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Abstract

Bender and Ron construct a restricted tester on the strong connectivity of di-
graphs (we call it the BR tester). We generalize the BR tester to test the strong
connectivity of digraphs.

For any digraph H and a digraph G being far from any H-free digraph, Alon and
Shapira prove a lower bound of the number of H in G. After solving the problem
of testing the strong connectivity of digraphs, we use Alon and Shapira’s result to
construct a randomized algorithm, f(‘)'r tesﬁi.lrig digraphs with an H-free k-induced
subgraph. .

Our strong connect1v1t§‘f tester‘ has no rejstrmtlon but must query about the input

" ‘l-i" u _[_

more times than the restricted B tﬂsﬁv g}dppose an’ input digraph satisfies the
restrictions of the BR tester, usi tthR t#ster tortest the strong connectivity
of this input digraph is mo‘re efﬁblient than ugﬂhg our strong connectivity tester. If
we want to test the strong connect1v1ty of a dlgraph our randomized algorithm for
testing digraphs with an H-free k-induced subgraph can help us determine which
tester should be used to test the strong connectivity of the digraph: the BR tester
or our strong connectivity tester.

A generator set for a finite group is a subset of the group elements such that

repeated multiplications of the generators alone can produce all the group elements.

The number of generators of an abelian group is an important issue in many studies.



In most cases, it is not easy to identify whether a group-like structure is an abelian
group with k generators for a constant k. We construct an efficient randomized
algorithm that, given a finite set with a binary operation, tests if it is an abelian group
with a k-generator set. If k is not too large, the query complexity of our algorithm
is polylogarithmic in the size of the groundset. Otherwise the query complexity is at

most the square root of the size of the groundset.




Keywords: Property testing; Strong connectivity; H-free subgraph; Abelian

group; Generator.
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Chapter 1

Introduction

This world is full of decision problems, and we need to make decisions every day. In
computer science, a decision problem;asks if.an object has a predetermined property.
] .I ‘.‘

Unfortunately, sometimes no‘fast élgorithms exist~that give the exact answer. In

these cases, an approximate answer within a.reasonable complexity is an attractive

. | Fa'
alternative. o —31
| T,

A property-testing algorithm (i) er's q:-ﬁl;?—;a%mfwers. Fqlr a fixed property P and any
object O, the property—tes‘pipg ailg rithg'det%ﬂﬁinewhether O has property P, or
whether O is far from havihg .pljoplé:rty 2 (i.e.i far. from any other object having P).
It is, however, arbitrary on objects falling beléween the two categories. For example,
the object can be a graph and the property can be 3-colorabilty. The task should
be performed by querying the object (in as few places as possible). In the example,
what we query is the existence of edges between two vertices.

Many recent research results concern the testing of graph properties and group

properties. In computer science, the general notion of property testing is first formu-



lated by Rubinfeld and Sudan [64]. In their formulation, a property testing algorithm
for property P is given oracle access to the tested object. Distance between instances
is measured in terms of the fraction of arguments in the domain.

Property testing emerges naturally in the context of program checking and proba-
bilistically checkable proofs (PCP). Specifically, in the context of program checking,
one may choose to test if the program satisfies certain properties before checking
that it computes a specified function. This paradigm has been followed both in
the theory of program checking [22, 64], and in practice where often programmers
first test their programs by verifying that the programs satisfy properties that are
known to be satisfied by the funetions they.compute. In the context of probabilis-
tically checkable proofs, the propertyn'teste.a-“is being a codeword with respect to a
specific code. This paradlgm exphc1t1y mtroduced m Babai, Fortnow, Levin and
Szegedy’s result, has shlfted to te%tmg;”HadanT.éird codes and then to testing the long
code [10, 13, 15, 16, 43, 44, 54, 68| AH"E-hesb papers have focused on property test-

m ¢
ing of algebraic properties such %il. hneai’lty, mmlm-hnea‘rlty and being a low-degree

polynomial. i P ‘: I ! |

The number of generators bf a~group is an 1mportant issue in many studies.
Knowing the number of generators of a group leads to a deeper understanding to the
structure of a group. It may help us to discover the features of the groups quickly.
A group in which every element commutes with its endomorphic images is called an

E-group. A generator set with size k is called a k-generator set and a group for which

the elements commute is called an abelian group. We know that every E-group with



a 2-generator set is abelian and all E-groups with a 3-generator set are nilpotent of
class at most 2 [2]. We also know that we need at least four generators to generate
a finite non-abelian E-group [1]. A group with a 2-generator set must isomorphic
to a proper factor group [61]. The number of generators of a group has also been
intensively studied [24, 25, 26, 48, 55, 58, 59].

This dissertation presents a method to combine the testing algorithms of digraphs
and groups to test whether a group-like structure is an abelian group with a k-
generator set. The first part of this dissertation is testing whether a digraph is
strongly connected. Bender and Ron construct a restricted tester on the strong
connectivity of digraphs (we calliit"the BRtester) [17]. There are some instances
that do not satisfy the restrictions of the B.'Pi‘tes.ter_. We generalize the BR tester to

test the strong connectivity ofidigraphs.

For any digraph H and a digre*lph-.\&zil_)qi'hgl f‘ar from aﬁy H-free digraph, Alon and
0 “:7!.; I
Shapira prove a lower bound, of 1f Iﬁrz’g'é'r lof H in G. After solving the problem

of testing the strong connectivitgr i dilng’éphq,Ewe use “Alon and Shapira’s result to
construct a randomized aﬂg&ithhj fordtesting d}gréphs with an H-free k-induced
subgraph. - 2

Our strong connectivity tester has no restriction but must query about the input
more times than the restricted BR tester. Suppose an input digraph satisfies the
restrictions of the BR tester, using the BR tester to test the strong connectivity

of this input digraph is more efficient than using our strong connectivity tester. If

we want to test the strong connectivity of a digraph, our randomized algorithm for



testing digraphs with an H-free k-induced subgraph can help us determine which
tester should be used to test the strong connectivity of the digraph: the BR tester
or our strong connectivity tester.

It is not easy to identify whether a group-like structure is an abelian group with
a k-generator set for any given constant k. In the last part of this dissertation, we
combine the testing algorithm for the abelian property of groups and the testing
algorithm for the strong connectivity of digraphs to form the testing algorithm for a
group-like structure being an abelian group with a k-generator set. Our method is
to use the strong connectivity of Cayley graphs to test if a finite group-like structure

has a k-generator set. Before tbafq, we éhc{uld tfrst 1f the input group-like structure is
\ g 3

set.




Chapter 2

Background

2.1 Question of property testing

We are interested in the following que‘stion.'of property testing:

Let II be a fixed property, and % be an 1nstance Our goal is to determine
(possibly probabilisti¢ally) L7 h-a,-s prqperty IT or if it is far from any
H

instance that has property|:[l, W\T)re the distance between instances is

measured with respect to kt e uniform probablhty distribution on the

1
domain of ¢. Towards this goal, we are aHQWed to select some elements

from ¢ and query a specific information abotit £ on elements of our choice.

Let T be the class of instances that satisfy property II. Then, testing property II
corresponds to testing membership in the class T. The two most relevant parameters
to property testing are the distance, hereafter denoted ¢, and the desired confidence,
denoted p. We require the tester to accept each instance in 7" and reject every

instance that is more than ¢ away from any instance in 7. We allow the tester to be



probabilistic, and make incorrect positive and negative assertions with probability
at most p. The complexity measures we focus on are the query complexity (the
number of queries made). We believe that property testing is a natural notion
whose relevance to applications goes beyond program checking, and whose scope

goes beyond the realm of testing algebraic properties.

2.2 Property testing on combinatorial objects

Working within the above framework, we venture into the domain of combinato-
rial objects. In particular, we study testing group properties and graph properties,
and demonstrate its relevanceito the notlons of approximation. We hope to derive
extremely efficient algorithmstior testlng natural properties.

We only consider the ".uniform,_probability distribution on these combinatorial

objects, as well as algorithms that ‘(‘)ﬁlf_obj‘tam random samples.

r"’ i
2.3 Property testn?& and learmng theory

i
Our formulation of testing mlmlcs the standard ffa‘meworks of learning theory. Sup-

pose the property Il is a set of fuﬁctions. In ' both property testing and learning
theory, one is given access to an unknown target function f. However, there are two
important differences between them. First, the goal of a learning algorithm is to
find a good approximation to the target function f € II, whereas a testing algorithm
should only determine whether the target function is in II or far away from it. This

makes the task of testing seem easier than that of learning. But that is misleading



because a learning algorithm should perform well only when the target function be-
longs to II, whereas a testing algorithm must perform well in such cases as well as
on functions far away from II.

Goldreich, Goldwasser and Ron show that the relation between learning and
testing is nontrivial. On one hand, proper learning (i.e., when the hypothesis of
the learning algorithm must belong to the same class as the target function) implies
testing. On the other hand, there are function classes for which testing is harder
than (nonproper) learning (i.e., when the hypothesis is not required to belong to the
same class as the target function), provided NP ¢ BPP [41].

@@IL’}L@%
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Chapter 3

Testing of Digraph Properties

3.1 Property testing on digraphs

We define property testing for digraphs nekﬂtjz Let_IT be a property of digraphs, that
is, a family of digraphs closed sinder isomorphism. A digraph G = (V, E) is e-close
to having property II if thére exists a“u“digr‘aprlil G = (V,'E” ) having property IT such
A ' )
that the symmetric différence betv‘izee;‘lf' «-ét’nd“ E’ is at most e(";l). We say that a
digraph G is e-far from having pr!O&)ert l'!1“'1 if this not e-close to having property I1.
An e-tester (or simply a té"‘ster)‘l for a digrapfa i){operty ITis a randomized algorithm
that is given a size parametef N ,-a distanee pafameter € and the ability to make
queries as to whether a directed edge of the input digraph G with N vertices exists.
The total number of queries is called the query complexity of the tester. Let {g¢;}
be the set of digraphs with N vertices that satisfy II. The algorithm needs to
distinguish with probability at least 2/3 between the case of G having IT and the

case of (G differing from any g; in at least e(];f ) edges [7]. In the latter case, G is



said to be e-far from property II. More specifically, T" is an e-tester for II if for every

G = (V, E) and every ¢, the following two conditions hold:
(1) if G has property II, then Pr[T accepts G |> 2/3;
(2) if G is e-far from having property II, then Pr[T accepts G|< 1/3.

The probability 2/3 can be replaced by any constant smaller than 1 because the
algorithm can be repeated if necessary. A graph property is testable if the property

has a tester and the total number of queries is o(N?).

3.2 Research work related‘ to graph property test-

ing

A testing algorithm for graph property H cam maké“queries on the incidence re-
lations of vertices in am input grd;phﬁ'-?qd’perty IT s Q(N?)-evasive if there is
no deterministic testing-algorithm Wlthmquer& vcompleXLty o(N?) that can correctly
decide if the input has 1L Holt dnd Remgoldlare thefirst to consider the complex-
ity of recognizing graph propertles from their, adJacency matrix representations [47].
They show that the graph properties of connectivity and the existence of cycles
are both Q(N?)-evasive. An important open problem in this area is the Aanderaa-
Rosenberg conjecture: Every nontrivial monotone graph property without self-loops
is (]; )—evasive [23, 29, 47, 53]. Rivest and Vuillemin resolve a weaker version of the
Aandreaa-Rosenberg conjecture [63]. The weaker version says that every nontrivial

monotone graph property has decision tree complexity Q(N?).

9



The testing of graph properties is pioneered by Goldreich, Goldwasser and Ron
[41]. They showe that all graph properties describable by the existence of a partition
of a certain type are testable. For a fixed digraph H with at least one edge, let Py
denote the property of the input digraph being H-free. In other words, the digraph
GG has Py if and only if it contains no subgraphs isomorphic to H. Alon and Shapira
prove that Py is testable with a total number of queries bounded only by a function of
¢, independent of N [7]. This result has been improved later by Alon and Shapira [6].
Alon, Fischer, Krivelevich and Szegedy show that every first-order undirected graph
property without a quantifier alternation of type "V 3”7 has e-testers whose query
complexity is independent of theisize of the‘input digraph [4]. More recently, Alon,
Fischer, Newman and Shapira prove“a Ve.ily‘ general result for undirected graphs,
which says that the property, deﬁned by havmg any.- glven Szemerédi-partition is

testable with a constant number| of p&grles [5] Moreover a purely combinatorial

ﬂ
characterization of the graph proqejtie!fgfesﬂaple with a constant number of queries.

The testing of other graph and F mbinifﬁorialin properties has also been intensively

1
studied [30, 33, 40, 42, 51].° ]' : =

3.3 Reduction between ‘group properties and di-

graph properties

In this section, we define Cayley graphs and introduce the reduction between group

properties and digraph properties.

Definition 1 ([46]) Let G be a group, o be the group multiplication and S be a

10



subset of the group’s elements not containing the identity element. The Cayley graph
associated with S is defined as the digraph having one vertex associated with each

group element G and directed edges (g, h) whenever goh™' € S.

The properties of Cayley graphs have been extensively studied in graph theory.
These properties are used to develop algebraic settings for studying certain structural
and algorithmic properties of the interconnection networks that underlie parallel
architectures, including the hypercube, butterfly, cube-connected cycles, multiple
rings and star networks [3, 8, 21, 27, 65]. Cayley graphs have also been used to
study the gossiping problem in communication networks [20)].

We say that a digraph is strongly Connected if there is a directed path from every

vertex v in the digraph to every other vertex o

Theorem 2 ([9]) The C’ayley gT@ph@gﬁomdﬁed wzth a subset of a group’s elements

but not containing the identity element)yis st1l‘o gly.connected iff the subset generates
F ;[ P

1)

Our method relies on the é‘ffong connectlylty"of Cayley graphs to test if a finite

the group.

group-like structure s = (I', 0,7, 1) has a k-generator set. A subset of a groundset
or a vertex set with size k will be called a k-subset from now on. By Theorem 2,
for an input group-like structure s = (T, 0,4, 1), if we can test whether there exists
a k-subset of I' with a corresponding strongly connected Cayley graph, then we can
test whether s has a k-generator set. In the next chapter, we develop an algorithm

for testing strong connectivity of digraphs.

11



Chapter 4

Testing Strong Connectivity on

Digraphs

4.1 Strongly connected component

In this chapter, we develop an algorithm for testing strong connectivity of digraphs

¢

and we will rely on the strong connectivity ‘ofl Cayley |graphs to test if a finite group-

like structure s = (I, 0,1, 1) has a k—é*neradtor set in the following chapter. For
a digraph G = (V, E) with indqglee and outdegree, bounded by d < [V, Bender
and Ron develop a tester on the sfrong connéétivity of digraphs (we call it the BR

tester) [17].

Theorem 3 ([17]) (1) If G is e-far from being strongly connected with indegree and
outdegree bounded by d, then the BR tester will reject it with probability at least 2/3.

(2) The BR tester has one-sided error. (3) The query complexity is O(1/€).

On the other hand, suppose there is no bound on the indegree and outdegree

of the digraph G. We construct another tester to test the strong connectivity of

12



digraphs in this chapter that is slightly different from the BR tester. To begin with,
testing strong connectivity is trivial when the distance parameter is greater than 2/n
for the following reason: We can always make a digraph connected by adding at most
n — 1 edges. Hence every digraph with n vertices is (2/n)-close to being strongly
connected because (2/n)(3) = n — 1. On the other hand, € should be greater than
1/ (72‘) for, otherwise, e(g) < 1. To make sure that the problem is not trivial, we
assume 1/(3) < e < 2/n from now on.

A strongly connected component of a digraph G = (V, E) is a maximal subgraph
H = (V' E') such that there is a directed path from each vertex p € V' to every
other vertex g € V'. Denote the set of Strongly connected components of G by C' =
{C1,Cs,...,Cy}. For vertices-u € Ciand be Cj‘, 1'% 7, such that e = (u,v) € E,
we call e an outgoing edge of C; and an 1ncom1ng edge of C;. We call a strongly

—

connected component a source 1@ 1p-has ahblf Outgomg edges a sink if it has only
incoming edges, an isolation if 111 aS‘r'r. ther Ioutgomg nor incoming edges, and a

m ||
transferrer if it has bothoutgoin% nd rﬂcomlmf edges b

1

Lemma 4 If a digraph G with iwvertices s §—far‘from being strongly connected, then

T
e

the total number of sources, sinksyand isolations in G exceeds en?.

Proof: Assume the claim of the lemma is wrong and proceed to obtain a con-
tradiction. Let set 7 contain all transferrers and set R consisting of the remaining

strongly connected components. We divide the problem up into two cases.

Case 1. 7 is empty.

A strongly connected component in G is either a source, a sink, or an isola-

13



tion, and hence a member of R. Pick a vertex from each strongly connected
component of G. As G has |R| strongly connected components, |R| vertices
are chosen. Turn these |R| vertices into a directed cycle by adding at most |R)|
directed edges to G. Now, for any ordered pair of vertices (u,v) in V, there
is a directed path from u to v; hence G is strongly connected. Recall that an
e-far digraph differs from the class of strongly connected digraphs by at least
en® + 1 edges. However this is a contradiction, since |R| < en?. See Fig. 4.1 for

llustration.

Case 2. 7 is not empty.
A chain of strongly connected.compoments (Cy, Cs, . . ., C,,) consists of strongly
| = E! ‘
connected components siich.that betweéen. anj two adjacent strongly connected

components C; and‘,‘é"‘iﬂ, thereds a direeted edge Vf-‘I?Qm a vertex of C; to a vertex

o Fie)

Far ‘If )
of Ciq1. 18— :‘ x| I

For any T' € 7 ; there 18 a loL est q&&am fi)ﬁl strongly-connected components S in
T containing 7" (i.e.;-.all me bers of S allr(ia transferrers and T is one of them).

Let S” be the head of the chaln S, Sh is.a strongly connected component with
both incoming and outgoing edges because S” € 7. There is no directed edge
from other strongly connected components in 7 to S* for, otherwise, S would
not be the longest chain containing 7T. Therefore, all the incoming edges of
Sh are outgoing edges of some sources. By the same token, all the outgoing

edges of the tail S* of S are incoming edges of some sinks. Consequently,

for any T € 7, we can always find a vertex p from a source and a vertex ¢

14



Strongly connected component Strongly connected component

-~ Choose a vertex from the strongly connected component

/
Choose a vertex

from the strongly
connected component

Turn these vertices into a directed cycle

~ = Choose a vertex from the strongly connected component

Strongly connected component

Figure 4.1: Testing strong connectivity of digraphs.

from a sink such that there is a directed path from p to ¢ passing through a

vertex of T'. As a result, if all the sources and sinks are turned into one single

strongly connected component, the transferrers will become part of the same
. £

.
4

component, too.

Therefore, if we can turn all mé'mbers of R 1nto one single strongly connected
n'“'-".- ' :ql
component R’, then for all ¥ Bnd all vertices z € T, and y € T},

there exists a directed pat rommxthrbﬁgh sonie’ vertices in R’ to y. So we
can ignore the transf@vrrers LLljfd concent ke on hOW to make all members of R
become one single strongly Canected subgraph We have thus reduced this
case to case 1, where 7 is empty. The number of directed edges we need to

2

add to G is thus at most |R|, too. If |R| is no greater than en’, we get a

contradiction. Q.E.D.

Lemma 5 A digraph e-far from being strongly connected must have at least (en?)/2

connected components each containing fewer than [£(2 —1)] vertices.

15



Proof: Assume the claim is wrong. Lemma 4 says that this digraph has at least
en? + 1 strongly connected components. Since every strongly connected component

has at least one vertex,

Lo |

For a digraph with .ng) bo oui;dggree of each vertex, the

the \Eﬁieg

algorithm that tests Whﬂth?i’- it, i strongly COil

10 ed ’apgears in Fig. 4.2 (we call it
the CONN tester). It is dbvmqgsly,.,—t est'r ﬁ'@bﬁoﬂg Connectwlty is trivial when

the distance parameter is greaterﬂ'tljaqi, 2-4’(0 To make sure that the problem is not

trivial, we assume 1/(}) < e < 2/n. The following theorem analyzes the algorithm.

Theorem 6 (1) Our algorithm has one-sided error. (2) Suppose G is e-far from

being strongly connected, then our algorithm will reject it with probability at least
logl_% 1/3)

€

2/3. (3) The query complezity is O (

16



L Let S = Qv m = Irloglf(en)/2 1/3—‘7 r = [%(% - 1)—|

2: while | S |< m do

3:  Pick an arbitrary vertex u from V' and add it to S

4:  Perform BFS on G starting from u and always use a visited vertex’s incoming
edges and stop when we reach = vertices

5. if we run out of new vertices then

6: REJECT e A LT o) oS

7. else G L

8 Perform BFS s a visited vertex’s outgoing

edges and sto
if we run ou
10: REJEC
11: end if

12:  end if
13: end while
14: ACCEPT

@

17



Proof: Since 1/(}) < e < 2/n, z < n. For a strongly connected digraph G, given
an arbitrary vertex u of V', a BFS always reaches at least z vertices by starting from
u. In other words, our algorithm never rejects GG, a yes instance; hence it has only
one-sided error.

For a no instance G, according to Lemma 5, there are at least (en?)/2 strongly
connected components, each containing fewer than x vertices. The probability that
an arbitrarily chosen vertex belongs to one of these (en?)/2 strongly connected com-
ponents is at least (6" )2 — (en)/2. Our algorithm outputs ACCEPT for a no
instance only when the while-loop executes m times. The probability is at most
[1— (en)/2]™ = [1 — (en)/2) =142 81 <1 /8, Hence, G is rejected with probability
at least 2/3. == =

Finding all of a Vertexs mcomlng (outgomg)..‘-\eighbors takes at most n queries

on the incoming (outgomg, respefctw?_lx ed%és given the adjacency matrix. Since

the while-loop is repeated at moslt ﬁ:{-s ﬂhp query complexity is bounded by:
AU I |

[ B L i )

=0 <M> . Q.ED.
€

According to Theorem 6, the query complexity of the CONN tester is much higher
than the BR tester. Suppose the indegree and the outdegree of an input digraph
are both bounded by a given constant, we can use the BR tester to test the strong
connectivity of the input in order to reduce the query complexity; otherwise, we use

the CONN tester. In the next chapter, we investigate the method to test whether a
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digraph contains H-free k-induced subgraphs. If we do not know the upper bounds
of the indegree and the outdegree of an input digraph, our result in the next chapter
can help us determine what algorithm to use and then use that algorithm to test the

strong connectivity of the input.

19



Chapter 5

Testing Whether a Digraph
Contains H-free k-induced

Subgraphs

5.1 Existence of H-free k-induced subgraphs is Q(N?)-

evasive =
‘.- ’.‘- - 1

In this section, we show-that thé guer;g complexity of any deterministic algorithm
for the existence of H-fre¢ k-indticéd subgraphs is (N ?2).

First, we need some results ‘coni¢cerning Turéh numbers. For any integer N and
a fixed graph H, let ex(N, H) denote'the maximum number of edges that an N-
vertex graph may have if it contains no isomorphic copy of H. This is the Turan
number of H. Furthermore, we will denote by b, ; the complete undirected bipartite

graph between a set of r vertices and another set of s vertices. The following fact is

well-known.
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Fact 7 ([54]) Forr < s, ex(N,b, ) = O(N*= /1),

If we replace the undirected edges of b, by directed edges with an arbitrary
direction, a complete bipartite digraph d, s results. The next theorem shows that it
is Q(N?)-evasive to determine if there is a d,. «~free k-induced subgraph in a digraph.
In our model, whenever an algorithm queries a pair of vertices x, y in the input graph,
it actually means that the algorithm queries the existence of edges (z,y) and (y, x)
simultaneously. For a set S, we say that a subset T C S is a k-subset of S if |T'| = k.
Suppose a digraph G contains a subgraph isomorphic to a digraph H. Then we say

G contains a copy of H.

Theorem 8 For any constant p <= k <N / 2 and any complete bipartite digraph
d,s, no algorithm can determme whether a dzgmph contams a d,s-free k-induced

subgraph with query complemty | p‘(‘z‘) iof k} )\N with /\ being a constant.

.-—m‘.;\‘ '
- -rrl

Proof: Suppose there exists aJn algo,[ﬁhm Athat determmes if a digraph contains

i
a d, s-free k-induced subgraph \ t11 queq‘l% For the rest of the proof, assume

k= O(N) and k is large enough S0 that

(1—p) (S) > ex(k, bys) = O(k* /M), (1)

Start with a digraph G; with N vertices that contains no copies of d, s (this is
easy to construct). Let Gy be the input of A. Obviously, all k-induced subgraphs of
Gy are d, s-free. Let Go = (Va, Ey) be a graph with N isolated vertices. Every time

A queries a pair of vertices x,y in Gy, we add that edge to G5 if there is an edge
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between them. When A stops, the resulting G5 has no k-induced subgraphs which
contain d, s, just like G;. For those vertex pairs of GGy that are not queried by A, we
add an edge (but without the directions) to Go. For each k-induced subgraph of Go,
at least (1—p) (g) undirected edges are added. According to Fact 7, every k-induced
subgraph of G must contain a copy of b, s with the undirected edges alone because
of Eq. (1).

Now, we select a k-induced subgraph K7 in G and replace one copy of b, ; in K,
by d,s. Let V,1 be the vertex set of this copy of d, s, and define h = |V},1| = r + s.

For each subset of V5 with size k that contains V; ;, its induced subgraph has a copy

k—h
4 e i e

"% of thq nu:mber of all such k-subsets to

of d, s too. There are (N h) such_ l% s{lbs{e’cg o,f-'V that contain V,;. Let k/N = A.

Recall that A\ is a (:onstan"lsr NOW 't“ 16

—

such that for every N >'m, it hgid‘sv‘—r’

@7 B, g "
bk Vigpepegkpht2  k—h+t1
_ SR >
NTN-1 N—h+2 N-h+1

N-
C(k/N) = (h/N)+1/N _ A
T 1I—(h-1)/N  1+x

Thus if N is large enough,

D) kk—1)-(k—h+1) A\
) N(N—l)---(N—h+1)>(1+>\)'
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We conclude that at least (h%\)h (]IZ ) k-induced subgraphs contain a copy of d, ;.
Next we select another k-induced subgraph Ky = (V/, E') with V' NV, = 0. It
is worth noting that Ky also has a copy of b, s, and the vertex set of b, s is V} 2. Like

what we did before, we replace this copy of b, s in K, by d, ;. There are (A,;:?Lh) such

k-subsets of V' that contain V5. The ratio of the number of all such k-subsets to the

number of k-induced subgraphs of G is (A]i:ih) / (Z,Z ) Again, for N large enough,

N G N () A\
A ™ = g B >(1+)\> ‘

We claim that in general, for every constant ¢,
N—ih g "'-'-'?1E"jEFJ;ﬂﬁEE‘E"‘?ﬁu:-wjr.
(i) k(k = 1)k slick 1) (N Sk) - (N — k — (i = )h + 1)

(M _N(N;é:h-,fﬂ\f‘ ' : \i?\]\ﬂf?i;:_h)u-(N—thrl)
( A )h £ \ @ \ (2)
>\1ox) £ a A

| I
To verify this, recall that asawe sr( Wer =
- N1 i B
kl:(g'kl'_ﬁl - JA — ) L) )\‘;{f
NS ATy
"",-.\, '\-,__:‘f' re "--l -.l ...“:v
As for '-'."":-.;.-‘_. " . B il
{v-r-'i}-, . N ,1 Jl
ORISR

(N—k)-(N—k—(i—Dh+1)
(N—h)--(N—ih+1)

since

N—k—(i—1)h+1
N —ih+1
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we have

(N k)N k1) (N—k—(i—Dh+1)  (N—k—(i—Dh+1)0"
N RN —h—1)- (N —ih+ 1) >( Nl )

Now, with &£ = AN, it is easy to see that

N—k—(i-Dhtl N-k—(i-Dh+1

1-2)
N—ih+1 > ( )

—_
~—

where the last inequality is due to k > (1 —1)h —1. Hence, when we repeat the above

(i -

process i times, at least g e
- ..l
r

=t
L

L

T .

i,

AF
i .
A

[(1—2)) + (1 -2
T
N
k-induced subgraphs-,-'éor}.ta'

=
formula (3) is less tha;n Q—l%_

e o

.f}gipea:tﬁfhis process 2A(A/(1 + X))~

Since A, h and (A/ ﬁi)\)ir  ¢onstants, \lr( c
times such that V;; N V},j;: ‘(Z)-“ffgf \ la%‘gé apgugh After having repeated
. % v T i
this process that many times, v’{;e-selggtf?))()\/ (ﬁ.,qu-A))—hh < N distinct vertices from

by

V for N large enough, and, by Eq. (2), the ratio of the number of Ky /(14x))-»
to the number of all k-induced subgraphs of Gy will be at least 2A(\/(1+ \))~".
The number of k-induced subgraphs that contain a copy of d,s then is at least

2A(\/(1 + )\))_hwg) = (V). In other words, after we repeat this process

2A(A\/(1+ A))~" times and remove the remaining undirected edges, all k-induced
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subgraphs of Gy will have a copy of d,,. This digraph G contains, therefore, no
H-free k-induced subgraph. However, A cannot distinguish between G and G5 be-
cause we have only changed G5’s unqueried edges. So, A will accept G5, which is a

contradiction. Q.E.D.

5.2 Tester construction

Fix a digraph H with h vertices and m > 1 edges. Recall that Py 5, where k > h,
denotes the property that GG contains an H-free k-induced subgraph. We will show
that property Py g is testable with a query complexity independent of the input size.
A set with size n will be calledian n- set and a multiset with size n will be called an

n-multiset. There is a functlon f (e H ) Wlth the fOllowmg properties, which will be

f "\' ‘l"
| I =5 I
L‘ PN s L

Theorem 9 ([7]) Let H* be\a fize dW’u{Zlh h uvertites and D be a digraph with

critical to our analysis later.

—

N wertices. If at least €N * edges have to,fbe réqoved from D to make it H-free, then

D contains at least f(é H);Nh co {es ofud . || ‘
The following corollary is imimediate.

Corollary 10 Let H be a fixed digraph with h vertices and m edges, D be a digraph
with N wvertices and o = ((T%)) If at least eN? edges have to be removed from D to
make it H-free, then D contains at least f(e; H)N" /o h-sets whose induced subgraphs

contain copies of H.
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Suppose the input N-vertex digraph G = (V, E) is e-far from having property
P..ir. Corollary 10 tells us that G must contain at least f(e; H)N"/ ((:2;)) h-sets whose
induced subgraphs contain copies of H. So to test property P, g on G, our idea is
to randomly select many h-sets from V. Suppose G contains an H-free k-induced
subgraph, say (Vj, Fx). Then with enough h-sets from V', at least one of them is
expected to be a subset of V; with high probability. To verify if this is the case,
we will check if an h-set S satisfies S C V}, in 2 steps. First, we check the induced
subgraph of S. When S C V,, the induced subgraph of S contains no copies of H.
If the induced subgraph of S contains no copies of H, we randomly add a number
of other vertices to S (the number will be determined later) and check if there is a
subset of S (with a size to'be deterniined lzau.'tféf) Whose induced subgraph contains no
copies of H. If S C V, we expect that P, wﬂl pass both tests with high probability.
Thus, G will be accepted by our a*gcﬂthm mnfﬂ high probablhty On the other hand,
suppose G is e-far from any dlgr[a h%ﬁgh Hars property P m. Then we expect to
find a copy of H in all the 1nducefd subgflaphsi Qf the abOve—mentloned h-sets S with
high probability. Our algorlthm 1s Idetalled m‘lJ‘lg 5 1

We shall need the Chernoff bound in later analysw

Theorem 11 (Chernoff bound) Let X = X; + Xo + -+ -+ X, be a sum of n
independent random variables such that 0 < Pr[ X; = 1] < 1 holds for each i =

1,2,...,n and p = E[X]. Then for any 0 < A <1,

Prl X <(1—A)u]<e
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1. if k < y/eN then

2:  ACCEPT

3: end if ,

4: let A=k/N, k=log _(/en(1/6), 0= ((731)) and 0 = maX{lOng(e;bQ[)h! (2/3)4/% 1}

5. for : =1 to k do ’ ”

6:  randomly select an h-set S from V'

7. if the induced subgraph of S does not contain an H then

8: randomly select additional!vertice 69h//\ times (Wlth replacements)
from V — S (assun .,xp) {note there are
() (6h)- multls 5

9: for j =1 to

10: let \S; be th ' St

11: if the induc - insho copies of H then

12: ACCEP ‘

13: end if

14: end for

15:  end if

16: end for

17: REJECT
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where e is the base of the natural logarithm.

Note that in property Py g, h is a constant. Hence f(e; H) is a function in € only.
We assume that H is a fixed digraph with A vertices and m edges and recall that GG

is the input digraph with N vertices from now on.

Definition 12 Let 0 < ¢ < 1, Nk € N, A = k/N, H be a fized digraph with h
vertices, m be the number of edges in H, o = ((:2;)), K= log1 wor (1/6) = ©(1/e?),
-5

and 6 = maX{].Ong(e;I;)h! (2/3)Y% 1} = O(f(e; H)) when f(e; H) is only dependent on
PN

9
1/e. If the value of f(e; H) is large enough such that (’c((z I;;”) > (A/6)7(2/3)1/*",
2))x
then we say f(e; H) satzsﬁes conc{ztdom'_f B .
T
ah = - - _ﬂ.-

| |
By Fact 13, f(e; H) has ynon dency on 17‘t for many H. Since the

i
value of f(e; H) is in.depg_n

O((l/E)j)7 we can ﬁnd"‘é;"s gﬂ

ie.,

hence f(e; H) satisfies condition 1.
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Claim 14 Assume 0 < e <1, Nk € N and k > \/eN. Suppose the input digraph
G = (V, E) with N wvertices contains an H-free k-induced subgraph, say K = (Vi Ey,).
The probability of S C Vj, for a random h-subset S C V is greater than (/€)"/2 for

N large enough.

Proof: The probability of S C Vj for a random h-set S is

() k(k—1)---(k—h+1)
&) NN-1)---(N-h+1)

Since k > /eN, the above probability is at least

\fN(fN—li LAeN=h + )>(\/E)h
J}Wi (N — iz,jl' 2

My Vo )
for N large enough. :jx..‘ ) Q =
& v A
‘q.. I-_i".h \ y I:_:,-’ -“nn .

e o "
—'q H be a fived digraph with h vertices
L] i

Claim 15 Let 0 < e< 1, ‘
= - =
and m be the number of e ! miopo qt put g:faph G = (V,E) with N
e : oy
vertices is e-far from aa any dzgf hihaving property Prim- 7; he probability of finding an
5 | 4 Ty
h-set whose induced subgrqph cdnmﬁfﬂﬁis.-\q%‘ least f(e; H)h!/ [((7%)))\]
-‘.". o = S h?:' I :'I-‘I.

=4 o g
Proof: By Corollary 10, each k—ind"ﬁc'e"d subgraph of G contains at least f (; HYN"/ [((:2;))]

h-sets whose induced subgraphs contain copies of H. Therefore, by dividing V' into
N/k k-sets, we can find at least [f(e; H)Nh/((gl))] (N/k) = f(e; H)N"/ [((7%)))\}

h-sets whose induced subgraphs contain copies of H in G, and the probability of
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finding an h-set whose induced subgraph contains copies of H is at least

f(sH)N"
((7%)))\ _ fle; H)N" - + - bl
) NNV =1 (N =h+1)(E)
f(e; H)h!
> ((T%)))\ Q.E.D.

The following theorem proves the testability of Py .

Theorem 16 Let 0 < e < 1, 0 < k < N be an integer and H be a fixed digraph.
If f(e; H) satisfies condition 1, the property Py y is testable with a query complexity

independent of the input size.

Proof: Suppose k < /€ N Then the n‘umber of edges in a k-induced subgraph
is less than eN?2. The 1nput graph G, therefore cannot be e-far from any digraph

which has property Py, and we ¢an §1mp]]$f aC.cept 1t Assume k > /eN for the rest

1 .-HLAII

of the proof. :

Suppose the input digraph G (V{,% C(J tains anyH-free k-induced subgraph,
say K = (V, Ex). The pf"rli)'beblliky that thJ; algorlthm accepts G is at least the
probability of selecting a subs.et"i‘l‘ref Vi in, stép 6 of the algorithm in Fig. 5.1 and the
tester accepts in step 12 for some J.

By Claim 14, the probability of S ¢ Vj is at most 1 — (1/€)"/2. As we inde-
pendently select x h-sets S, the probability of S ¢ Vj for all x of them is at most
[1- (\/E)"/Q]'i = 1/6. Assume S C Vj from now on. We randomly select p other
vertices (with replacements) in step 8. Denote the jth such (fh)-multiset by S;.

The algorithm then checks if the induced subgraph of S; U S contains a copy of H.
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Let event B mean S; U S contains a copy of H for all j. Given S C V4, if more
than Oh vertices are selected from Vj in step 8, then event B will not occur (note
that & > 1). Thus the probability of event B is at most the probability that the
algorithm selects fewer than 6h vertices from Vj in step 8. Let y be the number
of vertices of these p vertices selected in step 8 that belong in Vj (with multiplic-
ity counted). Then Pr[event B | < Pr|[y < 0h]. We estimate the upper bound
of the above probability by the Chernoff bound. As the probability of selecting a
vertex in Vj is /N = X and the total number of selections is p = 660h/\, we have
p=FE[y]=(60h/\)X\ = 60h. Rewrite Pr[ event B | = Pr[y < (1 — A)66h ], where
A =5/6. By the Chernoff boundy Pr[ event B Ji< e~HA 2 — =O0N(5/6)*/2 — o=250N/12
Since 6h > 1, Pr[ event B\ < ¢72 </1 /6 He.'ﬁce the probability that we select an h-set
from V}; in step 6 that leads to acceptance in step 12 is at-least (1—1/6)(1—1/6) > 2/3.

ﬂ)roperty Pk g will be rejected is thus

The probability that a digraph G Which .hlasl
l

less than 1/3. See Fig. 5.2 for 111Lrs raﬂ’r V

On the other hand, SUPPOSE t}Pe mput graph] G (VE) is e-far from any digraph
which has property P g. Obv1oué1y, the probablhty that the algorithm accepts is
equal to the probability that we find an h-set S.whose induced subgraph does not
contain an H, and after we randomly select p additional vertices (with replacements),
there exists a (fh)-multiset S; from those p selected vertices such that the induced
subgraph of S; U S contains no copies of H. By Claim 15, the probability of finding
an h-set that contains copies of H is at least f(e; H)h!/ [((7%)))\] For each (6h)-

multiset \S;, at least 6 disjoint h-sets are checked; hence the probability that S; U .S
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0
contains copies of H is at least (f(((ehj){))h'> = (A/6)7 - (2/3)"/*. We then test ()
2))A

(Oh)-multisets in step 12. Since

60h/\)!  (60h/N)[(60h/X) —1]---[(60h/)) — Ok o .
(;h):((%/)!):( /M /)(Gh])! L(661/2) = OR] /7y = (6/)",

the probability that the induced subgraph of S; U .S contains copies of H for all j is
at least (6/X)7- ()\/6)? - (2/3)'/% = (2/3)"/". So, for cach h-set S that passes the test
in step 7, the probability that S does not lead to acceptance in step 12 is at least
(2/3)Y*. Hence, regardless whether S passes the test in step 7, the probability that
none of the S leads to acceptance in step-12.is at least [(2 /3) ”} "o /3. Therefore,
the probability that the algorithm gc‘c_epts tlhe inputiis less than 1/3.

The query complexity of s%ép 7is O (h?) and the query complexity from step 9 to

step 10 is O (( )(g)) S‘iﬂée (9’2)( ) > h¥ the query complexity is O ( ( )(92h)) .

‘ r '\._i_ I_{_

This value is independent of N. H ncgﬁé t*e’orem follews. Q.E.D.

The value of f(e H), decrease exﬁ{amelygfast with € and is independent of
n [7]. Although it is diffieult.t I‘compute tl;h{s exact value of f(e; H) in general,
we can estimate a lower bou"r‘ni('ii“ofnrf (e; H )by ggémerédi’s regularity lemma, and
(1—¢)/(2+ h)]h is one such lower bound. In'our algorithm in Fig. 5.1, f(e; H) is
just a coefficient. The soundness of our algorithm in Fig. 5.1 is proved in Theorem
16. We can replace f(e; H) by [(1 — €)/(2 + h)]" in step 4 of our algorithm in Fig. 5.1
without changing the validity of Theorem 16. The consequence is that our algorithm

needs to query more edges in the input digraph, but the total number of queried

edges remains independent of the input size.
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The input digraph - ------=-=-=-=-==77~> N
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Let k > /eN, € be a constant and H; = (Vi, F1) be a digraph where V; =
{v1,v9,...,v441} and E; = {(v1,v441), (V2,Va41),s - - - (Va,va11)}. It is commonly
called a star graph. We can use the algorithm in Fig. 5.1 to test whether the
input digraph contains an Hj-free k-induced subgraph. Obviously if a digraph is
accepted by our algorithm, then the maximum indegree of this digraph is bounded
by d with high probability. Similarly, let Hy = (V, Ey) be a digraph where Ey =
{(vgz1,v1), (Vas1,02), - -, (Vay1,va)}. We can use the algorithm in Fig. 5.1 to test
whether the maximum outdegree of the input digraph is bounded by d with high
probability. If an input digraph is accepted by our algorithm for both H; and H,
then we know that this digraph-satisfies thg restrictions of the BR tester. In this
case, we use the BR tester to test stroﬁg corﬁiéctivity of the input digraph. The total
query complexity of testmg strong connect1v1ty is the sum of the query complexities
of the algorithm in Fig. 5 1 and ﬁhﬁ BR testT:I’ Since the query complexities of the
algorithm in Fig. 5.1 and the BR1 esﬂ!'f-a;e l[io'th independent of the input size, the
sum of the query complex1t1es of both aIgorlthms remams independent of the input
size. The query Complex1ty of “(ﬂ)lllll‘" :ltrong conn‘ect&lwty tester in Fig. 4.2 is the square
root of the input size. Hence, tﬁé sum of thé”’duefy complexities of the algorithm in
Fig. 5.1 and the BR tester is less than the query complexity of our strong connec-
tivity tester in Fig. 4.2. Since the main efficiency parameter of a method to solve
a property testing problem is its query complexity, our strong connectivity tester is
not the most efficient one for all digraphs. It is better to use the algorithm in Fig. 5.1

to determine which tester (the BR tester or our strong connectivity tester) should
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be used to test the strong connectivity of the digraph.
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Chapter 6

Testing of Group Properties

6.1 Finite group-like structure

A finite group-like structuze s'is a four‘—tupléa (T, 0,2, 1) where T is the groundset of s,
o is a binary operator, 4 is the inverse operator, and 1 is the identity element. Finite

groups are finite group-like structureswhere d is the gfoup multiplication [37]. Let

= |

S be a family of finite group-like| sfcrugﬂfes {ilﬁd IT € ST We say a finite group-like
structure s has property Al (or srH S)atisﬁl‘(!}sl_‘ pro“ip‘;erty I[T)7if it is an element of II. An
e-tester for a property TI g r‘anf‘H‘omized alg(l)fi’ghm that is given a finite group-like
structure s and a distance parérﬁeter e. The teste‘li éan make queries as to the results
of operations on elements of s. The total number of queries is the query complexity
of the tester. Let the property II be {s;}. Given an upper bound M on the size of
the groundset, the tester needs to distinguish with probability at least 2/3 between

the case of s having Il and the case of the minimum cost to transform s to any s;

being at least eM? (we will define the cost metric shortly). In the latter case, s is
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said to be e-far from having property II. The probability 2/3 can be replaced by any
constant smaller than 1 as the algorithm can be repeated if necessary.

The cost used for transforming group-like structures will be similar to the edit
distance for strings. As a result, it will make sense to “correct” group-like structures
by modifying the operations and sizes of their groundsets. A table of size k is a k x k
matrix K whose element in row ¢ and column j is denoted by k;; for 1 < i,5 < k.
Three operations transform the table K into a new table. An exchange operation
at place (7,j) modifies the value k;; and leaves others unchanged. The cost of an
exchange is 1. An insert operation at index i, where 1 < ¢ < k + 1, transforms K
into new table of size k + 1 by .inserting 2k R elements to make a new row and a
new column of index i. The cost of ‘an inse.'ff is 2k ~+ 1. A delete operation at index
i1, where 1 < ¢ < k, transforms e mto a new table of.size k — 1 by deleting the ith

row and the ith column. The CO$t Of a deeletle is 2k'— 1 Let o: I'xI' — T" be a

|

binary operator, where I' =4g, gF .. k} 1sia‘ finite set of size k. A table K of size

k is said to represent o if kw = gi9 g, for 1 <ﬂ i ¥ [37]

ﬁ ll
1 \

6.2 Research work related to group property test-
ing

A group-like structure property is testable if the property has an e-tester (or simply a

tester) and the cost is sublinear in the input size M?2. The first testers are constructed

for algebraic problems under the name of self-testers [22, 57]. Blum, Luby and

Rubinfeld construct the first homomorphism tester for abelian groups [22] (we call
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it the BLR tester). The BLR tester is extended to non-abelian groups by Ben-Or,
Coppersmith, Luby and Rubinfeld [18]. Several works have dealt with reducing the
2log |G| random bits per basic trial of the BLR tester in abelian groups [19, 45,
66]. Improved analyses relating the distance to the rejection probability have been
given for testing homomorphism [13, 15, 16]. More recently, Friedl, Ivanyos and
Santha construct a tester which, given a finite group-like structure, tests if it is an
abelian group (we call it the FIS tester) [37]. The query complexity of the tester
is polylogarithmic in the size of the groundset. For reading convenience, we denote

group-like structures by their groundsets and operators.

6.3 Tester construction =

Friedl, Ivanyos and Santhamedify the quantum algorithm of Cheung and Mosca [28]
to test if a finite group-like structuﬂé's;ﬂ_ (I“,o‘, T’, 1) isjan abelian group (we call it the

FIS tester earlier). We use ‘the FI[ test r in i;cll_le first part of our testing algorithm.
1R [ <y

| ot | Iy
If it fails, we reject s. If the FIS {e ter does nlbt‘ reject s, then we test whether there
exists a k-subset of groundset I'>whose Cayley graph is strongly connected.

Definition 17 ([31]) Given a prime number p, o p-group is a group in which each
element has a power of p as its order. A Sylow p-subgroup of a finite group G is a
mazximal p-subgroup of G (i.e., a Sylow p-subgroup is not a proper subgroup of any

other p-subgroup of G).

Denote a finite group being generated by a set {s1,..., S} as (s1,...,Sy,) and

a finite group being generated by a set S as (S). We next present a series of useful
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results before proving the main result of this paper.

Fact 18 ([31]) (1) Let G be a finite group whose order is a multiple of a prime p.
Write |G| = p"s, where n > 0 and p does not divide s. Then G has a Sylow p-
subgroup with order p"™. (2) For any cyclic group H, the number of generators of H
is ¢(|H|), where ¢ is Euler’s totient function. (3) If G is a finite group and p is a
prime dividing |G|, then G has an element of order p. (4) If G is a finite group and

H is a subgroup of G, then the order of H divides the order of G.

Lemma 19 ([31]) Let s = (I',0,1,1) be a finite group and ¢ C I'. If ¢’ does not
generate the group s, then the Cayley graph-associated with g' is disconnected and
each connected component of.the C’a@ley g'mph represents a coset of the subgroup

generated by ¢'.

" il

D)) |
Lemma 20 Let s = (I',0,8,1) be la; g fﬁp, k be an integer, 1 < k < |I'| and

;rv

C ={c,...,cq} be agenerator set of srr'[zhth qi4> ki such-that no proper subset of C' is
‘ as | i

a generator set of s. Let the-ord ‘TIOf ci be mJl ind ¢(iny) > ¢(mg) > -+~ p(my) > 1.

Then the Cayley graph asgocidted with any._‘k—éét” of C' is not strongly connected.

Furthermore, for every k-set, we hawetosadd at least |T'|/T]"_, ¢

edges to its

Cayley graph to make the graph strongly connected.

Proof: Since ¢;" =1 for all 1 < < ¢, without loss of generality, we assume that C
does not contain the identity element. By Theorem 2, the Cayley graph associated

with any k-subset of C' is not strongly connected.
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Connected component with size [(C’)|  Connected component with size |(C')]

_ :\ Add an edge between two connected
~ components sequentially

Connected component with size [(C”}]

Figure 6.1: Cayley graph associated with C".

Let C" = {c¢;,, ¢y, - - -, ¢, } be an arbitrary k-subset of C. For the Cayley graph

associated with C’, by Lemma 19 the size of every connected component is [(C)],

ol LS E s
Loy,

there are |I'|/[(C")] dlfferent connected comqgfineh{‘s}and there is no egde between any

,.— = !" . '“__,_ .
two different connected\-c‘:ompg)n b Y

We know that |(C")]<" . there areat least |I'|/[][,_, ¢; " con-
nected components iti»"'th*e ) ed with " Furthermore, we have to
i

add at least that many e(;g ph-associated with C” strongly
connected. See Fig. 6 1__for Hust B

s o ",‘; . ‘21&'5 ,
Lemma 21 Let Fy be the fa@;ly df ﬁmte g?‘oupls’ Mth a k-generator set. Suppose

LA i B
a finite group s = (I',o0,4,1) is € far ﬁ“om every f € Fy, pipd? - plv is the prime

factorization of |U|, ¢(pf') > é(p3’) > -+ > ¢(py’), pi'ps’ Py’ < (1 —€)M? and
plpd - pg?ff > (1 — €)M?. Then for any k-subset K of I', we have to add at
least |T'|/(1 — €)M? edges to the Cayley graph associated with K to make it strongly

connected.
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Proof: By Fact 18(1), s contains Sylow p;-subgroup s; for ¢ = 1,2,...,y. By
Fact 18(4), no Sylow p;-subgroup is a subgroup of any Sylow p;-subgroups for all
i # j. So, if a set g generates s, then (J?_, g; C g where g; generate s;. Since s is
e-far from every group from Fj, s has no k-generator set and |g| > k. Let f be an
element in Fj that is closest to s. Since f has a generator set with size k, it does not
contain all s; for 1 <[ < y; otherwise, s is an element of F}, and it is a contradiction.
Hence, if we want to modify s to be f, we have to remove some s, from s or reduce
some s,,’s size. So, since s is e-far from f and p'p® ... p%= < (1 — €)M?, for any
k-subset K C I', the elements in K generate at most z Sylow p;-subgroups with
1 <1<z By Lemma 20, we have to add atleast [I'|/(1 — €)M? edges to make the
Cayley graph associated with _s strongly co.ﬁflected‘. Q.E.D.

Note that for the mpuL group- hke structure (I‘ 0,43 1) the input size is the size
F x T+ F Thus, the upper bound of

1
the table is M?, and M? is the i 1n|p t‘ﬁ'-'Ldt k be a k-subset of I' and Gy, be k;’s

of the table Correspondlng to the ﬁ],ﬁ(;tlon IQ

J,
Cayley graph. Assume that theref a bé‘und pp the mdegree and outdegree of each
vertex in every Gy,. We will Iprolxleithat our algOgithm in Fig. 6.2 will work and the

query complexity is polylogarithmic-in the ir.fput‘size.

Theorem 22 Let S be the family of finite group-like structures, the upper bound of
groundsets be M, and F, C S be the family of finite abelian groups with k-generator
set. If M 1is large enough, for every € > 0, there exists an e-tester for F, and let

= ([, 0,4,1) be the input group-like structure, the query complexity of the e-tester

for s is polylogarithmic in the input size.
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1: Use the FIS tester to test if s = (I', 0,4, 1) is e-far from being a finite abelian

group
2: if the FIS tester rejects then
: REJECT
4: end if
{Let t < k. In step 1, FIS tester chooses many random elements 7, ...,7; from
I and gives the orders my,...,m; of 71,..., 7, respectively}

if exist m;, m; are relatively prime then

Let W = {m;]| all m; are relatively prime }
else

W = {maxj<;<; m;}
end if

10: 1 =TI, ew o/
11: Let & = max{ )M4,e$

12: Uniformly and 1ndeB‘ %@y stlo 0 1}‘([{?’%1ertlces 1,02, . ..,0y, in I’
13: Let A = {al, ag, . . 'le}
1&*

14: while ¢ < (IFI) & T
L L=
15:  Select the ith k-lSet ‘ 18t t )’plg-sgﬁs in V}
16:  Use the BR te!ﬁer on A to i s K's %yley graph) is ¢-far
from being a Sh*ongl ' 5
17:  if the BR tester s
18 ACCEPT j(fe oo
19: else X - ) 4**‘,;"
20: i—i+1 "_:-_;. & . . 4
21:  end if Ry . ¥ * & Gl
22: end while Csgepagen®®
23: REJECT

Figure 6.2: An e-tester for the proposition whether a finite group-like structure is a
finite abelian group with a k-generator set. This algorithm will be used in the case
that there is a prior bound on the indegree and outdegree of each vertex in every
k-set’s Cayley graph.
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Proof: Suppose the input s is a correct instance, by [37] and Theorem 3, our
algorithm in Fig. 6.2 will accept it. On the other hand, assume s is e-far from every
elements of F,. The probability of our algorithm in Fig. 6.2 rejecting it is at least 2/3.
But if the FIS tester does not reject s and s is e-close to a finite group, our algorithm
in Fig. 6.2 will still reject it with probability at least 2/3. We prove it as follows.

Recall that in the beginning of our algorithm, the FIS tester picks sufficiently many

random elements 7, ..., from I'; and the FIS tester only accepts s when the set
em2-y°I0 o (2i-1
{7,...,7%} can generate a subgroup s’ = (I",o’,7',1’). Since ¢ = Z’X}E"’( : ),

we know that ZLZ"F'_l(Qi —1) < (e —€)M?. So s’ contains no k-generator set since,

otherwise, we could transform s to be s" € F, by removing |I'| — [ elements of s with

a cost at most eM?. Then; s i‘s‘e—close.'to an"e]emen’_p of I, a contradiction. Thus, let

the prime factorization of,‘\F| be pi'pd’ - - - pgi’ whierc ‘¢(~‘p‘1“) > G(pP) > - > P(py)

o(py")
|1"|2 )

and ® = max{ €'} ‘H‘fhe FI$ t,es"y_’% g'(:,cTﬁlts s, by.Lemma 21, all Cayley graphs
of k-sets of I are ati least ®=far fr m‘ﬁgrll-'g' s”cr“pngly conneeted. By Theorem 2, our
algorithm will reject s with nprobzii ilityiéirf“ leaLstE 2/ 3. 

The query complexity‘"c‘;f:t‘he; |FIIS tester is pglyldgérithmic in M and the query
complexity of the BR testeris O(l /e) Obviéﬁsly,. the query complexity of our algo-
rithm is polylogarithmic in M. Q.E.D.

In an abelian group (I, 0,4, 1), for each k-subset K of ', the indegree and out-
degree of the Cayley graph associated with K are bounded by k. Suppose k is a
constant. We use the BR tester to test the input digraph. The query complexity is

polylogarithmic in the input size. But if £ is not a constant, we use the CONN tester
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instead of the BR tester. The new algorithm appears in Fig. 6.3. Since the query
complexity of the CONN tester is linear in the square root of the input size, in the
worst case, the query complexity of the new algorithm is linear in the square root
of the input size, too. Obviously, if we want to test if a group-like structure is an
abelian group with a k-generator set deterministically, we need to query all results
of the binary operation. Hence the query complexity will be the input size. The
efficiencies of the deterministic algorithm and our testing algorithm are compared in

Fig. 6.4.
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Use the FIS tester to test if s = (I', 0,4, 1) is e-far from being a finite abelian group
if the FIS tester rejects then

REJECT
end if
{ Let t < k. In step 1, FIS tester chooses many random elements 71, ...,7: from I' and gives the orders
mi,...,m¢ of y1,...,7¢, respectively}

if exist m;, m; are relatively prime then

Let W = {mj| all m; are relatively prime }
else

W = {maxi<i<t mi}
end if

. a2y @i
10: 1= [, ew 'yjmj and ¢ = S
11: Let ® = max{w, e}
12: Uniformly and independently select m = ©(1/¢k). ertices a1, az,...,am in I
13: Let A={ai,a2,...,am}andi=1 . APEL
14: while i < (\F\) +1do =
15:  Select the ith k-set K; {no
16: if k is a constant then

17: Use the BR tester on A i 2 3 s O-far from being a strongly
connected digraph ]

18: if the BR tester acc

19: ACCEPT i

20: else

21: i—i+1

22: end if

23:  else r :

24: Use the CONN tester ¢ it 1 ~|:,,,. ‘connected digraph

25: if the CONN teste J

26: ACCEPT

27: else

28: i1+ 1

29: end if

30:  end if

31: end while

32: REJECT

Figure 6.3: An e-tester for the proposition whether a finite group-like structure is a
finite abelian group with a k-generator set.
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100 '

Query times of any algorithm

20

rn ‘ testing algorithm
10

10

Figure 6.4: Efficiency comparison when M = 10.
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Chapter 7

Conclusion

This dissertation develops a tester to test the strong connectivity of digraphs. Then

we construct an algorithm for lbeéflngr dlgra‘;ﬂlg Wt{}_‘ an H-free k-induced subgraph.

|.—""

In the last part of this dlsg.eftaﬁen

' tugqlg;comblnes the strong connectivity

tester to test if a ﬁmtg_ rqup

of the dissertation re&y on
&
i

1. We can specify al;'y'-i-}d]

exists between anfy' pqqﬂé ok

r, ,i' ?“1.1
. . ,. g
2. For any group-like stru"' tgreﬁ (F, 0,1, 1) we. Fah ask the result of x oy for all
N

j'_"' j'- f
z,y €l

The query complexities of our property testing algorithms are very low and our

results are efficient.
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