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Abstract

Path-dependent options are options whose payoff depends nontrivially on the price
history of an asset. They play an important role in financial markets. Unfortunately,
pricing path-dependent options could be difficult in terms of speed and/or accuracy.
The Asian option is one of the most prominent examples. The Asian option is an
option whose payoff depends on the arithmetic average price of the asset. How to
price such a derivative efficiently and accurately has been a long-standing research and
practical problem. Up to now, there is still no simple exact closed form for pricing
Asian options. Numerous approximation methods are suggested in the academic
literature. However, most of the existing methods are either inefficient or inaccurate
or both.
Asian options can be priced on the lattice. A lattice divides the time interval

between the option initial date and the maturity date into n equal time steps. The
pricing results converge to the true option value as n → ∞. Unfortunately, only
exponential-time algorithms are currently available if such options are to be priced
on a lattice without approximations. Although efficient approximation methods are
available, most of them lack convergence guarantees or error controls. A pricing
algorithm is said to be exact if no approximations are used in backward induction.
This dissertation addresses the Asian option pricing problem with the lattice ap-

proach. Two different methods are proposed to meet the efficiency and accuracy
requirements. First, a new trinomial lattice for pricing Asian options is suggested.
This lattice is designed so the computational time can be dramatically reduced. The
resulting exact pricing algorithm is proven to be the first exact lattice algorithm to
break the exponential-time barrier. Second, a polynomial time approximation algo-
rithm is developed. This algorithm computes the upper and the lower bounds of
the option value of the exact pricing algorithm. When the number of time steps of
the lattice becomes larger, this approximation algorithm is proven to converge to the
true option value for pricing European-style Asian options. Extensive experiments
also reveal that the algorithm works well for American-style Asian options.



Chapter 1

Introduction

1.1 Setting the Ground

In recent decades, financial derivatives have played an increasingly important role in
the world of finance. A derivative is a financial instrument whose payoff depends
on the value of other more basic underlying economical variables, like stock indexes
and interest rates. Basically, derivatives can be categorized into four groups: futures,
forwards, options and swaps. Standardized futures and options are traded actively in
the exchanges. Forwards, swaps, and many nonstandardized derivatives are traded
in the rapidly growing over-the-counter market. These complex contracts are usually
hard to manage, so they give rise to new problems in designing new contracts, pric-
ing these contracts and hedging them. To deal with this problem, a new principle,
named financial engineering, is founded. This new principle involves the design, man-
agement, and implementation of financial instruments through which we can meet the
requirements of risk managements. Knowledge from the finance, mathematics, and
computer science are combined to face the new challenges from financial engineer-
ing. Recently, financial engineering has become the hottest topic in both finance and
applied mathematics.

1.2 Options

An option is a kind of financial derivatives that gives the owner the right to buy or
sell another financial asset. There are two basic types of options: the call options
and and the put options. A call option allows the holder to buy the underlying asset
with a predetermined price at or before a certain date. On the other hand, a put
option gives the holder the right to sell the underlying asset. The predetermined
price mentioned above is called the strike price. The certain date that a option owner
is allowed to exercise the option at or before it is known as the maturity date. The
financial asset that the option holder can buy or sell with the exercise price is called

1



Introduction 2

the underlying asset. Exercising an option denotes that the holder exercises the right
to buy or sell the underlying asset. An American-style option can be exercised any
time before maturity while a European-style option can only be exercised at maturity.
More details about options are introduced in Section 2.2.
With the rapid growth and the deregulation of financial markets, nonstandardized

options are created by financial institutions to fit their clients needs. These complex
options are usually traded in the rapidly growing over-the-counter markets. Most of
these options’ values depend nontrivially on the price history of other financial assets.
We call these options path-dependent. Path-dependent options are now playing im-
portant roles in financial markets. Some path-dependent derivatives such as barrier
options can be efficiently priced [34]. Others, however, are known to be difficult to
price in terms of speed and/or accuracy [35]. Pricing these options accurately and
efficiently is an important problem in financial field.

1.3 Asian Options

An Asian option is an option whose payoff depends on the arithmetic average price
of the underlying asset. Take a European-style Asian call as an example. Assume
that the average price of the underlying asset between the option initial date and
the maturity date is A. Then the option holder has the right to buy (or sell) the
underlying asset with price A. This contract is useful for hedging transactions whose
cost is related to the average price of the underlying asset (such as crude oil). Its
price is also less subject to price manipulation; hence variants of Asian options are
popular especially in thinly-traded markets. How to price an Asian option accurately
and efficiently is important in both financial and academic fields.
The Asian option is one of the most representative example of the options that

are hard to be priced in terms of speed and/or accuracy. Up to now, there is still no
simple closed form for pricing Asian options. Numerous approximation methods are
suggested in academic literatures. However, most of the existing methods are either
inefficient or inaccurate or both [20, 21]. Generally speaking, these approximation
methods can be grouped into three different categories: approximation analytical
formulae, (quasi-) Monte Carlo simulations, and the lattice (and the related PDE)
approach.
The analytical formulae approach denotes that the option is priced by (semi-)

closed form formulae. Usually these formulae are derived by solving (stochastic) par-
tial differential equations or by applying some probability tools. The major problem
of this approach is that the partial differential equations for pricing the Asian op-
tion cannot be solved. Some ad-hoc approximation methods are suggested in the
literature, but most of them fail in extreme cases [21]. Besides, the American-style
Asian option cannot be priced by this approach easily. Related works can be found
in [1, 6, 22, 23, 32, 37, 41].
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Figure 1.1: A 3-Time-Step CRR Binomial Lattice.
The initial underlying asset’s price is S0. Let u and d denote the upward and the
downward multiplication factors, respectively. Let Pu and Pd denote the upward and
the downward branching probabilities, respectively.

The Monte Carlo approach divides the time interval between the option initial
date and the maturity date into several time steps. Then it simulates some (discrete-
time) price paths of the underlying asset. A price path consists of a series of prices
that corresponds to the underlying asset’s price at each time step. The option value
for each price path can be computed separately. The pricing result is obtained by
averaging the option value of the simulated price paths. The major drawback of
this approach is inefficiency – huge amounts of price paths should be simulated to
obtain a satisfying answer. The pricing result is only probabilistic. In addition, the
American-style Asian option cannot be priced by this approach easily. Related work
can be found in [9, 10, 11, 28, 31, 33].
The lattice (and the related PDE) approach is more general than the first two

since most methods from the first two categories suffer from the inability to price
American-style Asian options without bias. Under this consideration, two proposed
pricing methods in this dissertation follow the lattice approach. In the following
sections, the lattice model will be introduced first. After exploring the problems of
the existing lattice pricing methods, a simple intuition is given to show how the two
proposed methods alleviate these problems.
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1.4 The Lattice Approach

A lattice consists of nodes and edges connecting them. It simulates the (discrete-time)
price process of the underlying asset from the option’s initial date to the maturity
date. Assume that an option initiates at year 0 and matures at year T . A lattice
divides the time interval [0, T ] into n equal time steps. Then the length of each time
step is T/n. The price of the underlying asset at discrete time step l (corresponding to
year lT/n) can be observed on the lattice. Take the well-known Cox-Ross-Rubinstein
(CRR) binomial lattice [15] as an example. A 3-time-step CRR binomial lattice is
illustrated in Fig. 1.1. At each time step, the underlying asset’s price S can ei-
ther become Su—the up move—with probability Pu or Sd—the down move—with
probability Pd ≡ 1 − Pu. Note that the price process of an asset simulated by the
lattice should be guaranteed to converge to the continuous-time underlying asset’s
price process as n → ∞. Thus the option value priced on the lattice also converges
to continuous-time option value (call it the true option value) [19]. More detailed
knowledge about the lattice construction is surveyed in Section 2.5.2.

1.5 Pricing Asian Options with the Lattice Ap-

proach and Its Problems

The difficulty with the lattice method in the case of Asian options lies in its expo-
nential nature: Since the price of the underlying asset at each time step influences
the option’s payoff, it seems that 2n paths have to be individually evaluated for an n-
time-step binomial lattice (see Fig. 1.2). This makes the pricing problem intractable
even with a small n. Many proposed approaches solve this combinatorial explo-
sion by employing approximation [4, 13, 20, 26, 29, 43]. The resulting algorithms
become more efficient, but most of them lack error controls [20]. Thus an efficient
and accurate pricing algorithm is needed.
Some shorthand that will be used frequently later are introduced below. A pricing

algorithm is said to be exact if no approximations are used in backward induction.
Besides, a polynomial-time algorithm means that the running time is polynomial
in n. Similar convention is adopted for exponential-time and subexponential-time
algorithms.

1.6 The Contributions of this Dissertation

This dissertation provides two different lattice methods to address the pricing prob-
lem. First, a new trinomial lattice for pricing Asian options is proposed. The resulting
exact pricing algorithm is proved to break the exponential time barrier. This algo-
rithm is hence more efficient than any existing exact pricing algorithm. Second, an
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S0

n

2n

Figure 1.2: The Combinatorial Explosion.
There are 2n paths (one of which follows the darkened edges in the plot) in this binomial
lattice.

approximation algorithm based on the CRR lattice model is derived. This approxi-
mation algorithm computes the upper and the lower bounds (call it range bound)
that bracket the option value of the exact pricing algorithm. When pricing European-
style Asian options, this range-bound algorithm is guaranteed to converge to the true
option value. Extensive experiments also reveal that the algorithm works well for
American-style Asian options.

1.6.1 The Subexponential-Time Lattice Algorithm

We next give the intuition about how the lattice looks like and why the computational
time of the resulting exact algorithm is dramatically reduced. Imagine a new lattice
composed of integral asset prices. The asset price sum of any arbitrary price path on
this lattice must be an integer. Thus all possible asset price sums must be integers
between the maximum and the minimum asset price sums, which can be easily calcu-
lated. Take a hypothetical 3-time-step lattice in Fig. 1.3 as an example. The asset’s
prices are printed on the nodes. Consider the price paths that reach the shaded node
with an asset price of 4. The paths with the maximum price sum and the minimum
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price sum are (8, 12, 8, 4) and (8, 4, 2, 4), respectively. The maximum and the mini-
mum price sums are thus 8+12+8+4 = 32 and 8+4+2+4 = 18, respectively. The
possible asset price sums at that node must be some of the 15 integers between 18
and 32, inclusively. Recall that the value of an Asian option depends on the average
price of the asset. The number of possible asset’s price sums at an arbitrary node N
equals the number of possible option values there. An exact pricing algorithm suffers
from computational intractability since the number of possible asset’s price sums is
exponential in n. If it can be shown that the total number of possible asset’s price
sums on our new lattice is dramatically reduced, then an efficient exact algorithm
can be successfully constructed. Indeed, the proposed new exact algorithm is much
more efficient as it is subexponential in n. A simple numerical example on a 160-time
step lattice helps us to realize the drastic difference: While the total number of pos-
sible asset’s price sums to the middle node at the maturity date is the astronomical
8.429 × 1074, the total number of price sums at the same node in the proposed new
lattice is only 57887.

8

12

4

8

18

12

8

4

2

24

18

12

8

4

2

1

Figure 1.3: A 3-Time-Step Trinomial Lattice with Integral Asset Prices.
All paths reaching the shaded node have integral price sums. The maximum price
sum at the shaded node is achieved by the upper path in thickened lines, whereas the
minimum price sum at the shaded node is achieved by the lower path in thickened
lines.

Although the performance of the proposed exact pricing algorithm is improved
significantly, it is still not a polynomial-time algorithm. The efficiency problem re-
mains open. The computational performance can be further improved by employing
some approximations, but the accuracy problem should be considered simultaneously.
The next approach is proposed to meet these requirements.
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1.6.2 The Range-Bound Algorithms

Efficient approximation pricing algorithms that provide pricing error control by pro-
ducing provable range bounds are introduced. On an n-time-step lattice model, a
range-bound approximation algorithm can produce upper and lower bounds that
bracket the option value of the exact pricing algorithm (call it the desired option
value) as shown in Fig. 1.4. The desired option value becomes practically available
if the upper bound and the lower bound are essentially identical. Note that the
difference between the upper bound and the lower bound, call it e, gives an upper
limit of the pricing error between exact and approximation pricing algorithms. The
desired option value is known to converge to the true option value as n → ∞. Thus
the approximation algorithm is guaranteed to converge to the true option value if
e → 0 as n → ∞. This relationship is illustrated in Fig. 1.5. In this dissertation,
a range-bound algorithm for pricing European-style Asian options is developed, and
this algorithm is proved to converge to the true option value. Extensive experiments
also reveal that the algorithm works well for American-style Asian options.

Upper bound

e

Lower bound

Desired option value

Figure 1.4: The Range-bound Algorithm.
The difference between the upper bound and the lower bound pricing results e de-
notes the upper limit of the pricing error between exact and approximation pricing
algorithms.

1.7 Structures of this Dissertation

This dissertation is organized as follows. Some background knowledge, including re-
quired financial knowledge, mathematical tools, and the survey on related literatures,
is reviewed in Chapter 2. The first subexponential exact pricing algorithm and the
lattice it based on is introduced in Chapter 3. Chapter 4 introduces the convergence
approximation algorithm for pricing European-style Asian options. The improvement
of the accuracy for the approximation algorithm for pricing American-style Asian op-
tions is also introduced in this chapter. Finally, Chapter 5 concludes the paper.
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Approximation
Algorithm

Exact Algorithm
(Desired

Option Value)

True Option
Value

e

Computationally
Intractable

Efficient but Error
Control Required

Unsolved

∞→n

Figure 1.5: Convergence of the Range-Bound Algorithm.
The true option value is unsolved. An exact lattice pricing algorithm is computation-
ally intractable. Thus an approximation pricing algorithm with good error control
is attractive. The pricing error between the approximation pricing algorithm and
the exact pricing algorithm is bounded by e. Thus the approximation algorithm is
guaranteed to converge to the true option value if e → 0 as n → ∞.



Chapter 2

Preliminaries

Some required background knowledge is introduced in this chapter. Basic assumptions
on financial markets and the related mathematical concepts are introduced first. A
simple survey on options and their advantages is given next. The modern arbitrage-
based pricing theory is then introduced to describe how the Asian option can be
priced. Academic literature related to the pricing of Asian options is then introduced.
These academic works are grouped into three categories: approximation analytical
formulae, (quasi-) Monte Carlo simulations, and the lattice (and the related PDE)
approach. The drawbacks of these academic works and the improvements on them
are also discussed.

2.1 Basic Assumptions

Some economic assumptions that are adopted in this dissertation are illustrated as
follows.

1. The mean and the volatility of the underlying asset’s price, and the risk-free
interest rate are assumed to be fixed constants.

2. The short selling of financial assets with full use of proceeds is permitted.

3. All assets are perfectly divisible.

4. There are no transactions costs or taxes.

5. No stocks pay dividends during the life of the option.

6. There are no risk-less arbitrage opportunities.

7. Asset trading is continuous.

8. These is no liquidity problem. That is, you can always trade at the market
price.

9



Preliminaries 10

A stochastic process is a variable that changes over time in an uncertain way. Eco-
nomical variables, like the asset’s price and the exchange rates, are usually modelled
as stochastic processes in academic models. The randomness of these processes are
usually governed by some fundamental stochastic processes like the Brownian mo-
tion. Define {Bt} as a Brownian motion where Bs denotes the process value at time
s. Then we have the following properties [30]:

1. Normal increments: Bt −Bs has normal distribution with mean 0 and variance
t− s.

2. Independent of increments: Bt − Bs is independent of the past, that is, of Bu,
where 0 ≤ u ≤ s.

3. Continuity of paths: Bt, t ≥ 0 are continuous functions of t.
In this dissertation, a financial asset’s price is assumed to follow a log-normal

stochastic process. To be more specific, consider a time interval starting at year 0
and ending at year T . Define S(t) as the price of a financial asset at year t. The price
process follows the continuous-time diffusion process as follows:

S(t+ dt) = S(t)exp[(r − 0.5σ2)dt+ σdBt], (2.1)

where r is the risk-free interest rate per annum, and σ is the annual volatility.
The continuous log-normal stochastic price process can be approximated by a

discrete-time model like the lattice model. A lattice model partitions the time between
year 0 and year T into n equal time steps. The length of each time step ∆t is equal
to T/n. For convenience, all the time notations are expressed in terms of the number
of time steps unless stated otherwise. Let Si denote the asset’s price at (discrete)
time i. Then Si corresponds to S(i∆t) in the continuous-time model. For the pricing
purpose, the price process simulated by a lattice model is required to converge to
continuous log-normal stochastic process as n → ∞. The sufficient conditions to
achieve this is done by calibrating the drift term (r − 0.5σ2) and the volatility term
(σ) of the underlying asset’s price process (in Eq. 2.1) [19]. More details about the
lattice constructions are introduced in Subsection 2.5.2.

2.2 Option Basics

Fundamental knowledge about options is introduced here. This includes the types of
options, the payoff of each type of option, and how to price them.

2.2.1 Definitions of Options

An option is a right to buy or sell the a specific asset at (or within) a certain date with
a predetermined price. This specific asset is called the underlying asset. Generally
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speaking, options can be classified into two groups: call options, and put options. A
call option gives the holder the right to buy a financial asset with a specific price at
(or within) some certain time, while a put option gives the holder the right to sell it.
The price for the holder to buy or sell the asset is called the strike price (denoted as
X). The date the option is expired is called the maturity date (denoted as T ).
The options can also be classified based on the time in which they can be exercised.

An American-style option can be exercised at any time up to the maturity date;
while a European-style option can only be exercised at the maturity date. Since an
American option gives all the advantages that a European option possesses plus the
extra advantage of early exercise, the value of an American option is at least as great
as that of a European one, other conditions being equal.
There are two sides to every option contract. On the one side is the investor

who take the long position (i.e., he buys the option), while on the other side is the
investor who takes the short position (i.e., he sells the option). An option holder is
given the right of gaining benefit without any obligation. An option will be exercised
only when it is the best choice for the holder to gain maximum benefit. Take a
European-style option as an example. Recall that a European option can only be
exercised at the maturity date. The payoff for the long position at the maturity date
is max(0, S(T )−X) for call options; max(0, X−S(T )) for put options. On the other
hand, the loss for a short position in call options can be expressed as

−max(0, S(T )−X) = min(0, X − S(T )),

while the profit for a short position in put options is

−max(0, X − S(T )) = min(0, S(T )−X).

Fig. 2.1 illustrates profit/loss of a European option graphically.
The payoff for an American-style option is more complex since the option holder

can exercise the option early before the maturity date. Define τ as the time the option
is exercised, then the payoff to exercise an option at year τ is max(S(τ)−X, 0) and
max(X−S(τ), 0) for call options and put options, respectively. Similarly, the loss for
a short position in call options is expressed as

−max(S(τ)−X, 0) = min(X − S(τ), 0),

while the loss for a short position in put options is

−max(X − S(τ), 0) = min(S(τ)−X, 0).

An option can be priced in a discrete time model. The payoff for a European-style
option at the maturity (time n) is

Payoff =

{
max(Sn −X, 0), for a call option
max(X − Sn, 0), for a put option

. (2.2)
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Figure 2.1: Profit/loss of Options.
(a) Long a call. (b) Short a call. (c) Long a put. (d) Short a put.

The payoff to exercise an American-style option at time i (i ≤ n)is

Payoff =

{
max(Si −X, 0), for a call option
max(X − Si, 0), for a put option

, (2.3)

where i denotes the time step when the option is exercised.

2.2.2 Who Needs Options

Basically speaking, options attract three different types of traders: speculators, hedgers,
and arbitragers. A speculator tries to take a position to gain more benefits in the
market by forecasting the future. He longs (or shorts) an option if he believes it is
beneficial. A hedger is the one who tries to avoid risk by buying or selling the options.
A simple example is given in the next section to show how a hedger hedges the risk.
An arbitrager is the one who can gain risk-less profit if the option value is not “fair.”
A trading strategy used to gain risk-less profits by taking advantages of mispriced
options is called arbitrage. Theoretically, there is a fair price for each option in the
market. The market price of an option should be equal to its fair price; otherwise the
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arbitragers can take advantage of it. How to price the option by arbitrage-free based
pricing theory is described in Subsection 2.2.4.

2.2.3 Hedging and Hedgers
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Figure 2.2: Exchange Rate Risk.
A simple one-step model illustrates the evolution of the exchange rate. The exchange
rate (TWD/USD) is 35 today. The exchange rate may go up to 36 (in case 1) or go
down to 34 (in case 2) one month later. The first column for each node denotes the
spot exchange rate, and the second column denotes the cost to buy 1 million USDs.

A simple example on hedging the foreign exchange rate risk is given as follows.
The risk-free rate is set to 0 for simplicity. Assume that there is a foreign trading
company XY Z in Taiwan. It is required to pay 1 million USDs next month.1 Assume
that the exchange rate (TWD/USD) today is 35. Obviously, XYZ can buy 1 million
USDs with 35 million TWDs today, keep these USDs for a month, and then pay back
the debt next month.
Unfortunately, XYZ may not have 35 million TWDs today. It may decide to buy 1

million USDs next month. But this will introduce foreign exchange rate risk. That is,
the cost to buy 1 million USDs next month is not determined today as the exchange
rate is floating. A picture to describe this risk is illustrated in Fig. 2.2. Assume that
the USD may appreciate to 36 TWDs (case 1) or devalue to 34 TWDs (case 2) next
month. Note that XYZ has to pay one more million TWDs (= 3.6× 107 − 3.5× 107)
if the USD appreciates to 36 TWDs. Company XYZ might not put up with such a
huge risk.
A currency call option can help XYZ to avoid such uncertainty. A currency option

is an option whose underlying asset is a foreign currency. XYZ can buy a currency
call on 1 million USDs. To hedge the exchange rate risk, the contract for this call is
designed as follows: the maturity date for this option is one month from now, and

1USD here denotes the United States Dollars. TWD denotes the Taiwan Dollars.
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the strike price is 35 TWDs for each USD. Now the exchange rate risk is completely
hedged by this call option. If the exchange rate moves up to 36 a month later, XYZ
can simply exercise the option to buy a million USDs with 35 million TWDs. On the
other hand, if the exchange rate moves down to 34, XYZ can simply junk the option
and buy the spot from the foreign exchange market.
Obviously, this option gives XYZ the right to buy the USDs but no obligation.

XYZ should be charged by the option seller for this right. It is important to find out
the fair option’s price that XYZ needs to pay.

2.2.4 Pricing an Option with Arbitrage-Free Base Pricing
Theory

In financial markets, an option buyer pays so called option premium to a seller at
the option initial date. This premium can be viewed as the fair price of an option.
The fair option’s price can be priced by the arbitrage-free base pricing theory. In this
subsection, I will show how the fair option price is obtained by replication first. Next,
I will show that why the market price must be equal to the fair price by considering
the behavior of arbitragers. Finally, a simple sketch is given to show that option can
be priced by taking the expectation of future discounted payoff under the so-called
risk-neutral probability.

Replicate an Option

An option is said to be replicated by a portfolio A if A can be constructed so that
the future payoff of A is always equal to the payoff of the option. It is intuitive that
the fair price of the option should be equal to the cost of constructing portfolio A
since the future payoffs of A and the option are the same. Take the currency call
option mentioned above as an example. The replication portfolio A is assumed to be
consisted of x units of USD and y units of TWD. Assume that the USD appreciates
to 36 TWDs (case 1). Since the value of the option is worth 1 million TWDs (=
max(36− 35, 0) × 106) in this case, the value of A (= 36x + y) should be also equal
to 1 million TWDs. On the other hand, assume that the USD devalues to 34 TWDs
(case 2). The value of the option is 0 (= max(34− 35, 0)× 106). Therefore, the value
of A (= 34x+ y) is also equal to 0. By solving the two equations,

36x+ y = 106,

34x+ y = 0,

we obtain x = 5 × 105 and y = −1.7 × 107. Thus the initial cost to construct the
portfolio A is equal to 5 × 105 × 35 − 1.7 × 107 = 5 × 105. The fair price of the call
option is 5× 105.
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Arbitrage and Arbitragers

We have argued that the fair price of the option is equal to the cost of the replication
portfolio. Moreover, we can also claim that the market price of the option should be
equal to the fair price. Otherwise, the arbitragers can gain riskless profit by taking
advantage of the mispriced options. Take the currency call option mentioned above
as an example. Assume that the currency call’s market price V is larger than 5×105.
An arbitrager can short a call and buy the portfolio A. He can earn V − 5× 105 > 0
today. At maturity (one month later), he will neither win nor lose anything since the
final payoffs of the call and A are equal. In other words, he can gain V − 5× 105 > 0
without paying anything or suffering any risk! Economists argue that such arbitrage
opportunities should not exist for long since every market participant will try to gain
from this “free lunch.” Thus the market price of this currency call will quickly go
back to the fair price 5 × 105. On the other hand, if the option value V is lower
than 5× 105, an arbitrager can construct an arbitrage strategy by longing a currency
call and shorting the portfolio A. By the same argument, the market price of the
option will finally go back to the fair price 5× 105. So we conclude that the market
price of the option is equal to the cost of the replication portfolio under arbitrage-free
considerations.

Risk Neutral Valuation

Option pricing problem can be reduced to the expectation evaluation problem under
the so-called risk-neutral probability [24]. The expected return of any security is
risk-free rate under risk-neutral probability. Take the currency option mentioned in
Fig. 2.2 as an example. Assume that the USD may appreciate to 36 TWDs with
probability P (in case 1) and devalue to 34 TWDs with probability 1 − P (see Fig.
2.3). Since the risk-free rate (r) is set to 0, the expected return of the USD should
also be 0. Thus we have

36× P + 34× (1− P ) = 35× er×1/12,

where 1/12 denotes the time span of one month (in years). We have P = 0.5 by
solving the above equation. The payoff of the option in case 1 (marked by *) is

max(36− 35, 0)× 106 = 106,

and the payoff of the option in case 2 (marked by **) is

max(34− 35, 0)× 106 = 0.

The option value is evaluated by taking expectation of the discounted future payoff
under risk neutral probability as follows:

106 × P + 0× (1− P )

er×1/12
= 105.
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Note that the option value evaluated by using replication is the same as the value
evaluated by taking expectation, but the latter method is simpler.
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Figure 2.3: Pricing the Currency Option by Taking Expectation.
The (risk-neutral) probability for each case is marked directly on the branch. The
first column of each node denotes the spot exchange rate and the second column
denotes the option value at each node.

The above result can be formalized as follows: In a continuous time model, the
value of a European-style option can be expressed as

Option Value =

{
e−rTE[max(S(T )−X, 0)], for a call option
e−rTE[max(X − S(T ), 0)], for a put option

. (2.4)

The value of an American-style option can be expressed as

Option Value =

{
E[e−rτ max(S(τ)−X, 0)], for a call option
E[e−rτ max(X − S(τ), 0)], for a put option

,

where τ denotes the time when the option is optimally exercised. In a discrete time
model, the European-style option’s value is obtained by changing S(T ) in Eq. (2.4)
into Sn. The American-style option’s value is

Option Value =

{
E[e−ri∆tmax(Si −X, 0)], for a call option
E[e−ri∆tmax(X − Si, 0)], for a put option

,

where i denotes the time step when the option is exercised.
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2.3 Asian Options

2.3.1 Definitions

An Asian option is an option whose payoff depends on the average price of the under-
lying asset during a specific period. Define the average price of the underlying asset
from year 0 to year t as

A(t) ≡
∫ t

0
S(u) du

t
. (2.5)

Then the payoff for a European-style Asian option at the maturity date is

Payoff =

{
max(A(T )−X, 0), for a call option
max(X − A(T ), 0), for a put option

.

The payoff for exercising an American-style Asian option at year τ is

Payoff =

{
max(A(τ)−X, 0), for a call option
max(X − A(τ), 0), for a put option

.

In a discrete time model, the average price of the underlying asset is redefined as

Aj ≡
∑j

i=0 Si

j + 1
. (2.6)

Thus the payoff for a European-style Asian option is

Payoff =

{
max(An −X, 0), for a call option
max(X − An, 0), for a put option

. (2.7)

The payoff for exercising an American-style Asian option at time i is

Payoff =

{
max(Ai −X, 0), for a call option
max(X − Ai, 0), for a put option

. (2.8)

2.3.2 Pricing Asian Option by Applying Risk Neutral Vari-
ation

The value of an Asian option can be evaluated by taking expectation of the future
discounted payoff as we do in Eq. (2.4). For a European-style Asian option, the
option value is

Option Value =

{
e−rTE[max(A(T )−X, 0)], for a call option
e−rTE[max(X − A(T ), 0)], for a put option

.

The option value for an American-style Asian option is

Option Value =

{
E[e−rτ max(A(τ)−X, 0)], for a call option
E[r−rτ max(X − A(τ), 0)], for a put option

.
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In a discrete time model, the value of a European-style Asian option is evaluated
as

Option Value =

{
e−rTE[max(An −X, 0)], for a call option
e−rTE[max(X − An, 0)], for a put option

, (2.9)

while the value for an American-style Asian option is

Option Value =

{
E[e−ri∆tmax(Ai −X, 0)], for a call option
E[r−ri∆tmax(X − Ai, 0)], for a put option

. (2.10)

2.3.3 Advantages of Asian Options

Since the payoff of an Asian option depends on the average price of the underlying
asset, it is useful for hedging transactions whose cost is related to the average price
of the underlying asset. Take the foreign exchange rate risk case discussed above as
an example. Assume that the company XYZ needs to pay 106 USDs per month for
the next six months. XYZ may buy six currency call options maturing at the next
month, two months later, . . ., and six months later, respectively. On the other hand,
XYZ may hedge the exchange rate risk by buying six Asian call options that matures
six month later. It can be observed in the markets that an Asian option is usually
much cheaper than an otherwise identical ordinary option. Thus XYZ can reduce the
hedge cost significantly by buying six Asian call options instead of six ordinary call
options.
Besides, the price of an Asian option is also less subject to price manipulation due

to the following reasons: The payoff of a European-style ordinary option is determined
by the underlying asset’s value at the maturity date, while the payoff of a European-
style Asian option is determined by the average price of the underlying asset between
the option initial date and the maturity date. And it is easier to control an asset’s
price at a specific time point than to manipulate the whole price path. Preventing
price manipulation is an attractive property of an option especially in thinly-traded
markets.
In practice, as varieties of asian option are widely traded in today’s financial

markets, how to price them accurately and efficiently is important in both financial
and academic fields.

2.4 Review of Literature

The major problem in pricing Asian option is that we do not know much about the
distribution of the underlying asset’s average price A(T ) (see Eq. (2.1) and (2.5)).
A(T ) can be viewed as the sum of log-normal random variables; and the density
function of a sum of log normal random variables is currently unavailable. That is
why there is no simple and exact closed-form solutions for pricing Asian options.
Approximation methods suggested in the academic literature can be grouped into
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r σ T S0 GE Shaw Euler PW TW MC10 MC100 SE
5.0% 50% 1 1.9 .195 .193 .194 .194 .195 .192 .196 .004
5.0% 50% 1 2.0 .248 .246 .247 .247 .250 .245 .249 .004
5.0% 50% 1 2.1 .308 .306 .307 .307 .311 .305 .309 .005
2.0% 10% 1 2.0 .058 .520 .056 .0624 .0568 .0559 .0565 .0008
18.0% 30% 1 2.0 .227 .217 .219 .219 .220 .219 .220 .003
12.5% 25% 2 2.0 .172 .172 .172 .172 .173 .173 .172 .003
5.0% 50% 2 2.0 .351 .350 .352 .352 .359 .351 .348 .007

Table 2.1: Stress Tests.
The exercise price X is 2.0. The approximation methods for comparison are from
Geman and Eydeland [22] (GE), Shaw [39], Euler, Post-Widder method (PW) [1],
and Turnbull-Wakeman [41] (TW). The benchmark values (MC10 and MC100) and
the approximation values are from [21]. MC10 uses 10 time steps per day, whereas
MC100 uses 100. Both are based on 100,000 trials. SE stands for standard error, also
from [21].

three different categories: approximation analytical formulae, (quasi-)Monte Carlo
simulations, and the lattice (and the related PDE) approach.

2.4.1 Approximation Analytical Formulae

This approach denotes that the value of the option is approximated by (semi-)closed
form formulae. Some related academic works in this category try to approximate
the probability density function of A. Turnbull and Wakeman [41] and Levy [32] try
to approximate the density function of A by Edgeworth series expansion. Milevsky
and Posner [37] approximate it by the reciprocal gamma distribution. Carverhill and
Clewlow [12] and Benhamou [6] use Fourier transform to approximate the payoff func-
tion at maturity. Geman and Yor [23] derive an analytical expression for the Laplace
transform of the continuous Asian calls, and numerical inversion of this transform is
considered by Geman and Eydeland [22] and Shaw [39]. Some inversion algorithms
based on the Euler and Post-Widder methods are suggested in Abate and Whitt [1].
The forward starting Asian options are approximated with Taylor’s series expansion
as in [8, 40]. Zhang [42] approximates the option value by combining an analytical
closed form with a numerical adjustment (computed by finite difference method).
The major problem of the approximation analytical formulae approach is that most
suggested methods from this approach lack error control [21]. Table 2.1 illustrates
that some well-known approximation methods fail in extreme cases. Besides, the
American-style Asian option’s value cannot be approximated by this approach easily.
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2.4.2 Monte Carlo Simulation

The Monte Carlo simulation approach denotes a pricing procedure that values a
derivative by randomly sampling changes in economic variables. To value a European-
style Asian option, a typical Monte Carlo simulation can divide the time interval
between the option initial date and the maturity date into n time steps. Then it
simulate the price path of the underlying asset by the following formula:

Si = Si−1exp[(r − 1/2σ2)∆t+ σ
√
∆tω],

where Si denotes the price of the underlying asset at time i, ∆t is equal to T/n,
and ω denotes the a standard normal random variable. Note that the distribution
of this n+ 1-dimensional random price vector (S0, S1, S2, · · · , Sn) is the same as the
distribution of random vector (S(0), S(∆t), S(2∆t), · · · , S(n∆t)) which is governed
by Eq. (2.1). The average price of each price path is computed by Eq. (2.6). Thus the
payoff for each price path for the European-style Asian option can be computed by
Eq. (2.7). The output option value is obtained by averaging the discounted payoffs.
The Monte Carlo simulation approach suffers from the following problems:

1. The pricing result is only probabilistic.

2. The number of simulated price paths should be large enough to obtain satisfac-
tory pricing results. Thus the algorithm is not efficient enough.

3. The pricing results are significantly influenced by the random sources used to
obtain the random variable ω. Biased results are produced if the random sources
are unreliable.

4. The American-style option can not be handled by this approach easily.

Some related works that address the first three problems are listed below: Boyle,
Broadie, and Glasserman [9], Broadie and Glasserman [10], Broadie, Glasserman,
and Kou [11], Kemna and Vorst [28], and Lapeyre and Temam [31]. Briefly speaking,
they try to reduce the variance of the pricing results and refine the quality of the
random variable (ω) they use. Four simple methods used by them are

• Antithetic variates:
Assume that the normal random variables ω̂1, ω̂2, · · · , ω̂n are sampled. A simu-
lated price path (Ŝ0, Ŝ1, . . . , Ŝn) is constructed by defining Ŝi as

Ŝi = Ŝ0e
(r−σ2/2)i∆t+σ

√
∆t(ω̂1+ω̂2+...ω̂i).

A dual price path (Ŝ ′
0, Ŝ ′

0, . . . , Ŝ ′
n) can be constructed by defining Ŝ ′(i) as

Ŝ ′(i) = Ŝ0e
(r−σ2/2)i∆t+σ

√
∆t(−ω̂1−ω̂2−...−ω̂i)

.
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• Moment matching:
This is done by tuning the sampled random variables so that the first few
moments of the tuned sampled random variables match the moments of the
distribution where the random variables are sampled from. For example, if
we sample l random variables (ω1, ω2, · · · , ωl) from a normal distribution with
mean µ and standard deviation σ. The sample mean and standard error of these
sampled random variables are µl and σl, respectively. Then the tuned variable
ω′

i is

ω′
i ≡ (ωi − µl)

σ

σl

+ µ.

• Latin hypercube sampling:
This is a stratified sampling method that forces the cumulative probabilities
of the empirical distribution (determined by the sampled random variables) to
match the cumulative probabilities of the theoretical distribution (where the
variables are sampled from). For example, assume that ω1, ω2, . . . , ω100 are
sampled from a normal distribution, then each observation ωi is forced to lie
between (i− 1)th and ith percentile.

• Control variates:
This method is widely applicable to reduce the variance of the output results.
This is done by replacing the evaluation of an unknown expectation with the
evaluation of the difference between the unknown quantity and another expec-
tation whose value is known [9]. This is used by Kemna and Vorst [28] for
pricing Asian options.

For pricing American-style Asian options, Longstaff and Schwartz (2001) develop a
least-squares Monte Carlo approach to tackle the problem.

2.5 Lattice and Related PDE Approach

A lattice is a discrete time representation of the evolution of the underlying asset’s
price. It divides a certain time interval, like the interval between the option initial
date (year 0) and the maturity date (year T ), into n equal time steps. The length of
each time step ∆t is equal to T/n. It approximates the distribution of the underlying
asset’s price at each time step. A lattice consists of nodes and branches connect them.
Each node at time i can be viewed as a possible asset’s price at time i. Each branch
that connects two nodes located at adjoint time steps denotes a possible evolution of
the underlying asset’s price. The well-known CRR binomial lattice will be introduced
next as an example to show what a lattice looks like, how it is constructed, and how
an option is priced with the lattice model [15].
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2.5.1 The Structure of CRR Binomial Lattice

A 2-time-step CRR binomial lattice is illustrated in Fig. 2.4(a). Recall that Si denotes
the value of the underlying asset at time i. Si+1 equals Siu with probability Pu and
Sid with probability Pd(≡ 1−Pu), where d < u. u is equal to eσ

√
∆t, where σ denotes

the annual volatility of the underlying asset’s price (see Eq. (2.1)). The identity

ud = 1 (2.11)

holds in this lattice model. The probability Pu for an up move is set to (e
r∆t−d)/(u−

d). Both d ≤ er∆t ≤ u and 0 < Pu < 1 must hold to avoid arbitrage. The asset’s
price at time i that results from j down moves and i − j up moves therefore equals
S0u

i−jdj with probability
(

i
j

)
P i−j

u P j
d .

S0
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1
✟✟✟✟✟✟✟✟✯
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Figure 2.4: The CRR Binomial Lattice.
A 2-time-step CRR binomial lattice model are illustrated in (a) and (b). The price of the
underlying asset for each node is illustrated in (a) and the alias (N(∗, ∗)) for each node is
illustrated in (b). N(i, j) stands for the node at time i with j cumulative down moves. The
probability of reaching each node is listed under the node.

We now map the asset’s prices to nodes on the CRR binomial lattice used for
pricing. Node N(i, j) stands for the node at time i with j cumulative down moves.
Its associated asset’s price is hence S0u

i−jdj. The asset’s price can move from N(i, j)
to N(i + 1, j) with probability Pu and to N(i + 1, j + 1) with probability Pd. As a
consequence, node N(i, j) can be reached from the root with probability

(
i
j

)
P i−j

u P j
d .

See Fig. 2.4(b) for illustration.
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2.5.2 How to Construct a Lattice

We use the well-known Cox-Ross-Rubinstein (CRR) binomial lattice to illustrate
how a lattice is constructed in principle. The logarithmic asset’s price mean (µ) and
variance (Var) one time step from now are derived from Eq. (2.1) as

µ ≡ (r − 0.5σ2)∆t, (2.12)

Var ≡ σ2∆t. (2.13)

To make sure that the lattice converges to the continuous-time asset’s price process,
the mean and the variance of the logarithmic price process should be calibrated by
matching those of the lattice and those of the continuous-time model:

Pu ln u+ Pd ln d = µ, (2.14)

Pu(lnu− µ)2 + Pd(ln d− µ)2 = Var. (2.15)

Note that
Pu + Pd = 1. (2.16)

The 4 parameters (Pu, Pd, u, and d) are uniquely obtained by solving Eqs. (2.11),
(2.14)–(2.16). The branching probabilities Pu and Pd should be between 0 and 1 to
meet the no-arbitrage requirements. In the CRR lattice, this demand can always be
met by suitably increasing n [35].

Construction of a Multinomial Lattice

If each node in a lattice can branch to # nodes at the next time step, we call it an
#-nomial lattice. The above idea can be applied to construct an #-nomial lattice. Note
that 2# degrees of freedoms are provided by an #-nomial lattice. They include # price
multiplicative factors (like u and d in the CRR binomial lattice) and # branching
probabilities (like Pu and Pd in the CRR binomial lattice). These branching proba-
bilities must be between 0 and 1 to meet the no-arbitrage requirements. We need 2#
independent equations to determine these 2# variables uniquely. The calibration of
mean and variance gives 2 equations. The branching probabilities sum to 1, giving
another one. Additional 2#− 3 equations must be added. For example, Eq. (2.11) is
the additional equation used in the CRR binomial model.
Generally speaking, most of these extra equations are enforced to meet specific

requirements. The number of these extra equations determines the lattice model that
will be constructed. In Chapter 3, a trinomial lattice (# = 3) will be constructed to
price an Asian option.

2.5.3 Pricing an Ordinary Option with the Lattice Approach

Options can be priced by the backward induction method on a lattice. Let us focus
on pricing a European-style call on the CRR binomial lattice first. Recall that option
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value can be obtained by taking expectation of the future discounted payoffs as in Eq.
(2.9), which can be decomposed into a combination of numerous formulae as follows:

C = e−r∆t(PuCu + PdCd), (2.17)

where C denotes the option value of an arbitrary node N , Cu denotes the option value
of the node that can be reached from N by a upward movement, and Cd denotes the
option value of the node that can be reached from N by a downward movement. The
option value for each node at the maturity date (at time n) is defined by Eq. (2.2).
The option value for each node at time i (0 ≤ i ≤ n− 1) is evaluated by substituting
the option values of the nodes at time i + 1 into the right hand side of Eq. (2.17).
The pricing result is the option value at the root node.

100    
112.5

200
200

50 
25

400 
350

100  
50

25  
0

Figure 2.5: Pricing an Ordinary Option on a CRR Lattice.
The upper cell of each node (colored of gray) denotes the price of the underlying
asset, and the lower cell of each node denotes the option value at that node.

Take a simple 2-time-step CRR binomial lattice model illustrated in Fig. 2.5 as an
example. The upward factor u and the downward factor d are 2 and 0.5, respectively.
The upward branching probability Pu and the downward branching probability Pd

are both 0.5. The risk-free rate is set as 0, and the strike price is 50. The upper cell
of each node (colored of gray) denotes the price of the underlying asset, and the lower
cell of each node denotes the option value at that node. The option value of a node at
time 2 (the maturity date) is computed by Eq. (2.2). For example, the option value
for the uppermost node at time 2 is

max(400− 50, 0) = 350.
For each node at time 0 or time 1 can be evaluated by applying Eq. (2.17). For
example, the option value for the upper node at time 1 is

e0(0.5× 350 + 0.5× 50) = 200.
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The final pricing result is 112.5.
An American-style option can be exercised before the maturity date. An option

will be exercised early if the option holder finds that it is more beneficial to exercise
the option than to hold the option. The lattice approach can handle this by modifying
Eq. (2.17) as follows:

C = max(Exercise value, e−r∆t(PuCu + PdCd)), (2.18)

where the “Exercise value” denotes the payoff to exercise the option immediately (see
Eq. (2.3)).
In the above method, the option value of each node is evaluated once by applying

Eq. (2.2) (for the nodes at time n), Eq. (2.17) (for pricing European-style options), or
Eq. (2.18) (for pricing American-style option). Since the above mentioned equations
can be evaluated in constant time and there are O(n2) nodes in the lattice, the
computational time complexity is O(n2).

2.5.4 The PDE Approach

The value of the option may be represented as the solution of a PDE. When the
PDE cannot be solved analytically, the solution can be approximated by the finite
difference method numerically. A finite difference method places a grid of points on
the space over which the desired function takes value and then approximates the
function value at each of these points. The approximation method is similar to the
backward induction used in the lattice approach.

2.6 Pricing the Asian option with Lattice Approach

and Its Problems

2.6.0.1 The Lattice Approach and and the Inefficiency Problem

The Asian option can be priced by the lattice approach. However, the pricing algo-
rithm is much more complex as the value of the Asian option is influenced by the
historical average price of the underlying asset (see Eq. (2.7)). For most nodes, there
is more than one possible option value at a node since there is more than one price
paths reaching this node and most of these price paths carry distinct historical aver-
age prices. For convenience, some terms are introduced as follows: A path prefix is
defined as a partial price path (S0, S1, . . . , Sj) that starts at time 0 and ends at time
j. The sum of this path prefix is defined by

∑j
i=0 Si. We call it a prefix sum. For

an arbitrary node N illustrated in Fig. 2.6, we can find a path prefix that has the
maximum prefix sum among the path prefixs that end at N . This maximum path
prefix is denoted by the upper path (in thick lines) that ends at N . Similarly, the
path prefix that has the minimum prefix sum is denoted by the lower path (in thick
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Figure 2.6: Prefix Sums and the Prefix-Sum Range.

lines) that ends at N . The prefix sum range for N is defined as the range between
the maximum and the minimum prefix sums for N .
A 3-time-step CRR lattice is illustrated in Fig. 2.7 to show how an Asian option is

priced on a lattice. We focus on the European-style call option first. The settings of
the multiplication factors and the branching probabilities are the same as in Fig. 2.5
except that there may be more than one option value at each node. The uppermost
cell for each node (colored of gray) denotes the underlying asset’s price for that node.
The prefix sum for each path prefix is marked directly on the branch. The option
value for a path prefix is denoted in the cell connected by the branch that is marked
by the prefix sum of the path prefix. For example, the option value for a path prefix
(100, 200, 100) is 81.25.
The option value for each path prefix that reaches the maturity date (time 3) can

be computed by Eq. (2.7). For example, the payoff for the path prefix (100, 50, 25, 12.5)
is max(100+50+25+12.5

4
, 0) = 0. Define the option value of a path prefix (S0, S1, · · · , Si)

as V (i, Si,M), where M =
∑i

j=0 Sj. Assume that the underlying asset’s price can

either move up to S+
i+1 or move down to S

−
i+1. Then the value of V (i, Si,M) can be

expressed as

V (i, Si,M) = e−r∆t
(
PuV (i+ 1, S

+
i+1,M + S+

i+1) + PdV (i+ 1, S
−
i+1,M + S−

i+1)
)
.

(2.19)
For example, the option value of the path prefix (100, 200, 100) (≡ V (2, 100, 400)) is

V (2, 100, 400) = e0(0.5× V (3, 200, 600) + 0.5× V (3, 50, 450)) = 100 + 62.5 = 81.25.

When pricing American-style option, the backward induction formula is

V (i, Si,M) = max(E, e−r∆t
(
PuV (i+ 1, S+

i+1,M + S+
i+1) + PdV (i+ 1, S−

i+1,M + S−
i+1)

)
), (2.20)

where “E” denotes the value to exercise the option immediately (see Eq. (2.8)).
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Figure 2.7: Pricing an Asian Call Option on a CRR Lattice.
The uppermost cell for each node (colored of gray) denotes the underlying asset’s
price at that node. The other cell(s) denote(s) possible option value(s) at that node.

The option value for each path prefix can be evaluated in constant time. Unfor-
tunately, the number of path prefix in a n-time step lattice is

20 + 21 + 22 + · · ·+ 2n = 2n+1 − 1.

The time complexity is exponential in n. Although some of the path prefixes may
have the same option value, no one has reduced the time complexity significantly
without approximation.

2.6.1 Approximation Algorithms and Its Problems

A successful approximation paradigm is suggested by Hull and White [26], and this
paradigm is widely incorporated by other approximation pricing algorithms. We
call this paradigm the Hull-White paradigm. This paradigm limits the number of
possible prefix sums at each node to a manageable magnitude k. The option values for
the missing prefix sums are estimated by interpolation. Take Fig. 2.8 as an example.
There are three nodes in the figure. The leftmost node is at time i, and the two
other nodes are at time i+ 1. Max and Min denote the maximum and the minimum
prefix sums for each node, respectively. Each line segment at node N denotes the one
of the possible option value at N . The corresponding prefix sum for each possible
option value is marked in the right (or left) of the line segment. The prices of the
underlying asset of the upper-right and the lower-right nodes are 4 and 2, respectively.
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To solve the option value whose corresponding prefix sum is 20 at the leftmost node,
two different option values from the next time step— one with corresponding prefix
sum 24 (= 20+ 4) from the upper-right node (V (i+1, 4, 24)) and the other one with
corresponding prefix sum 22 (= 20 + 2) from the lower-right node (V (i+ 1, 2, 22))—
are required. However, these two required prefix sums are missing since the Hull-
White paradigm limits the number of possible prefix sums. These two option values
can be estimated by using interpolation. For example, V (i+1, 4, 24) can be estimated
by V (i+1, 4, 25) and V (i+1, 4, 23). V (i+1, 2, 22) can be estimated by V (i+1, 2, 23)
and V (i+ 1, 4, 21). The time complexity of this approximation algorithm is O(n2k),
which is much more efficient than the original exact pricing algorithm.
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Figure 2.8: The Approximation in Hull-White Paradigm.

A problem of the Hull-White paradigm is that it lacks error control. Since the
interpolation errors are introduced and accumulated at each time step, we are no
longer sure whether the pricing results converge to the desired option value computed
by the exact pricing algorithm as n → ∞. The relationship is listed in Fig. 1.4, where
e denotes the maximum error between the approximation algorithm and the exact
pricing algorithm. Since more interpolation errors are introduced as n increases, the
error e does not necessarily converge to 0. Thus the approximation pricing algorithm
does not necessarily converge to the true option value (see Fig. 1.5.)
The Hull-White paradigm has been analyzed and extended [4, 20, 29]. Barraquand

and Pudet apply similar idea to the PDE approach [4]. Klassen assumes that the pric-
ing errors of the approximation algorithm converge in O(1/n) and apply extrapolation
to eliminate the error [29]. Forsyth et al. argue that an improper interpolation scheme
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results in divergence or incorrect convergence [20]. They also prove that the modified
Hull-White approximation algorithm converges under some ad hoc assumptions when
k and n are related in a certain manner. The pricing error control problem is not
completely solved in above mentioned papers.



Chapter 3

The Integral Trinomial Lattice

The difficulty for pricing the Asian options with the lattice approach lies in its com-
putational intractability: The time complexity of any existing exact pricing algorithm
is exponential in the number (n) of time steps of the lattice. This chapter suggests
a new lattice model to tackle this problem. The resulting exact pricing algorithm is
proved to break the exponential-time barrier [18].

3.1 A Simple Intuition

Existing exact pricing algorithms for Asian options are computationally intractable
since the total number of prefix sums for any existing lattice grows exponentially in n.
To solve this problem without approximations, a new lattice with fewer prefix sums
is proposed. Imagine a new lattice composed of integral asset prices. A hypothetical
example is illustrated in Fig. 1.3. In such a integral lattice, all possible prefix sums
are restricted to be integers. A simple calculation shows us that there might be fewer
prefix sums in an integral lattice.
A rough analysis is done by comparing the number of prefix sums at the last time

step (time n) between a integral lattice and a usual binomial lattice. There are 2n

possible prefix sums at time n in a usual binomial lattice. Estimating the number of
prefix sums at time n in an integral lattice is heuristic. Assume that the maximum
prefix sum at time n of an integral lattice is α. Thus any possible prefix sum must
be some integer between 1 and α. There must be O(nα) possible prefix sums at time
n as there are O(n) nodes at time n. α can be roughly estimated by the maximum
prefix sum of the CRR binomial lattice as follows:

α ≈ S0 + S0u+ S0u
2 + . . .+ S0u

n

= S0[1 + u+ u2 + . . .+ un] = S0
un+1 − 1
u− 1

≈ S0
eσ

√
Tn − 1

eσ
√

T/n − 1
30
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The growth rate (in n) of lnnα and ln 2n are compared in Fig. 3.1. It is obvious that
nα grows much slower than 2n. This simple estimation points out that an integral
lattice might have fewer prefix sums than a usual binomial lattice.
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Figure 3.1: Growth Rate Comparison.
The growth rate of lnnα (in thick line) and ln 2n (in thin line) are compared in this
figure.

3.2 The Multiresolution Lattice Model

Constructing an lattice of integral asset prices is first studied by Dai and Lyuu [16].
A new lattice model, the multiresolution lattice, is thus constructed. In the multires-
olution lattice, the asset’s price for each node is restricted to be a rational number of
finite precision. Thus each possible prefix sum in this lattice is also a rational number
of finite precision. The precision of the asset’s price varies as necessary so the lattice
can be successfully constructed. A 3-time-step multiresolution lattice is illustrated
in Fig. 3.2. Part (a) denotes the structure of the multiresolution lattice. The under-
lying asset’s price for each node is marked above the node (in binary form). Part
(b) denotes the branching probabilities for each node in the lattice. Note that the
underlying asset’s price for nodes I, O, P are rational numbers with one bit precision.
Thus the possible prefix sums of the nodes covered by the shaded triangle (I, N , O,
P ) are also rational number of one bit precision while the prefix sums of other nodes
are integers. It can be viewed that the resolution (in terms of bits precision) varies
in the lattice. That is why this lattice is called multiresolution lattice.
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D H 0.153 0.743 0.104
I 0.363 0.451 0.186
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Figure 3.2: A Sample Multiresolution Lattice.
(a) The shaded area covers nodes with an additional bit of precision after the decimal
point for their prefix sums. All asset prices marked above the nodes are in binary
form. The parameters are S0 = 5, r = 10%, σ = 20%, T = 0.75, and n = 3. (b) In
the table, Pu, Pm and Pd denote the up, flat, and down branching probabilities for
each node, respectively.

Empirical results suggest that this approach dramatically reduce the number of
prefix sums in the lattice [16]. One of the results is illustrated in Table 3.1. The
convergence of the multiresolution lattice is verified in Fig. 3.3. The multiresolution
approach is compared against other analytical approaches in Table 3.2, where Fu et
al. claim that most analytical approaches fail under these extreme cases [21]. Fig.
3.4 shows further that the numerical delta as determined by the multiresolution ap-
proach varies smoothly with asset price S. We therefore do not expect problems in
constructing hedge portfolios. A grand comparison among different pricing methods
is illustrated in Table 4.2.
All the experimental results up to now are for European-style Asian options.

Table 3.3 tabulates American-style Asian option values generated by various algo-
rithms: the Hull-White algorithm [26, 27], the upper- and lower-bound algorithms
of Chalasani et al. [13], and the multiresolution approach. Both the Hull-White
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n 100 135 150 160
Number of prefix sums 2,969,062 9,065,895 14,030,903 18,280,584

Table 3.1: Reduction of the Number of Prefix Sums.
The table records the total number of prefix sums in the multiresolution lattice. The
input parameters are: S0 = 100, X = 100, σ = 20%, r = 10%, T = 1. The first
column denotes the number of time steps in the lattice while the second column
denotes the number of prefix sums in the lattice.

and multiresolution approach generate results that exceed the upper bounds of Cha-
lasani et al. Since the bounds of Chalasani et al. are valid for the CRR binomial
lattice only, that the Hull-White and multiresolution approach’s results lie outside
the bounds does not prevent them from being closer to the true option value. In fact,
judging from the multiresolution approach’s excellent convergence in the European-
style case, we suggest that the bounds of Chalasani et al. may actually underestimate
the true option value for any finite n. Besides, the fact that the Hull-White algorithm
overestimates the desired option value (see Section 4.8) is also verified.

25 50 75 100 125 150
n

0.305

0.31

0.315

0.32

0.325

Value

Figure 3.3: Convergence Behavior of the Multiresolution Lattice
The Monte Carlo simulation value from Choa and Lee [14] is plotted for reference.
The parameters are S0 = 50, X = 60, r = 10%, σ = 30%, and T = 0.5.

The exact pricing algorithm can be applied on the multiresolution lattice success-
fully as the total number of prefix sums reduces dramatically. This exact pricing
algorithm is guaranteed to converge to the true option value since no interpolation
error is introduced in backward induction. This relationship is illustrated in Fig. 3.5.
Obviously, the exact pricing algorithm on the multiresolution lattice is much superior
to the exact algorithms on other lattices. However, there are two theoretical prob-
lems of the multiresolution lattice. First, no proof is offered to show that the resulting
exact pricing algorithm runs in subexponential time. Second, the multiresolution lat-
tice is constructed by an ad hoc local search, and there is no proof to guarantee that
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r σ T S0 GE Shaw Euler PW TW MC10 MC100 SE MR
5.0% 50% 1 1.9 .195 .193 .194 .194 .195 .192 .196 .004 .193
5.0% 50% 1 2.0 .248 .246 .247 .247 .250 .245 .249 .004 .246
5.0% 50% 1 2.1 .308 .306 .307 .307 .311 .305 .309 .005 .306
2.0% 10% 1 2.0 .058 .520 .056 .0624 .0568 .0559 .0565 .0008 .0558
18.0% 30% 1 2.0 .227 .217 .219 .219 .220 .219 .220 .003 .219
12.5% 25% 2 2.0 .172 .172 .172 .172 .173 .173 .172 .003 .172
5.0% 50% 2 2.0 .351 .350 .352 .352 .359 .351 .348 .007 .351

Table 3.2: Comparing Multiresolution Approach against Other Analytical Ap-
proaches.
All the notations are the same as the ones in Table 2.1 except that “MR” denotes
the multiresolution approach.

the lattice can always be constructed successfully. In the following sections, a new
integral lattice is constructed and rigorous proofs are also given to tackle above two
problems.

3.3 An Overview of the Newly Proposed Lattice

The multiresolution lattice allows the asset’s price of each node to be a rational
number of finite precision. It divides the lattice into different parts and the resolution
(the precision of prefix sums) of each part varies as necessary. Varying the resolution
of the lattice reduces the number of prefix sums drastically. However, this idea also
prevents some important properties – like the time complexity of the algorithm– from
being analyzed rigorously. The homogeneous property of the option value is used to
construct a new integral lattice [18]. The two theoretical problems mentioned in
the last section can now be analyzed rigorously in this new lattice model. A simple
overview of this newly proposed lattice is given as follows. Suppose that the prices of
the underlying asset are multiplied by a constantK before pricing the option, then the
homogeneous property says that this option value divided by K gives the originally
desired option value [36]. In this chapter, a K is found to ensure that an integral
lattice can be constructed. To ensure that the pricing results based on the purposed
lattice converge to the true option value, we have to make sure that the underlying
asset’s price process simulated by this integral lattice converges to the continuous-
time underlying asset’s price process described in Eq. (2.1). The conditions are that
the lattice should match the mean and the variance of the underlying asset’s price
process at each time step [19]. It will be proved that at least one integral price that
satisfies the above conditions exists for every node in this proposed lattice.
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τ X HW LB UB MR
0.5 40 12.115 12.111 12.112 12.132

45 7.261 7.255 7.255 7.275
50 3.275 3.269 3.269 3.272
55 1.152 1.148 1.148 1.147
60 0.322 0.320 0.320 0.322

1.0 40 13.153 13.150 13.151 13.194
45 8.551 8.546 8.547 8.576
50 4.892 4.888 4.889 4.901
55 2.536 2.532 2.534 2.541
60 1.208 1.204 1.206 1.210

1.5 40 13.988 13.984 13.985 14.013
45 9.652 9.648 9.650 9.669
50 6.199 6.195 6.197 6.206
55 3.771 3.767 3.770 3.786
60 2.194 2.190 2.193 2.209

2.0 40 14.713 14.709 14.712 14.756
45 10.623 10.620 10.623 10.659
50 7.326 7.322 7.325 7.358
55 4.886 4.882 4.885 4.912
60 3.171 3.167 3.170 3.195

Table 3.3: American-Style Asian Options.
HW denotes the Hull-White algorithm [26, 27], while UB and LB denote the upper
and lower bounds on the option values given by Chalasani et al. [13] for the CRR
model. “MR” denotes the multiresolution approach. All algorithms use n = 40. The
other parameters are S0 = 50, r = 10%, and σ = 30%.
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Figure 3.4: Numerical Delta.
The numerical delta of the Asian call with respect to the underlying asset’s price as
determined by the multiresolution approach is plotted above. The parameters are
30 ≤ S0 ≤ 70, X = 50, r = 10%, σ = 30%, and τ = 1. For comparison, the higher
dotted curve plots the delta of the vanilla call as computed by the Black-Scholes
formula with the same parameters.

3.3.1 The Structure of a Trinomial lattice

The proposed integral lattice is a trinomial lattice. In a trinomial lattice, each node
can branch to three succeeding nodes in the next time step. Let Si,j denotes (j+1)th
largest asset’s price of the nodes at time i. A 2-time-step trinomial lattice is illustrated
in Fig. 3.6. Take the root node as an example. Its price is S0,0. The underlying asset’s
price can move upward to S1,0 with probability Pu, move flatly to S1,1 with probability
Pm, and move downward to S1,2 with probability Pd. The branching probabilities vary
for different nodes. There are 2#+ 1 nodes at time #.
The option value at time n can be calculated by Eq. (2.7). Let Pu, Pm, and Pd

denote the branching probabilities of the node with the (j+1)th largest asset’s price at
time i. The backward induction formulae for the European-style and American-style
Asian options are modified from Eq. (2.19) and (2.20) as follows:

V(i, Si,j,M) = e−r∆t [PuV(i+ 1, Si+1,j,M + Si+1,j)+

PmV(i+ 1, Si+1,j+1,M + Si+1,j+1) +

PdV(i+ 1, Si+1,j+2,M + Si+1,j+2)]

and

V(i, Si,j,M) = max
(
e−r∆t [PuV(i+ 1, Si+1,j,M + Si+1,j)+

PmV(i+ 1, Si+1,j+1,M + Si+1,j+1) +

PdV(i+ 1, Si+1,j+2,M + Si+1,j+2)] ,E) .

The “E” in the latter formula denotes the exercise value defined in Eq. (2.8). The
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Figure 3.5: Convergence of Different Lattice Models.
The exact algorithm on the multiresolution lattice can be applied successfully. But
running an exact pricing algorithm on any other lattice L is computationally in-
tractable as the number of prefix sums of L is much larger than that of the multires-
olution lattice.

above formulae can be applied in a backward fashion from time n− 1 to time 0. The
root node thus gives the pricing result.

3.4 Lattice Construction

The proposed lattice should meet two requirements: (1): The asset’s price of each
node is restricted to be an integer. (2): The asset’s price process simulated by the
propsed lattice converges to the underlying asset’s price process mentioned in Eq.
(2.1). In this section, we will first show how the lattice is constructed step by step
to meet the above two requirements. Proof given in the next section shows that our
lattice implies a subexponential-time exact pricing algorithm for Asian options.
The homogeneous property says [36]:

E[max(A−X, 0)] =
1

K
E [max (KA−KX, 0)] .

Thus we can multiply the initial underlying asset’s price (S0) and the strike price
X by a constant K and price this hypothetical option. The pricing result is then
obtained by dividing this hypothetical option price by K. To ensure that a proper
integral price can be assigned to each node (except the root node), K is defined as
follows:

K ≡ (0.25S0σ)
−1
√
n/T exp

[
(0.5σ2 − r)T + 2σ

√
Tn

]
. (3.1)
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Figure 3.6: A 2-Time-Step Trinomial Lattice.
The initial asset’s price is S0,0. Si,j denotes the (j + 1)th largest asset’s price at time
i. Pu, Pm, and Pd denote the branching probabilities, respectively.

Note that K ∈ eO(
√

n). We will show later that this K works.
Next, a trinomial lattice is constructed to price this hypothetical option. Note that

the underlying asset’s price of the root node (S0,0) is equal toKS0.
1 Our goal is to find

integral underlying asset’s prices Si,j for 0 < i ≤ n, 0 ≤ j ≤ 2i. Define the V -log-price
of the underlying asset’s price V ′ as ln(V ′/V ) and ci,j ≡ (r−0.5σ2) i∆t+2(i−j)σ√∆t .
Si,j will be some integer whoseKS0-log-price belongs to the following interval centered
around ci,j: (ci,j − 0.25σ

√
∆t, ci,j + 0.25σ

√
∆t). We call ci,j the log-price center for

Si,j. Take a 2-time-step trinomial lattice in Fig. 3.7 as an example. The x-axis
marks the time step in the lattice, and the y-axis denotes KS0-log-prices. Each log-
price center is depicted as a hollow circle. Each dotted line segment begins at ci,j
and ends at ci+1,j+1. The slopes of these dotted lines represent the expected growth
rate of the logarithmic underlying asset’s price, (r − 0.5σ2)∆t. The integral asset’s
price for each node is depicted as a solid circle. Take S2,0 as an example. Because
c2,0 = (r−0.5σ2) 2∆t+4σ

√
∆t, theKS0-log-price of S2,0 should fall within the interval

(c2,0 − 0.25σ
√
∆t, c2,0+0.25σ

√
∆t). The proof in Subsection 3.5.1.1 shows that there

is always at least one integer whose KS0-log-price falls within the above interval.
The branching probabilities for each node are computed as follows. Take a node

with price Si,j. Recall that the probabilities for the underlying asset’s price moving
to Si+1,j, Si+1,j+1, and Si+1,j+2 are Pu, Pm, and Pd, respectively. Define α, β, and γ

1Note that KS0 is not necessary an integer since both K and S0 are not necessary integers, too.
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Figure 3.7: A 2-Time-Step Trinomial Lattice over KS0-log-prices.

as follows:

α ≡ ln(Si+1,j/Si,j)− µ, (3.2)

β ≡ ln(Si+1,j+1/Si,j)− µ, (3.3)

γ ≡ ln(Si+1,j+2/Si,j)− µ, (3.4)

where µ is defined in Eq. (2.12). The branching probabilities satisfy

Puα+ Pmβ + Pdγ = 0, (3.5)

Puα
2 + Pmβ

2 + Pdγ
2 = Var, (3.6)

Pu + Pm + Pd = 1, (3.7)

where Var is defined in Eq. (2.13). Eqs. (3.5) and (3.6) match the mean and the vari-
ance of the logarithmic asset’s price, respectively. Hence our lattice converges weakly
to the lognormal asset’s price process. That Eqs. (3.5)–(3.7) give valid branching
probabilities will be proved in Subsection 3.5.1.2.

3.5 Proof

This section proves that our approach provides a subexponential-time algorithm for
pricing Asian options. The proof has two parts. First, we show that a valid lattice
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is constructed. Next we show that the exact pricing algorithm based on this lattice
runs in subexponential time.

3.5.1 Validity of the Lattice

3.5.1.1 Existence of Integral Underlying Asset’s Prices

When constructing the trinomial lattice, an integral underlying asset’s price is as-
signed to each node. More specifically, Si,j should be an integer whose KS0-log-price
falls in (ci,j − 0.25σ

√
∆t, ci,j + 0.25σ

√
∆t). To ensure that such an integer exists, it

suffices to show that

KS0

[
exp

(
ci,j + 0.25σ

√
∆t

)
− exp

(
ci,j − 0.25σ

√
∆t

)]
> 1.

Our goal now is to show that our choice ofK in Eq. (3.1) satisfies the above inequality.
Without loss of generality, only the case Sn,2n is considered as exp(ci,j+0.25σ

√
∆t)−

exp(ci,j − 0.25σ
√
∆t) is minimized when i = n and j = 2n. Thus it suffices to show

that our K satisfies

K > S−1
0 e−cn,2n

(
e0.25σ

√
∆t − e−0.25σ

√
∆t
)−1

.

Indeed,

S−1
0 e−cn,2n

(
e0.25σ

√
∆t − e−0.25σ

√
∆t
)−1

= S−1
0 exp

[
(0.5σ2 − r)T + 2σ

√
Tn

]
×
(
e0.25σ

√
∆t − e−0.25σ

√
∆t
)−1

< S−1
0 exp

[
(0.5σ2 − r)T + 2σ

√
Tn

]
/(0.25σ

√
T/n) (3.8)

≤ (0.25S0σ)
−1
√
n/T exp

[
(0.5σ2 − r)T + 2σ

√
Tn

]
= eO(

√
n),

where Eq. (3.8) holds because

e0.25σ
√

∆t − e−0.25σ
√

∆t >
(
1 + 0.25σ

√
∆t

)
− 1 = 0.25σ

√
∆t .

3.5.1.2 Validity of Branching Probabilities

The Eqs. (3.5)–(3.7) are proved to result in valid branching probabilities for the
asset’s price Si,j. To be more specific, the branching probabilities Pu, Pm, and Pd, are
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proved to be strictly larger than 0 to meet the no-arbitrage requirement (note that this
suffices to ensure that they are all less than 1). First we will derive constraints on α,
β, γ defined in Eqs. (3.2)–(3.4). Then we will show that valid branching probabilities
are obtained by solving Eqs. (3.5)–(3.7) given the constraints on α, β, and γ.
Fig. 3.8 is used to aid the proof. Note that a KS0-log-price of x becomes a

Si,j-log-price of x +
ln KS0

ln Si,j
. The following computations are in Si,j-log-prices unless

sated otherwise. The log-price center of Si,j, c
′, equals ci,j + ln KS0

ln Si,j
, whereas c, the

log-price center of Si+1,j+1, equals c
′ + (r − 0.5σ2)∆t. The log-price centers of Si+1,j

and Si+1,j+2 are c + 2σ
√
∆t and c − 2σ√∆t, respectively. The Si,j-log-price of Si,j

is 0. The conditional mean of the asset’s price one time step after it reaches Si,j is
µ = (r − 0.5σ2)∆t. By construction, the distance between the Si,j-log-price of Si,j,
which equals 0, and its log-price center c′ is smaller than 0.25σ

√
∆t . This implies

that |c′| < 0.25σ√∆t . Hence,
|µ− c| =

∣∣(r − 0.5σ2)∆t− [
c′ + (r − 0.5σ2)∆t

]∣∣
= | c′ | < 0.25σ

√
∆t .

Thus µ falls within interval (c− 0.25σ√∆t, c+ 0.25σ√∆t). Now
β = ln(Si+1,j+1/Si,j)− µ

falls within interval (−0.5σ√∆t, 0.5σ√∆t) as the Si,j-log-price of Si+1,j+1, ln(Si+1,j+1/Si,j),
falls within interval (c− 0.25σ√∆t, c + 0.25σ√∆t). Fig. 3.8 illustrates a case where
β < 0.
We next represent α and γ in terms of β. Define d1 as the difference between

Si+1,j’s and Si+1,j+1’s Si,j-log-prices and d2 as the difference between Si+1,j+1’s and
Si+1,j+2’s Si,j-log-prices. Thus α and γ can be represented as

α = ln (Si+1,j/Si,j)− ln(Si+1,j+1/Si,j)

+ ln(Si+1,j+1/Si,j)− µ

= d1 + β,

γ = ln (Si+1,j+2/Si,j)− ln(Si+1,j+1/Si,j)

+ ln(Si+1,j+1/Si,j)− µ

= −d2 + β.

Note that 1.5σ
√
∆t < d1 < 2.5σ

√
∆t because

c+ 1.75σ
√
∆t < ln(Si+1,j/Si,j) < c+ 2.25σ

√
∆t,

c− 0.25σ
√
∆t < ln(Si+1,j+1/Si,j) < c+ 0.25σ

√
∆t,

d1 = ln(Si+1,j/Si,j)− ln(Si+1,j+1/Si,j).

Similarly, 1.5σ
√
∆t < d2 < 2.5σ

√
∆t. Note also that α = d1 + β > σ

√
∆t > 0 as

β ∈ (−0.5σ√∆t, 0.5σ√∆t) and d1 ∈ (1.5σ
√
∆t, 2.5σ

√
∆t). Similarly, γ = −d2 + β <
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Figure 3.8: Branching Probabilities for the Node with Price Si,j.
All the values in this figure are Si,j-log-prices except the ones that are parenthesized.
The nodes with asset’s prices Si,j, Si+1,j, Si+1,j+1, and Si+1,j+2 are represented by
solid circles. The branches that connect these nodes are represented by thick lines.
The log-price centers for these nodes are represented by hollow circles. The log-price
centers of Si,j and Si+1,j+1 are c

′ and c, respectively. µ represents the expected asset’s
price one step after Si,j. Pu, Pm, and Pd denote the branching probabilities for the
upper, middle, and lower branches from the node with price Si,j. Values α, β, and
γ are defined in Eqs. (3.2)–(3.4). Finally, | d1 | denotes the distance between Si+1,j’s
and Si+1,j+1’s Si,j-log-prices, and | d2 | denotes the distance between Si+1,j+1’s and
Si+1,j+2’s Si,j-log-prices.

−σ√∆t < 0 as d2 ∈ (1.5σ
√
∆t, 2.5σ

√
∆t). It is also obvious that α > β > γ as

d1, d2 > 0.
We now show that positive branching probabilities are obtained given the con-

straints on α, β, and γ derived above and summarized below:

β ∈ (−0.5σ
√
∆t, 0.5σ

√
∆t).

α = d1 + β, where d1 ∈ (1.5σ
√
∆t, 2.5σ

√
∆t).

γ = −d2 + β, where d2 ∈ (1.5σ
√
∆t, 2.5σ

√
∆t).

The branching probabilities are solved by applying Cramer’s rule to Eqs. (3.5)– (3.7).
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Define

det =


 α β γ
α2 β2 γ2

1 1 1


 = (β − α)(γ − α)(γ − β) < 0,

detu =


 0 β γ
Var β2 γ2

1 1 1


 = (βγ +Var)(γ − β),

detm =


 α 0 γ
α2 Var γ2

1 1 1


 = (αγ +Var)(α− γ),

and

detd =


 α β 0
α2 β2 Var
1 1 1


 = (αβ +Var)(β − α).

Then Pu = detu/det, Pm = detm/det, and Pd = detd/det. Note that det < 0 as
α > β > γ. To show that the branching probabilities are valid, we have to show that
Pu, Pm, Pd > 0. As det < 0, it is sufficient to show detu, detm, detd < 0. Moreover,
as γ − β < 0, α − γ > 0, and β − α < 0, we only need to show that βγ + Var > 0,
αγ +Var < 0, and αβ +Var > 0 instead.
1. βγ +Var > 0: Note that

βγ +Var = β(β − d2) + σ2∆t

= (β − 0.5d2)
2 − 0.25d2

2 + σ2∆t.

For a given d2, βγ+Var reaches its minimum when β = 0.5d2. Recall the constraints
that 0.5d2 ∈ (0.75σ√∆t, 1.25σ√∆t) and β < 0.5σ

√
∆t. Hence βγ + Var reaches its

minimum for a given d2 ∈ (1.5σ
√
∆t, 2.5σ

√
∆t) when β → 0.5σ

√
∆t. Thus, we have

βγ +Var = β(β − d2) + σ2∆t

> 0.5σ
√
∆t (0.5σ

√
∆t− d2) + σ2∆t

= −0.5σ
√
∆t d2 + 1.25σ

2∆t

> −1.25σ2∆t+ 1.25σ2∆t = 0.

2. αγ +Var < 0: Note that

αγ +Var = (β + d1)(β − d2) + σ2∆t.

As β + d1 > σ
√
∆t and β − d2 < −σ√∆t, we have

(β + d1)(β − d2) + σ2∆t < (σ
√
∆t)(−σ

√
∆t) + σ2∆t = 0.
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3. αβ +Var > 0: This is proved similarly as we prove βγ +Var > 0. Note that

αβ +Var = (β + d1)β + σ2∆t

= (β + 0.5d1)
2 − 0.25d2

1 + σ2∆t.

For a given d1, αβ+Var reaches its minimum when β = −0.5d1. Recall the constraints
that −0.5d1 ∈ (−1.25σ√∆t,−0.75σ√∆t) and β > −0.5σ√∆t. Hence αβ + Var
reaches its minimum for a given d1 ∈ (1.5σ√∆t, 2.5σ√∆t) when β → −0.5σ√∆t.
Thus we have

αβ +Var = (β + d1)β + σ2∆t

> (−0.5σ
√
∆t+ d1)(−0.5σ

√
∆t) + σ2∆t

= −0.5σ
√
∆t d1 + 1.25σ

2∆t

> −1.25σ2∆t+ 1.25σ2∆t = 0.

3.5.2 Running-Time Analysis

Note that the time complexity of an exact pricing algorithm is proportional to the
total number of prefix sums on the lattice. Thus the pricing algorithm is subex-
ponential in n if the total number of prefix sums is bounded by a subexponential
function. We will first show that the maximum prefix sum in our lattice is bounded
by a subexponential function. Then we will show that the total number of prefix
sums is, too.
The maximum asset’s price Sn,0 is bounded by KS0e

cn,0+0.25σ
√

∆t, where

cn,0 = (r − 0.5σ2)n∆t+ 2(n− 0)σ
√
∆t

= (r − 0.5σ2)T + 2σ
√
Tn .

Thus Sn,0 is bounded by a subexponential function as both K and ecn,0+0.25σ
√

∆t are
subexponential in n. The maximum prefix sum in the lattice is equal to

∑n
i=0 Si,0 ≤

(n + 1)Sn,0. Note that (n + 1)Sn,0 is also a subexponential function. We define
F ≡ (n+ 1)Sn,0 for simplicity.
The next goal is to show that the total number of prefix sums is bounded by a

subexponential function. Recall that the underlying asset’s price for each node except
the root node in our lattice must be an integer. The underlying asset’s price at the
root node (KS0) can be represented as S

′+a for some integer S ′ ≥ 0 and some rational
number a where 0 ≤ a < 1. Thus all the possible prefix sums must belong to the set
{X : X ≤ F, X = I + a, I is a nonnegative integer.}. The number of elements in
this set is at most �F �. Thus the maximum number of prefix sums for each node is
bounded by �F �. Since there are (n + 1)2 nodes in an n-time-step trinomial lattice,
the total number of prefix sums is bounded above by the subexponential function
(n+ 1)2�F �. The time complexity of our algorithm is thus subexponential in n.



Chapter 4

The Range Bound Algorithms

Although the proposed exact pricing algorithm breaks the exponential-time barrier
successfully, it is still not a polynomial-time algorithm. In this chapter, the range
bound algorithms are proposed to tackle the efficiency problem. The computational
performance of these algorithms can be further improved by employing some approx-
imations while the pricing error is analyzed rigorously.

4.1 The Range Bound Paradigm

The exact pricing algorithm proposed in last chapter is still computationally in-
tractable although it significantly improves the efficiency. Another approach to tackle
this pricing problem is to construct efficient approximation algorithms that produce
provable upper and lower bounds (called range bounds) of the desired option value
(produced by the exact pricing algorithm). The hope is that the desired option value
becomes practically available when the upper bound and the lower bound are essen-
tially identical. Furthermore, the difference between the upper bound and the lower
bound, call it e, gives an upper limit on the uncertainty surrounding the desired op-
tion value (see Fig. 1.4.) Since the desired option values are known to converge to
the true option value as the number of time steps in the lattice (n) approaches to
infinity, the approximation algorithm is guaranteed to converge to the true option
value if e → 0 as n → ∞. This relationship is illustrated in Fig. 1.5.
Rogers and Shi derive analytical formulae to estimate the upper and the lower

bounds of European-style Asian options [38]. But we can not trade off the com-
putational efficiency against the accuracy level via their formulae. Chalasani et al.
propose an O(n4)-time range-bound algorithm for Asian options [13]. However, the
pricing error between the approximation and the exact pricing algorithms e is not
rigorously analyzed there.
The convergence of the upper bound of pricing error e is first considered in Aing-

worth et al. [2]. An O(kn2)-time algorithm is proposed to guarantee a theoretical
error bound of O(Xn/k), where k can be varied for any desired trade-off between

45
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time and accuracy. However, their error analysis of American-style Asian options is
mistaken. Akcoglu et al. [3] derive a complex trade-off by a recursive application of
the algorithm of [2] in the case of European-style Asian options. See Hochbaum [25]
for more information on approximation algorithms.

4.2 An Overview of the Proposed Range Bound

Algorithms

A series of the range bound algorithms are proposed in this chapter. The first al-
gorithm has an error bound of O(X

√
n/k) for European-style Asian options. This

is an improvement over the result of Aingworth et al. [2]. One can choose n and k
to obtain an upper bound on the pricing error one is comfortable with before the
algorithm is executed. The resulting algorithm is guaranteed to output a value that
does not deviate from the desired option value by more than the predetermined upper
bound. Variations on this basic algorithm tighten the bounds further. Extensive com-
puter experiments conclude that the upper and lower bounds after such tightening
are essentially identical in practice. Because all the algorithms run in time O(kn2),
the desired option value is obtained without combinatorial explosion mentioned in
Fig. 1.2. As the magnitude of the pricing error is O(X

√
n/k), it suffices to pick k

to be proportional to
√
n to satisfy any desired error bound and the running time is

O(n2.5). To guarantee a convergence rate of O(n−0.5), as another example, it suffices
to pick k to be proportional to n, making the algorithms’ running time O(n3). To
guarantee a convergence rate of O(n−1), as the last example, it suffices to pick k to
be proportional to n1.5, making the algorithms’ running time O(n3.5). This conver-
gence result is reached without ad hoc assumptions as in Forsyth et al. [20]. Our
experiments show that the theoretical error bound is probably overpessimistic and a
convergence rate of O(n−1) is most likely achievable with a running time of O(n3) by
picking k to be proportional to n.
American-style Asian options are harder to price because of the need to determine

whether it is optimal to exercise early at a path prefix (see Eq. (2.20).) We will
show later that the path prefixs that are optimal to be exercised early and the path
prefixs that are not optimal to be exercised are divided by the so-called “exercise
boundary”. As a consequence, rigorous analysis of the algorithms for American-style
Asian options is even scarcer than that for European-style Asian options. Our range-
bound algorithms for American-style Asian options derive from those for European-
style ones. The running times remain O(kn2). Furthermore, we give formal proof
that the proposed algorithms do give range bounds. Computer experiments again
demonstrate that the range bounds are so tight in practice that the desired option
value is essentially obtained within the time bound. This claim may fail for large n
if both the underlying asset’s price volatility and the maturity date are very large
numbers. (To our knowledge, no papers in the literature on American-style Asian
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options mention numerical results for volatilities larger than 50%.) We conclude that
our proposed algorithms price the American-style Asian option correctly except when
both the asset’s price volatility and the maturity date are high.
The intricate range-bound proof is of independent interest. It yields an unexpected

corollary that the Hull-White paradigm with linear interpolation in [26, 27] is an
upper-bound algorithm.
A very important feature of our range bound algorithms is the way with which they

attempt to limit the range of prefix sums at each node. The motivation is obvious:
A small dynamic range allows finer resolution in the approximation given the same
amount of computational efforts. In the case of European-style Asian options, prefix
sums at or over a certain numerical bound will necessarily result in the option being
in the money at the maturity date. Luckily, in this scenario their contribution to the
option value is given by a simple exact formula. This implies that the algorithms can
direct their computational resources to the prefix sums lower than the said bound.
In fact, without incorporating this numerical bound, any pricing algorithm may fail
to converge if volatility or/(and) the maturity date is high.
In the case of American-style Asian options, a similar role is played by the exer-

cise boundary. Prefix sums above the exercise boundary will force the option to be
exercised immediately, whose contribution to the option value is known exactly and
trivially computable. We circumvent the difficulty of finding the exact boundary with
a way to estimate it while respecting the desired range bounds. Once the boundary
is available, the algorithms will again work on more limited prefix sum ranges.
The algorithm to estimate the exercise boundary is of independent interest. It

gives rise to a general two-phase computational framework in which phase one calcu-
lates the estimated exercise boundary and phase two employs any purported upper-
bound algorithm. The resulting algorithm is guaranteed to be an upper-bound al-
gorithm. Because the algorithm in phase two works on reduced prefix sum ranges,
it is expected to offer substantially more accurate results than if phase one is not in
place. Any algorithmic progress in pricing the American-style Asian options, there-
fore, immediately results in an improved two-phase version in which the first phase
calls upon our algorithm to provide the estimated exercise boundary.
All the experimental results in this chapter are all based on the CRR binomial

lattice model. The details of this model can be found in Subsection 2.5.1. Note that
the range-bound algorithms and the proofs in this chapter can also be “ported” to
other lattice models.
This chapter is structured as follows. A range bound algorithm for European-style

Asian options is given first. A rigorous proof is then given in Subsection 4.4.3 to prove
that the theoretical convergence rate of the proposed algorithm. After an improve-
ment is introduced to improve the proposed range bound algorithm in Section 4.5,
numerical results given in Section 4.6 verify the accuracy of the proposed algorithms.
The range bound algorithm for American-style Asian options is extended from the
improved range bound algorithm for the European-style options in Section 4.7. The
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optimal exercise boundary problem is considered rigorously in Section 4.8 and the
range bound property still holds in our proposed algorithms. Experimental results
are given in Section 4.9.

4.3 Preliminaries for European-Style Asian Options

The Hull-While paradigm is adopted to speed up the computation. The approxi-
mation algorithm can be viewed to replace the asset’s price Si by some other ran-
dom variable Ŝi, which can be thought of as an approximation to Si with deviate
Di = Si − Ŝi. Note that D0 = 0. The core computational problem can now be
rephrased from Eq. (2.9) as

e−rT

(
E

[
max

{
1

n+ 1

n∑
i=0

(Ŝi +Di), X

}]
−X

)
.

If the algorithm calculates

e−rT

(
E

[
max

{
1

n+ 1

n∑
i=0

Ŝi, X

}]
−X

)

instead, the magnitude of error will be bounded 1 above by

E

[
1

n+ 1

n∑
i=0

|Di |
]
. (4.1)

A path prefix with a prefix sum equal to or exceeding (n + 1)X at some node is
guaranteed to end with a price average at least X, thus in or at the money. This
path prefix’s contribution to the option value is given by the following lemma.

Lemma 4.3.1 (Aingworth et al. [2]) Suppose that a path prefix of length j has
prefix sum (n + 1)X + ε, where ε ≥ 0, and it ends at a node with asset’s price Sj.
Then the discounted option value of that path prefix equals

• [ ε+ (n− j)Sj ]/(n+ 1) when r = 0, and

• e−nr∆t[ ε+ 1−e(n−j)r∆t

1−er∆t Sje
r∆t ]/(n+ 1) when r > 0.

Proof. Assume that the path prefix is (S0, S1, . . . , Sj). If r > 0, then the expected
value of the future prefix sum Sj+1 + Sj+2 + · · ·+ Sn equals

n∑
i=j+1

Sj

[
er∆t + e2r∆t + · · ·+ e(n−j)r∆t

]
= Sje

r∆t1− e(n−j)r∆t

1− er∆t
.

1The discount factor e−rT is ignored.
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The expected value of the average An = (S0+S1+ · · ·+Sn)/(n+1) therefore equals[
(n+ 1)X + ε+ Sje

r∆t1− e(n−j)r∆t

1− er∆t

]
/(n+1) = X+

[
ε+ Sje

r∆t1− e(n−j)r

1− er∆t

]
/(n+1).

Because each path will end up in or at the money, the expected option payoff (at the
maturity date) equals the above minus X, i.e.,[

ε+ Sje
r∆t1− e(n−j)r∆t

1− er∆t

]
/(n+ 1).

The case of r = 0 is similar. Q.E.D.

Lemma 4.3.1 implies that a European-style Asian option pricing algorithm can
limit the range of prefix sums at each node to range [ 0, (n+ 1)X). The option value
of a prefix sum equals to or exceeding (n + 1)X can be calculated exactly by the
lemma. We remark that the lemma can be improved by incorporating information
regarding the last price Sj on the path prefix. Without this upper limit of (n+ 1)X,
algorithms for European-style Asian options may fail to converge for sufficiently large
σ (See Table 4.7 for supporting data.)

4.4 The Design and Error Analysis of the Basic

Range-Bound Algorithm

4.4.1 Description of the Algorithms

We start by segmenting the range [ 0, (n + 1)X ] at each node N(i, j)2 by kij + 1
equally-distanced buckets. The #th bucket, 0 ≤ # ≤ kij, is associated with prefix
sum #(n+ 1)X/kij. Two adjacent buckets’ associated prefix sums are thus separated
by (n + 1)X/kij. See Fig. 4.1 for illustration. In practice, bucket kij is not really
needed in pricing European-style Asian options. The reason is that it is guaranteed
to end up in or at the money, making Lemma 4.3.1 applicable. We maintain it to
simplify the presentation.
Let b(i, j, #) denote the #th bucket at node N(i, j) and s(i, j, #) denote the associ-

ated prefix sum. For the current algorithm, the prefix sums are fixed at

s(i, j, #) = #(n+ 1)X/kij. (4.2)

The root node N(0, 0) is a special case, with k00 = 1 and s(0, 0, 0) = S0. The
contribution to the option value by prefix sums equal to or exceeding (n+1)X before
maturity is given by Lemma 4.3.1. The contribution of each prefix sum s ≥ (n+1)X

2See the definitions in Subsection 2.5.1.
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(kij − 1)(n+ 1)X/kij bucket kij − 1
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N(i, j)

... N(i+ 1, j)

... N(i+ 1, j + 1)

Figure 4.1: Bucketing.
Each node N(i, j) has kij+1 buckets, starting from prefix sum 0 and ending at prefix
sum (n+ 1)X with increments of (n+ 1)X/kij.

at maturity is e−nr∆t[ s/(n + 1) −X ]. Any other bucket at maturity (that is, those
b(n, j, #) with # < kij) contributes nothing to the option value because

e−nr∆t

[
s(n, j, #)

n+ 1
−X

]+

= e−nr∆t

(
#X

kij

−X

)+

= 0.

The algorithm uses forward induction to calculate the probability associated with
each bucket. Each bucket’s associated prefix sum most likely does not correspond to
a valid prefix sum on the binomial lattice. Paths are hence rounded to the nearest
bucket in the following way. When a prefix sum falls between two adjacent buckets,
the sum is rounded down to the lower bucket. Specifically, at node N(i, j) with asset’s
price S0u

i−jdj, the paths collected at bucket b(i, j, #) are expected to move up to node
N(i + 1, j) with prefix sum s(i, j, #) + S0u

i−j+1dj and down to node N(i + 1, j + 1)
with prefix sum s(i, j, #)+S0u

i−jdj+1. These two prefix sums are then rounded down
to the nearest buckets, called the up bucket and the down bucket of b(i, j, #),
respectively.
The above discussion entails the following inductive procedure for the desired
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probabilities. The probability p(i, j, #) for bucket b(i, j, #) is multiplied by Pu and
added to the probability of the up bucket:

b

(
i+ 1, j,

⌊
s(i, j, #) + S0u

i−j+1dj

(n+ 1)X/ki+1,j

⌋)
. (4.3)

Similarly, the same probability p(i, j, #) is multiplied by Pd and added to the proba-
bility of the down bucket:

b

(
i+ 1, j + 1,

⌊
s(i, j, #) + S0u

i−jdj+1

(n+ 1)X/ki+1,j+1

⌋)
. (4.4)

See Fig. 4.2 for illustration. Bucket b(i, j, #) therefore covers the prefix sums s in
range

#(n+ 1)X/kij ≤ s < (#+ 1)(n+ 1)X/kij. (4.5)

Observe that the range has a width of (n+1)X/kij. The algorithm in effect calculates
for each bucket the probability that a path has a prefix sum covered by that bucket.
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❅
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kij ...
# ...
0

ki+1,j... ⌊
�(n+1)X/ki+1,j+S0ui−j+1dj

(n+1)X/ki+1,j

⌋
...

0

❄

ki+1,j+1... ⌊
�(n+1)X/ki+1,j+1+S0ui−jdj+1

(n+1)X/ki+1,j+1

⌋
...

0

❄

Figure 4.2: Rounding Down the Prefix Sums.
Each of the kij + 1 buckets at N(i, j) moves up to the bucket of node N(i + 1, j) and
down to the bucket of node N(i+ 1, j + 1) as shown. In the rounding-up version, the floor
operations are replaced with the ceiling operations.

We call this algorithm nUnifDown. The prefix nUnif emphasizes the nonuniformity
of bucketing, as the number of buckets, kij + 1, may vary from nodes to nodes.
The suffix Down means that the successor buckets are located by rounding down.
If we change the rounding-down operations in Eq. (4.3) and (4.4) to rounding-up,
the resulting algorithm is called, naturally, nUnifUp with the suffix Up. Evidently,
nUnifDown and nUnifUp bracket the desired option value (Desired):

nUnifDown ≤ Desired ≤ nUnifUp. (4.6)
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Hence nUnifDown:nUnifUp is a range-bound algorithm. In the next subsection, we
shall show that, by a judicious choice of kij, very tight error bounds obtain.
Both nUnifDown and nUnifUp share the bucketing idea of the Hull-White paradigm.

But there are also significant differences. The Hull-White paradigm does not take ad-
vantage of the limited range of prefix sums made possible by Lemma 4.3.1. It also
uses interpolation, not rounding, in pricing, making the analysis of error much more
difficult. Later in the paper, we will prove rigorously for the first time in the literature
that the algorithms which follow Hull-White paradigm with linear interpolation are
upper-bound algorithms. The forward shooting grid method in [4] finds the successor
bucket by rounding to the nearest bucket, which is either the up bucket or the down
bucket.
By picking a uniform kij = k to make the number of buckets the same k + 1 for

every node, the algorithm in Aingworth et al. [2] is a special case of our nUnifDown.
We shall call it UnifDown to emphasize its uniformity of bucketing. Its rounding-up
version shall be labeled UnifUp. The range-bound result in Eq. (4.6) clearly does
not depend on bucket-distribution scheme. A very popular alternative is for the
logarithms of the buckets to be equally distanced [26]. All our algorithms and all the
theoretical results (except the one with a specific error bound, Theorem 4.4.1) are
independent of the ways the buckets are distributed.

4.4.2 An Optimal Choice of the Number of Buckets

Denote the rounding error at node N(i, j) by Dij. Then the pricing error’s upper
bound Eq. (4.1) is further bounded above by

1

n+ 1

n∑
i=0

i∑
j=0

(
i

j

)
P u

i−jP
j
d |Dij|. (4.7)

Because |Dij| are not identically weighted in Eq. (4.7), a thoughtful choice of kij can
reduce the pricing error.
Set

TIME =
∑

0≤j≤i≤n

kij, (4.8)

the total number of buckets allocated by the algorithm. The running time is propor-
tional to TIME. Note that the summands are not kij + 1 because bucket kij, as we
mentioned earlier, is not allocated in practice.
As any two adjacent buckets at node N(i, j) are (n + 1)X/kij apart, it follows

that |Dij| ≤ (n + 1)X/kij. With B(i, j; p) ≡
(

i
j

)
P i−j

u P j
d , pricing error illustrated in

Eq. (4.7) is bounded above by

ERROR = X
n∑

i=1

i∑
j=0

B(i, j; p)

kij

. (4.9)
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Apply the Cauchy-Schwartz inequality to Eq. (4.8) and (4.9) to obtain

TIME× ERROR ≥ X

[ ∑
0≤j≤i≤n

√
B(i, j; p)

]2

.

Equality holds if and only if
√
B(i, j; p)/kij are equal for all i and j. If the budget

for TIME is fixed, then ERROR is minimized by setting

kij = TIME×
√
B(i, j; p)∑

0≤j≤i≤n

√
B(i, j; p)

.

The pricing error’s upper bound,

X

TIME
×
[ ∑

0≤j≤i≤n

√
B(i, j; p)

]2

, (4.10)

is then maximized with p = 1/2.
The algorithm can now be completely specified with

kij =

⌈
TIME×

√
B(i, j; p)∑

0≤j≤i≤n

√
B(i, j; p)

⌉
. (4.11)

Eq. (4.8) and the choice
TIME = kn2/2

imply that k measures the average number of buckets per node.

4.4.3 Error Analysis

We proceed to derive an upper bound on the pricing error in Eq. (4.10) of nUnifDown.
The same proof works for nUnifUp. Recall that p = 1/2. Bender (1974) shows that
[5] ∑

0≤j≤i

√
B(i, j; 1/2) ∼ (2πi)1/4.

Substitute the above into Eq. (4.10) to yield

ERROR ≤ X

TIME
×
[ ∑

0≤i≤n

(2πi)1/4

]2

.

As
∑

0≤i≤n i
1/4 ∼ ∫ n

0
x1/4dx = 4

5
n5/4 and TIME = kn2/2,

ERROR ≤ X

kn2/2

√
2π (4/5)2n5/2 < 4X

√
n/k

asymptotically. We have therefore proved the following theorem.
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Theorem 4.4.1 European-style Asian options can be approximated within O(X
√
n/k)

by the O(kn2)-time range-bound algorithm nUnifDown:nUnifUp with the numbers of
buckets given by Eq. (4.11).

We make a few remarks regarding the error bound in the above theorem. Although
kij are chosen in an optimal way, optimality is relative to the upper bound in Eq.
(4.9) on the pricing error and not the exact pricing error. Hence, a better choice
than Eq. (4.11) is conceivable. By the same token, the same error bound may be
achievable with much smaller kij than asked for in the theorem. Finally, the bound
is independent of the asset’s price volatility σ.

4.5 Tighter Range Bounds

Both bucketing and rounding schemes impact the quality of approximation. There
are uniform bucketing and the more general nonuniform bucketing to choose from.
There also exist different ways to distance the buckets, a topic not investigated in this
paper. As to rounding, there have been two choices: rounding-down and rounding-up.
Neither is ideal because every path is either uniformly rounded down or uniformly
rounded up at each node, generating a systematic bias. A straightforward answer is
to average the results of UnifDown and UnifUp in the hope of cancelling the rounding
errors but at the cost of doubling the running time. Call this method UnifAvg.

4.5.1 A Tighter Upper-Bound Algorithm

Our next algorithm applies the averaging idea bucket by bucket. Although the algo-
rithm is similar to nUnifDown and nUnifUp, it no longer always rounds down a path
prefix as in nUnifDown or rounds up a path prefix as in nUnifUp. Instead, a path is
split into two buckets in such a portion that the average prefix sums associated with
the two buckets equals the prefix sum of the original path.
More precisely, consider node N(i+1, j) and a path with a prefix sum s at N(i+

1, j) after making an up move from bucket b(i, j, k). Recall that scheme nUnifDown
directs the path to the round-down bucket b(i + 1, j, RoundDown), whereas scheme
nUnifUp directs the path to the round-up bucket b(i+ 1, j, RoundUp), where

RoundDown =

⌊
ski+1,j

(n+ 1)X

⌋
,

RoundUp =

⌈
ski+1,j

(n+ 1)X

⌉
.

Our new algorithm does a bit of both by solving

s = λ · s(i+ 1, j, RoundUp) + (1− λ) · s(i+ 1, j, RoundDown) (4.12)
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for λ. It then gives proportions λ and 1 − λ of p(i, j, k)—the probabilistic weight
of b(i, j, k)—to the round-up bucket and the round-down bucket, respectively. See
Fig. 4.3 for illustration. In the unlikely event that RoundDown = RoundUp, we let
λ = 1. Repeat the same steps for the down move from bucket b(i, j, k). Other than
the splitting of paths, the algorithm is identical to nUnifDown. Call this algorithm
nUnifSpl (for splitting).

�
�
�✒

❅
❅
❅❘

Round-up bucket

Round-down bucket

λ

1− λ

Figure 4.3: Splitting a Path.
The round-up bucket receives λ of the probabilistic weight. The round-down bucket
receives 1− λ of the probabilistic weight.

We make a few remarks here. Every path is conceptually split into 2n paths in
nUnifSpl. Some of the paths may be terminated earlier if their prefix sums ever equal
or exceed (n + 1)X, where Lemma 4.3.1 takes over. Each of the paths is rounded
to buckets along the way to prevent combinatorial explosion. Furthermore, for any
0 ≤ m ≤ n, a path’s prefix sum of m prices equals the expected length-m prefix sum
of all the split paths.

4.5.2 A Tighter Lower-Bound Algorithm

The core idea of our next algorithm is to use

e−rn∆t

(
E

[
1

n+ 1

n∑
i=0

Si −X

])+

to approximate the desired option value in Eq. (2.9). The approximation underesti-
mates the option value because of Jensen’s inequality. Our algorithm adds bucketing
to the above idea.
To implement the idea with bucketing, the prefix sums s(i, j, #) will no longer be

fixed by Eq. (4.2). Instead, they need to be calculated explicitly to hold the average
prefix sum of all the paths covered by bucket b(i, j, #) with range Eq. (4.5). Because
any path prefix ending up at bucket b(i, j, #) carries the same probability P i−j

u P j
d ,

s(i, j, #) equals the simple arithmetic average of those said prefix sums. Probability
p(i, j, #) still records the probability of reaching b(i, j, #) from the root and is calculated
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the same way as in nUnifDown. But the expected prefix sum of the round-up bucket,

s

(
i+ 1, j,

⌊
s(i, j, #) + S0u

i−j+1dj

(n+ 1)X/ki+1,j

⌋)
,

is updated by adding Pu ·p(i, j, #)·[ s(i, j, #)+S0u
i−j+1dj ] to it. Similarly, the expected

prefix sum of the round-down bucket,

s

(
i+ 1, j + 1,

⌊
s(i, j, #) + S0u

i−jdj+1

(n+ 1)X/ki+1,j+1

⌋)
,

is updated by adding Pd · p(i, j, #) · [ s(i, j, #) + S0u
i−jdj+1 ] to it. After the above is

done for every s(i, j, #) at time i and before we move on to time i+ 1, every nonzero
s(i, j, #) is divided by p(i, j, #) to turn it into the average prefix sum. The rest of the
algorithm is identical to nUnifDown.
We illustrate the idea in Fig. 4.4 without using bucketing and applying Lemma

4.3.1 for simplicity. Take the node with probability 2PuPd for example. Its aver-
age prefix sum is calculated by adding up the path prefix through the S0u node
(S0, S0u, S0) and that through the S0d node (S0, S0d, S0). The result is

PdPu(S0 + S0u+ S0) + PuPd(S0 + S0d+ S0)

= PuPd[ (S0 + S0u+ S0) + (S0 + S0d+ S0) ]

Its associated probability is calculated in the standard way,

PuPd + PdPu = 2PuPd.

The average prefix sum is obtained by dividing the nonzero prefix sum by the above
probability:

[ (S0 + S0u+ S0) + (S0 + S0d+ S0) ]/2.

The other average prefix sums at maturity are given in Fig. 4.4. The approximation
is hence

e−rn∆t
[
P 2

u

{
(S0 + S0u+ S0u

2)−X
}+

+ 2PuPd

{
(S0 + S0u+ S0) + (S0 + S0d+ S0)

2
−X

}+

+P 2
d

{
(S0 + S0d+ S0d

2)−X
}+

]
.

The following key result says that the algorithm nUnifCvg:nUnifSpl produces
tighter range bounds than nUnifDown:nUnifUp.

Theorem 4.5.1 nUnifDown ≤ nUnifCvg ≤ Desired ≤ nUnifSpl ≤ nUnifUp.
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Figure 4.4: Prefix Sum Averaging with nUnifCvg.
The average prefix sums are listed to the right of the nodes. The probabilities for the
average prefix sums are listed under the nodes. The asset’s price for each node is listed
above the node.

Proof. We knew that nUnifDown ≤ Desired ≤ nUnifUp. It should also be clear
that nUnifDown ≤ nUnifCvg and nUnifSpl ≤ nUnifUp. That nUnifCvg ≤ Desired

is a consequence of the inequality[
E

(
1

n+ 1

n∑
i=0

Si −X

)]+

≤ E

[(
1

n+ 1

n∑
i=0

Si −X

)+]
,

which holds for each bucket by Jensen’s inequality.
It remains to show that Desired ≤ nUnifSpl. Recall that nUnifSpl splits each

path P = (S0, S1, . . . , Sn) into 2
n paths with the consequence that the expected value

of the average price for any split path x, say Ax, equals the average price of P , i.e.,
E[Ax ] =

∑n
i=0 Si/(n+1). By Jensen’s inequality, P ’s payoff, [

∑n
i=0 Si/(n+ 1)−X]

+
,

is dominated by nUnifSpl’s approximation, E[ (Ax −X)+ ]. As this inequality holds
for every path, the desired result follows. Q.E.D.

If nUnifCvg:nUnifSpl chooses the numbers of buckets, kij, according to Eq.
(4.11), then Theorem 4.4.1 implies an error bound of O(X

√
n/k). Our experiments

in the next section will show that this error bound seems overpessimistic.

4.6 Numerical Results for European-Style Asian

Options

All the experimental results reported here are based on a Pentium III 500MHz PC
with 256MB DRAM. The programs are written in C++. Our key finding will be
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that the range-bound algorithm nUnifCvg:nUnifSpl is efficient and brackets the
desired option value extremely tightly. It also outperforms all the other range-bound
algorithms in the paper for accuracy and efficiency.
We first confirm that our particular nonuniform bucketing scheme Eq. (4.11)

improves upon the uniform bucketing scheme. Toward that end, the nonuniform
nUnifUp is compared against the uniform UnifUp and UnifAvg, with the Monte Carlo
algorithm as the proxy benchmark. To be fair, the total number of buckets is the
same for all three algorithms. The plot in Fig. 4.5 shows that the nonuniform nUnifUp

converges more smoothly and quickly than either UnifUp or UnifAvg, which in turn
can be seen to outperform UnifUp. This conclusion is consistent with the theoretical
result.

�� �� ��� ��� ��� ���

Q

�����

����

�����

����
MC10^6 UnifUp

UnifAvg

nUnifUp

éôÿ�ø

Figure 4.5: Comparing UnifUp, UnifAvg, and nUnifUp.
MC10ˆ6 denotes Monte Carlo simulation based on 1,000,000 trials. Both UnifAvg and
UnifUp allocate k = 50, 000 buckets at each node, and nUnifUp allocates an average of
k = 50, 000 buckets per node. The desired option option values must lie below nUnifUp.
The data are: S0 = 50, X = 60, annual volatility σ = 30%, r = 10% per annum, and
maturity T = 0.5 (year).

Having demonstrated the advantage of using our nonuniform bucketing scheme, we
next compare the nonuniform lower-bound algorithm nUnifCvg against UnifAvg and
the multiresolution (MR) algorithm in Dai and Lyuu [16]. Again, both nUnifCvg and
UnifAvg use the same total number of buckets. The results are tabulated in Table 4.1.
Observe that nUnifCvg is superior to UnifAvg in terms of accuracy and speed despite
that it takes slightly less time than UnifAvg. The multiresolution algorithm, which
is based on the trinomial lattice, is the best when n is small. But since its running
time is sub-exponential in n, it is not competitive when n is large. We then add
the algorithm suggested by Hull and White [26] and Levy’s analytical approach [32]
to the comparisons in Table 4.2. Observe that nUnifCvg is competitive in all the
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Monte Carlo nUnifCvg UnifAvg MR
n Lower Upper Value Time Value Time Value Time
86 0.324 0.328 0.322* 78 0.322* 118 0.324* 13
97 0.325 0.329 0.323* 100 0.323* 154 0.325 23
108 0.324 0.328 0.324 124 0.323* 196 0.327 39
119 0.326 0.330 0.324* 152 0.323* 245 0.328 61
130 0.324 0.328 0.324 181 0.325 298 0.327 96
141 0.325 0.329 0.325 213 0.324* 358 0.326 145
152 0.326 0.330 0.325* 249 0.323* 422 0.325* 210
163 0.324 0.328 0.325 286 0.326 492 0.325 302
174 0.326 0.329 0.325* 327 0.325* 562
185 0.324 0.328 0.326 370 0.326 634
196 0.327 0.330 0.326* 414 0.326* 711
207 0.326 0.330 0.326 463 0.326 792
218 0.326 0.329 0.326 513 0.326 879
229 0.326 0.329 0.326 564 0.326 972
240 0.327 0.330 0.326* 618 0.326* 1066
251 0.326 0.330 0.326 675 0.326 1166
262 0.326 0.329 0.326 738 0.326 1269
273 0.326 0.329 0.326 799 0.327 1379
284 0.326 0.329 0.327 865 0.327 1493

Table 4.1: Monte Carlo Simulation, nUnifCvg, UnifAvg, and Multiresolution Lattice.
Monte Carlo simulations are based on 2,000,000 trials. The “Lower” and “Upper” columns
represent the 95% confidence interval obtained from Monte Carlo simulations. Both
nUnifCvg and UnifAvg set k = 50, 000. “MR” denotes the multiresolution algorithm in
Dai and Lyuu [16]. At n ≥ 174, the demand of the multiresolution lattice for computer
memory is beyond what the system can offer. The computation times are measured in
seconds. Asterisks mark those answers which are out of the 95% confidence interval. The
data are: S0 = 50, X = 60, r = 10% per annum, σ = 30%, and T = 0.5 year.

scenarios whether the option is in the money or out of the money. Many proposed
algorithms have been found to fail in extreme cases. When the cases of Fu et al. [21]
are tested in Table 4.3, nUnifCvg does not display any discernible biases. These tests
strongly suggest that nUnifCvg gives extremely tight lower bounds.
Both nUnifCvg and nUnifSpl are more sophisticated strategies to handle pricing

errors than UnifUp, UnifDown, or UnifAvg. We now demonstrate that they are also
better strategies. For the purpose of fair comparison between these methods, we
reduce the number of buckets for nUnifCvg and nUnifSpl so that they take slightly
less time than UnifUp. The results are illustrated in Fig. 4.6. Clearly both nUnifSpl

and nUnifCvg converge better than UnifUp, UnifDown, or UnifAvg. In fact, the range
bounds given by nUnifCvg:nUnifSpl are so tight that they form a single curve instead
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Maturity Algorithm Strike price X
(years) 40 45 50 55 60
0.5 HW 10.755 6.363 3.012 1.108 0.317

MC 10.759 6.359 2.998 1.112 0.324
(0.003) (0.005) (0.007) (0.005) (0.003)

MR 10.754 6.356 2.997 1.104 0.317
L 10.765 6.386 3.024 1.105 0.313

nUnifCvg 10.754 6.361 3.007 1.104 0.315
1.0 HW 11.545 7.616 4.522 2.420 1.176

MC 11.544 7.606 4.515 2.401 1.185
(0.006) (0.008) (0.010) (0.009) (0.007)

MR 11.547 7.616 4.517 2.412 1.170
L 11.576 7.662 4.557 2.431 1.172

nUnifCvg 11.544 7.613 4.519 2.417 1.174
1.5 HW 12.285 8.670 5.743 3.585 2.124

MC 12.289 8.671 5.734 3.577 2.135
(0.008) (0.010) (0.012) (0.012) (0.010)

MR 12.284 8.674 5.750 3.585 2.118
L 12.337 8.738 5.801 3.619 2.133

nUnifCvg 12.283 8.668 5.740 3.583 2.122
2.0 HW 12.953 9.582 6.792 4.633 3.057

MC 12.943 9.569 6.786 4.639 3.055
(0.010) (0.013) (0.014) (0.015) (0.013)

MR 12.944 9.577 6.786 4.625 3.045
L 13.024 9.671 6.874 4.691 3.087

nUnifCvg 12.953 9.580 6.790 4.631 3.055

Table 4.2: Comparing nUnifCvg against Various Algorithms.
“HW” denotes the Hull-White algorithm [26] based on n = 40 and h = 0.005. “MC” denotes
Monte Carlo simulation based on n = 40 and 100,000 trials (the sample standard deviations
are in parentheses). MR denotes the multiresolution approach based on n = 30. “L” denotes
the analytical approach described in Levy [32]. Algorithm nUnifCvg sets k = �50, 000/7�.
The data are: S0 = 50, r = 10% per annum, and σ = 30%.

of a band. The same cannot be said of UnifDown:UnifUp. As nUnifCvg:nUnifSpl
brackets the desired option value (Theorem 4.5.1), its pricing error must be negligible.
By how much is nUnifCvg:nUnifSpl superior to nUnifDown:nUnifUp? Because

both employ the same nonuniform bucketing scheme, this comparison extracts the
benefits which accrue to different algorithms, not bucketing schemes. We use the
range bounds to measure the pricing error, i.e., nUnifSpl−nUnifCvg and nUnifUp−
nUnifDown. It is clear from Fig. 4.7 that nUnifCvg:nUnifSpl produces much tighter
range bounds, hence smaller errors, than nUnifDown:nUnifUp.
It is not paradoxical for the pricing error to rise with n in Fig. 4.7. The reason is

that our k in the experiments are constants independent of n. Suppose we now pick
k = n to make nUnifCvg:nUnifSpl’s time bound O(n3). The data in Table 4.4 show



The Range Bound Algorithms 61

r σ T S0 GE Shaw Euler PW TW MC10 MC100 S.D. Cvg
0.050 0.50 1 1.9 .195 .193 .194 .194 .195 .192 .196 .004 .193
0.050 0.50 1 2.0 .248 .246 .247 .247 .250 .245 .249 .004 .246
0.050 0.50 1 2.1 .308 .306 .307 .307 .311 .305 .309 .005 .306
0.020 0.10 1 2.0 .058 .520 .056 .0624 .0568 .0559 .0565 .0008 .0559
0.180 0.30 1 2.0 .227 .217 .219 .219 .220 .219 .220 .003 .218
0.125 0.25 2 2.0 .172 .172 .172 .172 .173 .173 .172 .003 .172
0.050 0.50 2 2.0 .351 .350 .352 .352 .359 .351 .348 .007 .349

Table 4.3: Comparing nUnifCvg against the Analytical Approaches.
All the notations are the same as the ones in Table 2.1 except that Cvg stands for nUnifCvg.
As before, nUnifCvg sets k = �50, 000/7�.

a convergence rate of O(n−2). This is much better than the O(n−0.5) guaranteed by
Theorem 4.4.1, which overestimates the pricing error. They also demonstrate that
the resulting range bounds are extremely tight for σ as high as 100% and maturity
as long as 5 years. Indeed, our theoretical error bounds are independent of σ. To
our knowledge, Aingworth et al. (2000) is the only paper besides ours with numerical
results at σ > 50% for European-style Asian options. Not surprisingly, that paper
makes use of Lemma 4.3.1 too. Data in Section 4.9 strongly suggest that reducing the
prefix sum range like the idea given by Lemma 4.3.1 is essential for any deterministic
efficient convergent algorithms especially when σ is large.
Finally, we are interested in knowing how k—the average number of buckets per

node—impacts the accuracy of the algorithms. Fig. 4.8 shows the effects of k on the
theoretical error upper bound,

nUnifUp− nUnifDown ≤ 8X√
n/k,

and our range-bound algorithms’ error bounds as defined above. We can see that
nUnifCvg:nUnifSpl is several orders better than nUnifDown:nUnifUp for any k with
other conditions being equal.
We conclude from the above experiments that nUnifCvg:nUnifSpl is an extremely

efficient and accurate range-bound algorithm for European-style Asian options.

4.7 Algorithms for American-Style Asian Options

The early-exercise feature makes American-style Asian options harder to price than
their European-style counterparts. The feature, for instance, invalidates Lemma 4.3.1,
which has been instrumental in the pricing of European-style Asian options. To find
the optimal exercise strategy for American-style Asian options, backward induction
must somehow be used. The algorithms to follow focus on calls. Their extension to
puts is straightforward.
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Figure 4.6: Comparing nUnifCvg and nUnifSpl against UnifUp, UnifDown, and
UnifAvg.
UnifUp, UnifDown, and UnifAvg each set k = 50, 000, whereas nUnifSpl and nUnifCvg set
k = �50, 000/7�. These choices make nUnifCvg and nUnifSpl take slightly less time than
UnifUp. The plots of nUnifCvg and nUnifSpl essentially coincide. The data are: S0 = 50,
X = 60, σ = 30%, r = 10% per annum, and T = 0.5 year.

4.7.1 Useful Terminology

We first introduce a few terms for ease of later discussions. Let Rmax(i, j) and
Rmin(i, j) denote the maximum and the minimum prefix sums3 at node N(i, j).
Obviously, Rmax(i, j) is achieved by the path that makes i− j up moves followed by
j down moves, whereas Rmin(i, j) is achieved by the path that makes j down moves
followed by i − j up moves. Both are straightforward to calculate (see [35]). The
prefix-sum range at node N(i, j) is [Rmin(i, j),Rmax(i, j) ].
We now define the ideal lattice, a critical concept that allows us to derive the

range bound proof. The ideal lattice has an uncountably infinite number of buckets.
A bucket exists at node N(i, j) for each real number s ∈ [Rmin(i, j),Rmax(i, j) ].
Any prefix sum encountered by our approximation algorithms must correspond to
some bucket at the same node in the ideal lattice. Practical lattices refer to the
necessarily finite-sized, bucket-based lattices used by our approximation algorithms.
For any bucket b, we use Pb instead of the earlier s(·, ·, ·) to denote its associated

prefix sum for brevity. As before, the prefix sum Pb includes the asset’s price at b.
Let Eb denote the option value for bucket b. Because the option value in the ideal
lattice may differ from that in the practical lattice, we use the superscripts I and P
to distinguish them. The option value at bucket b in the ideal lattice and that in
the practical lattice, if b exists, become EI

b and E
P
b , respectively. The loose notion

3See the definitions in Section 2.6.
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Figure 4.7: Pricing Errors of nUnifCvg:nUnifSpl and nUnifDown:nUnifUp.
All four algorithms set k = �50, 000/7�. The other parameters are identical to the ones
used in Fig. 4.6.

of EP
b applies to any backward-induction algorithm which keeps the maximum of the

early-exercise value and the continuation value as the option value for each bucket.
Because the buckets used in the exact pricing algorithm is “embedded” in the ideal
lattice, so to speak, the option value for the single bucket allocated at the root node
in the ideal lattice equals the desired option value.

4.7.2 Full-Range Algorithms

Before modifying our earlier algorithms to handle American-style Asian options, we
first adopt [Rmin(i, j),Rmax(i, j) ] instead of [ 0, (n+1)X ] as their prefix-sum ranges.
This change is needed because a prefix sum exceeding (n + 1)X no longer results in
any easily calculated contribution to the payoff for American-style options.
Because the prefix sum ranges have changed, the bucket-number distribution must

vary with them. Define

Rij ≡ Rmax(i, j)−Rmin(i, j)

n+ 1
.

The steps in Subsection 4.4.2 remain valid after B(i, j; p) is replaced with B(i, j; p)Rij.
In particular, the optimal choice Eq. (4.11) for kij becomes

kij =

⌈
TIME×

√
B(i, j; p)Rij∑

0≤j≤i≤n

√
B(i, j; p)Rij

⌉
. (4.13)
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σ T n nUnifCvg nUnifSpl nUnifSpl− nUnifCvg
10% 0.25 50 1.800870 2.175705 0.374835

100 1.839875 1.932832 0.092957
200 1.847834 1.870414 0.022580
400 1.850455 1.855982 0.005527

50% 1.00 50 13.179130 13.210789 0.031659
100 13.193776 13.202119 0.008343
200 13.200312 13.202382 0.002070
400 13.203293 13.203823 0.000530

50% 5.00 50 28.386460 28.395814 0.009354
100 28.395902 28.398327 0.002425
200 28.400568 28.401189 0.000620
400 28.402879 28.403038 0.000159

100% 1.00 50 23.407397 23.422099 0.014702
100 23.434382 23.438502 0.004120
200 23.447782 23.448835 0.001053
400 23.454417 23.454680 0.000263

100% 5.00 50 42.769952 42.774652 0.004700
100 42.823800 42.825049 0.001249
200 42.851203 42.851529 0.000326
400 42.865018 42.865102 0.000084

Table 4.4: Convergence of nUnifCvg:nUnifSpl.
Both algorithms use k = n. The data are: S0 = X = 100 and r = 10% per annum.
Algorithm nUnifCvg:nUnifSpl takes fewer than 35 seconds for the n = 400 case.

Algorithms nUnifSpl and nUnifCvg for European-style Asian options will refer to the
modified versions henceforth. These modified algorithms will be called the full-range
versions if clarity is at stake.

4.7.3 The First Upper-Bound Algorithm

The first algorithm is called nUnifSplA with the suffix A indicating American style.
It is based on nUnifSpl with three straightforward modifications. First, backward
induction is used instead of forward induction. But a new issue arises that needs
to be addressed. Backward induction requires two option values from the following
time. In the algorithm, each of these two option values will be linearly interpolated
from the option values at the round-up bucket and the round-down bucket using the
proportions λ and 1 − λ in Eq. (4.12). See Fig. 4.9 for illustration. Second, early
exercise is considered at each bucket. Exercise generates value Pb/(i + 1) −X for a
bucket b at time i (See Eq. (2.8).) Third, kij buckets are allocated at node N(i, j) for
the prefix-sum range [Rmin(i, j),Rmax(i, j) ] instead of the earlier range [ 0, (n+1)X ].



The Range Bound Algorithms 65

���� ���� ���� ���� ���� ���� ����

N

��

��

�

�

/RJ (UURU

nUnifUp − nUnifDown

nUnifSpl − nUnifCvg

ß�ú Ø����

NQ; ��

Figure 4.8: The number of buckets and accuracy.
This plot shows the log-plot (base 10) of the various error bounds vs. k. We use n = 285
here. The other parameters are identical to the ones used in Fig. 4.6.

4.7.4 The Second Upper-Bound Algorithm

As a rule, the smaller the prefix-sum range, the better the approximation. Because
the payoffs of early-exercise buckets are clear, such nodes can be removed from the
prefix-sum ranges, thus limiting the prefix-sum ranges further. But how are the early-
exercise buckets distributed within a node? Before answering this key question, we
state a useful lemma below.

Lemma 4.7.1 (Contraction lemma) Suppose that Pb1 > Pb2 at buckets b1 and b2
of the same node in the ideal lattice at time m. Then

Pb1

m+ 1
− Pb2

m+ 1
≥ EI

b1
− EI

b2
. (4.14)

Proof. Assume that bucket bi moves up to bucket u(bi) and down to bucket d(bi),
i = 1, 2, in the ideal lattice. The lemma will be proved by induction on the level
of the lattice. The base case involves the buckets allocated at the maturity date (at
time n). There EI

bi
= max(Pbi

/(n+ 1), X)−X. Thus

EI
b1
− EI

b2
= max

(
Pb1

n+ 1
, X

)
−max

(
Pb2

n+ 1
, X

)
≤ Pb1 − Pb2

n+ 1

because Pb1 > Pb2 . The induction step is divided into four cases.
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Figure 4.9: Interpolation of option values in nUnifSplA in backward induction.
Linear interpolation is carried out at the successors. λ′ and λ′′ are calculated from Eq.
(4.12).

Case 1: Neither b1 nor b2 is exercised immediately. Then

Pb1

m+ 1
− Pb2

m+ 1
≥ Pb1 − Pb2

m+ 2

= Pu

Pu(b1) − Pu(b2)

m+ 2
+ Pd

Pd(b1) − Pd(b2)

m+ 2

≥ {
Pu[E

I
u(b1)

− EI
u(b2)

] + Pd[E
I
d(b1) − EI

d(b2)
]
}
e−r∆t

=
{[
PuE

I
u(b1)

+ PdE
I
d(b1)

]− [
PuE

I
u(b2)

+ PdE
I
d(b2)

]}
e−r∆t

= EI
b1
− EI

b2
,

where the second inequality is by the induction hypothesis.
Case 2: b1 is exercised immediately, but b2 is not. Then

EI
b1
=

Pb1

m+ 1
−X,

EI
b2

>
Pb2

m+ 1
−X.

Subtract the inequality from the equality to obtain inequality (4.14).
Case 3: Both b1 and b2 are exercised immediately. In this case, E

I
bi
= Pbi

/(m +
1)−X for i = 1, 2, and inequality (4.14) holds as an equality.
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Case 4: b1 is not exercised, but b2 is. We will show that this is impossible.
Assume otherwise. Then

Pb1

m+ 1
−X <

[
PuE

I
u(b1)

+ PdE
I
d(b1)

]
e−r∆t, (4.15)

Pb2

m+ 1
−X ≥ [

PuE
I
u(b2)

+ PdE
I
d(b2)

]
e−r∆t. (4.16)

Subtracting inequality (4.16) from inequality (4.15) results in

Pb1

m+ 1
− Pb2

m+ 1
<
{
Pu[E

I
u(b1)

− EI
u(b2)

] + Pd[E
I
d(b1) − EI

d(b2)
]
}
e−r∆t. (4.17)

But

Pb1

m+ 1
− Pb2

m+ 1
≥ Pb1 − Pb2

m+ 2

= Pu

Pu(b1) − Pu(b2)

m+ 2
+ Pd

Pd(b1) − Pd(b2)

m+ 2

≥ {
Pu[E

I
u(b1)

− EI
u(b2)

] + Pd[E
I
d(b1)

− EI
d(b2)

]
}
e−r∆t,

contradicting inequality (4.17). Q.E.D.

Fortunately, there exists a prefix sum at each node in the ideal lattice that sepa-
rates the early-exercise buckets from the non-early-exercise buckets. We next prove
the key theorem establishing this fact.

Theorem 4.7.2 Suppose that Pb1 > Pb2 at buckets b1 and b2 of the same node in the
ideal lattice at time m. Assume that it is optimal to exercise the option at bucket b2.
Then it is optimal to exercise the option at b1.

Proof. We claim that

0 ≥ Pb1

m+ 1
−X − EI

b1
≥ Pb2

m+ 1
−X − EI

b2
= 0.

That the option value is at least the exercise value proves the first inequality. The sec-
ond inequality is by Lemma 4.7.1. The equality holds because b2 is an early-exercise
bucket. As EI

b1
= Pb1/(m+ 1)−X, bucket b1 is an early-exercise bucket. Q.E.D.

What we are looking for at each node is a prefix sum that separates the early-
exercise buckets from the non-early-exercise ones. This prefix sum is an exercise
boundary. Early-exercise buckets can be pruned, which tightens the prefix-sum
range at each node N(i, j) by lowering Rmax(i, j) to the exercise boundary. The
payoff of a pruned bucket is known anyway; it is the asset’s average price minus the
strike price X.
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Figure 4.10: Determination of the exercise boundary.
Buckets marked with a “×” are early-exercise buckets under nUnifSplA.

Of course, it may happen that, in the practical lattice, the early-exercise buckets
are scattered within a node without a clear boundary separating them from the non-
early-exercise ones. We will settle with an approximate boundary at and above which
all early-exercise buckets lie. See Fig. 4.10 for illustration. Theoretically, some non-
early-exercise buckets may still lie above that boundary.
We now present a two-phase algorithm, called nUnifSplA2, that incorporates

the idea of exercise boundary. Phase one uses nUnifSplA to estimate the exercise
boundary at each node. This is done by inspecting each node for early-exercise
buckets. The prefix-sum range is then tightened by lowering the maximum prefix
sum to the lowest prefix sum whose corresponding bucket is exercised early. Phase
two runs nUnifSplA on the reduced prefix-sum ranges. The kij need to be recalculated
with Eq. (4.13) because ranges Rij have been reduced in phase one. A bucket with a
prefix sum on or above the exercise boundary will be exercised in phase two.
Although nUnifSplA2 allocates the same number of buckets as nUnifSplA, its

buckets cover more limited prefix-sum ranges. This has the effects of raising the
“resolution” of the prefix-sum range at each bucket and thus the pricing accuracy.
To be sure, nUnifSplA2’s running time doubles nUnifSplA’s. As mentioned in the
introduction, the exercise boundary given by our algorithm is not useful only to the
algorithms in the paper. It in fact gives rise to a general two-phase computational
framework, in which any upper-bound algorithm can be substituted in phase two to
give a more accurate two-phase upper-bound algorithm.

4.7.5 A Lower-Bound Algorithm

We next present a lower-bound algorithm called nUnifCvgA. It is based on nUnifCvg

and contains two phases. Phase one is identical to nUnifSplA2’s phase one. In other
words, it calls upon the upper-bound algorithm nUnifSplA to yield an exercise bound-
ary, and the prefix-sum ranges are subsequently tightened. Phase two is identical to
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nUnifSplA2’s phase two except that it runs nUnifCvg instead of nUnifSplA over the
tightened prefix-sum ranges. A bucket with a prefix sum on or above the exercise
boundary will be exercised. We remark that the lower-bound result for nUnifCvg
holds for any exercise boundary. It just turns out that the exercise boundary given
by nUnifSplA does an excellent job.

4.8 The Range-Bound Proofs

Proofs will now be given to show that the proposed algorithms provide the claimed
lower or upper bounds for the desired option value. As the lower-bound result for
nUnifCvgA is independent of how the exercise boundary is determined, it will be given
first.

Theorem 4.8.1 nUnifCvgA ≤ Desired.

Proof. Define a terminal bucket to be a bucket reachable from the root node and
which is either an early-exercise bucket or an in-the-money bucket at maturity. Only
terminal buckets contribute to the option value. The desired option value equals the
discounted expected payoff of the terminal buckets in the ideal lattice when buckets are
exercised optimally. It therefore suffices to prove that nUnifCvgA produces an option
value that does not exceed the desired option value with some exercise strategy which
is not necessarily optimal.
When a bucket is terminal, all the paths that pass through it terminate there. Let

℘b be the set of paths terminated at terminal bucket b at time tb under nUnifCvgA.
Every path in ℘b has length tb. We now use those ℘b to define an exercise strategy on
the ideal lattice: Each path in ℘b on the ideal lattice is terminated at the same node
where bucket b resides. In other words, the ideal lattice uses the same early-exercise
strategy as nUnifCvgA. This exercise strategy produces an option value A that cannot
exceed the desired option value because it may not be optimal.
We complete the proof by showing that nUnifCvgA generates an option value that

cannot exceed A. Fix any terminal bucket b. Let prob[ρ] denotes the probability of
the path prefix ρ. The contribution of ℘b to the option value A is

e−r∆ttb
∑

ρ=(S0,S1,...,Stb
)∈℘b

prob[ ρ ]×
{

1

tb + 1

tb∑
i=0

Si −X

}+

. (4.18)

Recall that each bucket in nUnifCvgA stores the average prefix sum of all the paths
covered by it. Hence the contribution of ℘b to nUnifCvgA’s option value is

e−r∆ttb

{∑
ρ∈℘b

prob[ ρ ]

}{∑
(S0,S1,...,Stb

)∈℘b

1
tb+1

∑tb
i=0 Si

|℘b | −X

}+

,
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which is smaller than Eq. (4.18) by Jensen’s inequality. By summing the contribu-
tions over all terminal buckets b, we conclude that nUnifCvgA gives a lower bound on
A. Q.E.D.

The next lemma says that the Asian option value is convex with respect to the
prefix sum in the ideal lattice.

Lemma 4.8.2 (Convexity lemma) Let b1, b2, and b3 be buckets at node N(i, j) in
the ideal lattice with Pb1 > Pb2 > Pb3. If λ satisfies Pb2 = λPb1 + (1− λ)Pb3, then

EI
b2
≤ λEI

b1
+ (1− λ)EI

b3
.

Proof. We define the American-style bonus Asian option A(P,m) to facilitate
the proof. It pays (

P + Σ

m+ s+ 1
−X

)+

if exercised at time s from its initiation date, where Σ equals the prefix sum from
the option’s initiation date up to the exercise point. Option A(P,m), if initiated at
time m, is identical to the Asian option at time m which was initiated at time 0 and
at time m has accumulated a prefix sum of P (which excludes the price at time m).
They thus must have the same option value.
Consider three bonus Asian options A(Pb1 , i), A(Pb2 , i), and A(Pb3 , i) initiated

at time i with initial asset’s price Si,j and maturing at time n. By the above
discussions, the value of option A(Pbk

, i) equals EI
bk
, k = 1, 2, 3. Assume that

EI
b2
> λEI

b1
+ (1 − λ)EI

b3
instead and proceed to show that arbitrage opportuni-

ties exist. Assemble a portfolio of long λ unit of A(Pb1 , i), long 1−λ unit of A(Pb3 , i),
and short 1 unit of A(Pb2 , i). The initial income E

I
b2
− λEI

b1
− (1 − λ)EI

b3
is posi-

tive. From that point on, whenever A(Pb2 , i) is exercised, we exercise A(Pb1 , i) and
A(Pb3 , i), generating zero net cash flow. Q.E.D.

We next establish that nUnifSplA is an upper-bound algorithm.

Theorem 4.8.3 Desired ≤ nUnifSplA.

Proof. We prove the theorem by induction. We will prove that EI
b ≤ EP

b , where the
practical lattice refers to the lattice constructed by nUnifSplA. The theorem holds at
maturity as the option value equals [Pb/(n+ 1)−X]+ at any bucket b. So EI

b = EP
b .

The induction hypothesis is that EI
b ≤ EP

b for any bucket b in the practical model at
time t. We next show that this remains true at time t− 1 for t ≥ 1.
Consider any bucket b in the ideal lattice at time t − 1. Let the upward and

downward movements from bucket b lead to buckets u(b) and d(b), respectively. But
buckets u(b) and d(b) may not exist in the practical lattice. Let bucket u(b) be
sandwiched between buckets u(b1) and u(b2) in the practical lattice. With λ satisfying

Pu(b) = λPu(b1) + (1− λ)Pu(b2)
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by Eq. (4.12), we have

EI
u(b) ≤ λEI

u(b1)
+ (1− λ)EI

u(b2)
≤ λEP

u(b1)
+ (1− λ)EP

u(b2)
= EP

u(b).

The first inequality is by Lemma 4.8.2, and the second inequality is by the induc-
tion hypothesis. The equality holds because nUnifSplA computes EP

u(b) as the linear

interpolation of EP
u(b1)

and EP
u(b2)

with the said weights. By the same argument,

EI
d(b) ≤ EP

d(b). We next consider three cases.

Case 1: Suppose that b is not an early-exercise bucket in both lattices. Then

EI
b =

[
PuE

I
u(b) + PdE

I
d(b)

]
e−r∆t ≤ [

PuE
P
u(b) + PdE

P
d(b)

]
e−r∆t = EP

b .

Case 2: Suppose that b is an early-exercise bucket in the practical lattice. Then[
PuE

I
u(b) + PdE

I
d(b)

]
e−r∆t ≤ [

PuE
P
u(b) + PdE

P
d(b)

]
e−r∆t ≤ (Pb/t)−X.

So it is also optimal to exercise b in the ideal lattice as

(Pb/t)−X ≥ [
PuE

I
u(b) + PdE

I
d(b)

]
e−r∆t.

The option values at b are identical in both lattices.

Case 3: Suppose that b is an early-exercise bucket in the ideal lattice but not an
early-exercise bucket in the practical lattice. Then, trivially, EI

b = (Pb/t)−X <
EP

b .

Hence, EI
b ≤ EP

b in all cases, and the induction step is complete. Q.E.D.

Theorem 4.8.3 holds for a large class of algorithms, not just nUnifSplA. This is
because the proof only requires that the option value at a non-existing bucket be
linearly interpolated from the option values of its two bracketing buckets. Neither
the number of buckets allocated per node nor the way the buckets are distanced in
the prefix-sum range matters. It follows that the popular approximation algorithm
in [26, 27] is an upper-bound algorithm.

Corollary 4.8.4 The Hull-White paradigm with linear interpolation is an upper-
bound algorithm.

The next result states a general property that the exercise boundary determined
by nUnifSplA satisfies.

Corollary 4.8.5 A bucket with a prefix sum equal to or larger than the exercised
boundary determined by nUnifSplA must be an early-exercise bucket in the ideal lat-
tices.
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Proof. By case 2 in the proof of Theorem 4.8.3, an early-exercise bucket under
nUnifSplA must also be an early-exercise bucket in the ideal lattice. Theorem 4.7.2
completes the proof. Q.E.D.

The above corollary implies that the exercise boundary determined by nUnifSplA
cannot be lower than the exercise boundary of the ideal lattice. In fact, any upper-
bound algorithm can be substituted in phase two to produce a new two-phase upper-
bound algorithm. Because this two-phase algorithm takes advantage of the limited
prefix sum ranges made possible by the exercise boundary estimated in phase one, it
should outperform the original one-phase algorithm.

Theorem 4.8.6 An upper-bound algorithm that uses the estimated exercise boundary
given by nUnifSplA remains an upper-bound algorithm as long as it works on the same
lattice.

Proof. If bucket b lies above the tightened prefix-sum range, then EP
b = EI

b because
b must be an early-exercise bucket in both the practical and the ideal lattices by
Corollary 4.8.5. If bucket b lies within the tightened prefix-sum range, then EI

b ≤ EP
b

because of the algorithm being an upper-bound one and induction. Q.E.D.

For the upper-bound Hull-White algorithms in Corollary 4.8.4, for instance, the
above theorem gives rise to two-phase versions. We finally prove that nUnifSplA2 is
an upper-bound algorithm.

Corollary 4.8.7 Desired ≤ nUnifSplA2.

Proof. It is immediate from Theorem 4.8.3 and Theorem 4.8.6. Q.E.D.

4.9 Numerical Results for American-Style Asian

Options

Experimental results for nUnifSplA, nUnifSplA2, and nUnifCvgA will be presented
below. All the experimental results reported here are based on an Athlon Thunder-
bird 1.33GHz PC with 1GB DRAM. Recall that nUnifSplA and nUnifSplA2 provide
upper bounds, whereas nUnifCvgA gives lower bounds (the claims will be proved
in the next section). Fig. 4.11 plots the pricing errors of nUnifCvgA:nUnifSplA

and nUnifCvgA:nUnifSplA2 as functions of n. The pricing errors are measured by
nUnifSplA − nUnifCvgA and nUnifSplA2 − nUnifCvgA. Not surprisingly, both in-
crease with n. But nUnifSplA2 has a much smaller pricing error than nUnifSplA.
Because the pricing errors of nUnifCvgA:nUnifSplA2 are extremely small, the algo-
rithm practically gives the desired option value.
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Figure 4.11: Pricing errors of nUnifCvgA:nUnifSplA and nUnifCvgA:nUnifSplA2.
The data are: S0 = X = 100, σ = 30%, r = 20% per annum, and T = 1. All use an average
of k = 500 buckets per node.

To further investigate the performance of nUnifCvgA:nUnifSplA2 vs. nUnifCvgA:nUnifSplA,
we perform a comprehensive test in Table 4.5. Although both algorithms perform well
with small pricing errors, nUnifCvgA:nUnifSplA2 is more competitive. Perhaps the
most important lesson to draw from that table is that the pricing error rises as σ in-
creases. This phenomenon is most apparent in the case of nUnifCvgA:nUnifSplA. For
the algorithm with a tighter range bound, nUnifCvgA:nUnifSplA2, the absolute pric-
ing errors never exceed 0.000454. The advantage of the two-phase nUnifCvgA:nUnifSplA2
again demonstrates the benefit of taking advantage of limited prefix sum ranges. In-
deed, the data in Table 4.5 suggest that a k of only 300 is sufficient in most cases to
price the option accurately.
We next investigate the convergence behavior of nUnifCvgA:nUnifSplA2. The

results tabulated in Table 4.6 are based on k = 8n; hence the running time is O(n3).
To our knowledge, no papers in the literature on American-style Asian options men-
tion numerical results for volatilities larger than 50%. Interestingly, Table 4.6 shows
our O(n3) algorithm produces very tight range bounds for σ as high as 100%. Even
where the algorithm fails to converge when σ = 100% and T = 5 year, the relative
errors are less than 0.14% up to n = 400.
As mentioned above, nUnifCvgA:nUnifSplA2 fails to converge only when σ and

T are both large (σ = 100% and T = 5 year in Table 4.6). This is in contrast to
the case of European-style Asian options, where the related nUnifCvg:nUnifSpl’s
convergence is not affected by a large σ as shown in Table 4.4. The discrepancy
can be attributed to the fact that prefix sum ranges in the case of European-style
Asian options are limited from above by (n + 1)X but no such limits are available
in the case of American-style Asian options. Indeed, without this limit, the full-
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σ X r nUnifCvgA nUnifSplA2 nUnifSplA nUnifSplA nUnifSplA2
−nUnifCvgA −nUnifCvgA

0.1 95 0.05 8.088364 8.088422 8.088522 0.000158 0.000058
0.1 95 0.15 11.267781 11.267846 11.267954 0.000173 0.000065
0.1 105 0.05 1.344226 1.344292 1.344403 0.000177 0.000066
0.1 105 0.15 3.623832 3.623887 3.623980 0.000148 0.000055
0.3 95 0.05 12.358376 12.358517 12.359182 0.000806 0.000141
0.3 95 0.15 14.428086 14.428229 14.428934 0.000848 0.000143
0.3 105 0.05 6.311839 6.311984 6.312741 0.000902 0.000145
0.3 105 0.15 8.208416 8.208553 8.209280 0.000864 0.000137
0.5 95 0.05 17.341037 17.341237 17.344196 0.003159 0.000200
0.5 95 0.15 18.922948 18.923150 18.926233 0.003285 0.000202
0.5 105 0.05 11.623434 11.623636 11.627077 0.003643 0.000202
0.5 105 0.15 13.214077 13.214273 13.217725 0.003648 0.000196
0.7 95 0.05 22.536275 22.536540 22.552333 0.016058 0.000265
0.7 95 0.15 23.775811 23.776080 23.792101 0.016290 0.000269
0.7 105 0.05 17.065704 17.065979 17.084335 0.018631 0.000275
0.7 105 0.15 18.382506 18.382779 18.401274 0.018768 0.000273
0.9 95 0.05 27.841546 27.841955 27.952798 0.111252 0.000409
0.9 95 0.15 28.797383 28.797804 28.908081 0.110698 0.000421
0.9 105 0.05 22.587415 22.587869 22.719667 0.132252 0.000454
0.9 105 0.15 23.650191 23.650639 23.779582 0.129391 0.000448

Table 4.5: Comprehensive Tests for nUnifSplA, nUnifSplA2, and nUnifCvgA.
The data are: S0 = 100, n = 300, k = 500 and T = 1. Algorithms nUnifCvgA, nUnifSplA2,
and nUnifSplA take an average of 4.60 seconds in generating their respective results.

range nUnifCvg:nUnifSpl also fails to converge for large σ or large T . (Because

u = eσ
√

T/n, the prefix sum ranges depend on σ and T in an exponential manner.)
This fact is confirmed in Table 4.7. We conjecture that, without some limits on prefix
sums, deterministic algorithms will eventually fail when σ is large enough unless T is
small or the number of buckets per node, k, is properly increased.
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σ T n nUnifCvgA nUnifSplA2 nUnifSplA2− nUnifCvgA
10% 0.25 50 1.937256 1.937271 0.000015

100 1.947621 1.947626 0.000005
200 1.953399 1.953401 0.000002
400 1.956484 1.956485 0.000001

50% 1.00 50 14.763087 14.763184 0.000097
100 14.912143 14.912180 0.000037
200 14.996588 14.996602 0.000014
400 15.042595 15.042600 0.000005

50% 5.00 50 33.444456 33.444608 0.000152
100 33.837743 33.837809 0.000066
200 34.062623 34.062648 0.000025
400 34.184574 34.184584 0.000010

100% 1.00 50 27.595989 27.596134 0.000145
100 27.963737 27.963799 0.000062
200 28.175147 28.175170 0.000023
400 28.290796 28.290804 0.000008

100% 5.00 50 58.262845 58.262854 0.000009
100 59.448244 59.448330 0.000086
200 60.130631 60.130817 0.000186
400 60.501092 60.582166 0.081074

Table 4.6: Convergence of nUnifCvgA:nUnifSplA2.
Both algorithms use k = 8n. The data are: S0 = X = 100 and r = 10% per annum.
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σ T n nUnifCvg nUnifSpl nUnifSpl− nUnifCvg
10% 0.25 50 1.848515 1.848533 0.000018

100 1.850035 1.850044 0.000009
200 1.850809 1.850813 0.000004
400 1.851199 1.851201 0.000002

50% 1.00 50 13.185396 13.185639 0.000243
100 13.195530 13.195701 0.000171
200 13.200738 13.200898 0.000160
400 13.203354 13.203612 0.000258

50% 5.00 50 28.387935 28.389159 0.001224
100 28.395811 28.398385 0.002574
200 28.397866 28.413588 0.015722
400 28.370135 28.920558 0.550423

100% 1.00 50 23.410075 23.411095 0.001020
100 23.434776 23.436654 0.001878
200 23.446473 23.453710 0.007237
400 23.442168 23.561833 0.119665

100% 5.00 50 42.747360 42.835029 0.087669
100 42.135964 44.997394 2.861430
200 38.257653 69.258656 31.001003
400 38.224317 184.271619 146.047302

Table 4.7: Convergence of the Full-Range nUnifCvg:nUnifSpl.
The setup is identical to Table 4.4 except that k = 8n. The full-range algorithm may fail
to converge despite that more buckets are allocated than in Table 4.4



Chapter 5

Conclusions

Asian options are a kind of strongly path-dependent derivatives. How to price such
derivatives efficiently and accurately has been a long-standing research and practical
problem. Asian options can be priced on the lattice. Unfortunately, only exponential-
time algorithms are currently available if such options are to be priced on the lattice
exactly. Although efficient approximation methods are available, most of them lack
convergence guarantees or error controls. This dissertation addresses the Asian op-
tion pricing problem with two different lattice methods to meet the efficiency and
accuracy requirements. First, a new trinomial lattice for pricing Asian options is pro-
posed, and the resulting exact pricing algorithm is proved to be the first one to break
the exponential-time barrier. Second, range-bound algorithms are developed. These
approximation algorithms are proved to converge to the true option value for pricing
European-style Asian options. Extensive experiments also reveal that the extension
of these algorithms work well numerically for American-style Asian options.
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