. This thesis
extends their use in pricing European-style double barrier options. By the use of
combinatorial methods, we succeed in developing fast algorithms to speed up the
pricing of double barrier options. The combinatorial formula directly leads to highly
efficient algorithms in terms of convergence and time. In particular, the total running
time will be less if we use parallelizing techniques in our algorithm by dividing the
work of (3.3) among processors.

We expect the combinatorial method to be similarly applicable to more sophisti-
cated path-dependent derivatives. In addition, we also expect to improve the combi-
natorial method farther for that our algorithm’s running process can been parallelized
with a group of professional machines. The combinatorial method will be an applica-
tive tool for various path-dependent derivatives.
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