
國立臺灣大學電機資訊學院資訊工程學系

博士論文

Department of Computer Science and Information Engineering

College of Electrical Engineering and Computer Science

National Taiwan University

Doctoral Dissertation

有向圖與阿貝爾群的性質測試

Property Testing on Directed Graphs

 and Abelian Groups

狄彥吾

Yen-Wu Ti

指導教授：呂育道 博士

Advisor: Yuh-Dauh Lyuu, Ph.D.

 中華民國 98年 6月

June, 2009

致 謝

首先誠摯的感謝指導教授呂育道博士，老師悉心的教導使我得以一窺資訊科學領

域的深奧，不時的討論並指點我正確的方向，使我在這些年中獲益匪淺。老師對

學問的嚴謹更是我輩學習的典範。

七年裡的日子，實驗室裡共同的生活點滴，學術上的討論、言不及義的閒扯...，

感謝眾位學長、同學、學弟妹的共同砥礪，你/妳們的陪伴讓七年的研究生活變

得絢麗多彩。

感謝周立平、戴天時學長們不厭其煩的指出我研究中的缺失，且總能在我迷惘時

為我解惑，也感謝同學袁勤國、陳俊諺、張文彥、林敏順的幫忙，恭喜我們順利

走過這些年。實驗室的張中平、馬德文、張經略、林宏佑、陳絢昌學弟們當然也

不能忘記，各位的幫忙我銘感五內。

最後，謹以此論文獻給我已經離世的雙親。

摘摘摘摘 要要要要

性質測試 (property testing)是一個在資訊學科中被廣泛研究的課題，其應用

範圍涵蓋了網路拓樸與程式除錯等多個領域。Bender 與 Ron 發展了一個性質測

試的演算法，用來測試某些有向圖是否滿足強連通的性質，本論文將這個演算法

稱之為 BR 演算法。BR 演算法只適用於滿足特定條件的某些有向圖，是以在應用

上有諸多限制。本論文發展了一個不受限制的演算法，可以測試任何一個有向圖

是否具有強連通的性質。

相對於在應用上受到限制的 BR 演算法，本論文所發展用來測試強連通性質的演

算法，在應用上雖然沒有限制，但是相較於 BR 演算法之效率較差。因此對於滿

足 BR 演算法應用限制的少數有向圖，我們還是傾向用 BR 演算法來測試其是否有

強連通的性質；至於其他不滿足限制的有向圖，我們便使用本論文發展的演算法。

本論文接著發展一個演算法可以幫助我們在上述兩者間選擇合適的強連通測試

演算法。

對於一個事先設定的有向圖 H，Alon 與 Shapira 證明了對於任一個有向圖 G，如

果我們需要大量移除 G 的有向邊，才可以完全消除 G 裡面與 H 共構(isomorphic)

的子圖(subgraph)，則在有向圖 G 中的 H 共構子圖的數目有一個下界。對於一個

有向子圖，如果其圖形的任一部分都不與 H 形成共構，我們便稱之為無 H 子圖。

本論文利用 Alon 與 Shapira 的研究結果，發展了一個演算法，用以測試任一個

有向圖是否存在一個由 k 個點所組成的無 H 子圖。如前所述，當我們需要在兩個

強連通測試演算法之間做選擇的時候，這個測試無 H 子圖的演算法就可以幫助我

們選擇合適的強連通測試演算法。

本論文的最後一部分是利用本論文之前的強連通測試演算法，去發展一個關於群

性質的測試演算法。一個群的生成元可以用來生成整個群，而對於一個阿貝爾群

而言，其生成元的數目是一個倍受學界關注的研究題目。本論文利用前述的強連

通測試演算法，發展了一個很有效率的演算法，可以測試任一個集合與一個二元

運算的組合是否為一個生成元數目小於 k 的阿貝爾群。

關鍵詞：性質測試，隨機演算法，有向圖，強連通，阿貝爾群，生成元。

Abstract

Bender and Ron construct a restricted tester on the strong connectivity of di-

graphs (we call it the BR tester). We generalize the BR tester to test the strong

connectivity of digraphs.

For any digraph H and a digraph G being far from any H-free digraph, Alon and

Shapira prove a lower bound of the number of H in G. After solving the problem

of testing the strong connectivity of digraphs, we use Alon and Shapira’s result to

construct a randomized algorithm for testing digraphs with an H-free k-induced

subgraph.

Our strong connectivity tester has no restriction but must query about the input

more times than the restricted BR tester. Suppose an input digraph satisfies the

restrictions of the BR tester, using the BR tester to test the strong connectivity

of this input digraph is more efficient than using our strong connectivity tester. If

we want to test the strong connectivity of a digraph, our randomized algorithm for

testing digraphs with an H-free k-induced subgraph can help us determine which

tester should be used to test the strong connectivity of the digraph: the BR tester

or our strong connectivity tester.

A generator set for a finite group is a subset of the group elements such that

repeated multiplications of the generators alone can produce all the group elements.

The number of generators of an abelian group is an important issue in many studies.

In most cases, it is not easy to identify whether a group-like structure is an abelian

group with k generators for a constant k. We construct an efficient randomized

algorithm that, given a finite set with a binary operation, tests if it is an abelian group

with a k-generator set. If k is not too large, the query complexity of our algorithm

is polylogarithmic in the size of the groundset. Otherwise the query complexity is at

most the square root of the size of the groundset.

2

Keywords: Property testing; Strong connectivity; H-free subgraph; Abelian

group; Generator.

1

Contents

1 Introduction 1

2 Background 5

2.1 Question of property testing . 5

2.2 Property testing on combinatorial objects 6

2.3 Property testing and learning theory 6

3 Testing of Digraph Properties 8

3.1 Property testing on digraphs . 8

3.2 Research work related to graph property testing 9

3.3 Reduction between group properties and digraph properties 10

4 Testing Strong Connectivity on Digraphs 12

4.1 Strongly connected component . 12

4.2 Tester construction . 16

5 Testing Whether a Digraph Contains H-free k-induced Subgraphs 20

5.1 Existence of H-free k-induced subgraphs is Ω(N2)-evasive 20

2

5.2 Tester construction . 25

6 Testing of Group Properties 36

6.1 Finite group-like structure . 36

6.2 Research work related to group property testing 37

6.3 Tester construction . 38

7 Conclusion 47

Bibliography . 48

3

Chapter 1

Introduction

This world is full of decision problems, and we need to make decisions every day. In

computer science, a decision problem asks if an object has a predetermined property.

Unfortunately, sometimes no fast algorithms exist that give the exact answer. In

these cases, an approximate answer within a reasonable complexity is an attractive

alternative.

A property-testing algorithm offers such answers. For a fixed property P and any

object O, the property-testing algorithm determine whether O has property P , or

whether O is far from having property P (i.e., far from any other object having P).

It is, however, arbitrary on objects falling between the two categories. For example,

the object can be a graph and the property can be 3-colorabilty. The task should

be performed by querying the object (in as few places as possible). In the example,

what we query is the existence of edges between two vertices.

Many recent research results concern the testing of graph properties and group

properties. In computer science, the general notion of property testing is first formu-

1

lated by Rubinfeld and Sudan [64]. In their formulation, a property testing algorithm

for property P is given oracle access to the tested object. Distance between instances

is measured in terms of the fraction of arguments in the domain.

Property testing emerges naturally in the context of program checking and proba-

bilistically checkable proofs (PCP). Specifically, in the context of program checking,

one may choose to test if the program satisfies certain properties before checking

that it computes a specified function. This paradigm has been followed both in

the theory of program checking [22, 64], and in practice where often programmers

first test their programs by verifying that the programs satisfy properties that are

known to be satisfied by the functions they compute. In the context of probabilis-

tically checkable proofs, the property tested is being a codeword with respect to a

specific code. This paradigm, explicitly introduced in Babai, Fortnow, Levin and

Szegedy’s result, has shifted to testing Hadamard codes, and then to testing the long

code [10, 13, 15, 16, 43, 44, 54, 68]. All of these papers have focused on property test-

ing of algebraic properties such as linearity, multi-linearity and being a low-degree

polynomial.

The number of generators of a group is an important issue in many studies.

Knowing the number of generators of a group leads to a deeper understanding to the

structure of a group. It may help us to discover the features of the groups quickly.

A group in which every element commutes with its endomorphic images is called an

E-group. A generator set with size k is called a k-generator set and a group for which

the elements commute is called an abelian group. We know that every E-group with

2

a 2-generator set is abelian and all E-groups with a 3-generator set are nilpotent of

class at most 2 [2]. We also know that we need at least four generators to generate

a finite non-abelian E-group [1]. A group with a 2-generator set must isomorphic

to a proper factor group [61]. The number of generators of a group has also been

intensively studied [24, 25, 26, 48, 55, 58, 59].

This dissertation presents a method to combine the testing algorithms of digraphs

and groups to test whether a group-like structure is an abelian group with a k-

generator set. The first part of this dissertation is testing whether a digraph is

strongly connected. Bender and Ron construct a restricted tester on the strong

connectivity of digraphs (we call it the BR tester) [17]. There are some instances

that do not satisfy the restrictions of the BR tester. We generalize the BR tester to

test the strong connectivity of digraphs.

For any digraph H and a digraph G being far from any H-free digraph, Alon and

Shapira prove a lower bound of the number of H in G. After solving the problem

of testing the strong connectivity of digraphs, we use Alon and Shapira’s result to

construct a randomized algorithm for testing digraphs with an H-free k-induced

subgraph.

Our strong connectivity tester has no restriction but must query about the input

more times than the restricted BR tester. Suppose an input digraph satisfies the

restrictions of the BR tester, using the BR tester to test the strong connectivity

of this input digraph is more efficient than using our strong connectivity tester. If

we want to test the strong connectivity of a digraph, our randomized algorithm for

3

testing digraphs with an H-free k-induced subgraph can help us determine which

tester should be used to test the strong connectivity of the digraph: the BR tester

or our strong connectivity tester.

It is not easy to identify whether a group-like structure is an abelian group with

a k-generator set for any given constant k. In the last part of this dissertation, we

combine the testing algorithm for the abelian property of groups and the testing

algorithm for the strong connectivity of digraphs to form the testing algorithm for a

group-like structure being an abelian group with a k-generator set. Our method is

to use the strong connectivity of Cayley graphs to test if a finite group-like structure

has a k-generator set. Before that, we should test if the input group-like structure is

an abelian group. Friedl, Ivanyos and Santha construct a tester which, given a finite

group-like structure, tests if it is an abelian group (we call it the FIS tester) [37].

Combining the FIS tester and our strong connectivity tester, we can construct a

testing algorithm for a group-like structure being an abelian group with a k-generator

set.

4

Chapter 2

Background

2.1 Question of property testing

We are interested in the following question of property testing:

Let Π be a fixed property, and t be an instance. Our goal is to determine

(possibly probabilistically) if t has property Π or if it is far from any

instance that has property Π, where the distance between instances is

measured with respect to the uniform probability distribution on the

domain of t. Towards this goal, we are allowed to select some elements

from t and query a specific information about t on elements of our choice.

Let T be the class of instances that satisfy property Π. Then, testing property Π

corresponds to testing membership in the class T . The two most relevant parameters

to property testing are the distance, hereafter denoted ε, and the desired confidence,

denoted p. We require the tester to accept each instance in T and reject every

instance that is more than ε away from any instance in T . We allow the tester to be

5

probabilistic, and make incorrect positive and negative assertions with probability

at most p. The complexity measures we focus on are the query complexity (the

number of queries made). We believe that property testing is a natural notion

whose relevance to applications goes beyond program checking, and whose scope

goes beyond the realm of testing algebraic properties.

2.2 Property testing on combinatorial objects

Working within the above framework, we venture into the domain of combinato-

rial objects. In particular, we study testing group properties and graph properties,

and demonstrate its relevance to the notions of approximation. We hope to derive

extremely efficient algorithms for testing natural properties.

We only consider the uniform probability distribution on these combinatorial

objects, as well as algorithms that only obtain random samples.

2.3 Property testing and learning theory

Our formulation of testing mimics the standard frameworks of learning theory. Sup-

pose the property Π is a set of functions. In both property testing and learning

theory, one is given access to an unknown target function f . However, there are two

important differences between them. First, the goal of a learning algorithm is to

find a good approximation to the target function f ∈ Π, whereas a testing algorithm

should only determine whether the target function is in Π or far away from it. This

makes the task of testing seem easier than that of learning. But that is misleading

6

because a learning algorithm should perform well only when the target function be-

longs to Π, whereas a testing algorithm must perform well in such cases as well as

on functions far away from Π.

Goldreich, Goldwasser and Ron show that the relation between learning and

testing is nontrivial. On one hand, proper learning (i.e., when the hypothesis of

the learning algorithm must belong to the same class as the target function) implies

testing. On the other hand, there are function classes for which testing is harder

than (nonproper) learning (i.e., when the hypothesis is not required to belong to the

same class as the target function), provided NP * BPP [41].

7

Chapter 3

Testing of Digraph Properties

3.1 Property testing on digraphs

We define property testing for digraphs next. Let Π be a property of digraphs, that

is, a family of digraphs closed under isomorphism. A digraph G = (V,E) is ε-close

to having property Π if there exists a digraph G′ = (V,E ′) having property Π such

that the symmetric difference between E and E ′ is at most ε
(|V |

2

)
. We say that a

digraph G is ε-far from having property Π if it is not ε-close to having property Π.

An ε-tester (or simply a tester) for a digraph property Π is a randomized algorithm

that is given a size parameter N , a distance parameter ε and the ability to make

queries as to whether a directed edge of the input digraph G with N vertices exists.

The total number of queries is called the query complexity of the tester. Let {gi}
be the set of digraphs with N vertices that satisfy Π. The algorithm needs to

distinguish with probability at least 2/3 between the case of G having Π and the

case of G differing from any gi in at least ε
(

N
2

)
edges [7]. In the latter case, G is

8

said to be ε-far from property Π. More specifically, T is an ε-tester for Π if for every

G = (V, E) and every ε, the following two conditions hold:

(1) if G has property Π, then Pr[T accepts G]≥ 2/3;

(2) if G is ε-far from having property Π, then Pr[T accepts G]≤ 1/3.

The probability 2/3 can be replaced by any constant smaller than 1 because the

algorithm can be repeated if necessary. A graph property is testable if the property

has a tester and the total number of queries is o(N2).

3.2 Research work related to graph property test-

ing

A testing algorithm for graph property Π can make queries on the incidence re-

lations of vertices in an input graph G. Property Π is Ω(N2)-evasive if there is

no deterministic testing algorithm with query complexity o(N2) that can correctly

decide if the input has Π. Holt and Reingold are the first to consider the complex-

ity of recognizing graph properties from their adjacency matrix representations [47].

They show that the graph properties of connectivity and the existence of cycles

are both Ω(N2)-evasive. An important open problem in this area is the Aanderaa-

Rosenberg conjecture: Every nontrivial monotone graph property without self-loops

is
(

N
2

)
-evasive [23, 29, 47, 53]. Rivest and Vuillemin resolve a weaker version of the

Aandreaa-Rosenberg conjecture [63]. The weaker version says that every nontrivial

monotone graph property has decision tree complexity Ω(N2).

9

The testing of graph properties is pioneered by Goldreich, Goldwasser and Ron

[41]. They showe that all graph properties describable by the existence of a partition

of a certain type are testable. For a fixed digraph H with at least one edge, let PH

denote the property of the input digraph being H-free. In other words, the digraph

G has PH if and only if it contains no subgraphs isomorphic to H. Alon and Shapira

prove that PH is testable with a total number of queries bounded only by a function of

ε, independent of N [7]. This result has been improved later by Alon and Shapira [6].

Alon, Fischer, Krivelevich and Szegedy show that every first-order undirected graph

property without a quantifier alternation of type ”∀ ∃” has ε-testers whose query

complexity is independent of the size of the input digraph [4]. More recently, Alon,

Fischer, Newman and Shapira prove a very general result for undirected graphs,

which says that the property defined by having any given Szemerédi-partition is

testable with a constant number of queries [5]. Moreover, a purely combinatorial

characterization of the graph properties is testable with a constant number of queries.

The testing of other graph and combinatorial properties has also been intensively

studied [30, 33, 40, 42, 51].

3.3 Reduction between group properties and di-

graph properties

In this section, we define Cayley graphs and introduce the reduction between group

properties and digraph properties.

Definition 1 ([46]) Let G be a group, ◦ be the group multiplication and S be a

10

subset of the group’s elements not containing the identity element. The Cayley graph

associated with S is defined as the digraph having one vertex associated with each

group element G and directed edges (g, h) whenever g ◦ h−1 ∈ S.

The properties of Cayley graphs have been extensively studied in graph theory.

These properties are used to develop algebraic settings for studying certain structural

and algorithmic properties of the interconnection networks that underlie parallel

architectures, including the hypercube, butterfly, cube-connected cycles, multiple

rings and star networks [3, 8, 21, 27, 65]. Cayley graphs have also been used to

study the gossiping problem in communication networks [20].

We say that a digraph is strongly connected if there is a directed path from every

vertex u in the digraph to every other vertex v.

Theorem 2 ([9]) The Cayley graph associated with a subset of a group’s elements

(but not containing the identity element) is strongly connected iff the subset generates

the group.

Our method relies on the strong connectivity of Cayley graphs to test if a finite

group-like structure s = (Γ, ◦, i, 1) has a k-generator set. A subset of a groundset

or a vertex set with size k will be called a k-subset from now on. By Theorem 2,

for an input group-like structure s = (Γ, ◦, i, 1), if we can test whether there exists

a k-subset of Γ with a corresponding strongly connected Cayley graph, then we can

test whether s has a k-generator set. In the next chapter, we develop an algorithm

for testing strong connectivity of digraphs.

11

Chapter 4

Testing Strong Connectivity on

Digraphs

4.1 Strongly connected component

In this chapter, we develop an algorithm for testing strong connectivity of digraphs

and we will rely on the strong connectivity of Cayley graphs to test if a finite group-

like structure s = (Γ, ◦, i, 1) has a k-generator set in the following chapter. For

a digraph G = (V,E) with indegree and outdegree bounded by d < |V |, Bender

and Ron develop a tester on the strong connectivity of digraphs (we call it the BR

tester) [17].

Theorem 3 ([17]) (1) If G is ε-far from being strongly connected with indegree and

outdegree bounded by d, then the BR tester will reject it with probability at least 2/3.

(2) The BR tester has one-sided error. (3) The query complexity is O(1/ε).

On the other hand, suppose there is no bound on the indegree and outdegree

of the digraph G. We construct another tester to test the strong connectivity of

12

digraphs in this chapter that is slightly different from the BR tester. To begin with,

testing strong connectivity is trivial when the distance parameter is greater than 2/n

for the following reason: We can always make a digraph connected by adding at most

n − 1 edges. Hence every digraph with n vertices is (2/n)-close to being strongly

connected because (2/n)
(

n
2

)
= n − 1. On the other hand, ε should be greater than

1/
(

n
2

)
for, otherwise, ε

(
n
2

)
< 1. To make sure that the problem is not trivial, we

assume 1/
(

n
2

)
< ε < 2/n from now on.

A strongly connected component of a digraph G = (V, E) is a maximal subgraph

H = (V ′, E ′) such that there is a directed path from each vertex p ∈ V ′ to every

other vertex q ∈ V ′. Denote the set of strongly connected components of G by C =

{C1, C2, . . . , Cm}. For vertices u ∈ Ci and v ∈ Cj, i 6= j, such that e = (u, v) ∈ E,

we call e an outgoing edge of Ci and an incoming edge of Cj. We call a strongly

connected component a source if it has only outgoing edges, a sink if it has only

incoming edges, an isolation if it has neither outgoing nor incoming edges, and a

transferrer if it has both outgoing and incoming edges.

Lemma 4 If a digraph G with n vertices is ε-far from being strongly connected, then

the total number of sources, sinks, and isolations in G exceeds εn2.

Proof : Assume the claim of the lemma is wrong and proceed to obtain a con-

tradiction. Let set T contain all transferrers and set R consisting of the remaining

strongly connected components. We divide the problem up into two cases.

Case 1. T is empty.

A strongly connected component in G is either a source, a sink, or an isola-

13

tion, and hence a member of R. Pick a vertex from each strongly connected

component of G. As G has |R| strongly connected components, |R| vertices

are chosen. Turn these |R| vertices into a directed cycle by adding at most |R|
directed edges to G. Now, for any ordered pair of vertices (u, v) in V , there

is a directed path from u to v; hence G is strongly connected. Recall that an

ε-far digraph differs from the class of strongly connected digraphs by at least

εn2 +1 edges. However this is a contradiction, since |R| ≤ εn2. See Fig. 4.1 for

illustration.

Case 2. T is not empty.

A chain of strongly connected components (C1, C2, . . . , Cn) consists of strongly

connected components such that between any two adjacent strongly connected

components Ci and Ci+1, there is a directed edge from a vertex of Ci to a vertex

of Ci+1.

For any T ∈ T , there is a longest chain of strongly connected components S in

T containing T (i.e., all members of S are transferrers, and T is one of them).

Let Sh be the head of the chain S. Sh is a strongly connected component with

both incoming and outgoing edges because Sh ∈ T . There is no directed edge

from other strongly connected components in T to Sh for, otherwise, S would

not be the longest chain containing T . Therefore, all the incoming edges of

Sh are outgoing edges of some sources. By the same token, all the outgoing

edges of the tail St of S are incoming edges of some sinks. Consequently,

for any T ∈ T , we can always find a vertex p from a source and a vertex q

14

Strongly connected component

Strongly connected component

Strongly connected component

Choose a vertex from the strongly connected component

Choose a vertex from the strongly connected component

Choose a vertex

from the strongly

connected component
Turn these vertices into a directed cycle

Figure 4.1: Testing strong connectivity of digraphs.

from a sink such that there is a directed path from p to q passing through a

vertex of T . As a result, if all the sources and sinks are turned into one single

strongly connected component, the transferrers will become part of the same

component, too.

Therefore, if we can turn all members of R into one single strongly connected

component R′, then for all Ti, Tj ∈ T and all vertices x ∈ Ti and y ∈ Tj,

there exists a directed path from x through some vertices in R′ to y. So we

can ignore the transferrers and concentrate on how to make all members of R
become one single strongly connected subgraph. We have thus reduced this

case to case 1, where T is empty. The number of directed edges we need to

add to G is thus at most |R|, too. If |R| is no greater than εn2, we get a

contradiction. Q.E.D.

Lemma 5 A digraph ε-far from being strongly connected must have at least (εn2)/2

connected components each containing fewer than d 1
n
(2

ε
− 1)e vertices.

15

Proof : Assume the claim is wrong. Lemma 4 says that this digraph has at least

εn2 + 1 strongly connected components. Since every strongly connected component

has at least one vertex,

n ≥ (
εn2 + 1− (εn2)/2

) ·
⌈

1

n

(
2

ε
− 1

)⌉
+

εn2

2
· 1

>
εn2

2

1

n

(
2

ε
− 1

)
+

εn2

2

=
εn

2

(
2

ε
− 1

)
+

εn2

2

= n− εn

2
+

εn2

2

a contradiction. Q.E.D.

4.2 Tester construction

For a digraph with no bound on the indegree and outdegree of each vertex, the

algorithm that tests whether it is strongly connected appears in Fig. 4.2 (we call it

the CONN tester). It is obviously that testing strong connectivity is trivial when

the distance parameter is greater than 2/n. To make sure that the problem is not

trivial, we assume 1/
(

n
2

)
< ε < 2/n. The following theorem analyzes the algorithm.

Theorem 6 (1) Our algorithm has one-sided error. (2) Suppose G is ε-far from

being strongly connected, then our algorithm will reject it with probability at least

2/3. (3) The query complexity is O
(

log1− εn
2

1/3

ε

)
.

16

1: Let S = ∅, m = dlog1−(εn)/2 1/3e, x = d 1
n
(2

ε
− 1)e

2: while | S |< m do
3: Pick an arbitrary vertex u from V and add it to S
4: Perform BFS on G starting from u and always use a visited vertex’s incoming

edges and stop when we reach x vertices
5: if we run out of new vertices then
6: REJECT
7: else
8: Perform BFS starting from u and always use a visited vertex’s outgoing

edges and stop when we reach x vertices
9: if we run out of new vertices then

10: REJECT
11: end if
12: end if
13: end while
14: ACCEPT

Figure 4.2: An ε-tester for the strong connectivity of digraphs in the case that there
is no prior bound on the indegree and outdegree of each vertex.

17

Proof : Since 1/
(

n
2

)
< ε < 2/n, x ≤ n. For a strongly connected digraph G, given

an arbitrary vertex u of V , a BFS always reaches at least x vertices by starting from

u. In other words, our algorithm never rejects G, a yes instance; hence it has only

one-sided error.

For a no instance G, according to Lemma 5, there are at least (εn2)/2 strongly

connected components, each containing fewer than x vertices. The probability that

an arbitrarily chosen vertex belongs to one of these (εn2)/2 strongly connected com-

ponents is at least (εn2)/2
n

= (εn)/2. Our algorithm outputs ACCEPT for a no

instance only when the while-loop executes m times. The probability is at most

[1− (εn)/2]m = [1− (εn)/2]dlog1−(εn)/2
1
3
e ≤ 1/3. Hence, G is rejected with probability

at least 2/3.

Finding all of a vertex’s incoming (outgoing) neighbors takes at most n queries

on the incoming (outgoing, respectively) edges given the adjacency matrix. Since

the while-loop is repeated at most m times, the query complexity is bounded by:

m · 2 ·
⌈

1

n

(
2

ε
− 1

)⌉
· n <

[
log1−(εn)/2

1

3
+ 1

]
·
[

2

n

(
2

ε
− 1

)]
· n

= O

(
log1−(εn)/2

1
3

ε

)
. Q.E.D.

According to Theorem 6, the query complexity of the CONN tester is much higher

than the BR tester. Suppose the indegree and the outdegree of an input digraph

are both bounded by a given constant, we can use the BR tester to test the strong

connectivity of the input in order to reduce the query complexity; otherwise, we use

the CONN tester. In the next chapter, we investigate the method to test whether a

18

digraph contains H-free k-induced subgraphs. If we do not know the upper bounds

of the indegree and the outdegree of an input digraph, our result in the next chapter

can help us determine what algorithm to use and then use that algorithm to test the

strong connectivity of the input.

19

Chapter 5

Testing Whether a Digraph

Contains H-free k-induced

Subgraphs

5.1 Existence of H-free k-induced subgraphs is Ω(N 2)-

evasive

In this section, we show that the query complexity of any deterministic algorithm

for the existence of H-free k-induced subgraphs is Ω(N2).

First, we need some results concerning Turán numbers. For any integer N and

a fixed graph H, let ex(N, H) denote the maximum number of edges that an N -

vertex graph may have if it contains no isomorphic copy of H. This is the Turán

number of H. Furthermore, we will denote by br,s the complete undirected bipartite

graph between a set of r vertices and another set of s vertices. The following fact is

well-known.

20

Fact 7 ([54]) For r ≤ s, ex(N, br,s) = O(N2−(1/r)).

If we replace the undirected edges of br,s by directed edges with an arbitrary

direction, a complete bipartite digraph dr,s results. The next theorem shows that it

is Ω(N2)-evasive to determine if there is a dr,s-free k-induced subgraph in a digraph.

In our model, whenever an algorithm queries a pair of vertices x, y in the input graph,

it actually means that the algorithm queries the existence of edges (x, y) and (y, x)

simultaneously. For a set S, we say that a subset T ⊆ S is a k-subset of S if |T | = k.

Suppose a digraph G contains a subgraph isomorphic to a digraph H. Then we say

G contains a copy of H.

Theorem 8 For any constant ρ < 1, k < N/2 and any complete bipartite digraph

dr,s, no algorithm can determine whether a digraph contains a dr,s-free k-induced

subgraph with query complexity ≤ ρ
(

k
2

)
if k = λN with λ being a constant.

Proof : Suppose there exists an algorithm A that determines if a digraph contains

a dr,s-free k-induced subgraph with ρ
(

k
2

)
queries. For the rest of the proof, assume

k = O(N) and k is large enough so that

(1− ρ)

(
k

2

)
≥ ex(k, br,s) = O(k2−(1/r)). (1)

Start with a digraph G1 with N vertices that contains no copies of dr,s (this is

easy to construct). Let G1 be the input of A. Obviously, all k-induced subgraphs of

G1 are dr,s-free. Let G2 = (V2, E2) be a graph with N isolated vertices. Every time

A queries a pair of vertices x, y in G1, we add that edge to G2 if there is an edge

21

between them. When A stops, the resulting G2 has no k-induced subgraphs which

contain dr,s, just like G1. For those vertex pairs of G1 that are not queried by A, we

add an edge (but without the directions) to G2. For each k-induced subgraph of G2,

at least (1− ρ)
(

k
2

)
undirected edges are added. According to Fact 7, every k-induced

subgraph of G2 must contain a copy of br,s with the undirected edges alone because

of Eq. (1).

Now, we select a k-induced subgraph K1 in G2 and replace one copy of br,s in K1

by dr,s. Let Vb,1 be the vertex set of this copy of dr,s, and define h = |Vb,1| = r + s.

For each subset of V2 with size k that contains Vb,1, its induced subgraph has a copy

of dr,s too. There are
(

N−h
k−h

)
such k-subsets of V that contain Vb,1. Let k/N = λ.

Recall that λ is a constant. Now, the ratio of the number of all such k-subsets to

the number of k-induced subgraphs of G2 is
(

N−h
k−h

)
/
(

N
k

)
. Note that

(
N−h
k−h

)
(

N
k

) =
k(k − 1) · · · (k − h + 1)

N(N − 1) · · · (N − h + 1)
.

As h is a constant and k < N/2, it is not hard to prove that there is a number m > 0

such that for every N > m it holds that

k

N
>

k − 1

N − 1
> · · · > k − h + 2

N − h + 2
>

k − h + 1

N − h + 1

=
(k/N)− (h/N) + 1/N

1− (h− 1)/N
>

λ

1 + λ
.

Thus if N is large enough,

(
N−h
k−h

)
(

N
k

) =
k(k − 1) · · · (k − h + 1)

N(N − 1) · · · (N − h + 1)
>

(
λ

1 + λ

)h

.

22

We conclude that at least
(

λ
1+λ

)h (
N
k

)
k-induced subgraphs contain a copy of dr,s.

Next we select another k-induced subgraph K2 = (V ′, E ′) with V ′ ∩ Vb,1 = ∅. It

is worth noting that K2 also has a copy of br,s, and the vertex set of br,s is Vb,2. Like

what we did before, we replace this copy of br,s in K2 by dr,s. There are
(

N−2h
k−h

)
such

k-subsets of V that contain V2. The ratio of the number of all such k-subsets to the

number of k-induced subgraphs of G2 is
(

N−2h
k−h

)
/
(

N
k

)
. Again, for N large enough,

lim
N→∞

(
N−2h
k−h

)
(

N
k

) = lim
N→∞

(
N−h
k−h

)
(

N
k

) >

(
λ

1 + λ

)h

.

We claim that in general, for every constant i,

(
N−ih
k−h

)
(

N
k

) =
k(k − 1) · · · (k − h + 1)

N(N − 1) · · · (N − h + 1)
· (N − k) · · · (N − k − (i− 1)h + 1)

(N − h) · · · (N − ih + 1)

>

(
λ

1 + λ

)h

. (2)

To verify this, recall that as we showed before,

k(k − 1) · · · (k − h + 1)

N(N − 1) · · · (N − h + 1)
>

(
λ

1 + λ

)h

.

As for

(N − k) · · · (N − k − (i− 1)h + 1)

(N − h) · · · (N − ih + 1)
,

since

N − k

N − h
>

N − k − 1

N − h− 1
> · · · > N − k − (i− 1)h + 1

N − ih + 1

23

we have

(N − k)(N − k − 1) · · · (N − k − (i− 1)h + 1)

(N − h)(N − h− 1) · · · (N − ih + 1)
>

(
N − k − (i− 1)h + 1

N − ih + 1

)(i−1)h

Now, with k = λN , it is easy to see that

N − k − (i− 1)h + 1

N − ih + 1
>

N − k − (i− 1)h + 1

N
> (1− 2λ)

where the last inequality is due to k > (i−1)h−1. Hence, when we repeat the above

process i times, at least

[(1− 2λ) + (1− 2λ)2 + · · ·+ (1− 2λ)(i−1)h]

(
λ

1 + λ

)h (
N

k

)
(3)

k-induced subgraphs contain a copy of dr,s. Recall that k < N/2. Hence 2λ < 1 and

formula (3) is less than 1
2λ

(
λ

1+λ

)h (
N
k

)
.

Since λ, h and (λ/(1+λ))−h are constants, we can repeat this process 2λ(λ/(1 + λ))−h

times such that Vb,i ∩ Vb,j = ∅ for i 6= j and N large enough. After having repeated

this process that many times, we select 2λ(λ/(1 + λ))−hh < N distinct vertices from

V for N large enough, and, by Eq. (2), the ratio of the number of K2λ(λ/(1+λ))−h

to the number of all k-induced subgraphs of G2 will be at least 2λ(λ/(1 + λ))−h.

The number of k-induced subgraphs that contain a copy of dr,s then is at least

2λ(λ/(1 + λ))−h (λ/(1+λ))h

2λ

(
N
k

)
=

(
N
k

)
. In other words, after we repeat this process

2λ(λ/(1 + λ))−h times and remove the remaining undirected edges, all k-induced

24

subgraphs of G2 will have a copy of dr,s. This digraph G2 contains, therefore, no

H-free k-induced subgraph. However, A cannot distinguish between G1 and G2 be-

cause we have only changed G2’s unqueried edges. So, A will accept G2, which is a

contradiction. Q.E.D.

5.2 Tester construction

Fix a digraph H with h vertices and m ≥ 1 edges. Recall that Pk,H , where k ≥ h,

denotes the property that G contains an H-free k-induced subgraph. We will show

that property Pk,H is testable with a query complexity independent of the input size.

A set with size n will be called an n-set, and a multiset with size n will be called an

n-multiset. There is a function f(ε; H) with the following properties, which will be

critical to our analysis later.

Theorem 9 ([7]) Let H be a fixed digraph with h vertices and D be a digraph with

N vertices. If at least εN2 edges have to be removed from D to make it H-free, then

D contains at least f(ε; H)Nh copies of H.

The following corollary is immediate.

Corollary 10 Let H be a fixed digraph with h vertices and m edges, D be a digraph

with N vertices and σ =
((h

2)
m

)
. If at least εN2 edges have to be removed from D to

make it H-free, then D contains at least f(ε; H)Nh/σ h-sets whose induced subgraphs

contain copies of H.

25

Suppose the input N -vertex digraph G = (V,E) is ε-far from having property

Pk,H . Corollary 10 tells us that G must contain at least f(ε; H)Nh/
((h

2)
m

)
h-sets whose

induced subgraphs contain copies of H. So to test property Pk,H on G, our idea is

to randomly select many h-sets from V . Suppose G contains an H-free k-induced

subgraph, say (Vk, Ek). Then with enough h-sets from V , at least one of them is

expected to be a subset of Vk with high probability. To verify if this is the case,

we will check if an h-set S satisfies S ⊆ Vk in 2 steps. First, we check the induced

subgraph of S. When S ⊆ Vk, the induced subgraph of S contains no copies of H.

If the induced subgraph of S contains no copies of H, we randomly add a number

of other vertices to S (the number will be determined later) and check if there is a

subset of S (with a size to be determined later) whose induced subgraph contains no

copies of H. If S ⊆ Vk, we expect that S will pass both tests with high probability.

Thus, G will be accepted by our algorithm with high probability. On the other hand,

suppose G is ε-far from any digraph which has property Pk,H . Then we expect to

find a copy of H in all the induced subgraphs of the above-mentioned h-sets S with

high probability. Our algorithm is detailed in Fig. 5.1.

We shall need the Chernoff bound in later analysis.

Theorem 11 (Chernoff bound) Let X = X1 + X2 + · · · + Xn be a sum of n

independent random variables such that 0 < Pr[Xi = 1] < 1 holds for each i =

1, 2, ..., n and µ = E[X]. Then for any 0 < ∆ < 1,

Pr[X < (1−∆)µ] < e−µ∆2/2

26

1: if k <
√

εN then
2: ACCEPT
3: end if
4: let λ = k/N , κ = log

1− (
√

ε)h

2

(1/6), σ =
((h

2)
m

)
and θ = max{log 6f(ε;H)h!

σλ2
(2/3)1/κ, 1}

5: for i = 1 to κ do
6: randomly select an h-set S from V
7: if the induced subgraph of S does not contain an H then
8: randomly select additional vertices p = 6θh/λ times (with replacements)

from V − S (assume these p vertices to be x1, x2, . . . , xp) {note there are(
p
θh

)
(θh)-multisets in {x1, x2, . . . , xp}}

9: for j = 1 to
(

p
θh

)
do

10: let Sj be the jth (θh)-multiset selected in step 8
11: if the induced subgraph of Sj ∪ S contains no copies of H then
12: ACCEPT
13: end if
14: end for
15: end if
16: end for
17: REJECT

Figure 5.1: The ε-tester for property Pk,H .

27

where e is the base of the natural logarithm.

Note that in property Pk,H , h is a constant. Hence f(ε; H) is a function in ε only.

We assume that H is a fixed digraph with h vertices and m edges and recall that G

is the input digraph with N vertices from now on.

Definition 12 Let 0 < ε < 1, N, k ∈ N, λ = k/N , H be a fixed digraph with h

vertices, m be the number of edges in H, σ =
((h

2)
m

)
, κ = log

1− (
√

ε)h

2

(1/6) = Θ(1/εh/2),

and θ = max{log 6f(ε;H)h!

σλ2
(2/3)1/κ, 1} = Θ(f(ε; H)) when f(ε; H) is only dependent on

1/ε. If the value of f(ε; H) is large enough such that

(
f(ε;H)h!

((
h
2)
m)λ

)θ

≥ (λ/6)θ(2/3)1/κ,

then we say f(ε; H) satisfies condition 1.

Fact 13 ([7]) For a connected H, f(ε; H) has a polynomial dependency on 1/ε if

and only if the core of H is either an oriented tree or a directed cycle of length 2.

By Fact 13, f(ε; H) has a polynomial dependency on 1/ε for many H. Since the

value of f(ε; H) is independent of h and m and
(

2
3

)1/(θκ) ≤ 1, assuming f(ε; H) =

O((1/ε)j), we can find a smaller ε = O

[
((

h
2)
m)
h!

λ2

6

(
2
3

)1/(θκ)

]−j

 such that

f(ε; H) ≥
((h

2)
m

)

h!

λ2

6

(
2

3

)1/(θκ)

i.e.,

(
f(ε; H)h!
((h

2)
m

)
λ

)θ

≥ (λ/6)θ(2/3)1/κ;

hence f(ε; H) satisfies condition 1.

28

Claim 14 Assume 0 < ε < 1, N, k ∈ N and k ≥ √
εN . Suppose the input digraph

G = (V, E) with N vertices contains an H-free k-induced subgraph, say K = (Vk, Ek).

The probability of S ⊆ Vk for a random h-subset S ⊆ V is greater than (
√

ε)h/2 for

N large enough.

Proof : The probability of S ⊆ Vk for a random h-set S is

(
k
h

)
(

N
h

) =
k(k − 1) · · · (k − h + 1)

N(N − 1) · · · (N − h + 1)
.

Since k ≥ √
εN , the above probability is at least

√
εN(

√
εN − 1) · · · (√εN − h + 1)

N(N − 1) · · · (N − h + 1)
>

(
√

ε)h

2

for N large enough. Q.E.D.

Claim 15 Let 0 < ε < 1, N, k ∈ N, λ = k/N , H be a fixed digraph with h vertices

and m be the number of edges in H. Suppose the input graph G = (V, E) with N

vertices is ε-far from any digraph having property Pk,H . The probability of finding an

h-set whose induced subgraph contains copies of H is at least f(ε; H)h!/
[((h

2)
m

)
λ
]
.

Proof : By Corollary 10, each k-induced subgraph of G contains at least f(ε; H)Nh/
[((h

2)
m

)]

h-sets whose induced subgraphs contain copies of H. Therefore, by dividing V into

N/k k-sets, we can find at least
[
f(ε; H)Nh/

((h
2)
m

)]
(N/k) = f(ε; H)Nh/

[((h
2)
m

)
λ
]

h-sets whose induced subgraphs contain copies of H in G, and the probability of

29

finding an h-set whose induced subgraph contains copies of H is at least

f(ε;H)Nh

((
h
2)
m)λ(
N
h

) =
f(ε; H)Nh · 1

λ
· h!

N(N − 1) · · · (N − h + 1)
((h

2)
m

)

>
f(ε; H)h!
((h

2)
m

)
λ

. Q.E.D.

The following theorem proves the testability of Pk,H .

Theorem 16 Let 0 < ε < 1, 0 < k < N be an integer and H be a fixed digraph.

If f(ε; H) satisfies condition 1, the property Pk,H is testable with a query complexity

independent of the input size.

Proof : Suppose k <
√

εN . Then the number of edges in a k-induced subgraph

is less than εN2. The input graph G, therefore, cannot be ε-far from any digraph

which has property Pk,H , and we can simply accept it. Assume k ≥ √
εN for the rest

of the proof.

Suppose the input digraph G = (V, E) contains an H-free k-induced subgraph,

say K = (Vk, Ek). The probability that the algorithm accepts G is at least the

probability of selecting a subset of Vk in step 6 of the algorithm in Fig. 5.1 and the

tester accepts in step 12 for some j.

By Claim 14, the probability of S * Vk is at most 1 − (
√

ε)h/2. As we inde-

pendently select κ h-sets S, the probability of S * Vk for all κ of them is at most

[
1− (

√
ε)h/2

]κ
= 1/6. Assume S ⊆ Vk from now on. We randomly select p other

vertices (with replacements) in step 8. Denote the jth such (θh)-multiset by Sj.

The algorithm then checks if the induced subgraph of Sj ∪ S contains a copy of H.

30

Let event B mean Sj ∪ S contains a copy of H for all j. Given S ⊆ Vk, if more

than θh vertices are selected from Vk in step 8, then event B will not occur (note

that θ ≥ 1). Thus the probability of event B is at most the probability that the

algorithm selects fewer than θh vertices from Vk in step 8. Let y be the number

of vertices of these p vertices selected in step 8 that belong in Vk (with multiplic-

ity counted). Then Pr[event B] ≤ Pr [y < θh]. We estimate the upper bound

of the above probability by the Chernoff bound. As the probability of selecting a

vertex in Vk is k/N = λ and the total number of selections is p = 6θh/λ, we have

µ = E[y] = (6θh/λ)λ = 6θh. Rewrite Pr[event B] = Pr [y < (1−∆)6θh], where

∆ = 5/6. By the Chernoff bound, Pr[event B] ≤ e−µ∆2/2 = e−6θh(5/6)2/2 = e−25θh/12.

Since θh > 1, Pr[event B] < e−2 < 1/6. Hence the probability that we select an h-set

from Vk in step 6 that leads to acceptance in step 12 is at least (1−1/6)(1−1/6) > 2/3.

The probability that a digraph G which has property Pk,H will be rejected is thus

less than 1/3. See Fig. 5.2 for illustration.

On the other hand, suppose the input graph G = (V,E) is ε-far from any digraph

which has property Pk,H . Obviously, the probability that the algorithm accepts is

equal to the probability that we find an h-set S whose induced subgraph does not

contain an H, and after we randomly select p additional vertices (with replacements),

there exists a (θh)-multiset Sj from those p selected vertices such that the induced

subgraph of Sj ∪ S contains no copies of H. By Claim 15, the probability of finding

an h-set that contains copies of H is at least f(ε; H)h!/
[((h

2)
m

)
λ
]
. For each (θh)-

multiset Sj, at least θ disjoint h-sets are checked; hence the probability that Sj ∪ S

31

contains copies of H is at least

(
f(ε;H)h!

((
h
2)
m)λ

)θ

= (λ/6)θ · (2/3)1/κ. We then test
(

p
θh

)

(θh)-multisets in step 12. Since

(
p

θh

)
=

(6θh/λ)!

(θh)!
=

(6θh/λ)[(6θh/λ)− 1] · · · [(6θh/λ)− θh]

(θh)!
> (6/λ)θh > (6/λ)θ,

the probability that the induced subgraph of Sj ∪ S contains copies of H for all j is

at least (6/λ)θ · (λ/6)θ · (2/3)1/κ = (2/3)1/κ. So, for each h-set S that passes the test

in step 7, the probability that S does not lead to acceptance in step 12 is at least

(2/3)1/κ. Hence, regardless whether S passes the test in step 7, the probability that

none of the S leads to acceptance in step 12 is at least
[
(2/3)1/κ

]κ

= 2/3. Therefore,

the probability that the algorithm accepts the input is less than 1/3.

The query complexity of step 7 is O (h2) and the query complexity from step 9 to

step 10 is O
((

p
θh

)(
θ
2

))
. Since

(
p
θh

)(
θh
2

)
> h2, the query complexity is O

(
κ
(

p
θh

)(
θh
2

))
.

This value is independent of N . Hence the theorem follows. Q.E.D.

The value of f(ε; H) decreases extremely fast with ε, and is independent of

n [7]. Although it is difficult to compute the exact value of f(ε; H) in general,

we can estimate a lower bound of f(ε; H) by Szemerédi’s regularity lemma, and

[(1− ε)/(2 + h)]h is one such lower bound. In our algorithm in Fig. 5.1, f(ε; H) is

just a coefficient. The soundness of our algorithm in Fig. 5.1 is proved in Theorem

16. We can replace f(ε; H) by [(1− ε)/(2 + h)]h in step 4 of our algorithm in Fig. 5.1

without changing the validity of Theorem 16. The consequence is that our algorithm

needs to query more edges in the input digraph, but the total number of queried

edges remains independent of the input size.

32

· · ·

The input digraph

Randomly select an h-set
If the h-set is H-free

Test if the induced subgraph of the

union between the (θh)-set and the h-set

is H-free

h-set

Randomly select 6/λ (θh)-sets

Figure 5.2: Testing the property Pk,H .

33

Let k >
√

εN , ε be a constant and H1 = (V1, E1) be a digraph where V1 =

{v1, v2, . . . , vd+1} and E1 = {(v1, vd+1), (v2, vd+1), . . . , (vd, vd+1)}. It is commonly

called a star graph. We can use the algorithm in Fig. 5.1 to test whether the

input digraph contains an H1-free k-induced subgraph. Obviously if a digraph is

accepted by our algorithm, then the maximum indegree of this digraph is bounded

by d with high probability. Similarly, let H2 = (V, E2) be a digraph where E2 =

{(vd+1, v1), (vd+1, v2), . . . , (vd+1, vd)}. We can use the algorithm in Fig. 5.1 to test

whether the maximum outdegree of the input digraph is bounded by d with high

probability. If an input digraph is accepted by our algorithm for both H1 and H2,

then we know that this digraph satisfies the restrictions of the BR tester. In this

case, we use the BR tester to test strong connectivity of the input digraph. The total

query complexity of testing strong connectivity is the sum of the query complexities

of the algorithm in Fig. 5.1 and the BR tester. Since the query complexities of the

algorithm in Fig. 5.1 and the BR tester are both independent of the input size, the

sum of the query complexities of both algorithms remains independent of the input

size. The query complexity of our strong connectivity tester in Fig. 4.2 is the square

root of the input size. Hence, the sum of the query complexities of the algorithm in

Fig. 5.1 and the BR tester is less than the query complexity of our strong connec-

tivity tester in Fig. 4.2. Since the main efficiency parameter of a method to solve

a property testing problem is its query complexity, our strong connectivity tester is

not the most efficient one for all digraphs. It is better to use the algorithm in Fig. 5.1

to determine which tester (the BR tester or our strong connectivity tester) should

34

be used to test the strong connectivity of the digraph.

35

Chapter 6

Testing of Group Properties

6.1 Finite group-like structure

A finite group-like structure s is a four-tuple (Γ, ◦, i, 1), where Γ is the groundset of s,

◦ is a binary operator, i is the inverse operator, and 1 is the identity element. Finite

groups are finite group-like structures where ◦ is the group multiplication [37]. Let

S be a family of finite group-like structures and Π ⊆ S. We say a finite group-like

structure s has property Π (or s satisfies property Π) if it is an element of Π. An

ε-tester for a property Π is a randomized algorithm that is given a finite group-like

structure s and a distance parameter ε. The tester can make queries as to the results

of operations on elements of s. The total number of queries is the query complexity

of the tester. Let the property Π be {si}. Given an upper bound M on the size of

the groundset, the tester needs to distinguish with probability at least 2/3 between

the case of s having Π and the case of the minimum cost to transform s to any si

being at least εM2 (we will define the cost metric shortly). In the latter case, s is

36

said to be ε-far from having property Π. The probability 2/3 can be replaced by any

constant smaller than 1 as the algorithm can be repeated if necessary.

The cost used for transforming group-like structures will be similar to the edit

distance for strings. As a result, it will make sense to “correct” group-like structures

by modifying the operations and sizes of their groundsets. A table of size k is a k×k

matrix K whose element in row i and column j is denoted by kij for 1 ≤ i, j ≤ k.

Three operations transform the table K into a new table. An exchange operation

at place (i, j) modifies the value kij and leaves others unchanged. The cost of an

exchange is 1. An insert operation at index i, where 1 ≤ i ≤ k + 1, transforms K

into new table of size k + 1 by inserting 2k + 1 elements to make a new row and a

new column of index i. The cost of an insert is 2k + 1. A delete operation at index

i, where 1 ≤ i ≤ k, transforms K into a new table of size k − 1 by deleting the ith

row and the ith column. The cost of a delete is 2k − 1. Let ◦ : Γ × Γ −→ Γ be a

binary operator, where Γ = {g1, g2, . . . , gk} is a finite set of size k. A table K of size

k is said to represent ◦ if kij = gi ◦ gj for 1 ≤ i, j ≤ k [37].

6.2 Research work related to group property test-

ing

A group-like structure property is testable if the property has an ε-tester (or simply a

tester) and the cost is sublinear in the input size M2. The first testers are constructed

for algebraic problems under the name of self-testers [22, 57]. Blum, Luby and

Rubinfeld construct the first homomorphism tester for abelian groups [22] (we call

37

it the BLR tester). The BLR tester is extended to non-abelian groups by Ben-Or,

Coppersmith, Luby and Rubinfeld [18]. Several works have dealt with reducing the

2 log |G| random bits per basic trial of the BLR tester in abelian groups [19, 45,

66]. Improved analyses relating the distance to the rejection probability have been

given for testing homomorphism [13, 15, 16]. More recently, Friedl, Ivanyos and

Santha construct a tester which, given a finite group-like structure, tests if it is an

abelian group (we call it the FIS tester) [37]. The query complexity of the tester

is polylogarithmic in the size of the groundset. For reading convenience, we denote

group-like structures by their groundsets and operators.

6.3 Tester construction

Friedl, Ivanyos and Santha modify the quantum algorithm of Cheung and Mosca [28]

to test if a finite group-like structure s = (Γ, ◦, i, 1) is an abelian group (we call it the

FIS tester earlier). We use the FIS tester in the first part of our testing algorithm.

If it fails, we reject s. If the FIS tester does not reject s, then we test whether there

exists a k-subset of groundset Γ whose Cayley graph is strongly connected.

Definition 17 ([31]) Given a prime number p, a p-group is a group in which each

element has a power of p as its order. A Sylow p-subgroup of a finite group G is a

maximal p-subgroup of G (i.e., a Sylow p-subgroup is not a proper subgroup of any

other p-subgroup of G).

Denote a finite group being generated by a set {s1, . . . , sm} as 〈s1, . . . , sm〉 and

a finite group being generated by a set S as 〈S〉. We next present a series of useful

38

results before proving the main result of this paper.

Fact 18 ([31]) (1) Let G be a finite group whose order is a multiple of a prime p.

Write |G| = pns, where n > 0 and p does not divide s. Then G has a Sylow p-

subgroup with order pn. (2) For any cyclic group H, the number of generators of H

is φ(|H|), where φ is Euler’s totient function. (3) If G is a finite group and p is a

prime dividing |G|, then G has an element of order p. (4) If G is a finite group and

H is a subgroup of G, then the order of H divides the order of G.

Lemma 19 ([31]) Let s = (Γ, ◦, i, 1) be a finite group and g′ ⊂ Γ. If g′ does not

generate the group s, then the Cayley graph associated with g′ is disconnected and

each connected component of the Cayley graph represents a coset of the subgroup

generated by g′.

Lemma 20 Let s = (Γ, ◦, i, 1) be a finite group, k be an integer, 1 ≤ k < |Γ| and

C = {c1, . . . , cq} be a generator set of s with q > k such that no proper subset of C is

a generator set of s. Let the order of ci be mi and φ(m1) ≥ φ(m2) ≥ · · ·φ(mq) ≥ 1.

Then the Cayley graph associated with any k-set of C is not strongly connected.

Furthermore, for every k-set, we have to add at least |Γ|/∏k
x=1 c

mix
ix

edges to its

Cayley graph to make the graph strongly connected.

Proof : Since cmi
i = 1 for all 1 ≤ i ≤ q, without loss of generality, we assume that C

does not contain the identity element. By Theorem 2, the Cayley graph associated

with any k-subset of C is not strongly connected.

39

Connected component with size |〈C ′
〉|

Connected component with size |〈C ′
〉|Connected component with size |〈C ′

〉|

Add an edge between two connected

components sequentially

Figure 6.1: Cayley graph associated with C ′.

Let C ′ = {ci1 , ci2 , . . . , cik} be an arbitrary k-subset of C. For the Cayley graph

associated with C ′, by Lemma 19, the size of every connected component is |〈C ′〉|,
there are |Γ|/|〈C ′〉| different connected components and there is no egde between any

two different connected components.

We know that |〈C ′〉| ≤ ∏k
x=1 c

mix
ix

. Hence there are at least |Γ|/∏k
x=1 c

mix
ix

con-

nected components in the Cayley graph associated with C ′. Furthermore, we have to

add at least that many edges to make the Cayley graph associated with C ′ strongly

connected. See Fig. 6.1 for illustration. Q.E.D.

Lemma 21 Let Fk be the family of finite groups with a k-generator set. Suppose

a finite group s = (Γ, ◦, i, 1) is ε-far from every f ∈ Fk, pq1

1 pq2

2 · · · pqy
y is the prime

factorization of |Γ|, φ(pq1

1) > φ(pq2

2) > · · · > φ(p
qy
y), pq1

1 pq2

2 · · · pqy
y ≤ (1 − ε)M2 and

pq1

1 pq2

2 · · · pqy+1

y+1 > (1 − ε)M2. Then for any k-subset K of Γ, we have to add at

least |Γ|/(1− ε)M2 edges to the Cayley graph associated with K to make it strongly

connected.

40

Proof : By Fact 18(1), s contains Sylow pi-subgroup si for i = 1, 2, . . . , y. By

Fact 18(4), no Sylow pi-subgroup is a subgroup of any Sylow pj-subgroups for all

i 6= j. So, if a set g generates s, then
⋃y

i=1 gi ⊆ g where gi generate si. Since s is

ε-far from every group from Fk, s has no k-generator set and |g| > k. Let f be an

element in Fk that is closest to s. Since f has a generator set with size k, it does not

contain all sl for 1 ≤ l ≤ y; otherwise, s is an element of Fk and it is a contradiction.

Hence, if we want to modify s to be f , we have to remove some sm from s or reduce

some sm’s size. So, since s is ε-far from f and pq1

1 pq2

2 · · · pqz
z ≤ (1 − ε)M2, for any

k-subset K ⊆ Γ, the elements in K generate at most z Sylow pl-subgroups with

1 ≤ l ≤ z. By Lemma 20, we have to add at least |Γ|/(1− ε)M2 edges to make the

Cayley graph associated with s strongly connected. Q.E.D.

Note that for the input group-like structure (Γ, ◦, i, 1), the input size is the size

of the table corresponding to the function ◦ : Γ× Γ → Γ. Thus, the upper bound of

the table is M2, and M2 is the input size. Let ki be a k-subset of Γ and Gki
be ki’s

Cayley graph. Assume that there is a bound on the indegree and outdegree of each

vertex in every Gki
. We will prove that our algorithm in Fig. 6.2 will work and the

query complexity is polylogarithmic in the input size.

Theorem 22 Let S be the family of finite group-like structures, the upper bound of

groundsets be M , and Fa ⊆ S be the family of finite abelian groups with k-generator

set. If M is large enough, for every ε > 0, there exists an ε-tester for Fa and let

s = (Γ, ◦, i, 1) be the input group-like structure, the query complexity of the ε-tester

for s is polylogarithmic in the input size.

41

1: Use the FIS tester to test if s = (Γ, ◦, i, 1) is ε-far from being a finite abelian
group

2: if the FIS tester rejects then
3: REJECT
4: end if
{Let t < k. In step 1, FIS tester chooses many random elements γ1, . . . , γt from
Γ and gives the orders m1, . . . ,mt of γ1, . . . , γt, respectively}

5: if exist mi,mj are relatively prime then
6: Let W = {mj| all mj are relatively prime }
7: else
8: W = {max1≤i≤t mi}
9: end if

10: l =
∏

mj∈W γ
mj

j and ε′ =
εM2−∑|Γ|

i=|Γ|−l
(2i−1)

M2

11: Let Φ = max{ |Γ|
(1−ε)M4 , ε

′}
12: Uniformly and independently select m = Θ(1/εk) vertices a1, a2, . . . , am in Γ
13: Let A = {a1, a2, . . . , am} and i = 1
14: while i <

(|Γ|
k

)
+ 1 do

15: Select the ith k-set Ki {note that there are
(|Γ|

k

)
k-sets in V }

16: Use the BR tester on A to test if GKi
(GKi

is Ki’s Cayley graph) is Φ-far
from being a strongly connected digraph

17: if the BR tester accepts GKi
then

18: ACCEPT
19: else
20: i ← i + 1
21: end if
22: end while
23: REJECT

Figure 6.2: An ε-tester for the proposition whether a finite group-like structure is a
finite abelian group with a k-generator set. This algorithm will be used in the case
that there is a prior bound on the indegree and outdegree of each vertex in every
k-set’s Cayley graph.

42

Proof : Suppose the input s is a correct instance, by [37] and Theorem 3, our

algorithm in Fig. 6.2 will accept it. On the other hand, assume s is ε-far from every

elements of Fa. The probability of our algorithm in Fig. 6.2 rejecting it is at least 2/3.

But if the FIS tester does not reject s and s is ε-close to a finite group, our algorithm

in Fig. 6.2 will still reject it with probability at least 2/3. We prove it as follows.

Recall that in the beginning of our algorithm, the FIS tester picks sufficiently many

random elements γ1, . . . , γt from Γ, and the FIS tester only accepts s when the set

{γ1, . . . , γt} can generate a subgroup s′ = (Γ′, ◦′, i′, 1′). Since ε′ =
εM2−∑|Γ|

i=|Γ|−l
(2i−1)

M2 ,

we know that
∑|Γ|

i=|Γ|−l(2i− 1) < (ε− ε′)M2. So s′ contains no k-generator set since,

otherwise, we could transform s to be s′ ∈ Fa by removing |Γ| − l elements of s with

a cost at most εM2. Then, s is ε-close to an element of Fa, a contradiction. Thus, let

the prime factorization of |Γ| be pq1

1 pq2

2 · · · pqy
y where φ(pq1

1) > φ(pq2

2) > · · · > φ(p
qy
y)

and Φ = max{φ(p
qy
y)

|Γ|2 , ε′}. If the FIS tester accepts s, by Lemma 21, all Cayley graphs

of k-sets of Γ′ are at least Φ-far from being strongly connected. By Theorem 2, our

algorithm will reject s with probability at least 2/3.

The query complexity of the FIS tester is polylogarithmic in M and the query

complexity of the BR tester is O(1/ε). Obviously, the query complexity of our algo-

rithm is polylogarithmic in M . Q.E.D.

In an abelian group (Γ, ◦, i, 1), for each k-subset K of Γ, the indegree and out-

degree of the Cayley graph associated with K are bounded by k. Suppose k is a

constant. We use the BR tester to test the input digraph. The query complexity is

polylogarithmic in the input size. But if k is not a constant, we use the CONN tester

43

instead of the BR tester. The new algorithm appears in Fig. 6.3. Since the query

complexity of the CONN tester is linear in the square root of the input size, in the

worst case, the query complexity of the new algorithm is linear in the square root

of the input size, too. Obviously, if we want to test if a group-like structure is an

abelian group with a k-generator set deterministically, we need to query all results

of the binary operation. Hence the query complexity will be the input size. The

efficiencies of the deterministic algorithm and our testing algorithm are compared in

Fig. 6.4.

44

1: Use the FIS tester to test if s = (Γ, ◦, i, 1) is ε-far from being a finite abelian group
2: if the FIS tester rejects then
3: REJECT
4: end if

{ Let t < k. In step 1, FIS tester chooses many random elements γ1, . . . , γt from Γ and gives the orders
m1, . . . , mt of γ1, . . . , γt, respectively}

5: if exist mi, mj are relatively prime then
6: Let W = {mj | all mj are relatively prime }
7: else
8: W = {max1≤i≤t mi}
9: end if

10: l =
∏

mj∈W γ
mj

j and ε′ =
εM2−∑|Γ|

i=|Γ|−l
(2i−1)

M2

11: Let Φ = max{ 1
(1−ε)M4 , ε′}

12: Uniformly and independently select m = Θ(1/εk) vertices a1, a2, . . . , am in Γ
13: Let A = {a1, a2, . . . , am} and i = 1

14: while i <
(|Γ|

k

)
+ 1 do

15: Select the ith k-set Ki {note that there are
(|Γ|

k

)
k-sets in V }

16: if k is a constant then
17: Use the BR tester on A to test if GKi

(GKi
is Ki’s Cayley graph) is Φ-far from being a strongly

connected digraph
18: if the BR tester accepts GKi

then
19: ACCEPT
20: else
21: i ← i + 1
22: end if
23: else
24: Use the CONN tester on GKi

to test if it is Φ-far from being a strongly connected digraph
25: if the CONN tester accepts GKi

then
26: ACCEPT
27: else
28: i ← i + 1
29: end if
30: end if
31: end while
32: REJECT

Figure 6.3: An ε-tester for the proposition whether a finite group-like structure is a
finite abelian group with a k-generator set.

45

1 2 10

10

20

100

Query times of our testing algorithm

Query times of any algorithm

Figure 6.4: Efficiency comparison when M = 10.

46

Chapter 7

Conclusion

This dissertation develops a tester to test the strong connectivity of digraphs. Then

we construct an algorithm for testing digraphs with an H-free k-induced subgraph.

In the last part of this dissertation, this dissertation combines the strong connectivity

tester to test if a finite group-like structure has a k-generator set. The fundamentals

of the dissertation rely on the following oracles:

1. We can specify any adjacency matrix of a digraph G and ask whether an edge

exists between any pair of vertices.

2. For any group-like structure (Γ, ◦, i, 1), we can ask the result of x ◦ y for all

x, y ∈ Γ.

The query complexities of our property testing algorithms are very low and our

results are efficient.

47

Bibliography

[1] A. Abdollahi, A. Faghihi and A. M. Hassanabadi, 3-generator groups whose

elements commute with their endomorphic images are abelian, Communications

in Algebra, 36(10) (2008), pp. 3783–3791.

[2] A. Abdollahi, A. Faghihi and A. M. Hassanabadi, Minimal Number of Gener-

ators and Minimum Order of a Non-Abelian Group whose Elements Commute

with Their Endomorphic Images, Communications in Algebra, 36(5) (2008), pp.

1976–1987.

[3] S. B. Akers and B. Krishnamurthy, A group-theoretic model for symmetric inter-

connection networks parallel processing, International Conference Parallel Pro-

cessing, (1986), pp. 216–233.

[4] N. Alon, E. Fischer, M. Krivelevich and M. Szegedy, Efficient Testing of Large

Graphs, FOCS (1999), pp. 656–666.

[5] N. Alon, E. Fischer, I. Newman and A. Shapira, A Combinatorial Characteriza-

tion of the Testable Graph Properties: It’s All About Regularity, STOC (2006),

pp. 251–260.

48

[6] N. Alon and A. Shapira, A Characterization of Easily Testable Induced Sub-

graphs, SODA (2004), pp. 942–951.

[7] N. Alon and A. Shapira, Testing Subgraphs in Directed Graphs, STOC (2003),

pp. 700–709.

[8] F. S. Annexstein, M. Baumslag and A. L. Rosenberg, Group Action Graphs and

Parallel Architectures, SIAM J. Comput., 19(3) (1990), pp. 544-569.

[9] G. B. Arfken, Generators, Mathematical Methods for Physicists, 3rd ed. Orlando,

Academic Press, 1985.

[10] S. Arora, C. Lund, R. Motwani, M. Sudan and M. Szegedy, Proof Verification

and Hardness of Approximation Problems, FOCS (1992), pp 14–23.

[11] L. Babai and P. Erdős, Representation of Group Elements as Short Products,

Annals of Discrete Mathematics, 12 (1982), pp. 27–30.

[12] L. Babai, L. Fortnow, L. A. Levin and M. Szegedy, Checking Computations in

Polylogarithmic Time, STOC (1991), pp. 21–31.

[13] M. Bellare, D. Coppersmith, J. H̊astad, M. A. Kiwi, and M. Sudan, Linearity

Testing in Characteristic Two, IEEE Transactions on Information Theory, 42(6)

(1996), pp. 1781–1795.

[14] M. Bellare, O. Goldreich and M. Sudan, Free Bits, PCPs and Non-

Approximability - Towards Tight Results, FOCS (1995), pp. 422–431.

49

[15] M. Bellare, S. Goldwasser, C. Lund, and A. Russell, Efficient Probabilistically

Checkable Proofs and Applications to Approximations, STOC (1993), pp. 294–

304.

[16] M. Bellare and M. Sudan, Improved Non-approximability Results, STOC (1994),

pp. 184–193.

[17] M. A. Bender and D. Ron, Testing Properties of Directed Graphs: Acyclicity

and Connectivity, Random Structures and Algorithms, 20 (2002), pp. 184–205.

[18] M. Ben-Or, D. Coppersmith, M. Luby, and R. Rubinfeld, Non-abelian Ho-

momorphism Testing, and Distributions Close to Their Self-convolutions,

RANDOM-APPROX (2004), pp. 273–285.

[19] E. Ben-Sasson, M. Sudan, S. P. Vadhan and A. Wigderson, Randomness-efficient

Low Degree Tests and Short PCPs via Epsilon-Biased Sets, STOC (2003), pp.

612–621.

[20] J. Bermond, T. Kodate and S. Perennes, Gossiping in Cayley Graphs by Pack-

ets, Combinatorics and Computer Science, (1995), pp. 301–315

[21] S. N. Bhatt, F. R. K. Chung, J. W. Hong, F. T. Leighton and A. L. Rosen-

berg, Optimal Simulations by Butterfly Networks (Preliminary Version), STOC

(1988), pp. 192–204.

50

[22] M. Blum, M. Luby, and R. Rubinfeld, Self-testing/correcting with Applications

to Numerical Problems, J. Computer and System Sciences, 47(3) (1993), pp.

549–595.

[23] B. Bollobás, Complete Subgraphs Are Elusive, J. Comb. Theory (Series B), 21

(1976), pp. 1–7.

[24] M. R. Bridson and M. Tweedale, Deficiency and abelianized deficiency of some

virtually free groups, Math. Proc. Camb. Phil. Soc., Vol 143 (2007), pp. 257–264.

[25] R. M. Bryant, L. Kovcás and G. R. Robinson, Transitive permutation groups and

irreducible linear groups, Quart. J. Math. Oxford, 46(2) (1995), pp. 385–407.

[26] P. J. Cameron, R. Solomon and A.Turull, Chains of subgroups in symmetric

groups, J. Algebra, 127 (1989), pp. 340–352.

[27] G. E. Carlsson, J. E. Cruthirds, H. B. Sexton and C. G. Wright, Interconnection

Networks Based on a Generalization of Cube-Connected Cycles, IEEE Trans.

Computers, 34(8) (1985), pp. 769–772.

[28] K. Cheung and M. Mosca, Decomposing finite abelian groups, Quantum Infor-

mation and Computation, 1(3) (2008), pp. 26–32.

[29] C. E. Chronaki, A Survey of Evasiveness: Lower Bounds on the Decision-Tree

Complexity of Boolean Functions, Available on http://www.ics.forth.gr/ chron-

aki/papers/ur/eve.ps, (2002).

51

[30] Y. Dodis, O. Goldreich, E. Lehman, S. Raskhodnikova, D. Ron and A. Samorod-

nitsky, Improved Testing Algorithms for Monotonicity, RANDOM-APPROX

(1999), pp. 97–108.

[31] D. S. Dummit and R. M. Foote. Abstract Algebra, New Jersey, Prentice-Hall,

Inc, 1991.

[32] D. B. A. Epstein, Finite Presentations of Groups and 3-Manifolds, The Quar-

terly Journal of Mathematics, 12(1) (1961), pp. 205–212.

[33] F. Ergun, S. Kannan, R. Kumar, R. Rubinfeld and M. Viswanathan, Spot-

Checkers, STOC (1998), pp. 259–268.

[34] U. Feige and S. Kogan, The Hardness of Approximating Hereditary Properties,

Available on

http://research.microsoft.com/research/theory/feige/homepagefiles/

hereditary.pdf, (2005).

[35] E. Fischer and L. Fortnow, Tolerant Versus Intolerant Testing for Boolean Prop-

erties, Electronic Colloquium on Computational Complexity (ECCC), 11(105)

(2004).

[36] E. Fischer and I. Newman, Testing versus Estimation of Graph Properties,

STOC (2005), pp. 138–146.

[37] K. Friedl, G. Ivanyos and M. Santha, Efficient Testing of Groups, STOC (2005),

pp. 157–166.

52

[38] Z. Furedi, A. Naor and J. Verstraete, On the Turan Number for the Hexagon,

Available on

http://research.microsoft.com/research/

theory/naor/homepage%20files/final-hexagons.pdf, (2004).

[39] R. Gold and J. Kim, Bases for Cyclotomic Units, Compositio Mathematica,

71(1) (1989), pp. 13–27.

[40] O. Goldreich, S. Goldwasser, E. Lehman, D. Ron and A. Samorodnitsky, Testing

Monotonicity, Combinatorica, 20(3) (2000), pp. 301–337.

[41] O. Goldreich, S. Goldwasser and D. Ron, Property Testing and Its Connection

to Learning and Approximation, J. ACM, 45(4) (1998), pp. 653–750.

[42] O. Goldreich and D. Ron, A Sublinear Bipartiteness Tester for Bounded Degree

Graphs, Combinatorica, 19(3) (1999), pp. 335–373.

[43] J. H̊astad, Some Optimal Inapproximability Results, STOC (1997), pp. 1–10.

[44] J. H̊astad, Testing of the Long Code and Hardness for Clique, STOC (1996),

pp. 11–19.

[45] J. H̊astad and A. Wigderson, Simple Analysis of Graph Tests for Linearity and

PCP, Random Structures and Algorithms, 22(2) (2003), pp. 139–160.

[46] D. A. Holton, and J. Sheehan. The Petersen Graph, Cambridge, England, Cam-

bridge University Press, 1993.

53

[47] R. C. Holt, E. M. Reingold, On the Time Required to Detect Cycles and Con-

nectivity in Graphs, Mathematical Systems Theory, 6(2) (1972), pp. 103–106.

[48] M. Jerrum, A compact presentation for permutation groups, J. Algorithms, 7

(1986), pp. 60–78.

[49] G. Karpilovsky, The Schur multiplier. London Mathematical Society Mono-

graphs, New Series 2. Oxford: Clarendon Press. XIV, 1987.

[50] L. H. Kauffman, Virtual Knot Theory, Europ. J. Combinatorics, 20 (1999), pp.

663–691.

[51] M. J. Kearns and D. Ron, Testing Problems with Sublearning Sample Complex-

ity, J. Comput. Syst. Sci., 61(3) (2000), pp. 428–456.

[52] S. G. Kim, Virtual Knot Groups, Mathematics Subject Classification, Primary

57M25, 1991.

[53] D. G. Kirkpatrick, Determining Graph Properties from Matrix Representations,

STOC (1974), pp. 84–90.

[54] M. A. Kiwi, Probabilistically Checkable Proofs and the Testing of Hadamard-like

Codes, Ph.D. dissertation. Massachusetts Institute of Technology, Cambridge,

Mass, 1996.

[55] L. Kovács and M. F. Newman, Generating transitive permutation groups, Quart.

J. Math. Oxford, 39(2) (1988), pp. 361–372.

54

[56] T. Kövari, V. T. Sós and P. Turán, On a Problem of K. Zarankiewicz, Collo-

quium Math., 3 (1954), pp. 50–57.

[57] R. Lipton, New Directions in Testing. Series in Discrete Mathematics and The-

oretical Computer Science ACM/AMS, (2), 1991.

[58] A. Lucchini, F. Menegazzo and M. Morigi, Asymptotic results for transitive

permutation groups, Bull. London Math. Soc., 32 (2000), pp. 191–195.

[59] F. Menegazzo, The Number of Generators of a Finite Group, Irish Math. Soc.

Bulletin, 50 (2003), pp. 117–128.

[60] D. R. Morrison, On K3 Surfaces with Large Picard Number, Inventiones Math-

ematicae, 75(1) (1984), pp. 105–121.

[61] B. H. Neumann, A two-generator group isomorphic to a proper factor group, J.

London Math. Soc., s1-25(4) (1950), pp. 247–248.

[62] M. Parnas, D. Ron and R. Rubinfeld, Tolerant Property Testing and Distance

Approximation, Electronic Colloquium on Computational Complexity (ECCC),

11(10) (2004).

[63] R. L. Rivest, J. Vuillemin, A Generalization and Proof of the Aanderaa-

Rosenberg Conjecture, STOC (1975), pp. 6–11.

[64] R. Rubinfeld and M. Sudan, Robust Characterizations of Polynomials with Ap-

plications to Program Testing, SIAM J. Comput., 25(2) (1996), pp. 252–271.

55

[65] Y. Saad and M. H. Schultz, Topological Properties of Hypercubes, IEEE Trans-

actions on computers, (1988), pp. 867–872.

[66] A. Samorodnitsky and L. Trevisan, A PCP Characterisation of NP with Optimal

Amortized Query Complexity, STOC (2000), pp. 191–199.

[67] P. Shor, Polynomial-time algorithms for prime factorization and discrete loga-

rithms on a quantum computer, SIAM J. Computing, 26(5) (1997), pp. 1484–

1509.

[68] L. Trevisan, Recycling Queries in PCPs and in Linearity Tests (Extended Ab-

stract), STOC (1998), pp. 299–308.

[69] H. F. Trotter, Homology of Group Systems With Applications to Knot Theory,

The Annals of Mathematics, 2nd Ser., 76(3) (1962), pp. 464–498.

56

	phdtopcover.pdf
	ak2.pdf
	20090624.pdf
	keyword.pdf
	thesis-0621.pdf

