
Group-Oriented Encryption and

Signature

Student: Ming-Luen Wu

Advisor: Professor Yuh-Dauh Lyuu

Department of Computer Science and Information Engineering

National Taiwan University

Abstract

Computer networks bring tremendous progress to the information-based society. Com-

panies, organizations, and governments have been using computers and networks to

process or transmit digital data. But this also results in many different types of

security requirements for group-oriented cryptographic applications.

In this thesis we study existing cryptographic tools and then use them to design

more complex cryptographic systems. Several fundamental cryptographic primitives

are useful not only as stand-alone applications but also as building blocks in the

designing of secure cryptographic objects. Using these building blocks, we develop

new cryptographic applications, including a full public-key traitor-tracing scheme and

a convertible group undeniable signature scheme.

A fully public-key traitor-tracing scheme is a public-key traitor-tracing scheme

that allows a subscriber to choose his or her own private decryption key without

others learning the key. The distributor of the digital content uses the public data

coming from all subscribers to compute a public encryption key. The paid contents are

then transmitted to the subscribers, after being encrypted with the public key. Each

subscriber can decrypt the data using his or her own secret key. Even if a coalition

of subscribers conspire to create a pirate decoder with a tamper-free decryption key,

there is a tracing algorithm to trace them. A realization of the scheme is presented in

this thesis. Our scheme is long-lived, which means that the subscribers’ secret keys

need not be regenerated after the pirate key is detected or when subscribers join or

leave the system. Finally, our scheme guarantees anonymity.

A group undeniable signature satisfies the following requirements: (1) only group

members can anonymously sign on behalf of the group; (2) a verifier must interact

with the group manager to verify the signature; (3) the group manager can identify

the signer of a valid signature. A convertible group undeniable signature scheme

allows the group manager to turn select group undeniable signatures into universally

verifiable group signatures. An efficient realization of the scheme is proposed in this

thesis. Our scheme is unforgeable, exculpable, unlinkable, and coalition-resistant.

The proposed scheme allows the group manager to delegate the ability to confirm

2

and deny signatures to trusted parties. The sizes of the public key and signatures are

independent of the group size.

Contents

1 Introduction 1

1.1 Background . 1

1.2 Group-Oriented Encryption . 3

1.3 Group-Oriented Signature . 4

1.4 Contributions and Organization of the Thesis 7

2 Foundations 9

2.1 Complexity-Theoretic Preliminaries 9

2.1.1 Randomized Algorithms . 9

2.1.2 Computational Complexity . 11

2.2 Algebra and Number Theory . 15

2.2.1 Integer Arithmetic . 15

2.2.2 Basic Algebra . 17

2.2.3 Modular Arithmetic . 20

2.2.4 Intractable Problems . 27

2.3 Hash Functions . 34

2.4 Indistinguishability of Probability Ensembles 39

2.5 Interactive Protocols and Proof Systems 41

2.6 Zero-Knowledge Proof Systems . 45

2.7 Witness Indistinguishability and Hiding 48

3 Elementary Cryptographic Tools 51

3.1 Public-Key Encryption Schemes . 51

3.1.1 The Diffie-Hellman Key Agreement 55

3.1.2 The RSA Encryption Scheme 55

i

CONTENTS ii

3.1.3 The ElGamal Encryption Scheme 56

3.2 Commitment Schemes . 57

3.2.1 A Bit Commitment Scheme 60

3.2.2 A Number Commitment Scheme 61

3.3 Identification Protocols . 62

3.3.1 The Schnorr Identification Protocol 62

3.3.2 Analysis of the Schnorr Identification Protocol 63

3.4 Digital Signature Schemes . 66

3.4.1 The RSA signature scheme . 69

3.4.2 The ElGamal Signature Scheme 69

3.4.3 The Schnorr Signature Scheme 70

3.4.4 Signatures of Knowledge . 71

4 A Fully Public-Key Traitor-Tracing Scheme 77

4.1 Introduction . 77

4.2 Key Terms . 79

4.3 Number-Theoretic Preliminaries . 81

4.4 Proposed Scheme . 82

4.4.1 Security Analysis . 83

4.4.2 Semantic Security . 85

4.4.3 Forgery of Decryption Keys 86

4.5 Traceability, Long-Livedness, Anonymity 86

4.6 Conclusions . 89

5 Group Undeniable Signatures with Convertibility 90

5.1 Introduction . 90

5.2 Preliminaries . 93

5.2.1 Number-Theoretic Facts and Assumptions 93

5.2.2 Building Blocks . 96

5.3 Proposed Scheme . 101

5.3.1 The System Model . 101

5.3.2 Realization of the Proposed Scheme 103

5.4 Security Analysis . 111

CONTENTS iii

5.4.1 Exculpability . 111

5.4.2 Unforgeability . 111

5.4.3 Anonymity, Nontransferability, and Unlinkability 112

5.4.4 Coalition Resistance . 113

5.5 Conclusions . 115

6 Concluding Remarks 116

Bibliography 119

Index 141

Chapter 1

Introduction

Due to the widespread use of computers and communication networks, group-oriented

cryptographic techniques are rapidly becoming important concerns for secure data

exchange. In this chapter, we give an overview of group-oriented encryption and

signature applications.

1.1 Background

Confidentiality and authenticity of a message are two fundamental issues in cryp-

tography. Confidentiality ensures that no adversary will learn anything about the

private information held by honest parties. Authenticity ensures that the receiver

of a message can verify that the message really comes from the alleged sender. To

achieve the two important goals, encryption and signature techniques are used.

In classic encryption schemes, two parties who wish to securely communicate

would have to pre-agree on a specific secret key that would help the encryption and

decryption. Hence, there must be a secure method to deliver the secret key in ad-

vance. However, the process of agreeing on a secret key can be a rather difficult task.

In 1976, Diffie and Hellman [78] first introduce a key agreement scheme and intro-

duce the significant notion of public-key cryptography. After that, several important

public-key cryptosystems are proposed, such as the RSA and the ElGamal schemes.

In a public-key cryptosystem, a public key is used for encryption and a secret key

for decryption. The two keys are derived in such a way that computing the secret

1

CHAPTER 1. INTRODUCTION 2

key from the public key is computationally infeasible. Furthermore, on the basis of

public-key cryptosystems, digital signature schemes can be devised. A signer creates

digital signatures with his secret key, and everyone can verify the signatures with the

corresponding public key. Analogous to handwritten signatures, digital signatures

should be easy to produce and verify, but difficult to forge.

Originally, the encryption and signature schemes are implemented for individual

privacy and individual signatures, i.e., a private message is intended for an individual

and a signature is created on behalf of an individual. In this setting, often only two

parties are involved. However, such a framework might not be sufficient for crypto-

graphic applications. In many cases, the messages created for a group are of much

greater importance, and have far more serious consequences than individual messages.

It is desirable that there are cryptographic algorithms and protocols suitable for a

group of people communicating over an insecure computer network. Accordingly,

group-oriented cryptographic techniques are becoming significant considerations in

today’s information-based society [76].

In particular, many companies, organizations, and government departments have

widely used computers and networks to process or transmit digital data. This pro-

motes cryptographic applications involving more than two parties. For example,

consider a data provider such as a wired broadcast station needs to broadcast data

to a lot of subscribers securely or an employee wants to sign messages on behalf of

his company. Because every group may have different needs in different cases, group-

oriented cryptographic applications have many varieties. To design appropriate se-

curity services, the first step is to determine the group’s requirements. It is evident

that group-oriented cryptographic applications have more complex requirements than

two-party situations. To gear toward more complex applications, understanding use-

ful cryptographic tools is necessary. In this thesis, we clarify numerous fundamental

concepts in cryptography, present several elementary cryptographic tools, and pro-

pose two useful group-oriented cryptographic applications.

CHAPTER 1. INTRODUCTION 3

1.2 Group-Oriented Encryption

We say that an encryption scheme is group-oriented if the parties involved in encryp-

tion and decryption are more than two in number. To date, many group-oriented

encryption applications have been addressed. In the following, we review well-known

applications that have appeared in the literature.

1. Broadcast encryption. Consider the problem of broadcasting digital con-

tents to a large set of authorized users. Such applications include paid-TV

systems, copyrighted CD/DVD distributions, and fee-based online databases.

The problem is that anyone connected to a broadcast channel is able to pick up

the data, whether they are authorized or not. To prevent unauthorized users

from extracting data, the broadcaster encrypts the message and only the au-

thorized users have the decryption keys to recover the data. This issue of secure

broadcasting is first addressed in [56]. However, the proposed method carries

out n encryptions for each copy of data, where n is the number of subscribers.

To improve efficiency, bandwidth requirements, and the keys’ storage space, see

[12, 16, 17, 56, 89, 127, 143] for further studies.

2. Traitor tracing. In broadcast encryption, malicious authorized users, called

traitors, may use their personal decryption keys to create a pirate decoder. The

resulting pirate decoder allows an unauthorized user to extract the context. To

discourage authorized users from revealing their keys, traitor tracing is first in-

troduced by Chor, et al. [57, 58] and studied further in [96, 113, 169, 170, 181,

211, 213]. The idea is an algorithm that uses the confiscated pirate decoder to

track down at least one colluder without wrongly accusing noncolluders with

high probability. Most of these traitor-tracing schemes use a secret-key encryp-

tion scheme to encrypt data. Public-key traitor-tracing schemes are studied in

[19, 128, 134, 135]. A public-key traitor tracing allows everyone to perform en-

cryption, and thus anyone can broadcast messages to authorized users securely.

3. Threshold cryptosystems. Within a group, various access policies are pos-

sible. Depending on the internal organization of the group and the access type

of the message imposed by the sender, a different cryptographic scheme with

CHAPTER 1. INTRODUCTION 4

the corresponding key management policy is needed. Threshold cryptosystems

allow one to send encrypted messages to a group, while only a group achieving

a “threshold” has the ability to reconstruct the plaintext. Moreover the process

of reconstructing a plaintext should not reveal any participant’s secret. Thresh-

old cryptosystems are initiated by Desmedt and Frankel in [76, 77] and studied

further in [40, 137, 207]. We remark that the “threshold” can be an arbitrary

access structure, such as hierarchical structures [101] or t out of n threshold

structures [77]. The latter is the usual case.

One focus of this thesis is to investigate traitor tracing. We are the first to

introduce the concept of fully public-key traitor tracing and propose a scheme [145,

146]. A fully public-key traitor-tracing scheme is a public-key traitor-tracing scheme

in which subscribers can prevent anyone (including the broadcaster) from learning

their secret keys. We present the scheme in Chapter 4.

1.3 Group-Oriented Signature

We say that a signature scheme is group-oriented if signing and verification involve

more than two parties. Because a signature scheme can often be turned into an

authentication scheme (such as the identification schemes in [87, 90]), in the following

we will review many group-oriented signature applications that have appeared in the

literature.

1. Group signatures. A group signature scheme allows a group member to sign

messages on behalf of the group without revealing his or her identity. Never-

theless, in case of a later dispute, a designated group manager can open the

signature, thus tracing the signer. At the same time, any one—including the

group manager—cannot misattribute a valid signature. The concept of group

signatures is introduced by Chaum and van Heyst [44]. Camenisch and Stadler

present the first scheme in which the sizes of the public key and signatures are

independent of the group size [38]. More works on group signatures include

[4, 5, 6, 34, 35, 39, 54, 55, 180]

2. Group identification. A group identification scheme allows a group member

CHAPTER 1. INTRODUCTION 5

to convince other parties that he is a member of a group without revealing

his identity. For efficiency and different security considerations, many schemes

have been proposed in the literature [20, 37, 130, 138, 200, 201]. In particu-

lar, Kilian and Petrank introduce identity escrow that is a group identification

scheme with revocable anonymity [130]. In a identity escrow scheme, there is

a delegated escrow agent to trace the group member that has proved to other

parties his group membership. We notice that the property of traceability is

also an important requirement for group signatures. Furthermore, Boneh and

Franklin introduce identity escrow with subset queries by which a group mem-

ber can demonstrate membership in an arbitrary subset of groups members in

[20]. Camenisch and Lysyanskaya introduce identity escrow with appointed ver-

ifiers by which a group member can only convince the appointed verifiers of his

membership in [37].

3. Anonymous credential systems. A anonymous credential system allows

users to obtain credentials from organizations and to demonstrate possession

of these credentials anonymously. The property of anonymity requires that the

same user can not be linked even if he carries out a lot of demonstrations. In

addition, several desirable properties have been considered. For example, non-

transferability discourages the users from lending their credentials to others.

Anonymous credential systems are initiated by Chaum [52] and further studied

in [25, 36, 50, 53, 71, 144].

4. Multisignatures. Multisignatures allow more than one user to sign messages

together, and anyone can identify the individual signers. Multisignatures are

first introduced by Itakura and Nakamura [123] and have been extensively stud-

ied in the literature [23, 117, 120, 139, 161]. Several desirable properties have

been suggested. For example, Micali et al. propose accountable-subgroup mul-

tisignatures by which any subset of users can sign messages and each signer can

be identified universally [161]. They refer to the two properties as flexibility

and accountability, respectively.

5. Threshold signatures. A threshold signature scheme is a generalization of

digital signatures, in which only the persons achieving a “threshold” can gener-

CHAPTER 1. INTRODUCTION 6

ate a valid signature. For example, a (t, n) threshold signature scheme requires

the cooperation of t or more persons for generating a valid signature, where n is

the group size and t ≤ n. Threshold signatures are first introduced by Desmedt

and Frankel [76, 77] and studied further in [99, 100, 117].

6. Threshold group signatures. A threshold group signature scheme is a gener-

alization of group signatures, in which only the members achieving a “threshold”

can represent the group to generate signatures anonymously and the identities

of signers of a signature can be revealed in case of later disputes. An example is

a (t, n) threshold group signature by which the cooperation of t or more group

members is necessary to generate signatures on behalf of the group, where n is

the group size and t ≤ n. This definition is first presented in [219]. (The (t, n)

threshold group signature schemes are called as (t, n) threshold-multisignature

schemes in [139, 140]. We notice that in a multisignature scheme the identities

of signers are often public and the public keys of signers are needed to verify a

signature. At the same time, anonymity and traceability are two essential prop-

erties of a group signature scheme. Hence, it is more accurate to call the (t, n)

threshold-multisignature schemes in [139, 140] (t, n) threshold group signature

schemes.)

In this thesis, we introduce a new type of signature called a group undeniable sig-

nature. We also propose the first convertible group undeniable signature scheme. The

detailed contents will be presented in Chapter 5. Here we give a simple description

of a (convertible) group undeniable signature.

Group undeniable signatures. A group undeniable signature scheme allows

a group member to sign on behalf of a group without revealing his identity, and

the verification of a signature can only be done with cooperation of the group

manager. Furthermore, the group manager must be able to track down the

signers in case of a later dispute [147, 149].

Convertible group undeniable signatures. A convertible group undeniable

signature scheme is a group undeniable signature in which the group manager

can turn selective group undeniable signatures into ordinary group signatures

CHAPTER 1. INTRODUCTION 7

without compromising the security of the secret key needed to generate signa-

tures. Obviously, convertible group undeniable signatures are more powerful

than group signatures [148, 150].

1.4 Contributions and Organization of the Thesis

Chapter 2 provides mathematical and cryptographic foundations. We introduce ba-

sic contents of algebra, number theory, and complexity theory, which underly our

schemes in this thesis. We also clarify some notions that are important in cryptogra-

phy, including intractable problem assumptions and randomized algorithms. More-

over, definitions of many fundamental cryptographic terms are summarized: indistin-

guishability of probability ensembles, interactive proof systems, proofs of knowledge,

zero-knowledge proof systems, witness indistinguishability and hiding, and hash func-

tions.

In Chapter 3, we present numerous basic cryptographic tools that can be used

as building blocks for group-oriented cryptographic applications. These tools include

encryption and decryption algorithms, commitment schemes, identification protocols,

and digital signature schemes. In many cases, a single building block is not sufficient

to solve a complex cryptographic problem. Instead, different basic tools must be com-

bined to achieve the desirable security requirements. In addition, we also demonstrate

how to show that an identification protocol is a zero-knowledge proof of knowledge.

This proof is an important technique for characterizing properties of cryptographic

protocols.

In Chapter 4, we propose a fully public-key traitor-tracing scheme in which each

subscriber can choose his or her own private decryption key without others learning

the key. The distributor of the digital content utilizes the public data coming from

all subscribers to compute a public encryption key. The paid contents are then

transmitted to the subscribers, after being encrypted with the public key. Each

subscriber can decrypt the data using his or her own secret key. Even if a coalition of

subscribers conspire to create a pirate decoder with a tamper-free decryption key, we

have a tracing algorithm to trace them. Our scheme is long-lived, which means that

the subscribers’ secret keys need not be regenerated after the pirate key is detected or

CHAPTER 1. INTRODUCTION 8

when subscribers join or leave the system. Finally, our scheme guarantees anonymity.

In Chapter 5, we introduce a new type of signature for a group of persons called a

group undeniable signature, which satisfies the following requirements: (1) only group

members can anonymously sign on behalf of the group; (2) a verifier must interact

with the group manager to verify the signature; (3) the group manager can identify

the signer of a valid signature. A convertible group undeniable signature scheme al-

low the group manager to turn select group undeniable signatures into universally

verifiable group signatures. They are more suitable than group signatures in appli-

cations where signatures are generated for sensitive, nonpublic data. We propose

the first convertible group undeniable signature scheme. Furthermore, our scheme

is unforgeable, exculpable, unlinkable, and coalition-resistant. The proposed scheme

allows the group manager to delegate the ability to confirm and deny signatures to

trusted parties. The sizes of the public key and signatures are independent of the

group size.

Finally, concluding remarks are given in Chapter 6.

Chapter 2

Foundations

This chapter provides an introduction to the topics of algebra, number theory, and

fundamental cryptography. There are numerous books devoted to algebra and num-

ber theory [116, 118, 132, 196, 205, 206]. References for computational aspects

of algebra number theory are [59, 131]. A reference to complexity theory is the

book by Papadimitriou [177]. For fundamental cryptography, we refer the reader to

[73, 108, 157, 202, 210, 214].

2.1 Complexity-Theoretic Preliminaries

In this section, we review the concept of randomized algorithms and the definitions

of several complexity classes such as P, NP, and BPP.

2.1.1 Randomized Algorithms

Randomized algorithm is important in cryptography. Several algorithms used in en-

cryption and digital signature schemes often involve random choices and therefore

are probabilistic. For example, the encryption algorithms in Goldwasser and Micali’s

scheme [111] and ElGamal’s scheme [85] are probabilistic, and the signing algorithms

in ElGamal’s scheme [85] and the DSA [93] are also probabilistic. For a fixed input,

different runs of a randomized algorithm may give different results, and it is inevitable

that the analysis of a randomized algorithm involves probabilistic statements. More-

over, when studying the security of cryptographic schemes, adversaries are usually

9

CHAPTER 2. FOUNDATIONS 10

modelled as randomized algorithms. We give simple definitions of deterministic algo-

rithms and randomized algorithms below.

Definition 2.1.1. Given an input x, a deterministic algorithm A is a finite sequence

of steps or computations that output y in a deterministic way. The output y of a

deterministic algorithm A is completely determined by its input x.

Definition 2.1.2. Given an input x, a randomized algorithm A may toss a coin a

finite number of times during its computation of the output y, and a step may depend

on the results of previous coin tosses. The number of coin tosses may depend on the

outcome of the previous ones, but it is bounded by some constant tx for a given input

x. The coin tosses are independent and the coin is a fair one, i.e., each side appears

with probability 1/2. Tossing a coin is counted as one step. Often a randomized

algorithm is called a probabilistic algorithm if it works for practical purposes but has

a theoretical chance of being wrong.

A formal computation model for a deterministic algorithm is a deterministic Tur-

ing machine (DTM) and that for a probabilistic algorithm is a probabilistic Turing

machine (PTM). A deterministic Turing machine is a finite state machine having an

infinite read-write tape and the state transitions are completely determined by the

input. In a probabilistic Turing machine, the state transitions are determined by the

input and the output of coin tosses.

Often the coin tosses in a randomized algorithm are considered as internal coin

tosses. A second way to look at a randomized algorithm A is to consider the output

of the coin tosses as an additional input, which is supplied by an external coin-tossing

device. In this view, the model of a randomized algorithm is a deterministic machine.

We denote by AD the corresponding deterministic algorithm. It takes as input A’s

input x and the outcome r of the coin tosses. When AD wants to make the next step,

it reads the next bit of r and acts accordingly.

Given x, the output A(x) of a randomized algorithm A is a random variable

induced by the coin tosses. Let A(x) = y denote the random event “A outputs y

on input x.” By Pr[A(x) = y], we mean the probability of this event. Assume the

number of coin tosses for A is exactly tx. Then the possible outcomes r of the coin

tosses are the binary strings of length tx, and because the coin tosses are independent,

CHAPTER 2. FOUNDATIONS 11

we have the probability of an outcome r is 1/2tx . Hence

Pr[A(x) = y] = Pr[AD(x, r) = y] =
|{r|AD(x, r) = y}|

2tx
.

Probability Notation

Let A be an algorithm. By A(·) we denote that A has one input. By A(·, . . . , ·) we

denote that A has several inputs. By A(·) we denote that A is an indexed family of

algorithms.

The notation y ← A(x) denotes that y is obtained by running A on input x. If A is

deterministic, then y is unique. If A is probabilistic, then y is a random variable. The

notation x
pS← S, for a set S, means that x is randomly selected from S according to

a probability distribution pS. If the distribution is clear from the context, we simply

write x ← S. If pS is the uniform distribution, we write x
u← S. In this way the

members of S are chosen randomly. Let expression x ∈R S denote that x is chosen

randomly from set S.

Let B be a boolean function. The notation (B(yn) : {yi ← Ai(xi)}1≤i≤n) denotes

the event that B(yn) is TRUE after the value yn is obtained by successively running

algorithms A1, . . . , An on inputs x1, . . . , xn. The statement

Pr[B(yn) : {yi ← Ai(xi)}1≤i≤n] = p

means that the probability that B(yn) is TRUE after the value yn is obtained by

running algorithms A1, . . . , An on inputs x1, . . . , xn is p, where the probability is over

the random choices of the probabilistic algorithms involved.

2.1.2 Computational Complexity

The efficiency of an algorithm is measured with respect to the resource required

to solve the problem. The resource may include time, storage space, random bits,

numbers of processors, etc. Typically, the main focus is time. The running time

of an algorithm on a particular input is the number of steps executed, expressed

as a function of the input size. The worst-case running time of an algorithm is an

upper bound on the running time for any input. The average-case running time of

an algorithm is the average running time over all inputs of a fixed size. Often it is

CHAPTER 2. FOUNDATIONS 12

difficult to derive the exact running time of an algorithm. To compare running time

of algorithms, the standard asymptotic notation is used.

Definition 2.1.3 (Order Notation).

1. (Asymptotic upper bound) f(n) = O(g(n)) if there exits a positive constant c

and a positive integer n0 such that 0 ≤ f(n) ≤ cg(n) for all n ≥ n0.

2. (Asymptotic lower bound) f(n) = Ω(g(n)) if there exists a positive c and a

positive integer n0 such that 0 ≤ cg(n) ≤ f(n) for all n ≥ n0.

3. (Asymptotic tight bound) f(n) = Θ(g(n)) if there exit positive constants c1 and

c2, and a positive integer n0 such that c1g(n) ≤ f(n) ≤ c2g(n) for all n ≥ n0.

4. (The o-notation) f(n) = o(g(n)) if for any positive constant c > 0 there exits a

constant n0 > 0 such that 0 ≤ f(n) < cg(n) for all n ≥ n0.

Intuitively, f(n) = O(g(n)) means that f grows no faster asymptotically than g,

and f(n) = o(g(n)) means that g is an upper bound for f that is not asymptotically

tight. f(n) = Ω(g(n)) means that f grows at least as fast asymptotically as g to

within a constant multiple. If both f(n) = O(g(n)) and f(n) = Ω(g(n)), then

f(n) = Θ(g(n)). The expression o(1) is often used to denote a term f(n) with

limn→∞f(n)=0.

Definition 2.1.4. A polynomial-time algorithm is an algorithm that has a worst-

case running time of the form O(nk), where n is the input size and k is a constant.

Any algorithm whose running time cannot be so bounded is called an exponential-time

algorithm.

Definition 2.1.5. A probabilistic polynomial-time algorithm is a probabilistic algo-

rithm that has a running time of the form O(nk), where n is the input size and k is a

constant. The running time of a probabilistic algorithm is measured as the number of

steps in the model of algorithms, i.e., the number of steps of the probabilistic Turing

machine. Tossing a coin is one step in this model.

Let A be a probabilistic algorithm. The worst-case running time timeA(x) of A

on input x is the maximum number of steps that A needs to generate the output

CHAPTER 2. FOUNDATIONS 13

A(x). The expected running time etimeA(x) of A on input x is the average number

of steps that A needs to generate the output A(x), i.e.,

etimeA(x) =
∞∑

t=1

t · Pr[timeA(x) = t].

Let P be a computational problem and A be a probabilistic algorithm for P . The

worst-case running time of A for P is

tA = max{timeA(x) : for all instances x of P}.

The expected running time of A for P is

etA = max{etimeA(x) : for all instances x of P}.

Definition 2.1.6 (Monte Carlo Algorithms/Las Vegas Algorithms). Let P be

a computational problem.

1. A Monte Carlo algorithm A for P is a probabilistic algorithm A, whose running

time timeA(x) for all instance x of P is bounded by a polynomial Q(|x|) and

which yields a correct answer to P with a probability of at least 2/3.

2. A Las Vegas algorithm A for P is a probabilistic algorithm, whose running time

etimeA(x) for all instance x of P is bounded by a polynomial Q(|x|) and which

always yields a correct answer to P.

Definition 2.1.7. A subexponential-time algorithm is an algorithm that has a worst-

case running time of the form O(e(b+o(1)na(ln(n))1−a)), where n is the input size, b is a

positive constant, and a is a constant satisfying 0 < a < 1.

A subexponential-time algorithm is slower than a polynomial-time algorithm yet

faster than an algorithm whose running time is exponential in the input size. Observe

that for a = 0 the running time O(e(b+o(1)na(ln(n))1−a)) is polynomial O(na), while for

a = 1 the running time O(e(b+o(1)na(ln(n))1−a)) is exponential O(ebn)

For simplicity, computational problems are often modelled as decision problems:

decide whether a given x ∈ {0, 1}∗ belongs to a language L ⊆ {0, 1}∗. Computational

problems are classified by the most efficient known algorithm for solving them.

CHAPTER 2. FOUNDATIONS 14

Definition 2.1.8 (P). The complexity class P is the set of decision problems that

can be solved by deterministic polynomial-time algorithms.

Definition 2.1.9 (NP). The complexity class NP is the set of decision problems

for which a YES answer can be verified by polynomial-time deterministic algorithms

given some extra information, called a witness.

Let R ⊆ {0, 1}∗ × {0, 1}∗ be a binary relation. We say that R is polynomially

bounded if there exists a polynomial Q such that |w| ≤ Q(|x|) holds for all (x, w)

in R. Furthermore, R is an NP-relation if it is polynomially bounded and if there

exists a polynomial-time algorithm for deciding membership of pairs (x,w) in R. Let

LR = {x|∃w such that (x,w) ∈ R} be the language defined by R. A language L is

in NP if there exists an NP-relation RL ⊆ {0, 1}∗ × {0, 1}∗ such that x ∈ L if and

only if there exists a w such that (x, w) ∈ RL. Such a w is called a witness of the

membership of x in L. The set of all witnesses of x is denoted by RL(x).

Definition 2.1.10 (Bounded-Probability Polynomial-Time, BPP). Let L be

the language of some decision problem. We say that L is recognized by the probabilistic

polynomial-time algorithm A if for every x ∈ L, Pr[A(x) = 1] ≥ 2/3 and for every

x 6∈ L, Pr[A(x) = 0] ≥ 2/3. BPP is the class of languages that can be recognized by a

probabilistic polynomial-time algorithm.

Problems in P are considered easy, and problems not in P are considered hard.

It is widely believed that the class P is strictly smaller than the class NP. Whether

NP=P is the most important open problem in complexity theory.

We will consider as efficient only randomized algorithm whose running time is

bounded by a polynomial in the length of the input. A problem is called intractable (or

computationally infeasible) if no probabilistic polynomial-time algorithm could solve

it, whereas one that can be solved using a probabilistic polynomial-time algorithm is

called tractable (or computationally feasible).

All the above complexity classes are defined in terms of worst-case complexity.

However, in cryptography, average-case complexity of a problem is a more significant

measure than its worst-case complexity. This is because a cryptosystem must be

unbreakable in most cases, which implies that it will be intractable to break the

cryptosystem on the average. Hence, a necessary condition for a secure cryptographic

CHAPTER 2. FOUNDATIONS 15

scheme is that the corresponding cryptanalysis problem must be intractable on the

average.

2.2 Algebra and Number Theory

Algebra and number theory play an important role in contemporary cryptography.

Most public-key cryptosystems and secure protocols are based on problems from

number theory. In this section, we give several well-known results on algebra and

number theory. Most of the proofs are omitted because they can be found in most

textbooks on algebra and number theory.

2.2.1 Integer Arithmetic

Let Z denote the set of integers {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .} and N = {n ∈ Z|n > 0}
denote the set of natural integers. Let a, b ∈ Z, a 6= 0. We can divide b by a with a

remainder r. Of particular importance for divisibility is the following algorithm.

Theorem 2.2.1 (The Division Algorithm). If a ∈ N and b ∈ Z, then there exist

unique integers q, r ∈ Z with 0 ≤ r < a, and b = aq + r. The number q is called the

quotient and r is called the remainder of the division.

The number r is also called the remainder of b modulo a. We write b mod a for

r. The number q is the integer quotient of b and a. We write b div a for q. An

integer a divides an integer b (equivalently, a is a divisor of b, or a is a factor of b)

if there is some c ∈ Z, with b = ac. We write a|b for “a divides b.” A nonnegative

integer d is the greatest common divisor of a and b if (1) d|a and d|b; (2) If t ∈ Z
divides both a and b, then t divides d. The greatest common divisor is denoted by

gcd(a, b). If gcd(a, b) = 1, then a is called relatively prime to b, or prime to b for

short. An integer p ≥ 2 is said to be prime if its only positive divisors are 1 and p.

Otherwise, p is composite. Primes plays an important role in modern cryptography.

Fortunately, there are very fast probabilistic primality tests [165, 190, 209] (with

a high probability) for finding the correct answer to the question whether a given

number is prime or not. More recently, Agrawal, Kayal, and Saxena present the first

CHAPTER 2. FOUNDATIONS 16

deterministic, Õ(log2(n)12) time algorithm for testing if a number n is prime [1]. The

notation Õ(t(n)) denotes O(t(n)poly(log(t(n)))), where t(n) is some function of n.

In addition, numbers can be factored into products of primes.

Theorem 2.2.2 (Fundamental Theorem of Arithmetic). Let n ∈ N, n ≥ 2.

There exist pairwise distinct primes p1, . . . , pk and exponents e1, . . . , ek ∈ N, ei ≥
1, i = 1, . . . k, such that

n =
k∏

i=1

pei
i .

The primes p1, . . . , pk and exponents e1, . . . , ek are unique.

Efficient algorithms exist for the addition, subtraction, multiplication, and division

of numbers. Let a, b, m ∈ N, a, b ≤ m, k = blog2(m)c + 1. Note that k is the binary

length of m. The binary length of m is usually denoted by |m|, and we only use

the notation if it cannot be confused with the absolute value. By the classic grade

school method, the numbers of bit operations for the computations of a+ b and a− b

are O(k), whereas for a · b and a div b are O(k2). Multiplication can be improved

to O(k log2(k) log2 log2(k)) if a fast multiplication algorithm is used [2]. It is easy

to multiply two numbers, but we do not have a practical algorithm for factoring

extremely large numbers so far.

In the following, we introduce the Euclidean algorithm and the extended Euclidean

algorithm. The Euclidean algorithm efficiently computes gcd(a, b). It can be extended

such that not only gcd(a, b) but also the coefficients d and e of the linear combination

gcd(a, b) = da + eb are computed. Moreover, the extended Euclidean algorithm can

be used to compute the inverse of an element in a multiplicative group.

Theorem 2.2.3 (The Euclidean Algorithm). Let a, b ∈ Z (b ≥ a > 0), and

set b = r−1 and a = r0. By repeatedly applying the division algorithm, we obtain

rj−1 = rjqj+1 + rj+1 with 0 < rj+1 < rj for all 0 ≤ j < n, where n is the least

nonnegative number such that rn+1 = 0, in which case gcd(a, b) = rn.

Theorem 2.2.4 (The Extended Euclidean Algorithm). Let a, b ∈ N, and let qi

for i = 1, 2, . . . , n + 1 be the quotients obtained from the application of the Euclidean

algorithm to find g = gcd(a, b), where n is the least nonnegative integer such that

CHAPTER 2. FOUNDATIONS 17

rn+1 = 0. If s−1 = 1, s0 = 0, and

si = si−2 − qn−i+2si−1,

for i = 1, 2, . . . , n + 1, then

g = sn+1b + sna.

Suppose a, b ≤ m, k = blog2(m)c + 1. The Euclidean algorithm has a running

time of O(k2) bit operations, as does the extended Euclidean algorithm.

2.2.2 Basic Algebra

Let S be a nonempty set. An binary operation ∗ defined on S is a mapping from S×S

to S. Let a ∗ b denote the result of ∗ applied to the elements a, b ∈ S. The operation

∗ is associative if a ∗ (b ∗ c) = (a ∗ b) ∗ c holds for all a, b, c ∈ S, and commutative if

a ∗ b = b ∗ a holds for all a, b ∈ S. An element e in S is called an identity element if e

satisfies e ∗ a = a ∗ e = a for al a ∈ S. An inverse of an element a ∈ S is an element

b ∈ S such that a ∗ b = b ∗ a = e.

Group

Definition 2.2.1 (Group). Let G be a non-empty set and ∗ an operation defined on

G. Then the pair (G, ∗) is called a group if

1. The operation ∗ is associative.

2. G contains an identity element, say e.

3. Every element in G has an inverse under ∗.

A group (G, ∗) is called abelian or commutative if the operation ∗ is commutative.

We speak of a finite group (G, ∗) of order n if G is finite sets of cardinality n. The

order of (G, ∗) is denoted by |G| or ord(G).

Often (G, ∗) is denoted simply by G. It can easily be seen that the identity element

is unique, so is the inverse of any element. If the operation is called addition, the

identity element is denoted as 0 and the inverse element of a as −a. If the operation

CHAPTER 2. FOUNDATIONS 18

is multiplicative, the identity element is denoted as 1 and the inverse of an element

a as 1/a or a−1. Unless stated otherwise, we use the multiplicative notation when

dealing with arbitrary groups. So ak mean that a is multiplied k-times by itself, and

a−k denotes (1/a)k. The following are typical groups.

1. (Z, +) : Z is the set of all integers and + is the regular additive operation. The

identity is 0, and the inverse of a is −a.

2. (Zn, +) : Zn = {0, 1, . . . n− 1} and + is the congruent additive operation (mod-

ulo n). The identity is 0, and the inverse of a is n− a.

3. (Z∗n, ∗) : Z∗n = {a|a ∈ Zn, gcd(a, n) = 1} and ∗ is the congruent multiplicative

operation (modulo n). The identity is 1, and the inverse of a can be computed

by the extended Euclidean algorithm.

Definition 2.2.2 (Cyclic Group). A group G is cyclic if there is g ∈ G such

that every element a ∈ G can be written in the form gk for some k ∈ Z. That is,

G = {gi|i ≥ 0}. We call such g a generator of G and write 〈g〉 = G to indicate that

g generates G.

Definition 2.2.3. Let G be a group and a ∈ G. The order of a, denoted by ord(a), is

the smallest positive integer n such that an = 1, provided that such an integer exits.

If such an n does not exit, then the order of a is defined to be ∞.

We remark that if G is finite, there are exponents n ∈ N, with an = 1.

Definition 2.2.4 (Subgroup). Let (G, ∗) be a group. We say that (H, ∗) is a sub-

group of G if H ⊆ G and (H, ∗) is a group.

Fact 2.2.5. Let G be a group. For any a ∈ G, 〈a〉 = {gi|i ≥ 0} is a subgroup of G.

Fact 2.2.6. Let G be a finite group and 1 is the identity element of G. Then a|G| = 1

for all a ∈ G.

Fact 2.2.7 (Lagrange’s Theorem). If H is a subgroup of a finite group G, then

|H| divides |G|.

CHAPTER 2. FOUNDATIONS 19

Fact 2.2.8. Let G be a finite group and a ∈ G. Let n ∈ N with an = 1. Then ord(a)

divides n. In particular, the order of any element of a finite group divides the order

of the group.

Fact 2.2.9. Let G be cyclic and |G| = n. Then g is a generator of G if and only if

gn/p 6= 1 for every prime factor p of n.

Fact 2.2.10. Let G be a finite cyclic group and g be a generator of G. Then

1. The element b = gi has order |G|/ gcd(|G|, i). In particular, b is a generator

of G if and only if gcd(|G|, i) = 1. Hence, if |G| is prime, then every element

different from 1 is a generator of G.

2. Suppose d||G|. The G has exactly φ(d) elements of order d. In particular, G

has φ(|G|) generators.

3. For all divisors q of |G|, let Gq be the subgroup of G generated by g|G|/q. Then

the groups Gq are all the subgroups of G. In particular, every subgroup of G is

cyclic, and for each divisor q of |G| there is a unique subgroup of G of order q,

namely Gq.

Ring and Field

We now consider a situation that two operations are defined on a set. The first will

be denoted by a + b, the second by a ∗ b.

Definition 2.2.5 (Ring). The triple (R, +, ∗) is called a ring, if

1. (R, +) is a abelian group.

2. The operation ∗ is associative.

3. Distributivity holds, i.e., for all a, b, c ∈ R, a ∗ (b + c) = a ∗ b + a ∗ c and

(b + c) ∗ a = b ∗ a + c ∗ a.

If the operation ∗ is commutative on R, then the ring (R, +, ∗) is called commu-

tative. The following are typical rings.

CHAPTER 2. FOUNDATIONS 20

1. (Z, +, ∗): Z is the set of all integers. The operations + and ∗ are regular addition

and multiplication, respectively.

2. (Zn, +, ∗) : Zn = {0, 1, . . . n − 1}. The operations + and ∗ are under modular

n.

Definition 2.2.6 (Field). A triple (F, +, ∗) is called a field, if

1. (F, +) is a abelian group. Its identity element is denoted by 0.

2. (F − {0}, ∗) is a group. The multiplicative identity element is denoted by 1.

3. Distributivity holds.

A commutative field is a field for which (F − {0}, ∗) is commutative. Every finite

field is commutative. The following are typical fields.

1. (Q, +, ∗) : Q is the set of rational numbers.

2. (Zp, +, ∗) : Zp = {0, 1, . . . , p− 1} and + and ∗ are computed under modular p,

where p is prime.

2.2.3 Modular Arithmetic

Let a, b ∈ Z. Then a is said to be congruent to b modulo n, denoted by a ≡ b

(mod n) if n divides (a− b). The integer n is called the modulus of the congruence.

The integer modulo n, denoted Zn is the set of integers {0, 1, . . . , n − 1}. Addition,

subtraction, and multiplication in Zn are performed modulo n. The multiplicative

inverse of a modulo n is an integer x ∈ Zn such that ax ≡ 1 (mod n). If such an x

exists, then it is unique, and a is said to be invertible, or a unit. The multiplicative

inverse of a is denoted by a−1. Let Z∗n = {a ∈ Zn| gcd(a, n) = 1}. If n is prime, then

Z∗n = {a|1 ≤ a ≤ n− 1}. Note that (Zn, +) and (Z∗n, ∗) are abelian groups.

In the following, we first present important definitions and facts about modu-

lar arithmetic. Then we describe several tractable problems that can be solved in

polynomial time.

CHAPTER 2. FOUNDATIONS 21

Definitions and Facts

Definition 2.2.7. Let n be a positive integer. The Euler phi function or the Euler

totient function φ(n) is defined to be the number of positive integers not exceeding n

which are relatively prime to n.

Definition 2.2.8. Let a and n be relatively prime positive integers. Then, the least

positive integer x such that ax ≡ 1 (mod n) is called the order of a modulo n, denoted

by ordna.

Definition 2.2.9. If g and n are relatively prime integers with n > 0 and if ordng =

φ(n), then g is called a primitive root modulo n.

Definition 2.2.10. Let n ∈ N and a ∈ Z. We say that a is a quadratic residue modulo

n if a 6≡ 0 (mod n) and the congruence x2 ≡ a (mod n) has a solution x ∈ Z. If

a 6≡ 0 (mod n) and the congruence x2 ≡ a (mod n) has no solution, we say that a is

a quadratic nonresidue modulo n.

In most cases, we are only interested in the quadratic residues a which are rela-

tively to the modulus n.

Definition 2.2.11. QRn = {a ∈ Z∗n|a is a quadratic residue modulo n}. On the

contrary, QNRn = {a ∈ Z∗n|a is a quadratic nonresidue modulo n}

Note that for any n, QRn is a subgroup of Z∗n, while QNRn is not a subgroup of

Z∗n because at least 1 6∈ QNRn.

Definition 2.2.12. Let p be a prime > 2, and let a ∈ Z be prime to p.

(
a

p

)
=

{
+1 if a ∈ QRp,

−1 if a ∈ QNRp,

is called the Legendre symbol of a mod p. For a ∈ Z with p|a, we set (a
p
) = 0.

Definition 2.2.13. Let n ∈ Z be a positive odd number and n =
∏r

i=1 pei
i be the

decomposition of n into primes. Let a ∈ Z. Then

(a

n

)
=

r∏
i=1

(
a

pi

)ei

is called the Jacobi symbol of a mod n.

CHAPTER 2. FOUNDATIONS 22

Definition 2.2.14. A universal exponent of the positive integer n is a positive integer

U such that

aU ≡ 1 (mod n)

for all integers a relatively prime to n.

Definition 2.2.15. The least universal exponent of the positive integer n is called

the minimal universal exponent of n, denoted by λ(n).

Fact 2.2.11 (Chinese Remainder Theorem). Let m1,m2, . . . , mn be positive in-

tegers that are relatively prime in pairs. Then for any given integers b1, b2, . . . , bn, the

system of congruences

x ≡ bi (mod mi), 1 ≤ i ≤ n

has a unique solution modulo M = m1m2 · · ·mn. The solution is given by x =
n∑

i=1

biMiyi mod M , where Mi = M/mi and Miyi ≡ 1 (mod mi).

Assume k is the length of every modulus. The computational complexity of apply-

ing the Chinese remainder theorem is OB(M(kn) log(n)) + OB(nM(k) log(k)), where

M(x) is the time of multiplying two x bit integers, and OB indicates order of magni-

tude in bit operations [2, Theorem 8.21].

Fact 2.2.12. Simultaneous congruences

x ≡ bi (mod mi), 1 ≤ i ≤ n

have a solution if and only if gcd(mi,mj) divides bi − bj for all pairs of integers

(i, j) with 1 ≤ i < j ≤ n, in which case the solution is unique modulo M =

lcm(m1,m2, . . . , mn) and is given by the Chinese remainder theorem with the said

M .

Fact 2.2.13. Let n = pe1
1 pe2

2 · · · pek
k be the prime-power factorization of the positive

integer n. Then

φ(n) = n(1− 1

p1

)(1− 1

p2

) · · · (1− 1

pk

).

Furthermore,

φ(n) >
n

eγ log10(log10(n)) + 2.6
log10(log10(n))

(see [116, 197]),

CHAPTER 2. FOUNDATIONS 23

where Euler’s constant γ = 0.5772 This inequality implies, for example, that

φ(n) >
n

6 log10(log10(n))
, for n ≥ 1.3× 106.

Fact 2.2.14 (Fermat’s Little Theorem). If p is a prime and p does not divide

a ∈ Z, then

ap−1 ≡ 1 (mod p).

Fact 2.2.15 (Euler’s Theorem). Let n ∈ N and a ∈ Z. If gcd(a, n) = 1, then

aφ(n) ≡ 1 (mod n).

Fermat’s little theorem and Euler’s theorem are special cases of Fact 2.2.6.

Fact 2.2.16. Suppose that g and n are relatively prime with n > 0. Then gi ≡ gj

(mod n) if and only if i ≡ j (mod ordng).

Fact 2.2.17. The positive integer n possesses a primitive root if and only if

n = 2, 4, pt, or 2pt,

where p is an odd prime and t is a positive integer.

Fact 2.2.18. If the positive integer n has a primitive root, then it has a total of

φ(φ(n)) incongruent primitive roots.

Fact 2.2.19. Let p be a prime. Then Z∗p is cyclic, and the number of generators is

φ(p− 1).

Fact 2.2.20. Let p be a prime. Then x ∈ Z∗p is a primitive root if and only if

x(p−1)/q 6≡ 1 (mod p) for every prime q|p− 1.

Fact 2.2.21. Let p be a prime > 2 and g ∈ Z∗p be a primitive root of Z∗p. Let a ∈ Z∗p.
Then a ∈ QRp if and only if a ≡ gt (mod p) for some even number t, 0 ≤ t ≤ (p−2).

Furthermore, exactly half of the elements of Z∗p are quadratic residues, i.e., |QRp| =

|QNRp| = (p− 1)/2.

Fact 2.2.22 (Euler’s Criterion). Let p be a prime > 2 and a ∈ Z. Then
(

a

p

)
≡ a(p−1)/2 mod p.

CHAPTER 2. FOUNDATIONS 24

Euler’s criterion can be generalized to the kth residuosity as follows.

Fact 2.2.23. A number a is an eth residue of Z∗p if and only if a(p−1)/d ≡ 1 (mod p),

where d = gcd(e, p− 1).

Fact 2.2.24 ([6, 98]). Let n = p1p2, where p1 6= p2, p1 = 2q1 + 1, p2 = 2q2 + 1, and

p1, p2, q1, q2 are all prime numbers. Then the following holds.

1. The order of g0 ∈ Z∗n is equal to q1q2 or 2q1q2 if and only if gcd(g0 + 1, n) = 1

and gcd(g0 − 1, n) = 1.

2. For any g0 such that gcd(g0 + 1, n) = 1 and gcd(g0 − 1, n) = 1, 〈g2
0〉 ⊂ Z∗n is a

cyclic subgroup of order q1q2.

Fact 2.2.25. Let M be a positive integer with odd prime factorization M = p1p2 · · · pn.

Then the following holds.

1. λ(M) = lcm(φ(p1), φ(p2), . . . , φ(pn)).

2. There exists an integer g such that ordMg = λ(M), the largest possible order of

an integer modulo M .

3. Let ri be a primitive root modulo pi. The solution of simultaneous congruences

x ≡ ri (mod pi), i = 1, 2, . . . , n, produces such an integer g.

The above fact implies that if M is a product of large primes pi = 2qi +1 where qi

are also primes, then there exists a g whose order contains large prime factors. The

reason is that

λ(M) = lcm(p1 − 1, p2 − 1, . . . , pn − 1) = 2q1q2 · · · qn. (2.1)

Tractable Problems in Zn

As in Z, basic group operations in Zn can be performed efficiently, i.e., in time

polynomial in the group size. Let n be an integer and k = blog2(n)c + 1. By the

ordinary method, the numbers of bit operations for the computations of (a+b) mod n

and (a− b) mod n are O(k), whereas the number of bit operations for (a · b) mod n is

O(k2). Modular inversion a−1 mod n can be computed in O(k2) using the extended

CHAPTER 2. FOUNDATIONS 25

Euclidean algorithm. Modular exponentiation at mod n can be performed with at

most 2 · |t| modular multiplications using the repeated squaring method. Hence, an

exponentiation in Z∗n can be computed in O(k3).

There are hardware implementations for performing modular multiplication fast.

In particular, Norris and Simmons use the concept of delayed-carry adders to produce

a hardware modular multiplier which computes the product of two t-bit operands

modulo a t-bit modulus in 2t clock cycles [172]. Brickell improves the idea to produce

a modular multiplier requiring only t+7 clock cycles [32]. Enhancements of Brickell’s

method are given by Walter [218]. Koç provides a comprehensive survey of hardware

methods for modular multiplication [133].

We now present several number-theoretic problems that can be solved in proba-

bilistic polynomial time. Let p is prime. First, consider computations in Zp. The

following problems is tractable.

1. Finding a primitive root modulo p when the prime factors of p− 1 are known.

By Fact 2.2.20, we can use the following algorithm to obtain a primitive root

modulo p.

Algorithm 2.2.1.

input: prime p

output: a primitive root modulo p

1. Randomly choose an integer g, with 0 < g < p− 1

2. if g(p−1)/q 6≡ 1 (mod q) for all primes q dividing p− 1.

3. then output g

4. else go to 1

Because

φ(p− 1) >
(p− 1)

6 log10(log10(p− 1))
,

the expected iteration to find a primitive root is O(log10(log10(p))). Note that

if the prime factors of p − 1 are not known, no efficient algorithms are known

for the generation of primitive roots.

2. Testing whether an element is a quadratic residue modulo p.

The problem is called the quadratic residuosity problem and can be solved by

Euler’s criterion.

CHAPTER 2. FOUNDATIONS 26

3. Testing whether an element is an eth residue modulo p.

The problem is called eth residuosity problem and can be solved by Fact 2.2.23.

4. Computing the eth root modulo p when gcd(e, p− 1) = 1.

The problem is called eth root problem. When gcd(e, p− 1) = 1, ae−1
mod p is

a e’th root of a modulo p, where e−1e ≡ 1 (mod p− 1).

5. Computing square roots of a quadratic residue in Zp.

Because gcd(2, p − 1) 6= 1, computing the square root is not easy. We do not

know any polynomial-time algorithm that computes a1/2 mod p deterministi-

cally. Nevertheless, there exits a probabilistic polynomial-time algorithm that

does it. We describe the algorithm as follows.

Algorithm 2.2.2.

input: (a, p), where a ∈QRp and p is an odd prime

output: a1/2 mod p

1. if p ≡ 3 mod 4

2. then output a(p+1) div 4 mod p

3. else

4. randomly choose b ∈ QNRp

5. i ← (p− 1) div 2; j ← 0

6. repeat

7. i ← i div 2; j ← j div 2

8. if aibj ≡ −1 mod p

9. then j ← j + (p− 1) div 2

10. until i ≡ 1 (mod 2)

11. output a(i+1) div 2bj div 2 mod p

Suppose p ≡ 1 mod 4. Let (p − 1)/2 = 2`r, with r odd and ` ≥ 1. The above

algorithm randomly chooses a quadratic nonresidue b ∈ QNRp and then finds

an exponent s such that arb2s = 1. Therefore, ar+1b2s = a and a(r+1)/2bs is a

square root of a. To get a quadratic nonresidue we can randomly choose an

element b of Z∗p and test by Euler’s criterion whether b is a nonresidue. Because

half of the elements in Z∗p are nonresidues, we expect to get a nonresidue after

two random choices. Moreover s is obtained in ` steps.

CHAPTER 2. FOUNDATIONS 27

6. Determining the order of a group element when the prime factorization of the

group order is known.

By Fact 2.2.8, we can use the following algorithm to find the order of a group

element a modulo p efficiently.

Algorithm 2.2.3.

input: prime p, an element a ∈ Z∗p, and the prime factorization

p− 1 = pe1
1 pe2

2 · · · pek
k

output: the order of a

1. t ← p− 1

2. for i = 1 to k do

3. while at/pi ≡ 1 (mod p) do

4. t ← t/pi

5. output t

Let n be a composite number. Consider computations in Zn. The following

problems are believed to be hard if the factorization of n is unknown but become

tractable if the opposite is true.

1. Testing if an element is a quadratic residue in Zn.

2. Computing the square root of a quadratic residue in Zn.

This is provably as hard as factoring n. Assume n = pq. When the factorization

of n = pq is known, we compute the square root of a ∈ Z∗n by first computing

the square root in Zp of a mod p and the square root in Zq of a mod q and then

using the Chinese remainder theorem to obtain roots of x in Zn.

3. Computing eth roots modulo n when gcd(e, φ(n)) = 1.

Suppose n = pq. Then the problem is the so-called RSA problem. φ(n) can be

found by factoring n. Thus, if factoring is easy, then so is the RSA problem.

2.2.4 Intractable Problems

The Discrete Logarithm Assumption

Let G be a finite cyclic group and g be a generator of G. The discrete logarithm of

some element x ∈ G, denoted logg(x), is the unique integer a, 0 ≤ a < |G|, such that

CHAPTER 2. FOUNDATIONS 28

x = ga. The discrete logarithm (DL) problem is the following: Given G, g, and an

element x ∈ G, find the integer a, 0 ≤ a < |G|, such that x = ga. It is unknown

whether an efficient algorithm for the DL problem exits. All known algorithms have

exponential or subexponential running time, and it is widely believed that the problem

is intractable. We state the assumption more precisely as follows.

Definition 2.2.16. Let I = {(G, g)|G is a cyclic group, g ∈ G a generator } and

Ik = {(G, g) ∈ I|ord(G) = k}. For every probabilistic polynomial-time algorithm A,

every positive polynomial Q, and all sufficiently large k,

Pr[y = logg(x) : (G, g)
u← Ik, x

u← G, y ← A(G, g, x)] <
1

Q(k)
.

This is called the discrete logarithm assumption.

The Diffie-Hellman and Decision Diffie-Hellman Assumptions

The Diffie-Hellman (DH) problem is the following: Given a finite cyclic group G, a

generator g of G, and the two elements ga and gb, find the element gab. It is believed

that the DH problem is intractable. We make this precise in the following.

Definition 2.2.17. Let I = {(G, g)|G is a cyclic group, g ∈ G a generator } and

Ik = {(G, g) ∈ I|ord(G) = k}. For every probabilistic polynomial-time algorithm A,

every positive polynomial Q, and all sufficiently large k,

Pr[y = gab : (G, g)
u← Ik, a

u← Z|G|, b
u← Z|G|, y ← A(G, g, ga, gb)] <

1

Q(k)
.

This is called the Diffie-Hellman assumption.

Obviously, if the DL problem can be solved in polynomial time, then the DH

problem can be solved in polynomial time. For some groups, the DH and the DL

problems have been proved to be computationally equivalent. [18, 153, 154, 155].

The decision Diffie-Hellman (DDH) problem is the following: Given a finite cyclic

group G, a generator g of G, and the three elements ga, gb, and gc, decide whether

the elements gc and gab are equal. It is believed that the problem is intractable. This

is made precise in the following.

CHAPTER 2. FOUNDATIONS 29

Definition 2.2.18. Let I = {(G, g)|G is a cyclic group, g ∈ G a generator } and

Ik = {(G, g) ∈ I|ord(G) = k}. For every probabilistic polynomial-time algorithm A,

every positive polynomial Q, and all sufficiently large k,

Pr[c′ = c : (G, g)
u← Ik, a

u← Z|G|, b
u← Z|G|, z0 = ab mod |G|, z1

u← Z|G|, c
u← {0, 1},

c′ ← A(G, g, ga, gb, gzc)] <
1

2
+

1

Q(k)
.

This is called the decision Diffie-Hellman assumption.

Clearly, an efficient algorithm to solve the DH problem implies one for the DDH

problem.

Shoup shows that any generic algorithm must perform Ω(p1/2) group operations

for the two problems, where p stands for the largest prime divisor of the group order

in the case of the DH problem, and for the smallest prime divisor of the group order

in the case of the DDH problem [208]. A generic algorithm does not exploit any

special properties of the encodings of group elements except that each group element

is encoded as a unique bit string.

The Representation Assumption

Let G be a group and g1, . . . , gr ∈ G be pairwise distinct generators of G. A repre-

sentation of some element y ∈ G is an r-tuple (a1, . . . , ar), 0 ≤ ai ≤ |G| − 1 for all

1 ≤ i ≤ r such that

y =
r∏

i=1

gai
i .

The representation problem is the following: Given G, g1, . . . , gr, and an element

y ∈ G, find integers a1, . . . , ar, 0 ≤ ai ≤ |G| − 1, such that

y =
r∏

i=1

gai
i .

The representation problem is a generalization of the DL problem. It is believed that

the representation problem is intractable. We make this statement precise in the

following.

Definition 2.2.19. Let I = {(G, g1, . . . , gr)|G is a cyclic group, g1, . . . , gr ∈ G

generators}. Let Ik = {(G, g1, . . . , gr) ∈ I|ord(G) = k}. For every probabilistic

CHAPTER 2. FOUNDATIONS 30

polynomial-time algorithm A, every positive polynomial Q, and all sufficiently large

k,

Pr[ga1
1 · · · gar

r = y : (G, g0, . . . , gr)
u← Ik, y

u← G,

(a1, . . . , ar) ← A(G, g1, . . . , gr, y)] <
1

Q(k)
.

This is called the representation assumption.

If the generators g1, . . . , gr are all chosen randomly, finding two different repre-

sentations of an element is as hard as the DL problem. Brands gives a thorough

discussion on the representation problem in [26].

The Assumption of Equality of Discrete Logarithms

Let G be a group and g0, g1 ∈ G be distinct generators of G. The problem of equality

of discrete logarithms is the following: Given G, g0, g1, and two elements y0, y1 ∈ G,

decide whether logg0
(y0) is equivalent to logg1

(y1). It is believed that there is no

efficient algorithm to solve this problem. We make this precise in the following.

Definition 2.2.20. Let I = {(G, g0, g1)|G is a cyclic group, g0, g1 ∈ G generators}
and Ik = {(G, g0, g1) ∈ I|ord(G) = k}. Let

EDLG,g0,g1 : G×G → {0, 1}, EDLG,g0,g1(x0, x1) =

{
1 if logg0

y0 = logg1
y1,

0 otherwise,

be a function. For every probabilistic polynomial-time algorithm A, every positive

polynomial Q, and all sufficiently large k,

Pr[b = EDLG,g0,g1(y0, y1) : (G, g0, g1)
u← Ik, y0

u← G, y1
u← G,

b ← A(G, g0, g1, y0, y1)] <
1

2
+

1

Q(k)
.

This is called the assumption of equality of discrete logarithms (EDL).

The Factoring Assumption

The integer factorization problem is the following: Given a positive integer n, find its

prime factorization, i.e., find pairwise distinct primes pi and positive integer ei such

CHAPTER 2. FOUNDATIONS 31

that n = pe1
1 pe2

2 · · · pek
k . All known factoring algorithms have an exponential running

time. Therefore, it is widely believed that the factors of n cannot be computed effi-

ciently. The following assumption make this statement more precise. For simplicity,

assume n = pq.

Definition 2.2.21. Let I = {n|n = pq, p and q are distinct primes, |p| = |q|} and

Ik = {n ∈ I|n = pq, |p| = |q| = k}. For every probabilistic polynomial-time algorithm

A, every positive polynomial Q, and all sufficiently large k,

Pr[A(n) = p : n
u← Ik] <

1

Q(k)
.

This is called the factoring assumption.

Furthermore, it is known that factoring n = pq is equivalent to computing square

roots in Z∗n [189].

The RSA Assumption

Let I = {(n, e) ∈ I|n = pq, p 6= q primes, 0 < e < φ(n), e prime to φ(n)}. The family

RSA = (RSAn,e : Z∗n → Z∗n, x 7→ xe)(n,e)∈I

is called the RSA family.

Consider an (n, e) ∈ I, and let d ∈ Z∗φ(n) be the inverse of e mod φ(n). We have

xed ≡ 1 mod n. This shows that RSAn,e is a bijection and that the inverse function

is also an RSA function, namely RSAn,d : Z∗n → Z∗n, y 7→ yd.

RSAn,e can be computed by an efficient modular exponentiation algorithm. The

inverse d of e can be easily computed by the extended Euclidean algorithm if φ(n) =

(p−1)(q−1) is known. No algorithm to compute RSA−1
n,e in polynomial time is known

if p, q and d are kept secret (d or p, q are called the trapdoor information for the RSA

function).

To date, factoring n is the only known method to totally break RSA. All known

factoring algorithms have an exponential running time. Therefore, it is widely be-

lieved that RSA cannot be efficiently inverted. The following assumption makes this

more precise.

CHAPTER 2. FOUNDATIONS 32

Definition 2.2.22. Let Ik = {(n, e) ∈ I|n = pq, |p| = |q| = k}. For every proba-

bilistic polynomial-time algorithm A, every positive polynomial Q, and all sufficiently

large k,

Pr[x = RSAn,d(y) : (n, e)
u← Ik, y

u← Z∗n, x ← A(n, e, y)] <
1

Q(k)
.

This is called the RSA assumption.

The Quadratic Residuosity Assumption

Let I = {n : n = pq, p, q distinct primes, |p| = |q|} and let

J+1
n =

{
x ∈ Z∗n|

(x

n

)
= +1

}

be the elements with Jacobi symbol +1. QRn is a proper subset of J+1
n .

Consider the functions

PQRn : J+1
n → {0, 1}, PQRn(x) =

{
1 if x ∈ QRn,

0 otherwise.

It is believed that there is no efficient algorithm which, without knowing the factors of

n, is able to decide whether x ∈ J+1
n is a quadratic residue. The following assumption

make this precise.

Definition 2.2.23. Let Ik = {n : n = pq, |p| = |q| = k}. For every probabilistic

polynomial-time algorithm A, every positive polynomial Q, and all sufficiently large

k,

Pr[y = PQRn(x) : n
u← Ik, x

u← J+1
n , y ← A(n, x)] <

1

2
+

1

Q(k)
.

This is called the quadratic residuosity assumption.

Note that the factoring assumption follows from the RSA assumptions and also

from the quadratic residuosity assumption. Hence, each of these two assumptions is

stronger than the factoring assumption.

Discussions

For all assumptions described above, we do not consider a single fixed key i ∈ Ik:

The success probability of adversary A is also taken over the random choice of the

CHAPTER 2. FOUNDATIONS 33

key. Hence, the meaning of the probability statement is: Choosing both the key i

with security parameter k and an instance randomly, the probability that adversary

A correctly computes is small. The statement is not related to a particular key i.

In practice, however, a public key i is chosen and then fixed for a long time, and it

is known to the adversary. Thus, we are interested in the conditional probability of

success, assuming a fixed public key i. Even if the security parameter k is very large,

there may be public keys such that adversary A correctly breaks the system with a

significant probability. However, as we will see in the following lemma, the number

of such keys is negligibly small compared to the number of all keys with security

parameter k. Hence, choosing i at random and uniformly from Ik, the probability of

obtaining one for which adversary A has a significant chance of success is negligibly

small.

Lemma 2.2.1. Let I = (Ik)k∈N be a key set with security parameter k. Let Aj be

randomized algorithms with input xj and output yj, 1 ≤ j ≤ n. Let B be a boolean

function. Assume that An is the adversary A. Then the following statements are

equivalent:

1. For every positive polynomial P and all sufficiently large k

Pr[B(yn) = 1 : i ← Ik, {yj ← Aj(xj)}1≤j≤n] <
1

P (k)
.

2. For all positive polynomials Q and R, and all sufficiently large k

Pr

[{
i ∈ Ik

∣∣∣∣Pr[B(yn) = 1 : {yj ← Aj(xj)}1≤j≤n] >
1

Q(k)

}]
<

1

R(k)
.

Proof. Let

pi = Pr[B(yn) = 1 : {yj ← Aj(xj)}1≤j≤n]

be the conditional probability of success of A assuming a fixed i. We first prove that

statement 2 implies statement 1. Let P be a positive polynomial. By statement 2,

for sufficiently large k,

Pr

[{
i ∈ Ik|pi >

1

2P (k)

}]
<

1

2P (k)
.

CHAPTER 2. FOUNDATIONS 34

Hence

Pr[B(yn) = 1 : i ← Ik, {yj ← Aj(xj)}1≤i≤n]

=
∑
i∈Ik

Pr[i] · pi

=
∑

pi≤1/(2P (k))

Pr[i] · pi +
∑

pi>1/(2P (k))

Pr[i] · pi

<
∑

pi≤1/(2P (k))

Pr[i] · 1

2P (k)
+

∑

pi>1/(2P (k))

Pr[i] · 1

= Pr

[{
i ∈ Ik|pi ≤ 1

2P (k)

}]
· 1

2P (k)
+ Pr

[{
i ∈ Ik|pi >

1

2P (k)

}]

<
1

2P (k)
+

1

2P (k)
=

1

P (k)
.

Conversely, assume that statement 1 holds. Let Q an R be positive polynomials.

Then for sufficiently large k

1

Q(k)R(k)
> Pr[B(yn) = 1 : i ← Ik, {yj ← Aj(xj)}1≤i≤n]

=
∑
i∈Ik

Pr[i] · pi

≥
∑

pi>1/Q(k)

Pr[i] · pi

>
1

Q(k)
· Pr

[{
i ∈ Ik|pi >

1

Q(k)

}]
.

This inequality implies statement 2.

2.3 Hash Functions

Hash functions can be used to control the integrity of a message. In signature schemes,

hash functions are also applied to reduce messages of arbitrary lengths to message

digests that can be signed in place of the original messages. Furthermore, hash func-

tions can be employed as a substitution for the honest verifier in proofs of knowledge

and thus turn them into signature schemes [90].

Definition 2.3.1. A hash function is a function mapping a binary string of arbitrary

CHAPTER 2. FOUNDATIONS 35

finite length to a binary string of fixed length `:

h : {0, 1}∗ → {0, 1}`.

Naturally, we require that a hash function be efficiently computable. Additional

security requirements of hash functions are motivated by the cryptographic purposes

of applications. We now list three potential security properties.

• Preimage resistance (or one way): For a given y, it is computationally infeasible

to find an x such that h(x) = y.

• Second preimage resistance (or weak collision resistance): For a given x, it is

computationally infeasible to find an x′ 6= x such that h(x) = h(x′) [167].

• Collision resistance (or strong collision resistance): It is computationally infea-

sible to find a pair (x, x′) with x 6= x′ such that h(x) = h(x′) if h is chosen at

random from a family of hash functions [71].

It can easily be seen that the property of collision resistance implies the prop-

erty of second preimage resistance. However, preimage resistance is not necessarily

implied by collision resistance. For example, let h′ : {0, 1}k → {0, 1}k be collision-

resistant. We define h(bx) = 1x if b = 1 and = 0h′(x) if b = 0. We can see that

h is collision-resistant but not one-way because a half of h−1 are polynomial-time

computable. Damag̊ard provides conditions under which collision resistance implies

preimage resistance [64]; see also Gibson’s comment in [102].

We give the precise definitions of one-way functions and collision-resistant hash

functions as follows.

Definition 2.3.2 (One-Way Functions). Let I = (Ik)k∈N be a key set with security

parameter k. Let K be a probabilistic polynomial sampling algorithm for I, which on

input 1k outputs i ∈ Ik.

A family

f = (fi : Di → Ri)i∈I

of functions between finite sets Di and Ri is a family of one-way functions (or, for

short, a one-way function) with key generator K if and only if

CHAPTER 2. FOUNDATIONS 36

1. There is a uniform sampling algorithm S for D = (Di)i∈I , which on input i ∈ I

outputs x ∈ Di.

2. f can be computed by a Monte Carlo algorithm F (i, x). That is, there is a

probabilistic polynomial-time algorithm F (i, x) with

Pr[F (i, x) = fi(x)] ≥ 1− 2−k, i ∈ Ik.

3. f is hard to invert if the keys are generated by K. More precisely, for every

probabilistic polynomial-time algorithm A(i, y) (i ∈ I, y ∈ Ri), every positive

polynomial P , and all sufficiently large k

Pr[fi(A(i, fi(x))) = fi(x) : i ← K(1k), x
u← Di] <

1

P (k)
.

If K is a uniform sampling algorithm for I, then we call f a family of one-way

function (or a one-way function) without explicitly referring to a key generator.

Definition 2.3.3 (Collision-Resistant Hash Functions). Let I = (Ik)k∈N be a key

set with security parameter k. Let K be a probabilistic polynomial sampling algorithm

for I, which on input 1k outputs i ∈ Ik. Let k(i) be the security parameter of i (i.e.,

k(i) = k for i ∈ Ik) and g : N→ N be a polynomial function.

A family

h = (hi : {0, 1}∗ → {0, 1}g(k(i)))i∈I

of hash functions is called a family of collision-resistant hash functions (or, for short,

a collision-resistant hash function) with key generator K if and only if

1. The hash values hi(x) can be computed by a polynomial algorithm H with inputs

i ∈ I and x ∈ {0, 1}∗.

2. It is computationally infeasible to find a collision. More precisely, for every prob-

abilistic polynomial-time algorithm A, which on input i ∈ I outputs messages

m0,m1 ∈ {0, 1}∗, m0 6= m1, every positive polynomial P , and all sufficiently

large k

Pr[hi(m0) = hi(m1) : i ← K(1k), {m0,m1} ← A(i)] <
1

P (k)
.

CHAPTER 2. FOUNDATIONS 37

The following fact illustrates that collision-resistant hash functions can be made

one-way.

Fact 2.3.1. Let I = (Ik)k∈N be a key set with security parameter k, and let a family

H = (hi : {0, 1}∗ → {0, 1}g(k(i)))i∈I of functions be collision-resistant. Let Q be a

positive polynomial with Q(k) ≥ g(k) + 1. Then the family

(hi : {0, 1}Q(k(i)) → {0, 1}g(k(i)))i∈I

of functions are one-way with respect to H’s key generator.

We remark that one-way hash functions (OWHF) and collision-resistant hash func-

tions (CRHF) are sometimes referred to as the following definitions [157]. A one-way

hash function is a hash function satisfying preimage resistance and second preimage

resistance. If the image elements have unique preimages, then second preimage resis-

tance holds vacuously. A collision-resistant hash function is a hash function satisfying

preimage resistance and collision resistance. A collision-resistant hash function is also

called a collision-free hash function [63, 64, 67], or a collision-intractable hash function

[222].

For many cryptographic applications, it is desirable that the only efficient way to

determine the hash value h(x) for a given x is to actually evaluate the function h at

the value x. This should remain true even if many other values h(x1), h(x2), . . . have

already been obtained. The random oracle model, which is introduce by Bellare and

Rogaway [9], provides a mathematical model of such an ideal hash function. In this

model, a hash function h is chosen randomly from a family of hash functions, and

we are only permitted oracle access to the function h to obtain a hash value. This

means that we are not given a formula or an algorithm to compute the value of the

function h. Hence, the only way to compute a value h(x) is to query the oracle. This

can be thought of as looking up the value h(x) for x in an enormous table of random

numbers such that, for each possible x, there is a completely random value h(x). Note

that if the same input x is put to the oracle, identical output h(x) is obtained.

Assuming that the best algorithm to find a collision of a hash function is brute-

force search, the security against collisions depends mostly on the number of output-

bits. To estimate the number of necessary output-bits, the so-called birthday attack

CHAPTER 2. FOUNDATIONS 38

has to be considered: To find a collision with probability ε about

√
2 · 2` ln(

1

1− ε
)

random hashes must be evaluated. If we take ε = 0.5, then the hashing just over

2`/2 random elements yields a collision. Hence, the birthday attack impose a lower

bound on the sizes of secure message digests. A 40-bit message digest would be

very insecure because a collision could be found with probability 1/2 with just over

220 random hashes. Today, an output size of 160 bits (or larger) seems to have a

reasonable security.

Many cryptographic hash functions are proposed so far in the literature. They

are mainly divided into three types by constructions:

1. Hash functions based on block ciphers: A designer aims to implement a well-

trusted hash function which is based on the security of a well-trusted block

cipher such as DES.

2. Hash functions based on modular arithmetic: A designer aims to save on imple-

mentation costs. A hash function is generally used in conjunction with a digital

signature algorithm which itself utilizes modular arithmetic.

3. Customized hash functions: Such hash functions, with their so-called “cus-

tomized” design, tend to be fast and achieve a considerable advantage over the

other types of hash functions.

Examples of the first type include DM [72, 152, 220] (as cited per Quisquater and

Girault [187]), DES-based hash functions [159, 220, 221], FEAL-based N -hash [166],

Snefru [158], Tandem DM, Abreast DM [136], MDC-2, and MDC-4 [24, 151, 160, 192].

The discrete logarithm-based hash functions [47, 103] and MASH-1 [122] are examples

of the second type. Examples of the third type are MD4 [193], MD5 [194], SHA-1

[91], SHA-2 (namely SHA-256, SHA-384, and SHA-512) [92], HAVAL [182], RIPEMD

[192], and RIPEMD-160 [21]. Several hash functions are analyzed and found to be

insecure in the literature. For example, collisions for MD4 are found by Dobbertin

[79] and a first partial attack on MD5 are published by den Boer and Bossalaers

[74]. In particular, using techniques related to his attack on MD4, Dobbertin [80]

CHAPTER 2. FOUNDATIONS 39

finds MD5 collisions in 10 hours on a personal computers (about 234 hash function

computation). For comprehensive surveys on hash functions, see Preneel [185, 186].

2.4 Indistinguishability of Probability Ensembles

Distribution indistinguishability is one of the most important concepts in defining the

security of cryptosystems. In this section, we present several basic definitions relative

to indistinguishability.

Definition 2.4.1 (Negligible Functions). We call a function f : N→ R negligible

if for every positive polynomial P (·), there exits an n0 such that for all n > n0,

f(n) <
1

P (n)
.

In the future we shall use the shorter phrase “for all sufficiently large n” to rep-

resent the phrase “there exists an n0 such that for all n > n0.”

Definition 2.4.2. Let I =
⋃

k∈N Ik be an infinite index set which is partitioned into

finite disjoint subsets Ik. Assume that the indexes are encoded as binary numbers. We

denote |i| the binary length of i. I is called an index set with security parameter k if

the security parameter k of i ∈ I can be derived from i by a deterministic polynomial

algorithm and there is a polynomial P such that |i| = P (k). We usually write I =

(Ik)k∈N instead of I =
⋃

k∈N Ik.

Definition 2.4.3 (Probability Ensembles). Let I be a countable index set. An

ensemble indexed by I is a sequence of random variables indexed by I. Namely, any

X = {Xi}i∈I , where each Xi is a random variable, is an ensemble indexed by I.

In general either N or a subset of {0, 1}∗ is used as the index set. An ensemble

of the form X = {Xn}n∈N has each Xn range over strings of length poly(n), whereas

an ensemble of the form X = {Xw}w∈{0,1}∗ will have each Xw range over strings of

length poly(|w|). Note that poly(·) stands for some unspecified fixed polynomial.

Let A be a probabilistic algorithm and Xk a random variable. The probability

that A accepts Xk is defined by

Pr[A(Xk) = 1] =
∑

x

Pr[A(x) = 1] · Pr[Xk = x].

CHAPTER 2. FOUNDATIONS 40

Let I be an index set with security parameter k. Let X = {Xi}i∈I and Y = {Yi}i∈I

be two ensembles of random variables indexed by string i ∈ I. Intuitively, if we

cannot distinguish Xi and Yi, we should not be able to tell which source (either Xi

or Yi with equal probability) a random sample α is taken from. This concept can be

extended to probability ensembles X and Y . In the following, we give the definitions

of indistinguishability of probability ensembles [110, 111].

Definition 2.4.4 (Computational Indistinguishability). The probability ensem-

bles X and Y are computationally indistinguishable if for every probabilistic polynomial-

time algorithm A, every positive polynomial P , and all sufficiently long k ∈ I, it holds

that

| Pr[A(Xk) = 1]− Pr[A(Yk) = 1] |< 1

P (k)
.

Alternatively, we have the following definition.

Definition 2.4.5. Let Z0 and Z1 be probability ensembles. Z0 and Z1 are computa-

tionally indistinguishable if for every probabilistic polynomial-time algorithm A, for

every positive polynomial P , and all sufficiently long k ∈ I, it holds that

Pr[b′ = b : b ← {0, 1}, a ← Zb, b
′ ← A(a)] <

1

2
+

1

P (k)

Definition 2.4.6 (Statistical Indistinguishability, Statistical Closeness). The

probability ensembles X and Y are statistically indistinguishable (or statistically close)

if for every polynomial P and for all sufficiently long k ∈ I, it holds that

∑

α∈{0,1}∗
| Pr[Xk = α]− Pr[Yk = α] |< 1

P (k)
.

The statistical difference (or statistical distance) between two ensembles, X and Y , is

defined by

4(X,Y) =
1

2

∑

α∈{0,1}∗
| Pr[Xw = α]− Pr[Yw = α] | .

That is, two ensembles X and Y are statistically indistinguishable if 4(Xk, Yk) is a

negligible function of |k|.

Definition 2.4.7 (Perfect Indistinguishability). The probability ensembles X and

Y are perfectly indistinguishable if for all i ∈ I the random variables Xi and Yi are

identically distributed. That is, 4(Xi, Yi) = 0 for all i ∈ I.

CHAPTER 2. FOUNDATIONS 41

2.5 Interactive Protocols and Proof Systems

Definition 2.5.1 (Interactive Protocols). An interactive protocol is a pair of

algorithms (P, V) for two communicating parties Peggy and Vic. It is common to

call Peggy the prover and Vic the verifier. The parties send messages back and forth

and perform some computation as prescribed by the specification of the protocol. Let

x denote the common input and w and z denote the respective private inputs of P

and V . The output of V is denoted by 〈P (w), V (z)〉(x). Vic’s view of a protocol

with Peggy consists of the entire list of parameters Vic “sees” during the execution of

the protocol and is denoted viewP
V (x). This includes all communicated values, Vic’s

inputs and outputs, as well as all computations and random choices made by Vic.

More formally, the communicating parties are assumed to be two Turing machines

P and V . Both machines have their own working tape, input tape, and random tape;

and both are able to read the same input from a read-only tape. The exchange of

messages takes place in two communication tapes. One tape is a write-only tape for P

and a read-only one for V , while the other is a write-only tape for V and a read-only

one for P .

In an interactive protocol, the two parties alternately perform rounds that consist

of:

1. Receive a message from the opposite party.

2. Perform some computation.

3. Send a message to the opposite party.

We remark that an interactive protocol may specify a sequence of rounds, which is

then repeated a specified number of times.

If the prover and the verifier follow the behavior prescribed in the protocol, they

are called an honest prover and an honest verifier. A prover that does not know the

prover’s secret but tries to convince the verifier otherwise is called a dishonest prover.

A verifier that does not follow the behavior specified in the protocol is called a dishon-

est verifier. Dishonest parties are not restricted to storing only their specified output,

but are assumed to store their entire view. Note that each party, whether honest or

CHAPTER 2. FOUNDATIONS 42

not, complies with the syntax of the communication interface because not following

the syntax is immediately detected. In other words, she may only be dishonest in her

private computations and the resulting data that she transmits. Moreover, whenever

the protocol specifies that a party must verify a condition, if the verification fails,

then the protocol is stopped and all parties are notified.

We introduce some notations that will later be used when analyzing the properties

of a protocol. Let (P, V) be an interactive protocol. We denote by P the algorithm

that an honest prover executes, by P ∗ the algorithm that a dishonest prover exe-

cutes, by V the algorithm of an honest verifier, and by V ∗ the algorithm of a general

(possibly dishonest) verifier. To analyze the properties of the prover that manifests

the knowledge of a secret, a third party, called a knowledge extractor, is often used.

This knowledge extractor interacts with the prover, but, in contrast to a possibly

dishonest verifier, has the ability to reset and restart the prover at will. Let KP ∗(x)

denote the output of the knowledge extractor K that is given oracle access to P ∗, i.e.,

can reset and restart P ∗ on input x. We remark that in complexity theory M (·)(·)
often denotes an oracle machine M that makes oracle queries. The running time of an

oracle machine is the number of steps made during its computation, and the oracle’s

reply on each query is obtained in a single step.

Definition 2.5.2 (Interactive Proof Systems). An interactive proof system (P, V)

is a protocol between a prover P and a verifier V . The prover P is computationally

unbounded, while the verifier V runs a probabilistic polynomial-time algorithm. The

input to the protocol is a string x, known to both parties. The two exchange a sequence

of messages m1,m2, . . . , m2|x|k , where the prover sends the odd-numbered ones, and the

verifier the even ones. The transcript, denoted by trP,V (x), is defined as all exchanged

messages (m1,m2, . . . , m2|x|k). All messages are polynomial in length: |mi| ≤ |x|k.
The prover goes first, say.

The messages are defined as follows: m1 = P (x)—that is, the first message is pro-

duced by the prover based on input x alone. Subsequently, and for all i ≤ |x|k,m2i =

V (x,m1, . . . , m2i−1, ri), and m2i−1 = P (x,m1, . . . , m2i−2). Here ri is the polynomial

long random string used by the verifier at the ith exchange. Notice that the prover

does not know ri. Each even-numbered message is computed by the verifier based on

the input, ri and all previous messages, while each odd-numbered one is computed by

CHAPTER 2. FOUNDATIONS 43

the prover based on the input and all previous messages. Finally, if the last message

is m2|x|k ∈{1, 0} the verifier accepts or rejects the common input. Usually m2|x|k = 1

is interpreted as “accept”, whereas m2|x|k = 0 is interpreted as “reject.”

(P, V) is an interactive proof system for a language L if it satisfies the following

two conditions:

1. Completeness: For every x ∈ L,

Pr[〈P, V 〉(x) = 1] ≥ 2

3
.

2. Soundness: For every x 6∈ L and every prover,

Pr[〈P ∗, V 〉(x) = 1] ≤ 1

3
.

Note that for soundness condition, V must be able to resist any attempt of cheating

from any prover.

Definition 2.5.3 (The Class IP). The complexity class IP is the set of languages

that have interactive proof systems.

When a protocol is designed for use in practice, a prover usually cannot be more

computationally powerful than probabilistic polynomial-time. Therefore, it makes

sense to consider the situation where a prover’s computational powers are also limited

to probabilistic polynomial time, and the prover’s power comes from the fact that he

takes some auxiliary input called a “witness.” More formally:

Definition 2.5.4 (Computationally Sound Proof Systems, Interactive Ar-

guments). An interactive protocol (P, V) is a computationally sound proof System

(or an interactive argument) for a language L if both algorithms are probabilistic

polynomial-time with auxiliary inputs and the following two conditions hold:

1. Completeness: For every x ∈ L,

Pr[〈P (w), V (z)〉(x) = 1] ≥ 2

3
.

2. Soundness: For every x 6∈ L and every prover,

Pr[〈P ∗(w), V (z)〉(x) = 1] ≤ 1

3
.

CHAPTER 2. FOUNDATIONS 44

Interactive proofs of knowledge allow the prover to prove to the verifier that he

knows the “witness,” not merely its existence. The concept of proofs of knowledge

is first mentioned as a remark in [110]. Formal definitions are first given by Feige,

Fiat, and Shamir [87] and by Tompa and Woll [215], and further refined by Feige and

Shamir [88] and by Bellare and Goldreich [8]. Here we give a definition of a proof of

knowledge similar to that presented in [8, 88].

Definition 2.5.5 (Interactive Proof of Knowledge). Let R ⊆ {0, 1}∗ × {0, 1}∗
be a polynomially bounded binary relation and let LR be the language defined by R.

An interactive proof of knowledge for the relation R is a protocol (P, V) that satisfies

the following two conditions:

1. Completeness: If (x,w) ∈ R then Pr[〈P (w), V 〉(x) = 1] = 1.

2. Validity: There exits a probabilistic expected polynomial-time algorithm K (knowl-

edge extractor) such that for every P ∗, every polynomial Q and all sufficiently

large x ∈ LR,

Pr[(x,KP ∗(x)) ∈ R] ≥ Pr[〈P ∗, V 〉(x) = 1]− 1

Q(|x|) .

The probabilities are taken over all random choices of V, P, P ∗, and K, respectively.

We note that the above definition makes no requirements for the case x 6∈ LR

because a proof of knowledge for R does not necessarily give an interactive proof for

language membership in LR. Hence, soundness (i.e., a bound on the prover’s ability

to lead the verifier to accept x 6∈ LR) is not required. If soundness is necessary or if

the protocol is to run on input x 6∈ LR, then the following additional property should

be satisfied.

Soundness: For every P ∗, ∀x 6∈ LR,

Pr[〈P ∗, V 〉(x) = 1] <
1

2

holds. The probabilities are taken over all random choices of P ∗ and V .

If a protocol satisfies this soundness property, the probability of accepting if x 6∈ LR

can be made arbitrarily small by repeating it sequentially sufficiently many times.

CHAPTER 2. FOUNDATIONS 45

2.6 Zero-Knowledge Proof Systems

Definition 2.6.1 (Perfect/Statistical/Computational Zero Knowledge). An

interactive protocol (P, V) is said to be perfect/statistical/computational zero-knowledge

if for every probabilistic polynomial-time verifier V ∗ there exists a probabilistic (ex-

pected) polynomial-time simulator SV ∗ so that the two ensembles

• {〈P, V ∗〉(x)}x∈L

• {SV ∗(x)}x∈L

are perfectly/statistically/computationally indistinguishable. Moreover, a protocol is

simply said to be zero-knowledge if it is computational zero-knowledge.

An alternative, but equivalent, definition is to require the simulator S(·) to output

V ∗’s view viewP
V ∗(x) rather than V ∗’s output. The view viewP

V ∗(x) consists of the en-

tire sequence of the local configurations of the verifier during an interaction execution

with the prover. That is, viewP
V ∗(x) = (x, r, trP,V ∗(x)), where r is random bits of V ∗.

It suffices to consider only the content of the random bits of V ∗ and the sequence

of messages that V ∗ has received from the prover during the execution because the

entire sequence of local configurations and the final output are determined by those

objects.

To prove that a protocol is zero-knowledge according to Definition 2.6.1, one

would have to construct a simulator for every possible verifier. This is often done

by constructing a universal simulator that works for all verifiers. In particular, the

universal simulator SV ∗ uses any verifier V ∗ as a black box such that V ∗ outputs

V ∗(q, r) for an input q (SV ∗ ’s query) and random bits r. SV ∗ does not try to dissect

V ∗ to see how V ∗ works, but SV ∗ can rewind V ∗ to some previous execution state.

If an interactive proof system is proved zero-knowledge by treating V ∗ as a black

box in simulation, we call it black-box zero-knowledge. By black-box simulation, one

often needs to allow probabilistic expected polynomial-time simulators (i.e., a Las

Vegas algorithm) in order to have constant-round zero-knowledge arguments. Most

of the known zero-knowledge protocols make use of the black-box techniques in their

simulation. However, there are several negative results about the power of black-

box simulators. Goldreich and Krawczyk show that obtaining black-box 3-round

CHAPTER 2. FOUNDATIONS 46

zero knowledge proofs and constant-round Arthur-Merline zero-knowledge proofs is

impossible [109]. Canetti, Kilian, Petrank, and Rosen show that no constant-round

protocol is bounded concurrent zero-knowledge with a black-box simulator [41]. We

remark that by the definition of zero-knowledge, the black-box simulation is not the

only way to show the zero-knowledge property. Barak presents the first constructions

of non-black-box simulators [7]. Using the new non-black-box techniques, he obtain

several results that are previously proved to be impossible to obtain using the black-

box simulators. See [7] for more details.

In many applications, the verifier interacting with the prover may have some ad-

ditional a priori information z that may assist it in its attempts to extract knowledge

from the prover. To model this concept, auxiliary-input zero knowledge is defined

as follows [107]. The conditions are all the same as those for zero-knowledge except

that the verifier and the simulator are allowed an extra input z the size of which is

polynomially bounded in the size of x. The protocol is denoted by 〈P, V (z)〉(x). If

the basic protocol is auxiliary-input zero-knowledge, then sequential compositions can

be shown to be zero-knowledge. However, a parallel composition of zero-knowledge

protocols is in general no longer zero-knowledge. Furthermore, if a protocol is proved

zero-knowledge with the black-box simulation techniques, it is also auxiliary-input

zero-knowledge.

A slight weaker requirement than zero knowledge is honest-verifier zero-knowledge.

A verifier is honest if its messages to P are exactly its random bits. In complexity

terms, we say that the verifier tosses public coins. Honest-verifier zero knowledge re-

quires simulatability of the view of only the honest verifier, rather than simulatability

of the view of any possible probability polynomial-time verifier.

Definition 2.6.2 (Honest-Verifier Zero Knowledge). An interactive protocol

(P, V) is said to be perfect/statistical/computational honest-verifier zero-knowledge,

if there exists a probabilistic (expected) polynomial-time simulator SV so that the two

ensembles

{〈P, V 〉(x)}x∈L and {SV (x)}x∈L

are perfectly/statistically/computationally indistinguishable.

In many interactive protocols, it is essential that the transcript of the interac-

tion does not yield any evidence of the interaction. Such protocols (e.g. undeniable

CHAPTER 2. FOUNDATIONS 47

signatures [51] and deniable authentication [81, 83]) are said to be deniable. The

standard definition of zero-knowledge in the plain model certainly satisfies deniabil-

ity. However, this is no longer the case with the definitions of zero knowledge in

the random oracle model [9]. This results from the fact that in the real world the

public information in the random oracle model is fixed once and for all at start-up.

However, when proving security, the simulator in the random oracle model is allowed

to choose this public information (e.g. the random functions) in any way it pleases as

long as it “looks ok.” Thus even though there exists a simulator for a protocol, there

is no guarantee that one can actually simulate a transcript using a certain predefined

public information. For several settings in which zero knowledge and deniability are

the goals, the standard definitions of zero knowledge in the random oracle model are

not sufficient because they do not guarantee deniability. In the following we recall

the definition of deniable zero knowledge in the random oracle model [178].

Definition 2.6.3 (Deniable Zero Knowledge). An interactive protocol (P, V) is

said to be deniable zero-knowledge in the random oracle (RO) model if for every prob-

abilistic polynomial-time verifier V ∗ there exists a probabilistic (expected) polynomial-

time simulator SV ∗ so that the following two ensembles are computationally indistin-

guishable:

• {RO, 〈PRO, V ∗RO〉(x)}x∈L

• {RO,SRO
V ∗ (x)}x∈L,

where RO : {0, 1}poly(|x|) → {0, 1}poly(|x|) is a uniformly distributed random variable.

That is, for every probabilistic algorithm D running in time polynomial in the

length of its first input, every polynomial P , all sufficiently long x ∈ L, it holds that

|Pr[DRO(x, 〈PRO, V ∗RO〉(x)) = 1]− Pr[DRO(x, SRO
V ∗ (x)) = 1]| < 1

P (|x|) ,

where RO : {0, 1}poly(|x|) → {0, 1}poly(|x|) is a uniformly distributed random variable.

We note that when proving security according to the standard zero-knowledge

definition in the random oracle model, the simulator has two advantages over a plain

model simulator, namely

1. The simulator can see what values parties query the oracle on.

CHAPTER 2. FOUNDATIONS 48

2. The simulator can answer these queries in whatever way it chooses as long as

the answers “look ok.”

An easy way of seeing this is by noting that non-interactive zero-knowledge proofs [15]

are possible in the random oracle model. A player receiving a non-interactive proof

of an assertion can definitely do something new: it can simply send the same proof

to someone else. This seems to contradict the zero-knowledge property. However, we

note that the simulator for the non-interactive zero knowledge is much stronger in the

random oracle model than in the plain model. In fact, the zero-knowledge property

in the random oracle model only guarantees that the verifier will not be able to do

anything new without referring to the random oracle.

The definition of deniable zero knowledge in the random oracle model restricts

the power of the simulator and only allows it to see what values parties query the

oracle on. This is due to the fact that in the definition of deniable zero knowledge in

the random oracle model, the distinguisher is given access to the random oracle and

can thus verify whether the simulator has answered the oracle queries in compliance

with the predefined oracle.

2.7 Witness Indistinguishability and Hiding

Feige and Shamir propose an alternative privacy criteria: witness indistinguishability

and witness hiding [88]. Both notions seem weaker than zero-knowledge, yet they

suffice for several practical applications. Moreover, they have the advantage over zero

knowledge in that they are preserved under parallel compositions, provided that the

prover is probabilistic polynomial-time.

A variation of witness indistinguishability from Goldreich is witness independence

[108]. Roughly speaking, an interactive proof of knowledge for an NP relation is

witness-indistinguishable (resp. witness-independent) if the verifier’s view of the in-

teraction with the prover is computationally independent (resp. statistically indepen-

dent) of the private input of the prover. Intuitively, this implies that the verifier

cannot tell which witness the prover is using even if the verifier knows all witnesses.

Definition 2.7.1 (Witness Indistinguishability/Independence). Let (P, V) be

a proof of knowledge for an NP relation R. We say that (P, V) is witness-indistinguishable

CHAPTER 2. FOUNDATIONS 49

for R if for every probabilistic polynomial-time verifier V ∗, all sufficiently long x ∈ LR,

any two sequences W = {wx}x∈LR
and W ′ = {w′

x}x∈LR
such that wx, w

′
x ∈ R(x), and

all auxiliary inputs z ∈ {0, 1}∗, the following two ensembles are computationally in-

distinguishable:

• {〈P (wx), V
∗(z)〉(x)}x∈LR

.

• {〈P (w′
x), V

∗(z)〉(x)}x∈LR
.

We say that (P, V) is witness-independent for R if the random variables

〈P (wx), V
∗(z)〉(x) and 〈P (w′

x), V
∗(z)〉(x)

are identically distributed.

An alternative, but equivalent, definition is to require two V ∗’s views rather than

two V ∗’s outputs to be computationally indistinguishable (or identically distributed).

Feige and Shamir prove that witness indistinguishability is preserved under poly-

nomial composition of protocols [88]. Furthermore, any zero-knowledge (resp. perfect

zero-knowledge) protocol is witness-indistinguishable (resp. witness-independent). On

the other hand, witness indistinguishability does not imply zero knowledge. In par-

ticular, any proof system for an instance having only a single witness is trivially

witness-indistinguishable, but may not be zero-knowledge.

Intuitively, a proof of knowledge for an NP relation is witness-hiding if interacting

with the prover does not help a (dishonest) verifier to find a witness for the common

input which he does not know at the beginning of the protocol. Because each NP

language has instances for which witness-finding is easy, we must consider the task of

witness-finding for specially selected hard instance. Before defining what a witness-

hiding proof is, we need the definition of distribution of hard instances.

Definition 2.7.2 (Distribution of Hard Instances). Let R be an NP relation

and LR be the language defined by R. Let X = {Xn}n∈N be a probabilistic ensemble

such that Xn ranges over LR ∩ {0, 1}n. We say that X is hard for R if for every

probabilistic polynomial-time (witness-finding) algorithm F , every polynomial Q, all

sufficiently large n, and all z ∈ {0, 1}poly(n),

Pr[F (Xn, z) ∈ R(Xn)] <
1

Q(n)
.

CHAPTER 2. FOUNDATIONS 50

Definition 2.7.3 (Witness Hiding). Let (P, V) be a proof of knowledge for a NP

relation R. Let X = {Xn}n∈N be a hard-instance ensemble for R. We say that

(P, V) is witness-hiding for the relation R under the instance ensemble X if for every

probabilistic polynomial-time algorithm V ∗, every polynomial Q, all sufficiently large

n’s, and all z ∈ {0, 1}∗,

Pr[〈P (Wn), V ∗(z)〉(Xn) ∈ R(Xn)] <
1

Q(n)
,

where Wn is arbitrary distributed over R(Xn).

Witness hiding guarantees only that witnesses are not disclosed completely. In

contrast to zero knowledge, partial information may be leaked. For example, a digital

signature cannot be zero-knowledge (or deniable zero-knowledge in the random oracle

model), but they can be witness-hiding (e.g., fail-stop signatures [119, 217]).

A witness indistinguishability proof is not necessarily witness-hiding. For example,

any proof system for an instance having only a single witness is trivially witness-

indistinguishable, but may not be witness-hiding. However, as shown in [88], if each

instance has at least two computationally independent witnesses, then a witness-

indistinguishable proof of knowledge is also witness-hiding.

Chapter 3

Elementary Cryptographic Tools

This chapter presents several elementary cryptographic tools that can be used as

building blocks for complex cryptographic applications. These tools include encryp-

tion schemes, signature schemes, and basic cryptographic protocols. There are nu-

merous books devoted to theory and practice of cryptography. We refer the reader

to [33, 73, 108, 157, 202, 210, 214].

3.1 Public-Key Encryption Schemes

Encryption schemes allow one party to send messages to another party securely. To

deliver data confidentially, the sender applies an encryption function to a message

(called plaintext) to obtain ciphertext, which is then sent. Only the intended receiver

is able to retrieve the original plaintext from the ciphertext through the corresponding

decryption function.

Encryption schemes can be divided into two types: secret-key (or symmetric)

schemes and public-key (or asymmetric) schemes. In a secret-key scheme, the same

key is used for encryption and decryption. Hence, when two parties want to securely

communicate with symmetric encryption scheme, they need to exchange a secret

key in advance. In a public-key scheme, different keys are used for encryption and

decryption. The public key used for encryption can be published, while the secret

key used for decryption must be kept secret.

Work on public-key encryption schemes begins with Diffie and Hellman’s paper

51

CHAPTER 3. ELEMENTARY CRYPTOGRAPHIC TOOLS 52

“New Directions in Cryptography” [78] in 1976. They invent public-key cryptography

and propose a concrete scheme for obtaining a common secret key over an insecure

channel. The notion of a trapdoor one-way function is put forth. This is a func-

tion that is easy to compute but hard to invert—unless a trapdoor is known. In

1978, Rivest, shamir, and Adleman propose the RSA scheme that depends on the

intractability of factoring large integers [195]. They are the first to present a con-

crete realization of a trapdoor one-way function. In 1984, ElGamal discovers another

scheme that is based on the trapdoor Diffie-Hellman problem [84, 85].

A public-key encryption scheme is a triple of algorithms (gen, enc, dec).

• Key generation algorithm gen: This is a probabilistic polynomial-time algorithm

gen(1k) = (sk, pk), where 1k is a secure parameter, sk and pk are a pair of secret

and public keys, each of size O(ka) for a ∈ N a constant.

• Encryption algorithm enc: This is often a probabilistic algorithm enc(pk, m) =

c, where m is a message in the message space M , and c is the corresponding

ciphertext in the ciphertext space C.

• Decryption algorithm dec: This is a deterministic algorithm dec(sk, c) = m

(i.e., dec(sk, enc(pk, m)) = m) for every m ∈ M , where sk and pk are a pair of

secret and public keys.

If the algorithm enc is probabilistic, the encryption scheme is called probabilistic.

Often we would like to tell how secure an encryption scheme is. A way to define

secure encryption is by considering separately the various goals of encryptions and

the possible attack models of adversaries. Then, a particular goal and a attack model

are combined to obtain the desired definition.

In the literature two different goals have been considered: indistinguishability of

encryptions (IND) [111] and non-malleability (NM) [81]. IND is also called polynomial

security. IND requires that it be infeasible for an adversary to distinguish between

the ciphertexts of any two messages, even if the original messages are given. In

terms of protecting the data that is encrypted, the most basic is privacy, which

requires that an adversary should not be able to learn any useful information about

the plaintext from the ciphertext. Semantical security captures in the most direct

way the notions of privacy: Whatever can be efficiently computed about a message

CHAPTER 3. ELEMENTARY CRYPTOGRAPHIC TOOLS 53

given the ciphertext can be computed without the ciphertext [111]. Assume that an

adversary A consists of two sub-algorithms A1 and A2. In addition A1 can output

some useful state information s that will be passed to A2. We make polynomial

security and semantical security precise in the following definitions.

Definition 3.1.1 (Polynomial Security). A public-key encryption scheme (gen,

enc, dec) is polynomially secure if for every probabilistic polynomial-time adversary

A, every positive polynomial P , and all sufficiently large k, it holds that

Pr[b′ = b : (sk, pk) ← gen(1k), (s,m0,m1) ← A1(pk) where |m0| = |m1|, b ← {0, 1},

c ← enc(pk,mb), b
′ ← A2(s,m0,m1, pk, c)] <

1

P (k)
.

Definition 3.1.2 (Semantical Security). Let M be a message space and let R

be any polynomially-bounded relation that is recognizable in probabilistic polynomial

time. A public-key encryption scheme (gen, enc, dec) is semantically secure if for

every probabilistic polynomial-time adversary A, every positive polynomial P , and all

sufficiently large k, there is a probabilistic polynomial-time simulator S such that

|p0(k)− p1(k)| < 1

P (k)
,

where

p0(k) = Pr[R(m, z) : (sk, pk) ← gen(1k), (s,M, R) ← A1(pk) where all

m0,m1 ∈ M, |m0| = |m1|,m ← M, c ← enc(pk, m),

z ← A2(s, M,R, pk, c)]

p1(k) = Pr[R(m, z) : (sk, pk) ← gen(1k), (s,M, R) ← A1(pk) where all

m0,m1 ∈ M, |m0| = |m1|,m ← M, z ← S(s,M, R, pk)].

It can be proved that a cryptosystem (gen, enc, dec) is semantically secure if and

only if it is polynomially secure [111, 162]. Because semantic security is subtle and

is not easy to use, IND is often used when one analyzes the security of encryption

schemes.

A second goal NM requires that an adversary given a challenge ciphertext be

unable to obtain a different ciphertext such that the plaintexts underlying these two

ciphertexts are “meaningfully related.” This is made precise as follows.

CHAPTER 3. ELEMENTARY CRYPTOGRAPHIC TOOLS 54

Definition 3.1.3 (Non-Malleability). Let M be a message space and let R be any

polynomially-bounded relation that is recognizable in probabilistic polynomial time. A

public-key encryption scheme (gen, enc, dec) is non-malleable if for every probabilistic

polynomial-time adversary A, there is a probabilistic polynomial-time simulator S such

that for every positive polynomial P , and all sufficiently large k, it holds that

|p0(k)− p1(k)| < 1

P (k)
,

where

p0(k) = Pr[R(m, dec(z)) : (sk, pk) ← gen(1k), (s,M,R) ← A1(pk) where all

m0, m1 ∈ M, |m0| = |m1|,m ← M, c ← enc(pk, m),

z ← A2(s,M, R, pk, c)]

p1(k) = Pr[R(m, dec(z)) : (sk, pk) ← gen(1k), (s,M,R) ← A1(pk) where all

m0, m1 ∈ M, |m0| = |m1|,m ← M, z ← S(s,M, R, pk)],

The adversaries may be passive or active. A passive adversary is a probabilis-

tic polynomial-time algorithm that has pairs of plaintext and ciphertext. An active

adversary is a probabilistic polynomial-time algorithm that accesses the encryption al-

gorithm or even the decryption oracle in an adaptive way. Both these two goals (IND

and NM) can be considered under three different active attacks: chosen-plaintext

attack (CPA), non-adaptive chosen-ciphertext attack (CCA1) [171], and adaptive

chosen-ciphertext attack (CCA2) [191]. Under CPA the adversary can obtain cipher-

text of any plaintext. Public-key encryption schemes have to be safe against the

attack. Under CCA1 the adversary can get access to an oracle for the decryption

function only for the period of time preceding his being given the challenge cipher-

text. In other words, adversary’s queries to the decryption oracle cannot depend on

the challenge ciphertext. However, under CCA2 the adversary can continue getting

access to an oracle for the decryption function even after obtaining the challenge

ciphertext. The only restriction is that the adversary cannot make the decryption or-

acle decrypt the challenge ciphertext. A public-key encryption scheme is more secure

if it can withstand the attack from more capable adversaries.

CHAPTER 3. ELEMENTARY CRYPTOGRAPHIC TOOLS 55

One can combine the goals with the attack models to get six basic notions of

security: IND-CPA [111], IND-CCA1 [171], IND-CCA2 [191], NM-CPA, NM-CCA1,

and NM-CCA2 [81, 82].

3.1.1 The Diffie-Hellman Key Agreement

Suppose Alice and Bob wish to use a symmetric encryption system to keep their

communication over an insecure channel secret. Initially, Alice and Bob must agree

on a secret key. The Diffie-Hellman key-agreement system [78] enables Alice and Bob

to use their insecure channel for this key agreement. The protocol is a milestone in

public-key cryptography.

The Diffie-Hellman protocol works as follows. Alice and Bob wish to agree on

a common secret key. First, they agree on a large prime number p and a primitive

root g modulo p with 2 ≤ g ≤ p − 2. The prime p and the primitive root g can be

publicly known. Now Alice chooses an integer a ∈ Zp−1 randomly. She computes

A = ga mod p and sends the result A to Bob. She keeps the exponent a secret. Bob

chooses an integer b ∈ Zp−1 randomly. He computes B = gb mod p and sends the

result to Alice. He keeps his exponent b secret. To obtain the common secret key, Alice

computes Ba mod p = gab mod p and Bob computes Ab mod p = gab mod p. The

common key is gab mod p. Hence, Alice and Bob can use an insecure communication

channel for this agreement.

The security of the scheme is based on the Diffie-Hellman assumption. It is this

scheme that gives the assumption its name. In addition, a secure and efficient Diffie-

Hellman key-agreement protocol can be implemented in all cyclic groups in which the

Diffie-Hellman problem is difficult to solve and for which the group operations can be

efficiently implemented.

3.1.2 The RSA Encryption Scheme

The encryption scheme is proposed by Rivest, Shamir, and Adleman [195]. It is

the first concrete realization of a trapdoor one-way function as introduced by Diffie-

Hellman [78].

This encryption scheme works as follows. Assume Alice wants to send a message

CHAPTER 3. ELEMENTARY CRYPTOGRAPHIC TOOLS 56

0 ≤ m < n to Bob.

• Key generation: gen(1k) = ((n, d), (n, e)).

Bob picks randomly and independently two large primes p and q, and computes

n = pq. He also chooses an integer e such that 1 < e < (p − 1)(q − 1) and

gcd(e, (p− 1)(q − 1)) = 1. Then Bob computes an integer d such that 1 < d <

(p−1)(q−1) and de ≡ 1 (mod (p−1)(q−1)). Because gcd(e, (p−1)(q−1)) = 1,

such a number d exits. Bob’s public key is (n, e) and secret key is (n, d).

• Encryption: enc(m, (n, e)) = c.

Alice encrypts the plaintext m by computing c = me mod n. The ciphertext is

c.

• Decryption: dec(c, (n, d)) = m.

Bob can reconstruct the plaintext as m = cd mod n.

The security of RSA is related to the intractability of factoring integers; however, it

is not known if breaking RSA is as difficult as factoring integers. But it has been

shown that computing d from the public key (n, e) is as difficult as finding the prime

factors p and q of n. If e = 2, the scheme is called the Rabin encryption scheme [189].

In contrast with RSA, it can be shown that breaking the Rabin encryption scheme

efficiently is equivalent to efficiently factoring integers.

3.1.3 The ElGamal Encryption Scheme

The encryption scheme is proposed by ElGamal [84, 85]. It can be seen as a special

application of the Diffie-Hellman key-agreement protocol.

The encryption scheme works as follows. Assume Alice wants to send a message

m ∈ {0, 1, . . . , p− 1} to Bob.

• Key generation: gen(1k) = ((g, p, α), (g, p, β)).

Bob picks a prime p and a primitive root g modulo p. He also chooses a random

exponent α ∈ {0, . . . , p − 2} and computes β = gα mod p. Bob’s public key is

(g, p, β) and secret key is (g, p, α).

CHAPTER 3. ELEMENTARY CRYPTOGRAPHIC TOOLS 57

• Encryption: enc(m, (g, p, β)) = (c1, c2).

Alice chooses a random exponent r ∈ {1, . . . , p−2}, and computes c1 = gr mod p

and c2 = βrm mod p. The ciphertext is (c1, c2)

• Decryption: dec((c1, c2), (g, p, α)) = m.

Bob can reconstructed the plaintext as m = c−α
1 c2 mod p

The ElGamal encryption scheme is a probabilistic encryption scheme [111]. In ad-

dition, it can be proved that the semantical security of the ElGamal encryption is

equivalent to the decision Diffie-Hellman problem [216].

3.2 Commitment Schemes

A commitment is a string c sent by a committer Peggy to a receiver Vic to commit

to a message m. A commitment scheme enables Peggy to commit to m while keeping

it secret. Later on, Peggy can open c by providing an additional information. It is

guaranteed that after committing to m, the value m cannot be changed.

There are many applications for commitment schemes. Sealed-bid auctions are one

obvious example: the committed value represents the committer’s bid. Commitment

schemes are useful for identification schemes [90, 203], multiparty protocols [104], and

are an essential component of many zero-knowledge schemes [27, 64, 105]. Goldreich,

Micali, and Wigderson use them to construct zero-knowledge proofs for all languages

in NP [105]. Ben-Or et al. extends this result to the larger class of all languages in

IP [10].

In a commitment scheme, there are two participants, the committer and the re-

ceiver. Overall, a commitment scheme consists of two phases.

• Commit: The committer sends the message m he wants to commit to, in en-

crypted form c, to the receiver. Let f : {0, 1}|m|×X → Y be a function, where

X and Y are finite sets. Often the commitment c is any value f(m,w), w ∈ X.

• Reveal (or open): The committer opens the commitment c by sending an open-

ing string (m,w) to the receiver.

A commitment scheme must satisfy the following properties.

CHAPTER 3. ELEMENTARY CRYPTOGRAPHIC TOOLS 58

• Correctness: If both the committer and the receiver follow the protocol, the

receiver will always recover the message m.

• Hiding: No matter what the receiver does, he cannot learn anything about the

message m. This is very similar to what we have seen before in encryption

schemes.

• Binding: The committer cannot open c to different messages after the com-

mit phase, that is, the committer cannot find legal opening strings (m,w) and

(m′, w′).

If the hiding or the binding property depends on any assumption about computa-

tional complexity, we refer to computational hiding or computational binding. If the

hiding or the binding property does not depend on any assumption about computa-

tional complexity, we refer to unconditional hiding or unconditional binding.

Commitment schemes that are unconditionally hiding and computationally bind-

ing have been proposed by many researchers, including Blum [14], Brassard, Chaum,

and Crépeau [27], Brassard, Crépeau, and Yung [30], Halevi and Micali [115], and

Halevi [114]. Brassard and Yung use “one-way group actions” to develop a very gen-

eral framework and theory for all bit commitments having unconditional hiding [31].

Damg̊ard, Pedersen, and Pfitzmann show that the existence of statistically hiding bit

commitment schemes (which provide nearly perfect unconditional hiding) is equiva-

lent to the existence of fail-stop signature schemes [66]. Ostrovsky, Venkatesan, and

Yung investigate the feasibility of bit commitment when one of the committer/receiver

is computationally unbounded, and in particular show that the existence of uncon-

ditionally hiding bit commitment is equivalent to the existence of oblivious transfer

between a computationally bounded and a computationally unbounded party [176].

This implies that bit commitment that is unconditionally hiding and computationally

binding is “as hard” as any other protocol because oblivious transfer is complete [129].

We remark that oblivious transfer (OT) is a two-party protocol introduced by Rabin

[188]. Rabin’s oblivious transfer assumes that the sender Alice possesses a value x,

after the transfer the receiver Bob gets x with probability 1/2 and Bob knows whether

or not he got x. Alice does not know whether Bob gets x. A similar notion of 1-2-OT

is introduced by [86]. In 1-2-OT, Alice has two bits b0 and b1 and Bob has a selection

CHAPTER 3. ELEMENTARY CRYPTOGRAPHIC TOOLS 59

bit i. After the transfer, Bob obtains only bi, while Alice does not know the value

of i. Equivalently, Bob may obtain a random bit in {b0, b1}, or the protocol can be

played on strings rather than bits. Further, there are many other flavors of oblivious

transfer [29, 60, 61, 86, 129] all of which are shown to be information-theoretically

equivalent. That is, given any one of these protocols, one can implement the other

ones. Thus, by “oblivious transfer” we can denote any one of them.

On the other hand, commitment schemes that are computationally hiding and

unconditionally binding have also been studied by many authors, such as Brassard,

Chaum, and Crépeau [27], Naor [168], Ohta, Okamoto, and Fujioka [173], and Os-

trovsky, Venkatesan, and Yung [176]. Naor [168] presents a bit commitment protocol

that is computationally hiding and unconditionally binding, using any one-way func-

tion; when both parties are computationally bounded, this is the best possible because

such a protocol implies a one-way function [121]. Ostrovsky, Venkatesan, and Yung

show that when the committer is computationally unbounded, a commitment scheme

may be based on any hard-on-average problem in PSPACE [176].

It may be desirable that a commitment scheme be unconditionally hiding and un-

conditionally binding. However, this is impossible as the following discussion shows

[68]. Suppose that f : {0, 1}|m| × X → Y defines a scheme with both uncondi-

tional hiding and unconditional binding. Then when Peggy sends a commitment

c = f(m,w) to Vic, there must exist a w′ such that c = f(m′, w′). Otherwise, com-

putationally unbounded Vic could compute (m,w), contradicting the unconditionally

hiding property. However, if Peggy is also computationally unbounded, then she can

also find (m′, w′) and open the commitment as m′, thus contradicting the uncondition-

ally binding property. We remark that this reasoning follows from the basic reason

that the normal commitment scenario (two-party with noiseless channel) ensures each

party sees everything the other party sends. There are several scenarios, however, in

which the reasoning does not apply. In a distributed scenario with many parties,

or in a two-party case where communication is noisy, it is no longer true that each

party sees exactly what the other party sends. In such cases, unconditional hiding

and binding can in fact be obtained simultaneously. For commitment schemes in such

scenarios, see e.g. [11, 42, 61, 62, 65]. In addition, some researchers have explored

bit commitment in models of quantum computation. Brassard et al. [28] propose a

CHAPTER 3. ELEMENTARY CRYPTOGRAPHIC TOOLS 60

quantum bit commitment scheme, but a subtle flaw is discovered; Mayers [156] proves

secure quantum bit commitment to be impossible, as do Lo and Chau [142]. We note

that despite the fact that the reasoning does not apply to quantum communication

either, bit commitment with unconditional security is not possible with quantum com-

munication alone. Salvail shows that under certain restricted assumptions about the

committer’s ability to make measurements, quantum bit commitment is still possible

[198]. More discussions about quantum cryptography for two-party computation can

be found in [199].

3.2.1 A Bit Commitment Scheme

A bit commitment scheme allows Peggy to commit to a single bit to Vic. In the

scheme described below, the hiding property depends on the quadratic residuosity

assumption, while the binding property is unconditional. The present scheme can

be found in [27]. As usual, let QRn = {a ∈ Z∗n|a is a quadratic residue modulo n},
QNRn = {a ∈ Z∗n|a is a quadratic nonresidue modulo n}, and J+1

n = {a ∈ Z∗n|(a
n
) = 1}

where (a
n
) is the Jacobi symbol of a mod n. Suppose Peggy would like to commit to

a bit b.

• System setup: Peggy chooses n = pq, where p and q are primes, and u ∈ J+1
n ∩

QNRn. The integer n and u are public, and the factorization n = pq is known

only to Peggy.

• Commit: Peggy chooses r ∈ Z∗n at random, computes c = r2ub mod n, and

sends c to Vic.

• Reveal: Peggy sends b and r to Vic. Then Vic can verify whether c = r2ub mod

n.

Let us think about the computational hiding property. The commitment is a

Goldwasser-Micali probabilistic encryption [111] of 0 or of 1, and it reveals no infor-

mation about the plaintext value b by the quadratic residuosity assumption. Consider

the unconditional binding property. Let us suppose the property does not hold. Then

r2
1u ≡ r2

2 (mod n) for some r1, r2 ∈ Z∗n. But then

u ≡ (r2r
−1
1)2 (mod n),

CHAPTER 3. ELEMENTARY CRYPTOGRAPHIC TOOLS 61

which is a contradiction because u ∈ J+1
n ∩ QNRn.

3.2.2 A Number Commitment Scheme

We now give a commitment scheme that enable Peggy to commit to a message m ∈
Zq. The scheme described below is similar to those in [69, 95]. In the scheme, the

hiding property is unconditional, while the binding property depends on the discrete

logarithm assumption. Suppose that Peggy would like to commit to m ∈ Zq to Vic.

• System setup: Vic picks large primes p, q such that q | (p − 1). Then Vic

randomly chooses two numbers g1, g2 ∈ Z∗p of order q. Vic sends p, q, g1 and g2

to Peggy.

• Commit: Peggy checks that p and q are primes, that q divides p − 1, and

that g1, g2 ∈ Z∗p are elements of order q. Then she chooses a random exponent

r ∈ {0, . . . , q − 1}, computes c = gr
1g

m
2 mod p, and sends c to Vic.

• Reveal: Peggy sends m and r to Vic. Vic verifies that c = gr
1g

m
2 mod p.

To obtain an element a ∈ Z∗p of order q, Vic selects elements b ∈ Z∗p at random

until he obtains a = b(p−1)/q mod p 6= 1. Then a has order q. Let Gq be the subgroup

of order q in Z∗p. By Fact 2.2.10(3), there is a unique subgroup Gq of order q in Z∗p,
Gq is cyclic, and each element a ∈ Z∗p of order q is a generator of Gq. So g1 and g2

are generators of Gq.

Let us think about the unconditional hiding property. As r ∈R {0, . . . , q − 1}, gr
1

is a uniformly chosen random element in Gq, perfectly hiding gm
2 and thus m in gr

1g
m
2 .

Hence, the unconditional hiding property holds. Consider the computational binding

property. Suppose that it does not hold. Then gr
1g

m
2 ≡ gr′

1 gm′
2 (mod n) for some

m, r,m′, r′ ∈ Zq, where m 6= m′. So logg1
(g2) = (r − r′)/(m′ −m). Thus Peggy can

compute logg1
(g2) of a randomly chosen element g2 ∈ Gq, contradicting the discrete

logarithm assumption. Note that Vic has no advantage if he knows logg1
(g2).

CHAPTER 3. ELEMENTARY CRYPTOGRAPHIC TOOLS 62

3.3 Identification Protocols

An identification protocol allows a prover Peggy to convince a verifier Vic of her

identity. A goal of an identification scheme is that someone listening in as Peggy

identifies herself to Vic should not subsequently be able to misrepresent herself as

Peggy. Furthermore, it is desirable to guard against the possibility that Vic himself

tries to impersonate Peggy after Peggy has identified herself. We will see that efficient

implementations of such schemes exist.

Zero-knowledge identification protocols provide a mechanism to achieve the desir-

able properties. In general, Peggy has a secret key only known to her and a public key

known to Vic. Thus, if some person can prove to Bob that he knows Peggy’s secret

key corresponding to Peggy’s public key, then Bob can conclude that this person must

be Peggy.

Informally, an identification protocol consists of a key generation algorithm gen

and an interactive protocol (P, V) for a prover Peggy and a verifier Vic.

• Key generation algorithm gen: This is a probabilistic polynomial-time algorithm

gen(1k) = (sk, pk). It takes as input a security parameter 1k and outputs a pair

(sk, pk) of secret and public keys for the prover, each of size O(ka) for a ∈ N a

constant.

• Interactive protocol (P, V): The protocol (P, V) is an interactive proof of knowl-

edge for sk corresponding to pk. We requires that it be complete, valid, and

zero-knowledge (or witness-indistinguishable).

3.3.1 The Schnorr Identification Protocol

The Schnorr identification protocol [203] is one of the most attractive practical iden-

tification scheme. It is a typical three-round (commit-challenge-response) interactive

proof of knowledge. P first commits to a value. V then challenges one of two things:

either the commitment is of right form or P knows the witness. P then responds

to such challenge, but reveals no information about the witness. Finally, V verifies

whether the response is correct. We now describe the Schnorr identification protocol.

Assume that Peggy wants to convince Vic of her identity.

CHAPTER 3. ELEMENTARY CRYPTOGRAPHIC TOOLS 63

• Key generation: gen(1k) = (α, (g, p, q, β)).

Peggy picks large primes p, q such that q | (p − 1) and a number g ∈ Z∗p of

order q. She also chooses a random exponent α ∈ {0, . . . , q − 1} and computes

β = gα mod p. Peggy’s secret key is α and public key is (g, p, q, β).

• Interactive protocol: 〈P (α), V 〉(g, p, q, β) = accept/reject.

1. Peggy chooses a random number r ∈ {1, 2, . . . , q − 1}. She computes

t = gr mod p, and sends t to Vic.

2. Vic chooses a random number c ∈ {0, 1}k, where 1 ≤ c ≤ 2k < q. He sends

c to Peggy.

3. Peggy checks 1 ≤ c ≤ 2k and sends s = r − cα mod q to Vic.

4. Vic accepts Peggy’s identity if t = gsβc mod p.

The Schnorr protocol allows Peggy to prove that she knows the discrete logarithm of

her public key. The security of the protocol is based on the assumed intractability of

the discrete logarithm problem. It can be shown that the protocol is honest-verifier

zero-knowledge proof of knowledge. We discuss the protocol’s properties in detail in

the next subsection.

3.3.2 Analysis of the Schnorr Identification Protocol

The Schnorr protocol is based on an initial idea of Chaum et al. [43]. Chaum et al.

have shown that the variant with k = 1 and q = p − 1 is a zero-knowledge proof

of knowledge when sequentially repeated log2(p) times. Nevertheless, in [203] it is

shown that the Schnorr identification scheme is a proof of knowledge, but not zero

knowledge. We will analyze the Schnorr identification protocol with respect to several

properties, including proof of knowledge, zero knowledge, witness-indistinguishability,

and witness-hiding.

Let G be a family of groups such that computing discrete logarithms in them is

infeasible. The binary relation R underlying the protocol is the set {((p, g, q, β), α)|p, q
primes, q | (p− 1), g ∈ Z∗p of order q, β = gα mod p with 0 ≤ α < q, 〈g〉 ∈ G}.
Lemma 3.3.1. The Schnorr identification protocol is a proof of knowledge for k =

Θ(poly(`)) where ` denotes the length of input (≈ 4 log2(p)).

CHAPTER 3. ELEMENTARY CRYPTOGRAPHIC TOOLS 64

Proof. Completeness. It can easily be seen that P can always convince V .

Validity. We construct a knowledge extractor K. Let

δ = Pr[〈P ∗(α), V 〉(p, g, q, β) = accept].

Consider the following algorithm for a knowledge extractor K that has oracle access

to the (dishonest) prover P ∗.

1. Run P ∗ to obtain t and s using a randomly chosen c ∈ {0, 1}k. Proceed if the

triple (t, c, s) is accepting, otherwise output ⊥ and stop.

2. Reset and run P ∗ repeatedly with a randomly chosen c̃ ∈ {0, 1}k until an

accepting triple (t, c̃, s̃) is found. If c̃ 6= c proceed to Step 3, otherwise output

⊥ and stop.

3. Output α = s̃−s
c−c̃

mod q.

Let pt denote the probability that P ∗ outputs a commitment t and let δt denote

the probability that then, on input of a random c ∈R {0, 1}k, P ∗ outputs an s such

that (t, c, s) is an accepting triple. Then we have δ =
∑

t ptδt.

First we show that the expected running time of K is polynomial in the length

of the input. Recall that verifying whether a triple is accepting requires O(`3) steps

(modular exponentiation computations). Consider a particular t. The probability

that K stops in the first step is 1 − δt and the running time is O(`3) (note that a

call to the oracle P ∗ counts as one step). In Steps 2 and 3, we have an expected

running time of (1/δt)O(`3). Because Step 2 is only entered with probability δt, the

total expected running time given a particular t is

(1− δt)O(`3) + δt
1

δt

O(`3) = (2− δt)O(`3).

Because a particular t gets chosen with probability pt, the expected running time of

the knowledge extractor K is

∑
t

pt(2− δt)O(`3) = (2− δ)O(`3),

which is polynomial in the length of the input as required.

CHAPTER 3. ELEMENTARY CRYPTOGRAPHIC TOOLS 65

What remains to show is that for every positive polynomial Q and all sufficiently

large `,

Pr[((p, g, q, β), KP ∗(p,g,q,β)) ∈ R] ≥ Pr[〈P ∗(α), V 〉(p, g, q, β) = accept]− 1

Q(`)
,

where Pr[((p, g, q, β), KP ∗(p,g,q,y)) ∈ R] is the probability that the extractor K will out-

put a witness and not the special symbol ⊥, and Pr[〈P ∗(α), V 〉(p, g, q, β) = accept] =

δ.

Consider the probability that in the second step, a triple with c̃ 6= c is found is

2kδt − 1

2kδt

= 1− 1

2kδt

,

because we have δt2
k > 1 accepting triples in Step 2 and one of which we cannot

use. Again, the probability that Step 2 is entered is δt, and thus the total success

probability is

Pr[((p, g, q, β), KP ∗(p,g,q,β)) ∈ R] =
∑

t

ptδt(1− 1

2kδt

) = δ − 1

2k
.

For every positive polynomial Q and all sufficiently large `, the probability is at

least δ − 1/Q(`) if k = Θ(poly(`)) holds. Hence we have constructed a knowledge

extractor.

As stated in [203] it is not zero-knowledge when k is selected as in Lemma 3.3.1.

This is because k is too large such that the success probability of the simulator is

negligible. If a smaller k is chosen, namely k = O(log2(`)), it is zero-knowledge. The

following algorithm is a simulator for the output of any verifier V ∗.

1. Choose c̃ ∈R {0, 1}k.

2. choose s̃ ∈R Zq.

3. Compute t̃ = gs̃β c̃.

4. Run V ∗ using the computed t̃ and receive a c.

5. If c equals c̃, send s̃ to V ∗ and output V ∗’s output and stop. Otherwise, continue

with Step 1.

CHAPTER 3. ELEMENTARY CRYPTOGRAPHIC TOOLS 66

By construction, the output of the simulator is identically distributed to the output

of the verifier. To conclude that the protocol is zero-knowledge, we must show that

the expected running time is polynomial in `. Because for the simulator all possible

choices of c̃ are equally likely, the probability that in Step 5 the variable c will equal

c̃ (and thus the simulator will stop) is 2−k. Hence the expected running time of

the simulator is O(2k). Therefore, we have to choose k = O(log(`)) so that the

simulator’s expected running time is polynomial in `. However, for such a choice the

Schnorr identification scheme is no longer a proof of knowledge because this would

require k = Θ(poly(`)).

The following lemma says that we can obtain both properties (proof of knowledge

and zero knowledge) at the same time by repeating the protocol in a sequential

manner.

Lemma 3.3.2. The Schnorr identification protocol is a proof of knowledge and is per-

fect zero-knowledge for k = O(log2(`)) when sequentially repeated Θ(poly(`)) times.

The Schnorr identification protocol is not known to be witness-hiding but is triv-

ially witness-indistinguishable because there exists only one witness for each instance.

In [174], Okamoto presents a variant which uses two different bases and thus two secret

exponents for a public key. Then there exist q different witnesses for each instance.

This variant is witness-indistinguishable and witness-hiding.

3.4 Digital Signature Schemes

The concept of a digital signature is put forth by Diffie and Hellman [78]. Analogous

to a handwritten signature, a digital signature is a binary string that relates a message

to the signer’s identity. In general, each user holds a secret signing key x and publishes

a corresponding verification key y so that only the user with x can sign a message m

as σ and every one with y can verify whether σ is the signature of m by the user.

A digital signature scheme is a triple of algorithms (gen, sig, ver).

• Key generation algorithm gen: This is a probabilistic polynomial-time algorithm

gen(1k) = (sk, pk). It takes as input a security parameter 1k and outputs a pair

(sk, pk) of signing and verification keys, each of size O(ka) for a ∈ N a constant.

CHAPTER 3. ELEMENTARY CRYPTOGRAPHIC TOOLS 67

• Signing algorithm sig: This is often a probabilistic polynomial-time algorithm

sig(m, sk) = σ. It takes as input a signing key sk and a message m and outputs

a signature σ of m.

• Verification algorithm ver: This a deterministic polynomial-time algorithm

ver(m,σ, pk) = accept/reject.

It take as input a message m, a signature σ, and the verification key pk, and

outputs “accept” if and only if σ is the signature of m using the signing key sk,

i.e.,

ver(m, sig(m, sk), pk) = accept.

We may define the level of security of a signature scheme by the level of success of

an adversary performing a certain type of attack. The level of success of an adversary

may be described in increasing order as follows [112].

• Existential forgery: An adversary is able to compute a signature of at least one

arbitrary message.

• Selective forgery: An adversary is able to compute a signature of a particular

message chosen a priori. The adversary might have little or no control over the

message whose signature is obtained.

• Total break: An adversary is able to compute the secret key of the signer or

find an efficient signing algorithm functionally equivalent to the valid signing

algorithm.

There are different types of attacks on signature schemes [112].

• Key-only attack: An adversary knows only the signer’s verification key.

• Known-message attack: An adversary has seen signatures for a set of messages

that are not chosen by him.

• Non-adaptive chosen-message attack: An adversary obtains valid signatures

from a chosen list of messages before attempting to break the signature scheme.

This attack is non-adaptive in the sense that messages are chosen before any

signatures are seen.

CHAPTER 3. ELEMENTARY CRYPTOGRAPHIC TOOLS 68

• Adaptive chosen-message attack: An adversary is allowed to use the signer

as an oracle at any time. The adversary can adaptively choose messages (by

depending on the signer’s public key and previously obtained signatures or

messages) and obtain the corresponding signatures from the signer.

We say that a digital signature scheme is existentially unforgeable against the

adaptively chosen-message attack if an adversary, when given oracle access to the

signing algorithm, cannot forge valid signatures for messages that the adversary did

not yet ask the oracle. We make this precise as follows.

Definition 3.4.1. A digital signature scheme (gen, sig, ver) is existentially unforge-

able against the adaptively chosen-message attack if for any probabilistic polynomial-

time algorithm A, every positive polynomial P , and all sufficiently large k, it holds

that

Pr[ver(m,σ, pk) = accept ∧m 6∈ Q : (sk, pk) ← gen(1k),

(m,σ) ← Asig(pk)] <
1

P (k)
,

where Q is the set of messages that the adversary has queried to the signing algorithm.

This is the strongest and reasonable security requirement. Often a signature

scheme is said to be secure if it is existentially unforgeable, even under the adaptively

chosen-message attack. Goldwasser, Micali and Rivest are the first to propose a sig-

nature scheme that is secure against the adaptively chosen-message attack, assuming

the existence of claw-free trapdoor permutations [112].

There are two types of signature schemes. One is custom designed, such as the

RSA and the ElGaml signature schemes. The other is derived from an identification

protocol, such as the Feige-Fiat-Shamir and the Schnorr signature schemes.

To convert an identification protocol into a signature scheme, we use a hash func-

tion to replace the verifier in the identification scheme so that the interaction is not

necessary. This technique is introduced in [90] and has been formalized by Bellare

and Rogaway [9] as the so-called random oracle model. In this model, the hash func-

tion is replaced by an oracle (random function). For such constructions, it is often

argued that a signature scheme is secure if the underlying identification protocol is

an honest-verifier zero-knowledge proof of knowledge in the random oracle model.

CHAPTER 3. ELEMENTARY CRYPTOGRAPHIC TOOLS 69

Pointcheval and Stern show that in the random oracle model the Schnorr signature

scheme and a variant of the ElGamal signature scheme are secure against the adap-

tively chosen-message attack [183, 184]. They also state that every signature scheme

obtained from an honest-verifier zero-knowledge proof of knowledge is secure against

existential forgery under the adaptively chosen-message attack.

3.4.1 The RSA signature scheme

The RSA signature scheme is directly derived from the RSA encryption scheme by

reversing the roles of encryption and decryption [195].

This signature scheme works as follows. Assume Alice wants to sign a message m

to Bob. Let h be a publicly known collision-resistant hash function that maps {0, 1}∗
to Zn.

• Key generation: gen(1k) = ((d, n), (e, n)).

Alice picks randomly and independently two large primes p and q, and compute

n = pq. She also chooses an integer e such that 1 < e < (p − 1)(q − 1) and

gcd(e, (p− 1)(q− 1)) = 1. Then Alice computes an integer d such that 1 < d <

(p−1)(q−1) and de ≡ 1 (mod (p−1)(q−1)). Because gcd(e, (p−1)(q−1)) = 1,

such a number d exits. Alice’s public key is (e, n) and secret key is (d, n).

• Signing: sig(m, (d, n)) = σ.

Alice signs the message m by computing σ = h(m)d mod n. The signature is σ.

• Verification: ver(m,σ, (e, n)) = accept/reject.

Bob wants to verify the signature σ. He checks if h(m)
?
= σe mod n. If this

equation holds, then he accepts the signature; otherwise, he rejects it.

3.4.2 The ElGamal Signature Scheme

The signature scheme is proposed by ElGamal together with his public-key encryption

scheme [84, 85].

This signature scheme works as follows. Assume Alice wants to sign a message m

to Bob. Let h be a publicly known collision-resistant hash function that maps {0, 1}∗
to Zp.

CHAPTER 3. ELEMENTARY CRYPTOGRAPHIC TOOLS 70

• Key generation: gen(1k) = ((g, p, α), (g, p, β)).

Alice picks a prime p and a primitive root g modulo p. She also chooses a

random exponent α ∈ {0, . . . , p − 2} and computes β = gα mod p. Alice’s

public key is (g, p, β) and secret key is (g, p, α).

• Signing: sig(m, (g, p, α)) = (s1, s2).

Alice chooses a random number r ∈ {1, 2, . . . , p− 2} that is prime to p− 1. She

computes s1 = gr mod p and s2 = (h(m) − αs1)r
−1 mod (p − 1) where r−1 is

the inverse of r modulo p− 1. The signature is (s1, s2).

• Verification: ver(m, (s1, s2), (g, p, β)) = accept/reject.

For s1 ∈ Z∗p and s2 ∈ Zp−1, Bob checks if βs1ss2
1

?≡ gh(m) (mod p). If this

congruence holds, then he accepts the signature; otherwise, he rejects it.

The signature scheme is a randomized signature mechanism. Its security is based

on the discrete logarithm assumption. Moreover, the random value r should be chosen

differently each time a message is signed; otherwise, the secret key could be computed

from two such signatures. For a more detailed analysis of the security we refer the

reader to [3, 13, 85, 141, 157, 183].

A variant of the ElGamal signature scheme, called digital signature algorithm

(DSA) [93], is proposed as a standard by the U.S. National Institute of Standards

and Technology (NIST). The digital signature standard (DSS) is the first digital

signature scheme recognized by any government.

3.4.3 The Schnorr Signature Scheme

The Schnorr signature scheme is an example of the construction of a signature scheme

from an identification protocol [203]. Compared with the ElGamal signature scheme,

the Schnorr scheme provides shorter signatures for the same level of security.

This signature scheme works as follows. Assume Alice wants to sign a message m

to Bob. Let h be a publicly known collision-resistant hash function that maps {0, 1}∗
to Zq and let ‖ denote the concatenation of two strings.

• Key generation: gen(1k) = ((g, p, q, α), (g, p, q, β)).

Alice picks large primes p, q such that q | (p − 1) and a number g ∈ Z∗p of

CHAPTER 3. ELEMENTARY CRYPTOGRAPHIC TOOLS 71

order q. She also chooses a random exponent α ∈ {0, . . . , q − 1} and computes

β = gα mod p. Alice’s public key is (g, p, q, β) and secret key is (g, p, q, α).

• Signing: sig(m, (g, p, q, α)) = (c, s).

Alice chooses a random number r ∈ {1, 2, . . . , q − 1}. She computes c = h(m ‖
gr) and s = (r − cα) mod q. The signature σ is (c, s).

• Verification: ver((c, s), (g, p, q, β)) = accept/reject.

For c, s ∈ Zq−1, Bob checks if c
?
= h(m ‖ gsβc mod p). If the equation holds,

then he accepts the signature; otherwise, he rejects it.

3.4.4 Signatures of Knowledge

Using the techniques introduced in [87, 90], every three-round proof of knowledge that

is honest-verifier zero-knowledge can be turned into a signature scheme by replacing

the verifier with a hash function. We call the schemes “signatures based on proofs of

knowledge”, or “signatures of knowledge” for short. A signature of knowledge allows

a signer to prove the knowledge of a secret with respect to some public information

noninteractively. The signer can also tie his knowledge of a secret to a message being

signed. In [184], it is proved that in the random oracle model all such signatures are

simulatable and secure against existential forgery under adaptively chosen-message

attacks. Simulatability means that the distribution of the strings that can be effi-

ciently generated without knowledge of the secret signing key are indistinguishable

from the distribution of the actual signatures. Note that though such signatures are

simulatable, they are not deniable zero-knowledge [178].

All signatures of knowledge presented in this section have the corresponding three-

round protocols similar to Schnorr’s identification protocol. These protocols can be

shown to be honest-verifier zero-knowledge proofs of knowledge. We first describe

the algebraic setting used here. Let G be a finite cyclic group of prime order q, k

an integer, and let g, h, g1, g2, . . . , gk ∈ G be generators of G such that computing

discrete logarithms of any group element with respect to any one of the generators

is infeasible. Furthermore, the generators are chosen in a random manner, such that

none of the discrete logarithms of any generator with respect to another is known.

CHAPTER 3. ELEMENTARY CRYPTOGRAPHIC TOOLS 72

Then the computation of a representation of a group element with respect to multiple

generators is as hard as the discrete logarithm problem.

We introduce our notation about signatures of knowledge. Suppose the signer

(prover) chooses α, β ∈R Z∗q as secret keys and compute her public keys y1 = gα and

y2 = gβhα. Let ∧ denote the logical conjunction. An expression such as

sok[(α, β) : y1 = gα ∧ y2 = gβhα](m)

denotes a signature based on a proof of knowledge of secret keys α and β such that

the statement to the right of the colon is true. This is equal to proving the knowledge

of the discrete logarithm of y1 to the base g and a representation of y2 to the bases

g and h and, in addition, that the h-part of this representation of y2 equals the

discrete logarithm of y1 to the base g. The Greek letters denote the knowledge of

the signer. The variable sok can be thought of as reference to the definition of a

particular signature of knowledge. If the message is the null message, then the term

(m) after the ‘]’ is omitted. In addition, we denote by ‖ the concatenation of two

strings and let H : {0, 1}∗ → {0, 1}` be a collision-resistant hash function.

Signatures of Knowledge of a Discrete Logarithm

The signature proves the knowledge of the discrete logarithm of a public key y to the

base g.

Definition 3.4.2. A pair (c, s) ∈ {0, 1}` × Zq satisfying

c = H(m ‖ g ‖ y ‖ gsyc)

is a signature of knowledge of the discrete logarithm of a group element y to the base

g of the message m ∈ {0, 1}∗ and is denoted by SKDL[α : y = gα](m).

Basically, SKDL[α : y = gα](m) is the Schnorr signature with a slightly different

argument to the hash function. If the value α = logg(y) is known, such a signature

can be computed by choosing a random integer r ∈ Zq and computing t = gr and

then c and s according to

c = H(m ‖ g ‖ y ‖ gr),

s = r − cα mod q.

CHAPTER 3. ELEMENTARY CRYPTOGRAPHIC TOOLS 73

Anyone can verify (c, s) by checking c
?
= H(m ‖ g ‖ y ‖ gsyc).

Although the signature of knowledge is not interactive, it is reasonable to call t

the commitment, c the challenge, and s the response.

Signatures of Knowledge of a Representation

The signature proves the knowledge of a representation of a public key. The corre-

sponding proof systems are first introduced in [43].

Definition 3.4.3. A (k + 1)-tuple (c, s1, . . . , sk) ∈ {0, 1}` × (Zq)
k satisfying

c = H(m ‖ g1 ‖ . . . ‖ gk ‖ y ‖ yc

k∏
i=1

gsi
i)

is a signature of knowledge of a representation of a element y with respect to the bases

g1, . . . , gk of the message m ∈ {0, 1}∗. It is denoted by

SKAREP [(α1, . . . , αk) : y =
k∏

i=1

gαi
i](m).

If values α1, . . . , αk ∈ Zq are known such that y =
k∏

i=1

gαi
i holds, such a signature

can be computed as follows. The signer chooses the integers r1, . . . , rk at random

from Zq and computes

c = H(m ‖ g1 ‖ · · · ‖ gk ‖ y ‖ yc

k∏
i=1

gri
i),

si = ri − cαi mod q, for i = 1, . . . , k.

Anyone can verify the signature by checking c
?
= H(m ‖ g1 ‖ . . . ‖ gk ‖ y ‖ yc

k∏
i=1

gsi
i).

Because a public key yi can be formed using only a subset of the generators

g1, . . . , gk, later we use a set Ji ⊆ {1, . . . , k} such that yi =
∏

j∈Ji
g

αi,j

j holds, where

αi,j are secret keys with respect to the public key yi. Note that the secret keys αi,j

are in general not numbered consecutively but take a tuple (i, j), where i is the index

of the public key yi and j is the index of the respective generator gj. In particular,

the secret keys αi,j for j 6∈ Ji are not defined.

CHAPTER 3. ELEMENTARY CRYPTOGRAPHIC TOOLS 74

Signatures of Knowledge of Equality of the Discrete Logarithms

The signature proves that the discrete logarithms of two public keys with respect to

two different bases are equal. Such a scheme is introduced in [45].

Definition 3.4.4. A pair (c, s) ∈ {0, 1}` × Zq satisfying

c = H(m ‖ g ‖ h ‖ y ‖ z ‖ gsyc ‖ hszc)

is a signature of the message m ∈ {0, 1}∗ based on a proof of knowledge and of equality

of the discrete logarithm of z with respect to the base h and of the discrete logarithm

of y with respect to the base g. It is denoted by

SKEDL[α : y = gα ∧ z = hα](m).

If α = logg(y) is known and if logg(y) = logh(z) holds, such a signature (c, s)

can be computed as follows. One chooses a random integer r from Zq and computes

t1 = gr and t2 = hr. Then, c and s are calculated according to

c = H(m ‖ g ‖ h ‖ y ‖ z ‖ t1 ‖ t2)

and

s = r − cα mod q.

Anyone can verify the signature by checking c
?
= H(m ‖ g ‖ h ‖ y ‖ z ‖ gsyc ‖ hszc).

SKEDL[α : y = gα∧z = hα](m) can be seen as two parallel signatures SKDL[α :

y = gα] and SKDL[α : z = hα], where the exponent for the commitments, the chal-

lenges, and the responses are the same. This technique can be generalized to signa-

tures of knowledge of representations of several public keys: Whenever two elements

of the representations are equal, the respective responses are the same by choosing the

same exponent for the commitments and the same challenge. Signatures of knowledge

of representations are described in the next subsection.

Signatures of Knowledge of Representations

The signature proves the knowledge of representations of several, say w, public keys

at the same time. Of course, this can be done by computing w separate signatures

CHAPTER 3. ELEMENTARY CRYPTOGRAPHIC TOOLS 75

SKAREP [(αi,j)j∈Ji
: yi =

∏
j∈Ji

g
αi,j

j](m). However, it is possible to merge these

signatures by using the same challenge for all of them and choosing the same exponent

for two commitments whenever the respective elements of the representations are

equal. Thus we can make the resulting signature shorter.

Definition 3.4.5. A (u + 1)-tuple (c, s1, . . . , su) ∈ {0, 1}` × (Zq)
u satisfying

c = H(m ‖ g1 ‖ . . . ‖ gk ‖ y1 ‖ . . . ‖ yw ‖ J1 ‖ . . . ‖ Jw ‖ {eij}i=1,...,w;j∈Ji

‖ yc
1

∏
j∈J1

g
se1,j

j ‖ . . . ‖ yc
w

∏
j∈Jw

g
sew,j

j)

is a signature of the message m ∈ {0, 1}∗ based on a proof of knowledge of representa-

tions of y1, . . . , yw with respect to some of the bases g1, . . . , gk and that , additionally,

some of the elements of the representations are equal. It is denoted by

SKREP

[
(α1, . . . , αu) : (y1 =

∏
j∈J1

g
αe1j

j) ∧ · · · ∧ (yw =
∏

j∈Jw

g
αewj

j)

]
(m),

where eij ∈ {1, . . . , u} index the elements α1, . . . , αu ∈ Zq and the elements of Ji

index the base elements g1, . . . , gk.

If a u-tuple (α1, . . . , αu) is known that satisfies the considered statement, such a

signature can be computed as follows. One first chooses ri ∈R Zq for i = 1, . . . , u,

computes c as

c = H(m ‖ g1 ‖ . . . ‖ gk ‖ y1 ‖ . . . ‖ yw ‖ J1 ‖ . . . ‖ Jw ‖ {eij}i=1,...,w;j∈Ji

‖
∏
j∈J1

g
re1j

j ‖ . . . ‖
∏

j∈Jw

g
rewj

j), (3.1)

and calculates

si = ri − cαi mod q.

Anyone can verify the signature by checking

c
?
= H(m ‖ g1 ‖ . . . ‖ gk ‖ y1 ‖ . . . ‖ yw ‖ J1 ‖ . . . ‖ Jw ‖ {eij}i=1,...,w;j∈Ji

‖ yc
1

∏
j∈J1

g
se1,j

j ‖ . . . ‖ yc
w

∏
j∈Jw

g
sew,j

j).

CHAPTER 3. ELEMENTARY CRYPTOGRAPHIC TOOLS 76

Example 3.4.1. Suppose we want to obtain a signature of knowledge that we know

α1, α2, and α3 such that, given y1, y2, y3 and g1, g2, g3, the following holds:

y1 = gα1
1 gα2

3 ,

y2 = gα1
2 gα3

3 ,

y3 = gα1
1 gα3

2 gα2
3 .

The signature

SKREP [(α1, α2, α3) : y1 = gα1
1 gα2

3 ∧ y2 = gα1
2 gα3

3 ∧ y3 = gα1
1 gα3

2 gα2
3] (m)

is a 4-tuple (c, s1, s2, s3), where e11 = 1, e12 = 2, e21 = 1, e22 = 3, e31 = 1, e32 =

3, e33 = 2, J1 = {1, 3}, J2 = {2, 3}, and J3 = {1, 2, 3} in Eq. (3.1).

Chapter 4

A Fully Public-Key Traitor-Tracing

Scheme

A fully public-key traitor-tracing scheme is a public-key traitor-tracing scheme that

allows a subscriber to choose his own private decryption key without others learning

the key. In this chapter we propose such a scheme and discuss its efficiency and

security.

4.1 Introduction

In an open broadcast network, a distributor transmits digital contents to a large

number of users in such a way that only subscribers are authorized to extract the

contents. Applications include such fee-based services as pay-per-view television and

Web financial information channel. Clearly, anyone connected to the open network is

able to pick up the data that flow through the broadcast channel, whether authorized

or not. A straightforward solution to this problem is for the distributor to separately

encrypt the contents with each subscriber’s key before broadcasting the ciphertext.

Now, only the subscribers have the corresponding private keys to decrypt the cipher-

text. This issue of secure broadcasting is first addressed in [56]; however, the proposed

method carries out n-times encryptions for one copy of data, where n is the number

of subscribers. Later, broadcast encryption is proposed [12, 89, 127]. A broadcast-

encryption scheme prevents nonsubscribers from extracting the contents. By properly

77

CHAPTER 4. A FULLY PUBLIC-KEY TRAITOR-TRACING SCHEME 78

generating keys, the distributor can encrypt the contents with the encryption key de-

rived from all subscribers’ secret keys, and the subscribers have the decryption key

to decrypt the ciphertext. The tradeoff between the bandwidth requirement and the

keys’ storage space is studied in [16, 17, 143, 212].

A broadcast-encryption scheme remains prone to the collusion attack. Some sub-

scribers may collude to create new decryption keys, and the resulting pirate de-

coder allows nonsubscribers to extract the contents. To discourage subscribers to

reveal their private keys, traitor tracing is initiated in [57, 58] and studied further in

[96, 181, 211, 213]. The idea is an algorithm that uses the confiscated pirate decoder

to track down at least one colluder without wrongly accusing noncolluders with high

probability. Most of these schemes are so-called black-box traceable. This means

that the pirate decoder can be queried on different inputs as an oracle but cannot

be opened to reveal its private key. Most of the traitor-tracing schemes are secret-

key systems. Although they can be founded on public keys, complex protocols may

result [181]. More recent work in [19] proposes a public-key traitor-tracing scheme;

furthermore, as long as the number of colluders is below some threshold, the tracing

algorithm catches all and only traitors. The scheme has two disadvantages: It is only

partially black-box traceable, and the secret keys of the subscribers are generated

by a trusted center (the system is hence not fully public-key). We will present a

traitor-tracing scheme with these following strong features: The tracing algorithm is

black-box traceable, it tracks down all the colluders regardless of their size, and the

subscribers generate their own secret keys (it is thus fully public-key).

Key management is a critical issue. Subscribers’ keys are affected for at least

two reasons. First, a key must be discarded if it is found to be pirated or if its

user leaves the system. But then the remaining subscribers’ keys may be subject to

changes when even one user’s key is discarded. Second, when a new subscriber joins

the system, the existing subscribers’ keys may need to be changed to prevent the

new subscriber from decrypting the ciphertext received before the new user joins the

system. Both scenarios become problematic if pirating is frequent or if the subscriber

base is fluid. In order for the subscribers to easily manage their own keys, the system

should minimize the need to regenerate subscribers’ secret keys. Such a scheme is

said to be long-lived. This attribute is studied in [97]. In that proposed scheme, some

CHAPTER 4. A FULLY PUBLIC-KEY TRAITOR-TRACING SCHEME 79

subscribers may need to be rekeyed when a sufficient number of keys are discarded.

In contrast, our scheme does not require the regeneration of the secret keys in the

above two scenarios. It is therefore perfectly long-lived.

Anonymity is another critical issue for any traitor-tracing schemes because the

promise of anonymity usually promotes subscription [127]. We list two cases which

may compromise anonymity. When new subscribers join the service, their identi-

ties may be revealed because of their interaction with the distributor. Second, the

broadcast contents themselves may disclose the subscribers’ identities, which makes

eavesdropping threaten the privacy of the subscribers. Our scheme solves both prob-

lems: Registering with the service is noninteractive, and analyzing the transmissions

does not reveal the subscribers’ identities. Thus, the subscribers’ identities are not

known to anyone except the distributor.

We now summarize the features of our traitor-tracing scheme. The traitor-tracing

scheme is perfectly long-lived and achieves anonymity. It is a fully public-key system,

without relying on a trusted center to generate the keys. The scheme is based on the

following ideas. Each subscriber randomly selects a secret key to compute a number

which is sent to the distributor. After the distributor receives the numbers from

all the subscribers, it combines them to create a single encryption key. Using the

ElGamal encryption scheme, digital contents are encrypted with the encryption key.

Henceforth, each subscriber uses his or her own secret key to decrypt the ciphertext.

This chapter is organized as follows. In Section 4.2, basic terms are defined. Then

in Section 4.3, useful facts in number theory are presented. Section 4.4 describes our

scheme and discusses its security. Important attributes of our scheme are analyzed

in Section 4.5. Conclusions are given in Section 4.6.

4.2 Key Terms

Broadcast encryption consists of three components: key generation, encryption, and

decryption. It specifies the way to encrypt and decrypt the digital contents with the

generated keys in a broadcast network. The important task facing broadcast encryp-

tion is to prevent nonsubscribers from decrypting the encrypted content. Like the

point-to-point encryption scheme, a broadcast-encryption scheme can be secret-key

CHAPTER 4. A FULLY PUBLIC-KEY TRAITOR-TRACING SCHEME 80

or public-key. Traitors are subscribers who allow nonsubscribers to extract the con-

tents. When a broadcast-encryption scheme has the capability to track down traitors,

it is said to be traitor-tracing. Traitor tracing involves a tracing algorithm, which

uses the confiscated pirate decoder to track down traitors. The tracing algorithm is

k-traceable if at least one of the traitors can be identified given any pirate decoder

created by at most k traitors. The tracing algorithm is said to be black-box if the

pirate decoder can only be queried as an oracle but not opened to reveal its inter-

nal key. The perfect long-livedness attribute means that rekeying the subscribers is

unnecessary in the following two situations:

1. An existing key is discarded to prevent its future use.

2. New subscribers join the system without being able to decrypt earlier ciphertext.

The anonymity attribute means that the subscribers’ identities are not known to

anyone except the distributor. Our proposed traitor-tracing scheme will be perfectly

long-lived and anonymous.

A public-key traitor-tracing scheme consists of four components [19]:

• Key generation: Given a security parameter 1k and a number n, the key-

generation algorithm (performed by the distributor or a trusted center) outputs

a public encryption key e and n private decryption keys d1, d2, . . . , dn. Any

decryption key di can be used to decrypt a ciphertext created with the public

encryption key e.

• Encryption: Given a public key e and a message x, the encryption algorithm

outputs a ciphertext C.

• Decryption: Given a ciphertext C and any decryption key di, the decryption

algorithm outputs the message x. The algorithm itself is public. Only the

decryption keys are secret as in the point-to-point cryptosystem.

• Tracing: Given a pirate decryption box D, the tracing algorithm outputs at

least one traitor if at most k of the decryption keys are involved in creating the

box. The tracing algorithm may be black-box or otherwise.

CHAPTER 4. A FULLY PUBLIC-KEY TRAITOR-TRACING SCHEME 81

A fully public-key traitor-tracing scheme strengthens the key-generation part as fol-

lows:

• Key generation: Given a security parameter 1k, every subscriber generates

his private decryption key di and sends the corresponding public information

ei to the distributor. Then the distributor computes the public encryption key

e using all subscribers’ ei. Any decryption key di can be used to decrypt a

ciphertext created with the public encryption key e.

The secret keys are now known only to their subscriber owners. This is clearly

desirable.

4.3 Number-Theoretic Preliminaries

The present scheme is based on several number-theoretic results. In addition to those

stated in Section 2.2, we prove the following lemma that is useful for the proposed

scheme. As usual, let φ(n) denote Euler’s phi function, which gives the number of

positive integers m ∈ {1, 2, . . . , n− 1} such that gcd(m,n) = 1.

Lemma 4.3.1. If q and p = 2q + 1 are both primes and a is a positive integer with

1 < a < p− 1, then −a2 is a quadratic nonresidue and a primitive root modulo p.

Proof. There are φ(2q) = q − 1 primitive roots of p, q quadratic residues of p, and

q quadratic nonresidues of p. None of the q quadratic residues of p can be primitive

roots. Furthermore, −1, a quadratic nonresidue, cannot be a primitive root either.

Thus, the remaining q− 1 quadratic nonresidues of p must be all the primitive roots.

The number −a2 is a quadratic nonresidue of p because

(−a2

p

)
=

(−1

p

)(
a2

p

)
= (−1)× 1 = −1.

Hence −a2 is a primitive root modulo p.

Lemma 4.3.1 says that if the primes are chosen in the form 2q + 1, where q is also

a prime, then we can easily obtain primitive roots and quadratic nonresidues.

CHAPTER 4. A FULLY PUBLIC-KEY TRAITOR-TRACING SCHEME 82

4.4 Proposed Scheme

Let k be a security parameter and n be the number of subscribers. Choose k-bit primes

pi = 2qi + 1, where qi are odd primes. For convenience, assume p1 < p2 < · · · < pn.

The primes will be such that q
1/2
1 is large enough. Let M =

n∏
i=1

pi. Assume the

contents (plaintext) are elements of Zp1 . Let g be a common primitive root modulo

each of the pi’s. By Lemma 4.3.1 such a g exists because any −a2 is a valid candidate

when 1 < a < p1 − 1. We now describe the four components of our scheme.

• Key generation: Each subscriber i chooses a private decryption key di ∈ Zpi

randomly and sends (βi, pi) to the distributor, where βi = gdi mod pi. Next, the

distributor computes β =
n∑

i=1

βiMiyi mod M , where Mi = M/pi and Miyi ≡ 1

(mod pi), for 1 ≤ i ≤ n. The triple (g, β, M) is the public encryption key. Note

that

β ≡ βi (mod pi).

• Encryption: Let the plaintext be x ∈ Zp1 . The distributor picks a random

element r from {0, 1, . . . , p1 − 1} and computes

z1 = gr mod M,

z2 = xβr mod M.

The ciphertext is C = (z1, z2). Note that the digital content is encrypted only

once not n times.

• Decryption: Given a ciphertext C = (z1, z2), the decryption algorithm com-

putes z2(z
di
1)−1 mod pi. This step correctly yields the plaintext x because

z2(z
di
1)−1 ≡ xβr(grdi)−1

≡ xβr
i (g

rdi)−1

≡ x(gdi)r(grdi)−1

≡ x (mod pi).

• Tracing: The tracing algorithm is described in Section 4.5.

CHAPTER 4. A FULLY PUBLIC-KEY TRAITOR-TRACING SCHEME 83

The encryption and decryption algorithms are similar to those in the ElGamal

cryptosystem. The content is encrypted once, and each subscriber can decrypt using

his or her own decryption key. There is no need of a key generation center to generate

the decryption keys. Instead, subscribers generate their own keys at random. The

distributor creates the encryption key without knowing any decryption key. The

decryption keys are therefore private to their respective owners. This is identical to

the standard point-to-point public-key cryptosystem setup. Our scheme is hence fully

public-key.

Consider this straightforward approach to secure broadcasting in a full public-key

setting [56]: Before broadcasting, the plaintext is encrypted n times with all sub-

scribers’ public keys, and then the Chinese remainder algorithm is applied. If the

straightforward approach uses the ElGamal probabilistic encryption, the number of

modular multiplications and squarings in performing encryptions is n-times ours be-

cause we encrypt the plaintext only once. The fast modular multiplication algorithm

devised in [32] requires t + 7 clock pulses, where t is the length of the modulus. As-

sume our encryption needs a total of ` modular multiplications and squarings. For

each plaintext, our encryption needs time `(nk+7), but the straightforward approach

needs time `n(k + 7) plus OB(M(nk) log(n)) + OB(nM(k) log(k)) for performing the

Chinese remainder algorithm. Hence, our scheme is more efficient.

4.4.1 Security Analysis

We will show that our scheme is plaintext-secure against a passive generic adversary

if q
1/2
1 is large enough. We now explain the terms. A passive generic adversary is

a generic algorithm and can only eavesdrop the network. A generic algorithm does

not exploit any special properties of the encodings of group elements except that

each group element is encoded as a unique bit string [208]. An encryption system

is plaintext-secure if the full plaintext about a content cannot be derived from its

encryption form.

Let M ′ be a product of t primes pi, say,

M ′ = pi1pi2 · · · pit .

Let β′ = β mod M ′. As before, g is a common primitive root modulo pi, i =

CHAPTER 4. A FULLY PUBLIC-KEY TRAITOR-TRACING SCHEME 84

1, 2, . . . , n. The Diffie-Hellman problem (DH) in a group with generator g is to com-

pute gr1r2 from gr1 and gr2 . Shoup shows that any generic algorithm must perform

Ω(q
1/2
max) group operations for the problem, where qmax is the largest prime dividing

the order of the group [208]. Because g is a common primitive root modulo each of

the pis, the largest possible order of g modulo M ′ is λ(M ′) = 2qi1qi2 · · · qit by equa-

tion (2.1). So the subgroup H of Z∗
M ′ generated by g has order λ(M ′). The order

of H surely contains a prime factor which is not smaller than q1. As we choose a

large q
1/2
1 , the DH problem in H is intractable for a generic adversary. Based on this

intractability, we next prove that our encryption scheme is plaintext-secure against a

passive generic adversary. But first we need the following lemma.

Lemma 4.4.1. If the ElGamal cryptosystem in Z∗
M ′ can be broken, then the Diffie-

Hellman problem in the subgroup H of Z∗
M ′ generated by g can be solved efficiently.

Proof. Suppose that there is an algorithm A that breaks the ElGamal cryptosystem

in Z∗
M ′ . Given g, M ′, β′, z1 and z2, algorithm A computes the plaintext

x = z2(β
′logg z1)−1 mod M ′.

Assume that β′, γ ∈ H. When given inputs g, M ′, β′ and γ for the Diffie-Hellman

problem, A can be invoked to solve this DH problem by

A(g, M ′, β′, γ, 1)−1 = ((β′logg γ
)−1)−1 mod M ′

= glogg β′ logg γ mod M ′.

Theorem 4.4.1. Our encryption scheme is plaintext-secure against a passive generic

adversary.

Proof. A passive adversary can only eavesdrop to get C = (z1, z2). For such an ad-

versary, to derive plaintext is equivalent to breaking the ElGamal encryption scheme

in Z∗
M ′ . Nevertheless, by Lemma 4.4.1, breaking the ElGamal scheme in Z∗

M ′ implies

solving the DH problem in the subgroup H of Z∗
M ′ generated by g. For a generic

algorithm, solving the DH problem for the subgroup H needs at least Ω(q
1/2
1) time.

Because q
1/2
1 is chosen to be large, the theorem is proved.

CHAPTER 4. A FULLY PUBLIC-KEY TRAITOR-TRACING SCHEME 85

4.4.2 Semantic Security

The security of our scheme is based on the ElGamal encryption scheme in Z∗
M ′ . To

enhance the security, we show how to choose the generator of subgroups and limit

the message so that our scheme is semantically secure.

Because g is the common generator of the Z∗
pi

’s, g2 has order qi and generates

all the qi quadratic residues in Z∗
pi

for each i = 1, 2, . . . , n. Similarly, g2 has order

λ(M ′)/2 = qi1qi2 · · · qik and generates all the quadratic residues in Z∗
M ′ . So the cyclic

subgroup of Z∗
M ′ generated by g2 has order qi1qi2 · · · qik , each of whose prime factors

is at least q1. The decision Diffie-Hellman problem (DDH) in group G generated by

h with a large order is to efficiently distinguish the two distributions: (hr1 , hr2 , hz)

where r1, r2, z are random and (hr1 , hr2 , hr1r2) where r1, r2 are random. Any generic

algorithm must perform Ω(q
1/2
min) group operations for the DDH problem, where qmin

is the smallest prime dividing the order of the group [208]. Modify the parameters in

our scheme: Let the common generator be g2 and assume the plaintext (contents) in

Zp1 must be a common quadratic residue of all the pi’s. Because q
1/2
1 is chosen to be

large, the DDH problem for the subgroup generated by g2 is intractable for a generic

adversary. Based on this intractability, our scheme can be shown to be semantically

secure by using a similar result in [216] after replacing the modulus p there with our

M ′.

The parameters were modified so that each plaintext x ∈ Zp1 is a common

quadratic residue of all the pi’s. That is very inconvenient. Here is an alterna-

tive. Encrypt x2 instead of x. After decryption, subscriber i obtains x′ = x2 mod pi.

As pi ≡ 3 (mod 4), the solutions to x2 ≡ x′ (mod pi) are x ≡ ±x′(pi+1)/4 (mod pi).

Note that one of the solutions is odd and the other even. If we always pad one bit

in the least significant bit of x to make it, say, odd, the plaintext can be uniquely

decided. So we have the following theorem.

Theorem 4.4.2. Our scheme modified as described above is semantically secure

against a passive generic adversity.

CHAPTER 4. A FULLY PUBLIC-KEY TRAITOR-TRACING SCHEME 86

4.4.3 Forgery of Decryption Keys

Recall that β, M, βi, pi, g, and di, for i = 1, 2, . . . , n, are all the keys in the system,

among which only di are not public. The ciphertext (z1, z2) is also public. Because

our encryption scheme is plaintext-secure, it is impossible to fake subscribers’ keys or

create new decryption keys from the public information. This implies that combining

di’s is the only way to create decryption keys. Suppose t of the di’s are used to

create a new decryption key dH , say d1, d2, . . . , dt. Because d1, d2, . . . , dt are involved

in creating dH , we solve dH from

gdH ≡ gdi (mod pi) (4.1)

for i = 1, . . . , t. Let M ′
H = p1p2 · · · pt. The following lemma proves that this dH

works.

Lemma 4.4.2. Suppose that d1, d2, . . . , dt are used to create a new decryption key

dH . Then dH exists and equals
t∑

i=1

diMHi
yi mod MH if and only if gcd(pi − 1, pj − 1)

divides di − dj, where MH = lcm(p1 − 1, p2 − 1, . . . , pt − 1), MHi
= MH/(pi − 1), and

MHi
yi ≡ 1 (mod pi − 1) for i = 1, 2, . . . , t.

Proof. By equation (4.1), dH satisfies gdH ≡ β (mod M ′
H). Hence dH and M ′

H can be

used to decrypt the ciphertext. By Fact 2.2.16, gdH ≡ gdi (mod pi) implies dH ≡ di

(mod pi − 1). The rest of the lemma follows from Fact 2.2.12.

The next theorem is immediate.

Theorem 4.4.3. For a passive generic adversary, the only way to create a new

decryption key dH in our scheme is to combine the di’s in the way mentioned in

Lemma 4.4.2.

4.5 Traceability, Long-Livedness, Anonymity

Traceability

The tracing algorithm shall utilize the pirate decoder to apprehend the traitors. First,

assume that the pirate decryption key dH and M ′
H are revealed by opening the decoder

CHAPTER 4. A FULLY PUBLIC-KEY TRAITOR-TRACING SCHEME 87

box to simplify the analysis. The tracing algorithm uses M ′
H to detect all traitors

as follows: If M ′
H ≡ 0 (mod pi), then subscriber i is a traitor; otherwise, he is

innocent. Thus all traitors will be captured, and innocent subscribers will not be

accused. Because pi are public, the tracing algorithm does not need the private keys

of subscribers to succeed.

Now suppose that the decoder cannot be opened (it is a black box). Then the

black-box tracing algorithm performs the following steps for each i = 1, 2, . . . , n to

trace all traitors.

Step 1: Compute αi = β mod Mi, where Mi = M/pi, for M = p1p2 · · · pn.

Step 2: Choose a plaintext x. Compute the ciphertext C with the public key

(αi, g,Mi).

Step 3: Feed C to the black-box decoder. If the output is not equal to x, then

subscriber i is a traitor.

The tracing algorithm flags the subscribers whose moduli are the prime factors of

M ′
H . Thus the tracing algorithm does track down all and only traitors. Of course, its

performance suffers from not being able to open the box.

Perfectly long-lived keys

When an existing decryption key is discarded or when a new subscriber joins the

system, the system shall not require the other subscribers to perform any interaction

with the distributor to change their secret keys. The public encryption key will be

modified to achieve this goal. Assume that (β, g, M) is the original public encryption

key.

Suppose that subscriber i’s key is disabled because he is a traitor or he wants to

leave the system. Then the new public encryption key is

(β̂, g, M̂) = (β mod (M/pi), g, M/pi).

No rekeying is required for the remaining subscribers. By disabling a traitor’s key,

the pirate decoder using that key also becomes useless.

CHAPTER 4. A FULLY PUBLIC-KEY TRAITOR-TRACING SCHEME 88

Now suppose that a new subscriber n + 1 joins the system. Then the new public

encryption key is

(β̂, g, M̂)

=(βpn+1v + βn+1Mw mod Mpn+1, g, Mpn+1),

where pn+1 is a new prime distinct from p1, p2, . . . , pn, pn+1v ≡ 1 (mod M), and

Mw ≡ 1 (mod pn+1). Existing subscribers do not need to update their secret keys,

and the new subscriber cannot decrypt the contents received before he joins. After

the public encryption key has been changed, the traitor-tracing scheme still satisfies

the same properties. The following theorem demonstrates that our method obtains

the correct encryption key.

Theorem 4.5.1. Let p1, p2, . . . , pn+1 be distinct primes. Suppose that for any integers

β1, β2, . . . , βn, the system of congruences

x ≡ βi (mod pi), i = 1, 2, . . . , n,

has a unique solution β modulo M = p1p2 · · · pn. Then β′ = β mod Mn, where

Mn = M/pn, is the unique solution modulo Mn to the system of congruences

x ≡ βi (mod pi), i = 1, 2, . . . , n− 1. (4.2)

Furthermore, β′′ = βpn+1v + βn+1Mw mod M ′′ is the unique solution modulo M ′′ to

the system of congruences

x ≡ βi (mod pi), i = 1, 2, . . . , n + 1,

where M ′′ = Mpn+1, pn+1v ≡ 1 (mod M), and Mw ≡ 1 (mod pn+1).

Proof. Both β and β′ are solutions to congruences (4.2). As the solutions are con-

gruent modulo Mn, we have β′ = β mod Mn. That β′′ is the desired solution follows

from Fact 2.2.12.

Anonymity

In our scheme, a subscriber registers by sending his or her own public information to

the distributor. This part is noninteractive. Because all the subscribers receive the

CHAPTER 4. A FULLY PUBLIC-KEY TRAITOR-TRACING SCHEME 89

same ciphertext, the broadcast message need no addressing. Even when one obtains

the plaintext and the public key of another subscriber, the subscriber’s identity re-

mains hidden. As the encryption scheme is probabilistic, encrypting a plaintext with

anyone’s public keys and then comparing the resulting ciphertext with any historical

ciphertext for clues is wasted efforts. Our scheme is hence anonymous.

4.6 Conclusions

In order to prevent others from learning the secret keys, we propose a fully public-key

traitor-tracing scheme. Perfect long-livedness and anonymity are achieved. Further-

more, it is a simple task to recompute the encryption key if needed. By the choice

of parameters, our scheme can be plaintext-secure or semantically secure against a

passive generic adversary. The tracing algorithm is n-traceable and captures all and

only traitors. This holds even if the pirate decoder is a black box.

Chapter 5

Group Undeniable Signatures with

Convertibility

Group undeniable signatures are like group signatures except that verifying signa-

tures requires the cooperation of the group manager. A convertible group undeniable

signature scheme allows the group manager to turn select group undeniable signatures

into universally verifiable group signatures. In this chapter we propose such a scheme

and discuss its efficiency and security.

5.1 Introduction

Digital signatures are used to verify whether one message really comes from the al-

leged signer. In general, the signer keeps a secret value to generate his signature

and publicizes the corresponding public information for verification purpose. Like

handwritten signatures, standard digital signatures are nonrepudiatable and univer-

sally verifiable. Nonrepudiation guarantees that a signer cannot deny his signature

at a later time. Universal verifiability allows everybody to verify a signature with

the signer’s public information. However, universal verifiability might not suit the

situation, for example, where signatures are generated for sensitive, nonpublic data.

Consider two parties striking a confidential deal. Each party wants the other to sign

the contract but does not want the contents of the contract released with signatures

that can be universally verified. What they need is a signature scheme whose ver-

90

CHAPTER 5. GROUP UNDENIABLE SIGNATURES WITH CONVERTIBILITY 91

ification requires interaction with the signers, who then have some control over the

sensitive data.

In 1989, Chaum and van Antwerpen [51] introduce undeniable signatures by which

anyone must interact with the signer to verify a valid signature through a confirmation

protocol and the signer must be able to disavow an invalid signature through a denial

protocol. That is, undeniable signatures require that signature verification must be

done with the signer’s participation. Subsequent works on undeniable signatures

include [22, 48, 49, 46, 70, 75, 94, 98, 124, 125, 126, 163, 164, 175, 179]

Convertible undeniable signatures offer an additional flexibility on signature veri-

fication. By releasing appropriate verification keys, the signer can convert all or select

undeniable signatures into standard digital signatures without compromising the se-

curity of the secret key used to generate the signatures. Furthermore, the signer can

also give the verification keys to trusted parties so that they can help handle the ver-

ification task. As an example that convertible undeniable signatures are preferable to

undeniable signatures, consider the problem of keeping digital archives of confidential

political or diplomatic documents. Authenticating such records with standard digital

signatures is hardly acceptable: If the data are leaked to the press, anyone can verify

the signatures and thus the authenticity of the records. Undeniable signatures are

clearly more suitable here. However, such records usually become publicly accessible

after some years by freedom-of-information laws and should therefore become publicly

verifiable. However, at this point the signers who generate the original undeniable

signatures may no longer be alive, or physically fit to handle the vast amount of veri-

fication requests. This can be solved with convertibility: The signers could make the

verification keys public, or give them to trusted parties, who would assume the job

of verifying the signatures.

In 1990, Boyar et al. [22] introduce the concept of convertible undeniable signa-

tures. The convertible schemes in [22, 70] consider converting valid undeniable sig-

natures to universally verifiable ones. Michels and Stadler [164] present a convertible

undeniable signature scheme in which the signer can convert not only valid undeni-

able signatures into standard digital signatures but also invalid undeniable signatures

into universally verifiable statements about the fact that signatures are invalid.

In contrast to individual signatures, a group signature scheme allows a group

CHAPTER 5. GROUP UNDENIABLE SIGNATURES WITH CONVERTIBILITY 92

member to sign messages anonymously on behalf of a group. Analogous to stan-

dard digital signatures, group signatures are both nonrepudiatable and universally

verifiable. In case of later disputes, a designated group manager can use the group

signature to trace the actual identity of the signer. But, no one—including the group

manager—can attribute a valid signature to a nonsigner. Group signatures have many

practical applications such as authenticating price quotes and digital contracts. The

concept of group signatures is introduced by Chaum and van Heyst [44]. Camenisch

and Stadler [38] present the first scheme in which the sizes of the public key and

signatures are independent of the group size. More works on group signatures include

[4, 5, 6, 34, 35, 39, 55, 54, 180]

However, as mentioned above, if group signatures are for sensitive and nonpublic

data, the group manager may hope that no one can verify the signatures without

his participation. For example, when an employee signs a digital contract about a

confidential business deal, it is desirable that no one can authenticate the contract

without the help of the manager even if the contract is leaked to competitors. The

signature is regarded simply as evidence that the contract has been signed by some

group member and the signature can not be denied later. We will call these signatures

group undeniable signatures. Lyuu and Wu [145, 147] are the first to introduce group

undeniable signatures satisfying the following requirements: (1) only group members

can anonymously sign on behalf of the group (anonymity); (2) a verifier must interact

with the group manager to verify the signature (nontransferability); (3) the group

manager can identify the signer of a valid signature (traceability). In addition, we

will propose the first convertible group undeniable signature scheme such that the

group manager can convert all or select group undeniable signatures into universally

verifiable ones without compromising the security of the secret signing key. The

proposed scheme also allows the group manager to delegate the ability to confirm and

deny signatures to trusted parties without providing them the capability of generating

signatures.

The convertibility feature is very useful in practice. Consider the situation of a

software company. The software engineer signs off a software product on behalf of

the company. When asked, a company manager can prove to the buyer that the

product is authentic by verifying the signature’s validity. For nonbuyers, in contrast,

CHAPTER 5. GROUP UNDENIABLE SIGNATURES WITH CONVERTIBILITY 93

the manager may refuse to prove to them the authenticity of the software. But once

the company goes bankrupt, authenticity is no longer provable. Now suppose the

group undeniable signatures are convertible. Then the manager can convert select

signatures into group signatures when the company is still in business; thus buyers

can continue to validate the software if necessary. Even after conversion, no one is

able to derive the secret key used to generate signatures; thus the original company’s

signatures cannot be forged. In addition, the manager can delegate the capability of

verifying signatures to trusted parties to share the load or to step in if the company

fails.

In this chapter, we use signatures of knowledge [38] and undeniable signatures

[48] to construct a convertible group undeniable signature scheme. Under reasonable

cryptographic assumptions, our signature scheme will be proved to be anonymous,

nontransferable, traceable, unforgeable, exculpable, and unlinkable. Moreover, any

colluding subset of group members cannot generate valid signatures that cannot be

traced. The signature confirmation and denial protocols can be further made zero-

knowledge. Finally, the sizes of the public key and signatures are independent of the

group size. This desirable feature means the system remains efficient as the group

grows.

This chapter is organized as follows. In Section 5.2, useful facts and cryptographic

assumptions in number theory are described. In addition, signatures of knowledge

that are used as building blocks of our scheme are reviewed. In Section 5.3, the

convertible group undeniable signature model and the proposed scheme are presented.

Section 5.4 discusses its security. Conclusions are given in Section 5.5.

5.2 Preliminaries

5.2.1 Number-Theoretic Facts and Assumptions

The security of our scheme is based on several number-theoretic results and assump-

tions. In addition to the results stated in Section 2.2, we establish several new lemmas

in this subsection.

As usual, the following notation is used. For positive integer n, Zn denotes the ring

of integers modulo n, and Z∗n denotes the multiplicative group modulo n. Expression

CHAPTER 5. GROUP UNDENIABLE SIGNATURES WITH CONVERTIBILITY 94

x ∈R I means that x is chosen randomly from set I. Let φ(n) denote Euler’s phi

function, which gives the number of positive integers in {1, 2, . . . , n − 1} that are

relatively prime to n. Let 〈g〉 denote the cyclic group generated by g. The least

positive integer d such that gd ≡ 1 (mod n) is called the order of g modulo n and is

denoted by ordng or simply ord(g) if n is understood.

Let n = p1p2, where p1 6= p2, p1 = 2q1 + 1, p2 = 2q2 + 1, and p1, p2, q1, q2 are all

prime numbers. Also let g ∈ Z∗n with ordng = q1q2. The following lemmas are useful

for the proposed scheme.

Lemma 5.2.1. Among three consecutive positive integers, there is at least one integer

relatively prime to q1q2.

Proof. Note that q1 and q2 are odd. Let i be an arbitrary positive integer. We

demonstrate that among i, i + 1, i + 2, there is at least one integer relatively prime to

q1q2. If gcd(i, q1q2) = 1, the lemma is correct. So, without loss of generality, assume

gcd(i, q1q2) = q1. Let i = a1q1 for some a1. Then i + 1 = a1q1 + 1 is relatively prime

to q1. If i + 1 is also relatively prime to q2, then gcd(i + 1, q1q2) = 1 and we are done.

So assume i+1 = a2q2 for some a2. Now we have i+2 = a1q1 +2 and i+2 = a2q2 +1.

Hence gcd(i + 2, q1q2) = 1.

Lemma 5.2.2. Let yi ∈R Zn and zi = gyi mod n. Suppose gcd(yi, q1q2) = 1. An

integer ci ∈ Z∗q1q2
satisfies both (zig

ci)q1 6≡ 1 (mod n) and (zig
ci)q2 6≡ 1 (mod n) if

and only if gcd(yi + ci, q1q2) = 1.

Proof. Suppose that ci satisfies (zig
ci)q1 6≡ 1 (mod n) and (zig

ci)q2 6≡ 1 (mod n).

Because (gyi+ci)q1 ≡ (zig
ci)q1 6≡ 1 (mod n) and ordng = q1q2, we have gcd(yi+ci, q2) =

1. By the same argument, gcd(yi + ci, q1) = 1. Hence, gcd(yi + ci, q1q2) = 1. For the

opposite direction, if gcd(yi + ci, q1q2) = 1, then (zig
ci)q1 ≡ (gyi+ci)q1 6≡ 1 (mod n)

and (zig
ci)q2 ≡ (gyi+ci)q2 6≡ 1 (mod n) because ordng = q1q2.

Lemma 5.2.3. Let yi ∈R Zn and zi = gyi mod n. Suppose gcd(yi, q1q2) = 1. Integer

ci ∈ Z∗q1q2
satisfying (zig

ci)q1 6≡ 1 (mod n) and (zig
ci)q2 6≡ 1 (mod n) can be obtained

by testing at most three consecutive positive integers against the two inequalities.

Proof. By Lemma 5.2.1, among three consecutive positive integers, there is at least

one integer ci satisfying gcd(yi+ci, q1q2) = 1 and thus satisfying (zig
ci)q1 6≡ 1 (mod n)

and (zig
ci)q2 6≡ 1 (mod n) by Lemma 5.2.2.

CHAPTER 5. GROUP UNDENIABLE SIGNATURES WITH CONVERTIBILITY 95

Lemma 5.2.4. Among any nine consecutive positive integers, there is at least three

consecutive integers relatively prime to q1q2 as long as q1, q2 > 9.

Proof. Let a1, a2, . . . , a9 be nine consecutive positive integers. Suppose a1 < a2 <

· · · < a9. Because q1, q2 > 9, among a1, a2, . . . , a9, there are at most two integers ai

and aj not relatively prime to q1q2. Without loss of generality, let i < j. Let sets

I1 = {a1, . . . , ai−1}, I2 = {ai+1, . . . , aj−1}, and I3 = {aj+1, . . . , a9}. There must be at

least one set Ii whose cardinality is at least d7/3e = 3 by the pigeon-hole principle.

Lemma 5.2.5. Integer ci ∈ Z∗q1q2
satisfies gcd((gci mod n)+1, n) = 1 and gcd((gci mod

n)− 1, n) = 1 if and only if gcd(ci, q1q2) = 1.

Proof. By Fact 2.2.24(1), ci satisfies gcd((gci mod n)+1, n) = 1 and gcd((gci mod n)−
1, n) = 1 if and only if ordngci = q1q2 or ordngci = 2q1q2. Because ordng = q1q2,

it must hold that ordng
ci = q1q2. Thus gcd(ci, q1q2) = q1q2/ordngci = 1 by Fact

2.2.10(1).

Lemma 5.2.6. Let Sb = gb for b ∈ Z∗q1q2
. Assume q1, q2 > 9. Among any nine consec-

utive positive integers, there must exist three consecutive integers k1, k2, k3 satisfying

gcd((gki/Sb mod n) + 1, n) = 1 and gcd((gki/Sb mod n)− 1, n) = 1 for i = 1, 2, 3.

Proof. Among any nine consecutive positive integers, there are at least three consec-

utive integers ki satisfying gcd(ki − b, q1q2) = 1 by Lemma 5.2.4. Note that gki/Sb =

gki−b (mod n). Hence gcd((gki/Sb mod n) + 1, n) = 1 and gcd((gki/Sb mod n) −
1, n) = 1 hold for i = 1, 2, 3 by Lemma 5.2.5.

Assume G is a cyclic group with order M , where M is the product of two large

primes. In the following we simply recall the well-known cryptographic assumptions

used in our scheme.

1. The factoring assumption.

Assume n = p1p2 where p1 and p2 are two large primes. Given n, it is compu-

tationally infeasible to find p1 and p2.

2. The Diffie-Hellman (DH) problem assumption.

Assume the order of g ∈ G is M . Given gx1 and gx2 , it is computationally

infeasible to find gx1x2 even if M is known.

CHAPTER 5. GROUP UNDENIABLE SIGNATURES WITH CONVERTIBILITY 96

3. The discrete logarithm (DL) assumption.

Assume the order of g ∈ G is M . Given y ∈ G and g, it is computationally

infeasible to find a discrete logarithm x satisfying y = gx even if M or M ’s

factorization is known.

4. The representation problem assumption.

Assume the orders of g1, . . . , gk ∈ G are M . Given y ∈ G, g1, . . . , gk, it is

computationally infeasible to find a representation (x1, x2, . . . , xk) of y satisfying

y = gx1
1 gx2

2 · · · gxk
k even if M is known.

5. The assumption of equality of discrete logarithms (EDL) ([22, 51, 70]).

Assume f, g ∈ G have order M . Given y1, y2 ∈ G, f, and g, it is computationally

infeasible to determine the equality of logf y1 and logg y2 over ZM even if M is

known.

The security of our scheme is based on the random oracle model ([9, 90]). An

oracle is essentially a black box which answers every query. The random oracle model

refers to a setting in which all parties (including the adversary) have oracle access

to a truly random function that takes as input a value and outputs a truly random

value. In practice, the random oracle is replaced with a good cryptographic hash

function such as MD4 [193], MD5 [194], and SHA-1 [91]. To achieve nonrepudiation

of signatures, a minimum requirement on the hash function is that it is infeasible for

the signer to find two different messages providing the same hash value. This property

is called collision resistance. In the random oracle model, the collision-resistant hash

function can be seen as an oracle that produces a truly random value for every new

query. Of course, if the same input is put to the oracle, identical output is obtained.

In this chapter we will regard a coalition-resistant hash functionH as a random oracle.

5.2.2 Building Blocks

Our group undeniable signature scheme employs signatures of knowledge as building

blocks. Based on DL and representation problem assumptions, all these signatures of

knowledge used can be showed to be simulatable and existentially unforgeable against

adaptively chosen message attacks in the random oracle model [38, 184]. Simulatabil-

ity means that the distribution of the strings that can be efficiently generated without

CHAPTER 5. GROUP UNDENIABLE SIGNATURES WITH CONVERTIBILITY 97

knowledge of the secret signing key are indistinguishable from the distribution of the

actual signatures. Existential unforgeability against adaptively chosen message at-

tacks means that an adversary cannot obtain a new message-signature pair even if he

can obtain signatures on chosen messages.

We now introduce some notations used in this chapter. Assume G = 〈g〉 is

a cyclic group with order M , where M is the product of two large primes. The

parameters M, G, and g are chosen such that computing discrete logarithms in G

to the base g is infeasible. In addition, computing roots in Z∗M is also infeasible

without knowing the factorization of M . We denote by Greek letters the elements

whose knowledge is to be proved and by all other letters the elements that are publicly

known. Denote by ‖ the concatenation of two strings and by ∧ the logical conjunction.

Let H : {0, 1}∗ → {0, 1}`(` ≈ 160) be a coalition-resistant hash function throughout

the chapter. A signature of knowledge is said to be correct if it passes the associated

verification procedure. In the following we describe the signatures of knowledge used

in our scheme.

Signatures of Knowledge of Discrete Logarithms and Representations

Note the algebraic setting in the current chapter is slightly different from that in

Section 3.4.4. In particular, the order M of G is the product of two large primes

and the signer does not know the value M . We present how the two signatures of

knowledge SKDL and SKREP described in Section 3.4.4 must be adapted in order

to remain secure in the random oracle model, i.e., in order that the corresponding

interactive protocols remain honest-verifier zero-knowledge proofs of knowledge.

First consider the case M = q1q2 where q1 and q2 are two large primes. Because the

order M is not prime, the challenge c must be smaller than both prime-factors of M ,

i.e., an upper bound 2` on the challenge c is needed. This is to prevent the difference

of two random challenges from being congruent to 0 modulo one of the prime factors

of M ; otherwise, the knowledge extractor would fail to find a witness. An example

of an upper bound is ` = 0.4 log2(M) assuming that q1 and q2 are ≈ 0.5 log2(M).

On the other hand c must not be too small, i.e., |c| must be polynomial in the input

length. Otherwise, the success probability of the knowledge extractor would be too

small.

CHAPTER 5. GROUP UNDENIABLE SIGNATURES WITH CONVERTIBILITY 98

The other case to consider is that the order M is unknown. If the challenge c

is chosen from {0, . . . , 2`}, then the r’s must be chosen from {0, . . . , 2(|M |+`)= − 1},
where = is a constant > 1. Let a = 2(|M |+`)= − 1 be public. Then,

1. Signature SKDL[α : y = gα](m) equaling (c, s) is computed as follows. The

signer chooses a random integer r ∈R {0, . . . , a} and then computes c and s

according to

c = H(m ‖ g ‖ y ‖ gr),

s = r − cα.

Anyone can verify (c, s) by checking c
?
= H(m ‖ g ‖ y ‖ gsyc).

2. Signature

SKREP

[
(α1, . . . , αu) : (y1 =

∏
j∈J1

g
αe1j

j) ∧ · · · ∧ (yw =
∏

j∈Jw

g
αewj

j)

]
(m),

equaling (c, s1, . . . , su) is computed as follows. The signer first chooses ri ∈R

{0, . . . , a} for i = 1, . . . , u, computes c as

c = H(m ‖ g1 ‖ . . . ‖ gk ‖ y1 ‖ . . . ‖ yw ‖ J1 ‖ . . . ‖ Jw ‖ {eij}i=1,...,k;j∈Ji

‖
∏
j∈J1

g
re1j

j ‖ . . . ‖
∏

j∈Jw

g
rewj

j),

and calculates

si = ri − cαi.

Anyone can verify the signature by checking

c = H(m ‖ g1 ‖ . . . ‖ gk ‖ y1 ‖ . . . ‖ yw ‖ J1 ‖ . . . ‖ Jw ‖ {eij}i=1,...,k;j∈Ji

‖ yc
1

∏
j∈J1

g
se1,j

j ‖ . . . ‖ yc
w

∏
j∈Jw

g
sew,j

j).

Signatures of Knowledge of a Root of a Discrete Logarithm

Such signatures can prove the knowledge of an e-th root of a discrete logarithm of a

public key. An e-th root of the discrete logarithm of y ∈ G to the base g is an integer

x satisfying

g(x)e

= y,

CHAPTER 5. GROUP UNDENIABLE SIGNATURES WITH CONVERTIBILITY 99

if such an x exists. When the order M of G is known, the signature described in

the following definition works for all exponents e but is not very efficient. For small

exponents e, even if M is unknown, one can construct more efficient signatures that

are presented later. Let c[i] denote the i-th bit of a string counting from the right-hand

end.

Definition 5.2.1. Let k ≤ ` be a security parameter. A (k +1) tuple (c, s1, . . . , sk) ∈
{0, 1}` × (Z∗M)k satisfying

c = H(m ‖ g ‖ y ‖ e ‖ t1 ‖ . . . ‖ tk)

where

ti =

{
gse

i if c[i] = 0,

yse
i if c[i] = 1.

is a signature of the message m ∈ {0, 1}∗ based on a proof of an e-th root of the

discrete logarithm of y to the base g, and is denoted by

SKRDLM [α : y = gαe

](m).

Such a signature can be computed if values M and α satisfying y = gαe
are known.

One first chooses ri ∈R Z∗M and then computes

c = H(m ‖ y ‖ g ‖ e ‖ gre
1 ‖ · · · gre

k),

si =

{
ri if c[i] = 0,
ri

α
mod M otherwise.

One can verify the signature by checking whether

c
?
=H(m ‖ y ‖ g ‖ e ‖ t1 ‖ · · · ‖ tk)

with ti =

{
gse

i if c[i] = 0,

yse
i if c[i] = 1.

Lemma 5.2.7. The identification protocol corresponding to the SKRDLM is honest-

verifier zero-knowledge and a proof of knowledge of an e-th root of the discrete loga-

rithm of y with respect to the base g.

CHAPTER 5. GROUP UNDENIABLE SIGNATURES WITH CONVERTIBILITY 100

Proof. (sketch) Proof of knowledge: The proof is analogous to that of Schnorr’s iden-

tification protocol. We only show how an α with y = gαe
can be computed from two

different views having the same commitments. Without loss of generality we assume

that the j-th bits of c and c̃ differ and that c[j] = 0. Then we have

tj = gse
j = ys̃e

j = gαes̃e
j

and thus

α =
sj

s̃j

mod M

because all sj’s and s̃j’s are relatively prime to M .

Honest-verifier zero-knowledge: The simulator can be constructed clearly.

For small exponents e, one can construct a more efficient signature of knowledge

of an e-th root of a discrete logarithm even though the order M of G is unknown.

Assume that h ∈ G is another generator of G, the discrete logarithm to the base g of

which is unknown. We first introduce the following signature.

Definition 5.2.2. An (e− 1)-tuple (v1, . . . , ve−1) ∈ Ge−1 and a signature

SKREP [(γ1, γ2 . . . , γe, δ) : v1 = hγ1gδ ∧ v2 = hγ2vδ
1 ∧ · · · ∧ ve−1 = hγe−1vδ

e−2

∧ v = hγevδ
e−1](m)

is a signature of the message m ∈ {0, 1}∗ based on a proof of knowledge of an e-th

root of the g-part of a representation of v to the bases h and g. It is denoted by

SKRREP [(α, β) : v = hαgβe

](m)

Such a signature can be computed efficiently if values α, β satisfying v = hαgβe

are known. Let b = 2|M | − 1 be public. One first computes the values vi = hrigβi
for

i = 1, . . . , e − 1 with randomly chosen ri ∈R {0, . . . , b}. As ri ∈R {0, . . . , 2|M | − 1},
numbers vi are truly random element in G. Furthermore, because of equations vi =

hrigβi
and v = hαgβe

, we let γ1 = r1, γi = ri−βri−1 for i = 2, . . . , e−1, γe = α−βre−1,

and δ = β. Thus SKREP can be derived.

Using SKRREP , we now construct a more efficient signature of knowledge of an

e-root of a discrete logarithm for small exponent e.

CHAPTER 5. GROUP UNDENIABLE SIGNATURES WITH CONVERTIBILITY 101

Definition 5.2.3. A signature

SKRREP [(α, β) : y = hαgβe

](m)

and a signature

SKDL[γ : y = gγ](m)

is a signature of the message m ∈ {0, 1}∗ based on a proof of knowledge of the e-th

root of the discrete logarithm of y to the base g. It is denoted by

SKRDL[α : y = gαe

](m).

With the secret x, the signer knows a representation (0, xe) of y = h0gxe
to bases

h and g. This implies that α = 0, β = x, and γ = xe, and the two underlying

signatures can be calculated. To verify SKRDL, one checks the correctness of the

two components.

5.3 Proposed Scheme

5.3.1 The System Model

The system contains a group manager, a set of group members, nonmember persons,

and verifiers. The group manager produces system parameters, provides membership

certificates for the joining persons, and manages signature verification. Only group

members can sign messages on behalf of the group. A verifier performs signature

verification.

A group undeniable signature scheme must satisfy the following requirements.

• Anonymity: No one except the group manager can identify the signer.

• Nontransferability: Only the group manager can prove the validity or invalidity

of signatures.

• Traceability: The group manager can identify the signer of a valid signature.

A convertible group undeniable signature scheme allows the group manager to turn

all or select group undeniable signatures into group signatures. To present our scheme

clearly, we divide the operations of our scheme into the following.

CHAPTER 5. GROUP UNDENIABLE SIGNATURES WITH CONVERTIBILITY 102

• System setup: The group manager generates the group’s secret and public keys.

• Join: To become a group member, a nonmember person first generates his secret

key and membership key. He then registers the membership key with the group

manager. The group manager finally sends him the membership certificate.

• Sign: A group member signs messages using his secret key, his membership

certificate, and the group public key.

• Signature confirmation protocol: To validate a signature requires interacting

with the group manager.

• Signature denial protocol: The group manager can prove to anyone that an

invalid signature is indeed invalid through a signature denial protocol.

• Open: The group manager can trace the identity of the member who signs a

given message.

• Conversion: Conversion involves receipt generations and verification with the

help of a receipt.

1. Individual receipt generation: Given a message, an alleged signature, and

the group secret key, the group manager can generate an individual receipt

by which anyone can verify whether the alleged signature is valid. A single

group undeniable signature can be converted into a group signature by

releasing its individual receipt.

2. Individual verification: Given a message, an alleged signature, an individ-

ual receipt, and the group public key, one can check whether the receipt

is valid with respect to the alleged signature. If the receipt is valid, the

alleged signature can be verified using the receipt.

3. Universal receipt generation: Given the group secret key, the group man-

ager can generate a universal receipt by which anyone can verify whether

a signature from the group is valid. A group undeniable signature scheme

can be converted into a group signature scheme by releasing the universal

receipt.

CHAPTER 5. GROUP UNDENIABLE SIGNATURES WITH CONVERTIBILITY 103

4. Universal verification: Given a universal receipt and the group public key,

one can check whether the receipt is valid. If the receipt is valid, anyone

can verify any signature with the receipt.

In addition to anonymity, nontransferability, and traceability, a group undeniable

signature scheme should also satisfy the following security properties.

• Unforgeability: Only group members can sign on behalf of the group.

• Exculpability: Neither the group manager nor a group member can sign on

behalf of other group members.

• Unlinkability: No one except the group manager can tell whether two different

signatures are generated by the same group member.

• Coalition resistance: Any colluding subset of group members cannot generate

valid signatures that can not be traced by the group manager.

• Zero knowledge: The confirmation and denial protocols reveal no extra infor-

mation beyond the validity or invalidity of signatures.

The efficiency of a group undeniable signature scheme involves the following param-

eters of interest.

• The size of the group undeniable signature.

• The size of the group public key.

• The complexity of System setup, Join and Open.

• The complexity of Sign and Verify (including the confirmation and deniable

protocols).

It is desirable that these parameters are independent of the number of group members.

5.3.2 Realization of the Proposed Scheme

We now describe the details of the proposed scheme in the following.

CHAPTER 5. GROUP UNDENIABLE SIGNATURES WITH CONVERTIBILITY 104

System Setup

The group manager computes the following values to obtain the group secret key and

the group public key.

• n = p1p2, where both pi = 2qi + 1 and qi are primes for i = 1, 2.

• An RSA public key (q1q2, eR) and secret key dR.

• Integer g ∈ Z∗n with ordng = q1q2.

• f = gr1 , u = gr2 , t = ua, Sb = gb, where r1, r2, a, b ∈R Z∗q1q2
, and all arithmetics

are modulo n.

• e, d ∈ Z∗q1q2
such that ed ≡ 1 (mod q1q2).

• Sd = fd mod n.

It is important that n be chosen such that factoring n and solving the DL problem

in Z∗n are intractable. By Fact 2.2.24, we can obtain g with order q1q2. By Fact

2.2.10(1), the orders of f, u, t, Sb, and Sd are all q1q2. The group manager keeps

(a, b, d, e, dR, p1, p2) as the group secret key and publishes (g, f, u, t, eR, Sd, Sb, n) as

the group public key.

Join

When user i wants to join the group, he chooses a secret key yi ∈R Zn and computes

his membership key zi = gyi mod n. We assume that gcd(yi, q1q2) = 1. User i sends

zi to the group manager and proves to the group manager that she knows the discrete

logarithm of zi without revealing yi (see [43, 98] for the protocol). Next the group

manager picks ci ∈ Z∗q1q2
such that (zig

ci)q1 6≡ 1 (mod n) and (zig
ci)q2 6≡ 1 (mod n).

Lemma 5.2.2 shows that gcd(yi+ci, q1q2) = 1, and by Lemma 5.2.3 ci can be obtained

by testing at most three consecutive integers. Then the group manager computes user

i’s membership certificate as (xi, vi, wi), where

xi = gci mod n,

vi = (ci + b)dR mod q1q2,

wi = (zixi)
d mod n,

CHAPTER 5. GROUP UNDENIABLE SIGNATURES WITH CONVERTIBILITY 105

and sends (xi, vi, wi) to user i. Note that

wi = (zixi)
d mod n = (gyi+ci)d mod n. (5.1)

The 4-tuple (yi, xi, vi, wi) is called a valid signing key. It is important to note that

the group manager must choose distinct ci’s for different joining users and must not

reveal ci to anybody. Fact 2.2.10(1) implies ord(zi) = ord(xi) = ord(wi) = q1q2.

Sign

Given a message m, user i can generate signature S by computing the following values:

• ĝ = gr mod n for r ∈R Zn (assume gcd(r, q1q2) = 1).

• Z0 = Sr
b mod n.

• Z1 = ĝyi mod n.

• Z2 = xr
i mod n.

• A1 = gyiur mod n.

• A2 = tr mod n.

• S0 = SKREP [(α, β) : ĝ = gβ mod n∧Z0 = Sβ
b mod n∧Z1 = ĝα mod n∧A1 =

gαuβ mod n ∧ A2 = tβ mod n](m).

• S1 = SKRDL[γ : Z2Z0 ≡ ĝγeR (mod n)](m).

• S2 = wr
i mod n.

User i’s group undeniable signature for m is

S = (ĝ, Z0, Z1, Z2, A1, A2, S0, S1, S2).

Note that Z2Z0 ≡ ĝci ĝb ≡ ĝci+b (mod n), Z1Z2 ≡ ĝyi+ci (mod n) and

S2 ≡ wr
i ≡ ((gyi+ci)d)r ≡ ((ĝ)yi+ci)d ≡ (Z1Z2)

d (mod n). (5.2)

Because gcd(yi + ci, q1q2) = 1 and gcd(d, q1q2) = 1, the orders of Z1Z2 and S2 are q1q2

by Fact 2.2.10(1). In addition, the orders of ĝ, Z0, Z1, Z2, A2 are also q1q2. We call

CHAPTER 5. GROUP UNDENIABLE SIGNATURES WITH CONVERTIBILITY 106

S a valid group undeniable signature if S0 and S1 are correct and S2 = (Z1Z2)
d mod

n. Obviously, if S is generated using a valid signing key, then S is a valid group

undeniable signature.

We briefly explain what roles some of the elements in S play. First, S0 proves

that the same random number r is used in the computation of ĝ, Z0, A1, and A2, and

that the same exponent y ∈ Z is used in Z1 = ĝy mod n and A1 = gyur mod n. S1

proves that user i knows the knowledge of an eR-th root of the discrete logarithm of

Z2Z0 to base ĝ. Finally, the verifier must interact with the group manager to verify

whether S2 = (Z1Z2)
d mod n via the signature confirmation and denial protocols.

Signature Confirmation Protocol

A signature confirmation protocol is an interactive protocol between the group man-

ager and the verifier whereby the group manager can convince the verifier that the

signature is valid. However, the group manager cannot deceive the verifier into ac-

cepting an invalid signature as valid except with a very small probability. In the

following, we denote by P the group manager and by V the verifier. In the signature

confirmation protocol, common inputs to P and V include the message m, the group

public key, and the alleged signature S. The secret input to P is the group secret

key.

To be convinced that S is valid, V first verifies S0 and S1. If either is incorrect,

then V recognizes that S is invalid. Otherwise, P and V perform the following steps:

Step 1: V chooses e1, e2 ∈R Zn and computes A = Se1
2 Se2

d mod n. Then V sends A to

P .

Step 2: P computes B = Ae mod n and sends B to V .

Step 3: V verifies whether B = (Z1Z2)
e1f e2 mod n. If the equality holds, then V

accepts S as a valid signature for m.

In the following, we first show that V accepts valid signatures. We then show

that P cannot make V accept invalid signatures as valid except with a very small

probability.

CHAPTER 5. GROUP UNDENIABLE SIGNATURES WITH CONVERTIBILITY 107

Theorem 5.3.1. If S is a valid group undeniable signature, then the verifier will

accept S as a valid signature.

Proof. S0 and S1 must be correct. Because S2 = (Z1Z2)
d mod n, we have

B ≡ Ae ≡ ((S2)
e1(Sd)

e2)e ≡ (Z1Z2)
e1f e2 (mod n).

Theorem 5.3.2. If S is not a valid group undeniable signature, then the verifier will

accept S as a valid signature with probability ≤ 1/(q1q2).

Proof. If either S0 or S1 is incorrect, the verifier recognizes S as invalid. Now suppose

S0 and S1 are correct. Because S is invalid, S2 6= (Z1Z2)
d mod n. P can make V

accept the signature S only if P can find a B such that

B = (Z1Z2)
e1f e2 mod n (5.3)

A = Se1
2 Se2

d mod n. (5.4)

As the order of f is q1q2, we let A = f i, B = f j, S2 = fk, and Z1Z2 = f `, where

0 ≤ i, j, k, ` < q1q2 and all arithmetics are modulo n. Recall Sd = fd mod n. From

Eqs. (5.3) and (5.4), we have

j ≡ `e1 + e2 (mod q1q2),

i ≡ ke1 + de2 (mod q1q2).

As fk 6≡ f `d (mod n), we have k 6≡ `d (mod q1q2) and the linear equations have a

unique solution for (e1, e2) for 0 ≤ e1, e2 < q1q2.

Because the orders of S2 and Sd are q1q2, there are q1q2 pairs (e1, e2) for 0 ≤
e,e2 < q1q2 satisfying Eq. (5.4). P cannot identify which among them was used to

compute A by V . In addition, because the orders of Z1Z2 and f are q1q2, each of these

possible q1q2 pairs (e1, e2) corresponds to a different j and hence B. Consequently,

the probability that P will give V the correct B is 1/(q1q2).

In order to state the protocol clearly, the above steps omit the zero-knowledge part.

However, there are well-known techniques [27, 106, 108] to add the zero-knowledge

property to the above protocol as follows. Instead of P sending B in Step 2, he sends

CHAPTER 5. GROUP UNDENIABLE SIGNATURES WITH CONVERTIBILITY 108

a commitment of B to V using a commitment scheme [27, 168], after which V reveals

to P the values of e1 and e2. After checking that B ≡ (Z1Z2)
e1f e2 (mod n), P sends

B to V . V checks that B corresponds to the value committed by P and then performs

the test of Step 3. In this way, if V knows e1 and e2, he can compute B. Hence, the

zero-knowledge property is achieved through the following two characteristics of the

commitment scheme: (1) It is infeasible for V to derive B from the commitment of

B, and (2) P cannot find B′ such that B′ and B have the same commitment.

Signature Denial Protocol

A signature denial protocol allows P to convince V of the fact that an invalid signature

is indeed invalid. However, P cannot make V believe that a valid signature is invalid

except with a very small probability. In the denial protocol, the common inputs to

P and V include two system global constants C1 and C2, the message m, the group

public key, and the alleged signature S. The secret input to P is the group secret

key.

We now present how P can make V accept an invalid signature S as invalid. V
starts by checking S0 and S1. If either is incorrect, then V recognizes that S is invalid.

Otherwise, P and V repeat the following steps C2 times.

Step 1: V chooses e1 ∈R ZC1 , e2 ∈R Zn and computes D1 = (Z1Z2)
e1f e2 mod n and

D2 = Se1
2 Se2

d mod n. Then V sends D1 and D2 to P .

Step 2: P finds B such that D1/D
e
2 ≡ (Z1Z2/S

e
2)

B (mod n) by trying B = 0, 1, . . . , C1−
1 and sends B to V .

Step 3: V checks whether B = e1. If the equality holds, then V is convinced that S

is invalid.

If V is convinced of S’s invalidity C2 times, V will accept S as invalid. It is noteworthy

that P performs O(C1C2) operations.

The protocol satisfies the following two properties. First, P can convince V of

the fact that an invalid signature is indeed invalid. Second, P cannot fool V into

accepting a valid signature as invalid except with a small probability.

CHAPTER 5. GROUP UNDENIABLE SIGNATURES WITH CONVERTIBILITY 109

Theorem 5.3.3. If S is not a valid group undeniable signature, then the verifier will

accept S as an invalid signature.

Proof. If S0 or S1 is incorrect, the verifier will recognize S as an invalid signature.

Suppose S0 and S1 are both correct. Because S is invalid, S2 6= (Z1Z2)
d mod n and

therefore Se
2 6≡ Z1Z2 (mod n). As D1/D

e
2 ≡ ((Z1Z2)

e1f e2)/(Se1
2 Se2

d)e ≡ (Z1Z2/S
e
2)

e1

(mod n), P can always find the required e1 as B. So V will accept S as an invalid

signature.

Theorem 5.3.4. If S is a valid group undeniable signature, then the verifier will

accept S as an invalid signature with probability 1/CC2
1 .

Proof. Because S is valid, S0 and S1 are correct and S2 = (Z1Z2)
d mod n. There-

fore Se
2 ≡ Z1Z2 (mod n). As D1/D

e
2 ≡ ((Z1Z2)

e1f e2)/(Se1
2 Se2

d)e ≡ (Z1Z2/S
e
2)

e1 ≡
(Z1Z2/(Z1Z2)

de)e1 ≡ 1 (mod n), P will guess e1 correctly with probability 1/C1 in

each round. So V will accept S as an invalid signature with probability 1/CC2
1 .

For simplicity the above protocol omits the zero-knowledge part. We can add the

zero-knowledge property to the above protocol as follows: Instead of P sending B in

Step 2, he sends a commitment of B to V using a commitment scheme [27, 168], after

which V reveals to P the value of e1. After checking that B = e1, P sends B to V . V
checks that B corresponds to the value committed by P and then performs the test

of Step 3. Consequently, the zero-knowledge property is achieved as explained in the

signature confirmation protocol.

Open

Given a valid signature S, the group manager can compute

A1A
−(a−1 mod q1q2)
2 mod n,

which equals

(gyiur)((ua)r)−(a−1 mod q1q2) mod n = gyi mod n.

The signer with the membership key zi = gyi mod n can be traced.

CHAPTER 5. GROUP UNDENIABLE SIGNATURES WITH CONVERTIBILITY 110

Conversion

In the phase, the group manager converts all or select group undeniable signatures

into group signatures. Details of operations are described below.

1. Individual receipt generation.

Let S be a signature for message m. The group manager chooses r ∈R Z∗q1q2

and computes S’s individual receipt as R = (f̃ , R1, R2, R3), where

f̂ = f r mod n,

R1 = (Z1Z2)
r mod n,

H = H(m ‖ f̂ ‖ R1) (assume gcd(H, q1q2) = 1),

R2 = SKREP [α : R1 = (Z1Z2)
α mod n ∧ f̂ = fα mod n,](m),

R3 = (r −Hd) mod q1q2.

Obviously it is infeasible to derive the secret key d from the individual receipt.

2. Individual verification.

Note that fR3SH
d ≡ fR3fHd (mod n). Hence, fR3SH

d ≡ f r (mod n) if and only

if R3 ≡ (r−Hd) (mod q1q2). To validate R, the verifier checks the correctness

of R2 and tests whether fR3SH
d ≡ f̂ (mod n). If both succeed, then the receipt

R is valid; otherwise, the receipt is invalid. If R is valid, then the alleged

signature S can be verified by checking the correctness of S0 and S1 and testing

whether (Z1Z2)
R3SH

2 ≡ R1 (mod n) (see Lemma 5.3.1 below). Hence, with a

valid individual receipt, the alleged signature can be verified.

Lemma 5.3.1. Assume R is valid. Then, (Z1Z2)
R3SH

2 ≡ R1 (mod n) if and

only if S2 = (Z1Z2)
d mod n.

Proof. Because R is valid, we have R3 ≡ (r − Hd) (mod q1q2) and thus

(Z1Z2)
R3SH

2 ≡ (Z1Z2)
(r−Hd)SH

2 (mod n). Suppose (Z1Z2)
R3SH

2 ≡ R1 (mod n).

Then (Z1Z2)
(r−Hd)SH

2 ≡ (Z1Z2)
r (mod n). So SH

2 ≡ (Z1Z2)
Hd (mod n). Thus

S2 = (Z1Z2)
d mod n. For the opposite direction, if S2 = (Z1Z2)

d mod n, then

(Z1Z2)
R3SH

2 ≡ (Z1Z2)
(r−Hd)((Z1Z2)

d)H ≡ (Z1Z2)
r (mod n).

CHAPTER 5. GROUP UNDENIABLE SIGNATURES WITH CONVERTIBILITY 111

3. Universal receipt generation.

To make all signatures universally verifiable, the group manager releases secret

e as the universal receipt. According to the basic assumption behind RSA, this

does not compromise the security of the secret key d.

4. Universal verification.

To validate e, the verifier tests whether f = Se
d mod n. If the equality holds,

then e is valid; otherwise, e is invalid. If e is valid, then all alleged signatures

can be verified by checking the correctness of S0 and S1 and testing whether

Se
2 ≡ Z1Z2 (mod n). This works because S2 = (Z1Z2)

d mod n if and only

if Se
2 ≡ Z1Z2 (mod n) because ed ≡ 1 (mod q1q2). Consequently, the group

undeniable signature scheme can be converted into a group signature scheme

by releasing the universal receipt e. In addition, our scheme allows the group

manager to delegate the ability to confirm and deny signatures to trusted parties

by issuing e to them only.

5.4 Security Analysis

Under the random oracle model, the security of our scheme is based on the standard

cryptographic assumptions described in Section 5.2. In the following we show that

the proposed scheme satisfies the security properties of group undeniable signatures.

5.4.1 Exculpability

Because the DL problem is intractable, neither the group manager nor a group mem-

ber can derive the secret key of another group member. Thus it is infeasible to frame

another member.

5.4.2 Unforgeability

A valid signature (ĝ, Z0, Z1, Z2, A1, A2, S0, S1, S2) must contain correct S0, S1, and S2.

To be correct, it must hold that S2 = (Z1Z2)
d mod n by Eq. (5.2). However, using

adaptive chosen message attacks, the attacker can only obtain Zd mod n with random

Z. Let S2 = Zd mod n. Then the attacker must obtain Z1 and Z2 such that Z1Z2 ≡ Z

CHAPTER 5. GROUP UNDENIABLE SIGNATURES WITH CONVERTIBILITY 112

(mod n) and both S0 and S1 are correct. Note that S0 = SKREP [(α, β) : ĝ =

gβ mod n∧Z0 = Sβ
b mod n∧Z1 = ĝα mod n∧A1 = gαuβ mod n∧A2 = tβ mod n](m)

and S1 = SKRDL[γ : Z2Z0 ≡ ĝγeR (mod n)](m). To obtain S0, the attacker must

choose α and β. Thus Z0 = Sβ
b mod n and Z1 = ĝα mod n. Let c be the discrete

logarithm of Z2 = ZZ−1
1 mod n to base ĝ. Because c, b, and dR are unknown and

the DL problem is intractable, it is infeasible to derive γ ≡ (c + b)dR (mod q1q2) so

that ĝγeR ≡ Z2Z0 (mod n). Therefore, it is infeasible to generate S1. Simultaneously

generating S0, S1, and S2 is thus infeasible.

It is known that S0 and S1 are existentially unforgeable against adaptive cho-

sen message attacks [38, 184]. Consequently, the proposed scheme is existentially

unforgeable against adaptive chosen message attacks.

5.4.3 Anonymity, Nontransferability, and Unlinkability

If the signature is simulatable, then it itself reveals no information, and thus the three

properties will hold. So it suffices to show that the signature can be simulated. Let

S be a valid signature. Because the order of u is q1q2, we can assume the signer’s

membership key zi equals urz mod n for some rz. So A1 ≡ gyiur ≡ ziu
r ≡ urz+r

(mod n). To generate an S̃ indistinguishable from actual signatures, the simulator

randomly chooses r̄, r̃, ỹ, c̃, d̃ ∈ Z relatively prime to q1q2 (also gcd(ỹ + c̃, q1q2) =

1) and then computes g̃ = gr̃, Z̃0 = S r̃
b , Z̃1 = g̃ỹ, Z̃2 = g̃c̃, Ã1 = ur̄, Ã2 = tr̃, and

S̃2 = (Z̃1Z̃2)
d̃, where all arithmetics are modulo n. Obviously, g̃, Z̃0, Ã1, and Ã2

are indistinguishable from ĝ, Z0, A1, and A2, respectively. Because the EDL problem

is intractable, Z̃1, Z̃2 and S̃2 are indistinguishable from Z1, Z2 and S2, respectively

[98]. In addition, S0, and S1 are simulatable in the random oracle model [184].

Furthermore, note that the simulator generates S̃ following the specification of the

system. So S̃ is indistinguishable from the actual signature S. Hence, the signature

is simulatable.

CHAPTER 5. GROUP UNDENIABLE SIGNATURES WITH CONVERTIBILITY 113

5.4.4 Coalition Resistance

First we show that three colluding members may together compute gd mod n effi-

ciently. Any two colluding members i and j can compute

T1 = yi − yj,

T2 = veR
i − veR

j .

Note that T2 ≡ veR
i − veR

j ≡ (ci + b) − (cj + b) ≡ ci − cj (mod q1q2). By Eq. (5.1),

the colluding members i and j can compute

T3 = wi/wj mod n

= g(yi+ci)d/g(yj+cj)d mod n

= g[(yi−yj)+(ci−cj)]d mod n

= g(T1+T2)d mod n.

Assume the number of the colluding members exceeds two. Two of the colluding

members can obtain (T ′
1, T

′
2, T

′
3) and another two of the colluding members can ob-

tain (T ′′
1 , T ′′

2 , T ′′
3). Suppose that gcd(T ′

1 + T ′
2, T

′′
1 + T ′′

2) = 1, then by the extended

Euclidean algorithm they can find E1 and E2 such that E1(T
′
1 + T ′

2) + E2(T
′′
1 + T ′′

2) =

1. Finally, they calculate gd mod n as (T ′
3)

E1(T ′′
3)E2 mod n because (T ′

3)
E1(T ′′

3)E2 ≡
(g(T ′1+T ′2)d)E1(g(T ′′1 +T ′′2)d)E2 ≡ gd (mod n).

We now show that it is infeasible for colluding members to generate an untraceable

signature (ĝ, Z0, Z1, Z2, A1, A2, S0, S1, S2) such that S0, S1, and S2 are correct even if

gd mod n is available. To be correct, it must hold that S2 = (Z1Z2)
d mod n. In

addition, the two values Z1 and Z2 need to make S0 and S1 correct. Here S0 =

SKREP [(α, β) : ĝ = gβ mod n∧Z0 = Sβ
b mod n∧Z1 = ĝα mod n∧A1 = gαuβ mod

n∧A2 = tβ mod n](m) and S1 = SKRDL[γ : Z2Z0 ≡ ĝγeR (mod n)](m). To obtain

an untraceable S0, the colluding members choose α and β, where α differs from any of

the colluding members’ secrets yi. To obtain S1, the colluding members choose γ. Let

c satisfy γeR ≡ (c + b) (mod q1q2). Because solving b is infeasible (see Theorem 5.4.1

below), deriving such a c from γeR is infeasible. However, such a c must be used for

S2 = (gβ)d(α+c) mod n by Eq. (5.2). But the colluding members do not know which c

to use. Furthermore, by the DH problem assumption, computing (gβ)d(α+c) mod n is

CHAPTER 5. GROUP UNDENIABLE SIGNATURES WITH CONVERTIBILITY 114

infeasible if (gβ)d mod n and (gβ)(α+c) mod n are known but d and α+c are unknown

(here, we need gd mod n). Accordingly, it is infeasible for the colluding members to

obtain α, β, γ, and (gβ)d(α+c) mod n simultaneously. Hence, the proposed signature

scheme is coalition-resistant.

Theorem 5.4.1. Under the DL assumption, solving for b is infeasible for a group

member even if he has access to other members’ secret keys and membership certifi-

cates.

Proof. Suppose for contradiction that b can be solved. We next show that the discrete

logarithm of Sb = gb mod n with known q1 and q2 can be solved, contradicting the

DL assumption. We simulate members’ secret keys and membership certificates as

follows.

1. Choose yi ∈R Zn such that gcd(yi, q1q2) = 1.

2. Choose c′i satisfying

(a) gcd((gc′i/Sb mod n) + 1, n) = 1,

(b) gcd((gc′i/Sb mod n)− 1, n) = 1,

(c) (gyi(gc′i/Sb))
q1 6≡ 1 (mod n),

(d) (gyi(gc′i/Sb))
q2 6≡ 1 (mod n).

Note that gc′i/Sb = gc′i−b (mod n) and c′i plays the role of (ci + b) mod q1q2 in

the Join phase. Conditions (a) and (b) ensure that gcd(ci, q1q2) = 1 by Lemma

5.2.5, and conditions (c) and (d) ensure that gcd(yi + ci, q1q2) = 1 by Lemma

5.2.2. We now show that c′i can be obtained efficiently. By Lemma 5.2.6 three

consecutive integers satisfying conditions (a) and (b) can be obtained by testing

at most nine consecutive integers. Then by Lemma 5.2.3, c′i can be obtained

by testing the three consecutive integers for conditions (c) and (d). With c′i,

members’ membership certificates are simulated as (xi, vi, wi), where

xi = gc′i/Sb mod n,

vi = (c′i)
dR mod q1q2, dR ∈R Z∗φ(q1q2),

wi = (gyixi)
d mod n, d ∈R Z∗q1q2

.

Thus we can solve for b using the secret keys and membership certificates above.

CHAPTER 5. GROUP UNDENIABLE SIGNATURES WITH CONVERTIBILITY 115

5.5 Conclusions

Group undeniable signatures are like group signatures except that verifying signature

needs the participation of the group manager. In this chapter, we employ signatures

of knowledge and undeniable signature concepts to construct the first convertible

group undeniable signature scheme in which the group manager can turn all or select

group undeniable signatures into group signatures without compromising the security

of the secret key used to generate signatures. The proposed scheme also allows the

group manager to delegate the ability to confirm and deny signatures to trusted

parties without providing them the capability of generating signatures. Moreover,

the sizes of the group public key and signatures are independent of the group size.

This makes the system scalable. Under standard cryptographic assumptions and the

random oracle model, the present scheme is proved to be anonymous, nontransferable,

traceable, unforgeable, exculpable, and unlinkable. Furthermore, any colluding subset

of group members cannot generate valid signatures that cannot be traced. Finally,

the signature confirmation and denial protocols could be made zero-knowledge using

the commitment techniques.

Chapter 6

Concluding Remarks

Cryptology is a very important technology in electronic security systems. At the

earliest stage of computer system development, protecting individual privacy and au-

thenticity may be sufficient for ensuring information security. However, this becomes

insufficient after the advent of computer networks. Networks bring many new types

of relationships to computers and to the society, as well as many new sources and

types of risks and threats. To cope with these new risks and threats, new methods

for information protection are developed. Thus many forms of confidential commu-

nication between two or more parties may be performed over an insecure computer

network. In this thesis we present schemes for two new group-oriented applications: a

fully public-key traitor-tracing scheme and a convertible group undeniable signature

scheme. In addition, we study many basic cryptographic techniques that are essential

when one constructs complex security systems.

For traitor-tracing applications, we propose a fully public-key traitor-tracing scheme

in which every subscriber can prevent others, including the distributor, from learning

his secret key. By the choice of parameters, our scheme can be plaintext-secure or

semantically secure against a passive generic adversary. There are several desirable

properties in our scheme.

1. Key longevity and subscribers’ anonymity are achieved.

2. It is a simple task for the distributor to recompute the encryption key if needed.

3. The tracing algorithm can capture all and only traitors even if the pirate decoder

116

CHAPTER 6. CONCLUDING REMARKS 117

is a black box.

For group undeniable signatures, we are the first to introduce the concept of

such signatures. They are more suitable than group signatures in applications where

signatures are generated for sensitive, nonpublic data. The first convertible group

undeniable signature is proposed in which the group manager can turn select group

undeniable signatures into group signatures without compromising the security of the

secret key used to generate signatures. There are several desirable properties in the

proposed scheme.

1. The group manager can delegate the ability to confirm and deny signatures to

trusted parties without providing them the capability of generating signatures.

2. The sizes of the group public key and signatures are independent of the group

size.

3. Under standard cryptographic assumptions and the random oracle model, our

scheme is proved to be anonymous, nontransferable, traceable, unforgeable,

exculpable, and unlinkable.

4. Any colluding subset of group members cannot generate valid signatures that

cannot be traced.

5. The signature confirmation and denial protocols could be made zero-knowledge

using the commitment techniques.

Further we list several relative problems that deserve to be studied in the future.

1. Key revocation for group (undeniable) signatures is important. When misusing

anonymity, a cheating member must be revoked by the group manager, making

him unable to sign in the future but without sacrificing the security of past

group (undeniable) signatures. It is desirable to design an efficient group (un-

deniable) signature scheme such that after key revocation, the private keys of

the remaining members need not be changed.

2. In a group, a smart security policy is that a set of parties must cooperate in

order to carry out some specific task. A typical example is the Shamir threshold

CHAPTER 6. CONCLUDING REMARKS 118

scheme [204]. Because different group may have different access strategies, it

seems interesting to explore group-oriented encryption or signature schemes

considered under various threshold situations.

3. In our fully public-key traitor-tracing scheme, the size of message transmission

is dependent on the number of total subscribers. It is desirable to construct a

scheme such that the size of message transmission is independent of the number

of total subscribers.

Bibliography

[1] M. Agrawal, N. Kayal, and N. Saxena, “PRIMES in P,” 2002.

http://www.cse.iitk.ac.in/news/primality.html.

[2] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of

Computer Algorithm. Addison-Wesley, 1974.

[3] R. Anderson and S. Vaudenay, “Minding your p’s and q’s,” in Advances in

Cryptology—ASIACRYPT ’96, vol. 1163 of LNCS, pp. 26–35, Springer-Verlag,

1996.

[4] G. Ateniese, M. Joye, and G. Tsudik, “On the difficulty of coalition-resistant in

group signature schemes,” in SCN’99, Second Workshop on Security in Com-

munication Networks, 1999.

[5] G. Ateniese and G. Tsudik, “Some open issues and new directions in group sig-

nature schemes,” in Financial Cryptography, FC’99, vol. 1648 of LNCS, pp. 196–

211, Springer-Verlag, 1999.

[6] G. Ateniese, J. Camenisch, M. Joye, and G. Tsudik, “A practical and provably

secure coalition-resistant group signature scheme,” in Advances in Cryptology—

CRYPTO 2000, vol. 1880 of LNCS, pp. 255–270, Springer-Verlag, 2000.

[7] B. Barak, “How to go beyond the black-box simulation barrier,” in Proceed-

ings of the 35th Annual Symposium on Foundations of Computer Science,

FOCS ’01, pp. 106–115, IEEE Computer Society, 2001.

119

BIBLIOGRAPHY 120

[8] M. Bellare and O. Goldreich, “On defining proofs of knowledge,” in Advances

in Cryptology—CRYPTO ’92, vol. 740 of LNCS, pp. 390–420, Springer-Verlag,

1992.

[9] M. Bellare and P. Rogaway, “Random oracles are practical: A paradigm for de-

signing efficient protocols,” in CCS ’93, Proceedings of the 1st ACM Conference

on Computer and Communications Security, pp. 62–73, ACM, 1993.

[10] M. Ben-Or, O. Goldreich, S. Goldwasser, J. H̊astad, J. Kilian, S. Micali, and

P. Rogaway, “Everything provable, is provable in zero-knowledge,” in Advances

in Cryptology—CRYPTO ’88, vol. 403 of LNCS, pp. 37–56, Springer-Verlag,

1990.

[11] M. Ben-Or, S. Goldwasser, and A. Wigderson, “Completeness theorems for

non-cryptographic fault-tolerant distributed computation,” in Proceedings of

the 20th Annual Symposium on Theory of Computing (STOC ’88), pp. 1–10,

ACM Press, 1988.

[12] S. Berkovits, “How to broadcast A secret,” in Advances in Cryptology—

EUROCRYPT ’91, vol. 547 of LNCS, pp. 535–541, Springer-Verlag, 1991.

[13] D. Bleichenbacher, “Generating ElGamal signatures without knowing the secret

key,” in Advances in Cryptology—EUROCRYPT ’96, vol. 1070 of LNCS, pp. 10–

18, Springer-Verlag, 1996.

[14] M. Blum, “Coin flipping by telephone: A protocol for solving impossible prob-

lems,” in Proceedings of the 24th IEEE Computer Conference, IEEE COMP-

CON, pp. 133–137, 1982.

[15] M. Blum, P. Feldman, and S. Micali, “Non-interactive zero-knowledge and its

applications,” in Proceedings of the 20th Annual Symposium on Theory of Com-

puting (STOC), pp. 103–112, ACM Press, 1988.

[16] C. Blundo and A. Cresti, “Space requirements for broadcast encryption,” in

Advances in Cryptology—EUROCRYPT ’94, vol. 950 of LNCS, pp. 287–298,

Springer-Verlag, 1994.

BIBLIOGRAPHY 121

[17] C. Blundo, L. A. F. Mattos, and D. R. Stinson, “Trade-offs between communi-

cation and storage in unconditionally secure schemes for broadcast encryption

and interactive key distribution,” in Advances in Cryptology—CRYPTO ’96,

vol. 1109 of LNCS, pp. 387–400, Springer-Verlag, 1996.

[18] B. D. Boer, “Diffie-Hellman is as strong as discrete log for certain primes,”

in Advances in Cryptology—CRYPTO ’88, vol. 403 of LNCS, pp. 520–539,

Springer-Verlag, 1990.

[19] D. Boneh and M. Franklin, “An efficient public key traitor tracing scheme,”

in Advances in Cryptology—CRYPTO ’99, vol. 1666 of LNCS, pp. 338–353,

Springer-Verlag, 1999.

[20] D. Boneh and M. Franklin, “Anonymous authentication with subset queries,”

in CCS ’99, Proceedings of the 6th ACM Conference on Computer and Com-

munications Security, pp. 113–119, ACM, 1999.

[21] A. Bosselaers, H. Dobbertin, and B. Preneel, “RIPEMD-160: A strengthened

version of RIPEMD,” in Fast Software Encryption: Third International Work-

shop, vol. 1039 of LNCS, pp. 71–82, Springer-Verlag, 1996.

[22] J. Boyar, D. Chaum, I. Damg̊ard, and T. Pederson, “Convertible undeniable sig-

natures,” in Advances in Cryptology—CRYPTO ’90, vol. 537 of LNCS, pp. 189–

205, Springer-Verlag, 1991.

[23] C. Boyd, “Digital multisignatures,” in Cryptography and Coding, pp. 241–246,

Oxford University Press, 1989.

[24] B. O. Brachtl, D. Coppersmith, M. M. Hyden, S. M. Matyas, C. H. Meyer,

J. Oseas, S. Pilpel, and M. Schilling, “Data authentication using modification

detection codes based on a public one-way encryption function.” U.S. Patent #

4,908,861, 13, Mar 1990, 1990.

[25] S. A. Brands, Rethinking Public Key Infrastructures and Digital Certificates.

MIT Press, Cambridge, Massachusetts, 2000.

BIBLIOGRAPHY 122

[26] S. Brands, “An efficient off-line electronic cash system based on the represen-

tation problem,” Tech. Rep. CS-R9323, CWI, 1993.

[27] G. Brassard, C. Chaum, and C. Crepéau, “Minimum disclosure proofs of knowl-

edge,” Journal of Computer and System Sciences, vol. 37, no. 2, pp. 156–189,

1988.

[28] G. Brassard, C. Crépeau, R. Jozsa, and D. Langlois, “A quantum bit commit-

ment scheme provably unbreakable by both parties,” in Proceedings of the 34th

Annual Symposium on Foundations of Computer Science, FOCS ’93, pp. 362–

371, IEEE Computer Society, 1993.

[29] G. Brassard, C. Crépeau, and J. M. Robert, “Information theoretic reductions

among disclosure problems,” in Proceedings of the 27th Annual Symposium on

Foundations of Computer Science, FOCS ’88, pp. 168–173, IEEE Computer

Society, 1986.

[30] G. Brassard, C. Crépeau, and M. Yung, “Constant-round perfect zero-

knowledge computationally convincing protocols,” Theoretical computer sci-

ence, vol. 84, no. 1, pp. 23–52, 1991.

[31] G. Brassard and M. Yung, “One-way group actions,” in Advances in

Cryptology—CRYPTO ’90, vol. 537 of LNCS, pp. 94–107, Springer-Verlag,

1991.

[32] E. F. Brickell, “A fast modular multiplication algorithm with application to

two key cryptography,” in Advances in Cryptology: Proceedings of Crypto 82,

pp. 51–60, Plenum Press, New York and London, 1983.

[33] J. A. Buchmann, Introduction to Cryptography. Springer-Verlag, 2000.

[34] J. Camenisch, Group Signature Schemes and Payment Systems Based on the

Discrete Logarithm Problem. PhD thesis, ETH Zurich, 1998.

[35] J. Camenisch and M. Michels, “Separability and efficiency for generic group

signature schemes,” in Advances in Cryptology—CRYPTO ’99, vol. 1666 of

LNCS, pp. 413–430, Springer-Verlag, 1999.

BIBLIOGRAPHY 123

[36] J. Camenisch and A. Lysyanskaya, “An efficient system for non-transferable

anonymous credentials with optional anonymity revocation,” Report 2001/019,

Cryptology ePrint Archive, Mar. 2001.

[37] J. Camenisch and A. Lysyanskaya, “An identity escrow scheme with appointed

verifiers,” in Advances in Cryptology—CRYPTO 2001, vol. 2139 of LNCS,

pp. 388–407, Springer-Verlag, 2001.

[38] J. Camenisch and M. Stadler, “Efficient group signature schemes for large

groups (extended abstract),” in Advances in Cryptology—CRYPTO ’97,

vol. 1294 of LNCS, pp. 410–424, Springer-Verlag, 1997.

[39] J. Camenish, “Efficient and generalized group signatures,” in Advances in

Cryptology—EUROCRYPT ’97, vol. 1233 of LNCS, pp. 465–479, Springer-

Verlag, 1997.

[40] R. Canetti, R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin, “Adaptive se-

curity for threshold cryptosystems,” in Advances in Cryptology—CRYPTO ’99,

vol. 1666 of LNCS, pp. 98–115, Springer-Verlag, 1999.

[41] R. Canetti, J. Kilian, E. Petrank, and A. Rosen, “Black-box concurrent zero-

knowledge requires (almost) logarithmically many rounds,” SIAM Journal on

Computing, vol. 32, no. 1, pp. 1–47, 2002. Preliminary version in STOC ’01.

[42] D. Chaum, C. Crépeau, and I. Damg̊ard, “Multi-party unconditionally secure

protocols,” in Proceedings of the 20th Annual Symposium on Theory of Com-

puting (STOC), pp. 11–19, ACM, 1988.

[43] D. Chaum, J.-H. Evertse, and J. van der Graaf, “An improved protocol for

demonstrating possession of a discrete logarithm and some generalizations,” in

Advances in Cryptology—EUROCRYPT ’87, vol. 304 of LNCS, pp. 127–141,

Springer-Verlag, 1987.

[44] D. Chaum and E. v. Heyst, “Group signatures,” in Advances in Cryptology—

EUROCRYPT ’91, vol. 547 of LNCS, pp. 257–265, Springer-Verlag, 1991.

BIBLIOGRAPHY 124

[45] D. Chaum and T. P. Pedersen, “Wallet databases with observers,” in Advances

in Cryptology—CRYPTO ’92, vol. 740 of LNCS, pp. 89–105, Springer-Verlag,

1993.

[46] D. Chaum, E. van Heijst, and B. Pfitzmann, “Cryptographically strong un-

deniable signatures, unconditionally secure for the signer,” in Advances in

Cryptology—CRYPTO ’91, vol. 576 of LNCS, pp. 470–484, Springer-Verlag,

1991.

[47] D. Chaum, E. van Heijst, and B. Pfitzmann, “Cryptographically strong un-

deniable signatures, unconditionally secure for the signer,” in Advances in

Cryptology—CRYPTO ’91, vol. 576 of LNCS, pp. 470–484, Springer-Verlag,

1992.

[48] D. Chaum, “Zero-knowledge undeniable signatures,” in Advances in

Cryptology—EUROCRYPT ’90, vol. 473 of LNCS, pp. 458–464, Springer-

Verlag, 1991.

[49] D. Chaum, “Designated confirmer signatures,” in Advances in Cryptology—

EUROCRYPT ’94, vol. 950 of LNCS, pp. 86–91, Springer-Verlag, 1994.

[50] D. Chaum and J.-H. Evertse, “A secure and privacy-protecting protocol for

transmitting personal information between organizations,” in Advances in

Cryptology—CRYPTO ’86, vol. 263 of LNCS, pp. 118–167, Springer-Verlag,

1987.

[51] D. Chaum and H. van Antwerpen, “Undeniable signatures,” in Advances in

Cryptology—CRYPTO ’89, vol. 435 of LNCS, pp. 212–216, Springer-Verlag,

1990.

[52] D. L. Chaum, “Security without identification: transaction systems to make

big brother obsolete,” CACM, vol. 28, pp. 1030–1044, Oct. 1985.

[53] L. Chen, “Access with pseudonyms,” in Cryptography: Policy and Algorithms,

vol. 1029 of LNCS, pp. 232–243, Springer-Verlag, 1995.

BIBLIOGRAPHY 125

[54] L. Chen and T. Pesersen, “New group signature schemes,” in Advances in

Cryptology—EUROCRYPT ’94, vol. 950 of LNCS, pp. 171–181, Springer-

Verlag, 1995.

[55] L. Chen and T. P. Pedersen, “On the efficiency of group signatures

providing information-theoretic anonymity,” in Advances in Cryptology—

EUROCRYPT ’95, vol. 921 of LNCS, pp. 39–49, Springer-Verlag, 1995.

[56] C. H. Chiou and W. T. Chen, “Secure broadcasting using the secure lock,”

IEEE Transactions on Software Engineering, vol. 15, no. 8, pp. 929–934, 1989.

[57] B. Chor, A. Fiat, and M. Naor, “Tracing traitors,” in Advances in Cryptology—

CRYPTO ’94, vol. 839 of LNCS, pp. 257–270, Springer-Verlag, 1994.

[58] B. Chor, A. Fiat, M. Naor, and B. Pinkas, “Tracing traitors,” IEEE Transac-

tions on Information Theory, vol. 46, pp. 893–910, May 2000.

[59] H. Cohen, A Course in Computational Algebraic Number Theory, vol. 138 of

Graduate Texts in Mathematics. Springer-Verlag, 1993.

[60] C. Crépeau, “Equivalence between two flavors of oblivious transfer,” in Ad-

vances in Cryptology—CRYPTO ’87, vol. 293 of LNCS, pp. 350–354, Springer-

Verlag, 1987.

[61] C. Crépeau and J. Kilian, “Achieving oblivious transfer using weakened security

assumptions,” in Proceedings of the 29th Annual Symposium on Foundations of

Computer Science, FOCS ’88, pp. 42–52, IEEE Computer Society, 1988.

[62] C. Crépeau, “Efficient cryptographic protocols based on noisy channels,” in

Advances in Cryptology—EUROCRYPT ’97, vol. 1233 of LNCS, pp. 306–317,

Springer-Verlag, 1997.

[63] I. Damg̊ard, The Application of Claw Free Functions in Cryptography. PhD

thesis, Aarhus University, Mathematical Institute, 1988.

[64] I. Damg̊ard, “A design principle for hash functions,” in Advances in

Cryptology—CRYPTO ’89, vol. 435 of LNCS, pp. 416–427, Springer-Verlag,

1990.

BIBLIOGRAPHY 126

[65] I. Damg̊ard, J. Kilian, and L. Salvail, “On the (im)possibility of basing oblivious

transfer and bit commitment on weakened security assumptions,” in Advances

in Cryptology—CRYPTO ’99, vol. 1592 of LNCS, pp. 56–73, Springer-Verlag,

1999.

[66] I. Damg̊ard, T. P. Pedersen, and B. Pfitzmann, “On the existence of statis-

tically hiding bit commitment schemes and fail-stop signatures,” Journal of

Cryptology, vol. 10, no. 3, pp. 163–194, 1997.

[67] I. B. Damg̊ard, “Collision free hash functions and public key signatureschemes,”

in Advances in Cryptology—EUROCRYPT ’87, vol. 304 of LNCS, pp. 203–216,

Springer-Verlag, 1988.

[68] I. Damg̊ard, “Commitment schemes and zero-knowledge protocols,” in Lectures

on Data Security, vol. 1561 of LNCS, pp. 63–86, Springer-Verlag, 1999.

[69] I. Damg̊ard and E. Fujisaki, “A statistically-hiding integer commitment scheme

based on groups with hidden order,” in Advances in Cryptology—ASIACRYPT

2002, vol. 2501 of LNCS, pp. 125–142, Springer-Verlag, 2002.

[70] I. Damg̊ard and T. P. Pedersen, “New convertible undeniable signature

schemes,” in Advances in Cryptology—EUROCRYPT ’96, vol. 1070 of LNCS,

pp. 372–386, Springer-Verlag, 1996.

[71] I. B. Damg̊ard, “Payment systems and credential mechanisms with provable se-

curity against abuse by individuals,” in Advances in Cryptology—CRYPTO ’88,

vol. 403 of LNCS, pp. 328–335, Springer-Verlag, 1990.

[72] R. W. Davies and W. L. Price, “Digital signature—an update,” in Proc. In-

ternational Conference on Computer Communication, pp. 843–847, Elsevier,

1985.

[73] H. Delfs and H. Knebl, Introduction to Cryptography: Principles and Applica-

tions. Springer-Verlag, 2002.

BIBLIOGRAPHY 127

[74] B. den Boer and A. Bosselaers, “Collisions for the compression function of

MD5,” in Advances in Cryptology—EUROCRYPT ’93, vol. 765 of LNCS,

pp. 293–304, Springer-Verlag, 1994.

[75] Y. Desmedt and M. Yung, “Weakness of undeniable signature schemes,” in Ad-

vances in Cryptology—CRYPTO ’91, vol. 576 of LNCS, pp. 205–220, Springer-

Verlag, 1991.

[76] Y. Desmedt, “Society and group oriented cryptography: A new concept,” in Ad-

vances in Cryptology—CRYPTO ’87, vol. 293 of LNCS, pp. 120–127, Springer-

Verlag, 1988.

[77] Y. Desmedt and Y. Frankel, “Threshold cryptosystems,” in Advances in

Cryptology—CRYPTO ’89, vol. 435 of LNCS, pp. 307–315, Springer-Verlag,

1990.

[78] W. Diffie and M. Hellman, “New directions in cryptography,” IEEE Transac-

tions on Information Theory, vol. IT-22, pp. 644–654, Nov. 1976.

[79] H. Dobbertin, “Cryptanalysis of MD4,” Journal of Cryptology, vol. 11, pp. 253–

271, 1998.

[80] H. Dobbertin, “Cryptanalysis of MD5 compress.” Presented at the Rump-

session of EUROCRYPT ’96, 1996.

[81] D. Dolev, C. Dwork, and M. Naor, “Non-malleable cryptography,” in Pro-

ceedings of the 23rd Annual Symposium on Theory of Computing (STOC ’91),

pp. 542–552, ACM Press, 1991.

[82] D. Dolev, C. Dwork, and M. Naor, “Nonmalleable cryptography,” SIAM Jour-

nal on Computing, vol. 30, no. 2, pp. 391–437, 2000.

[83] C. Dwork, M. Naor, and A. Sahai, “Concurrent zero knowledge,” in Proceedings

of the 30th Annual Symposium on Theory Of Computing (STOC ’98), pp. 409–

418, ACM Press, 1998.

BIBLIOGRAPHY 128

[84] T. ElGamal, “A public key cryptosystem and a signature scheme based on

discrete logarithms,” in Advances in Cryptology — CRYPTO ’88, vol. 196 of

LNCS, pp. 10–18, Springer-Verlag, 1985.

[85] T. ElGamal, “A public key cryptosystem and a signature scheme based on

discrete logarithms,” IEEE Transactions on Information Theory, vol. 31, no. 4,

pp. 469–472, 1985.

[86] S. Even, O. Goldreich, and A. Lempel, “A randomized protocol for signing

contracts,” CACM, vol. 28, pp. 637–647, 1985.

[87] U. Feige, A. Fiat, and A. Shamir, “Zero-knowledge proofs of identity,” Journal

of Cryptology, vol. 1, no. 2, pp. 77–94, 1988.

[88] U. Feige and A. Shamir, “Witness indistinguishability and witness hiding pro-

tocols,” in Proceedings of the 22nd Annual Symposium on Theory of Computing

(STOC ’90), pp. 416–426, ACM Press, 1990.

[89] A. Fiat and M. Naor, “Broadcast encryption,” in Advances in Cryptology—

CRYPTO ’93, vol. 773 of LNCS, pp. 480–491, Springer-Verlag, 1993.

[90] A. Fiat and A. Shamir, “How to prove yourself: Practical solutions to iden-

tification and signature problems,” in Advances in Cryptology—CRYPTO ’86,

vol. 263 of LNCS, pp. 186–194, Springer-Verlag, 1987.

[91] FIPS 180-1, “Secure hash standard.” Federal Information Processing Standard

Publication 180-1, NIST, US department of commerce, 1995.

[92] FIPS 180-2, “Secure hash standard.” Federal Information Processing Standard

Publication 180-2 (Draft), NIST, US department of commerce, 2001.

[93] FIPS 186, “Digital signature standard.” Federal Information Processing Stan-

dard Publication 186, NIST, US department of commerce, 1994.

[94] A. Fujioka, T. Okamoto, and K. Ohta, “Interactive bi-proof systems and un-

deniable signature schemes,” in Advances in Cryptology—EUROCRYPT ’91,

vol. 547 of LNCS, pp. 243–256, Springer-Verlag, 1991.

BIBLIOGRAPHY 129

[95] E. Fujisaki and T. Okamoto, “Statistical zero-knowledge protocols to prove

modular polynomial relations,” IEICE Transaction of Fundamentals of Elec-

tronic Communications and Computer Science, vol. E82-A(1):, no. 1, pp. 81–92,

1999. Previous version in Crypto ’97.

[96] E. Gafni, J. Staddon, and Y. L. Yin, “Efficient methods for integrating trace-

ability and broadcast encryption,” in Advances in Cryptology—CRYPTO ’99,

vol. 1666 of LNCS, pp. 372–387, Springer-Verlag, 1999.

[97] J. A. Garay, J. Staddon, and A. Wool, “Long-lived broadcast encryption,”

in Advances in Cryptology—CRYPTO 2000, vol. 1880 of LNCS, pp. 333–352,

Springer-Verlag, 2000.

[98] R. Gennaro, T. Rabin, and H. Krawczyk, “RSA-based undeniable signatures,”

Journal of Cryptology, vol. 13, no. 4, pp. 397–416, 2000.

[99] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin, “Robust and efficient

sharing of RSA functions,” in Advances in Cryptology—CRYPTO ’96, vol. 1109

of LNCS, pp. 157–172, Springer-Verlag, 1996.

[100] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin, “Robust threshold DSS

signatures,” in Advances in Cryptology—EUROCRYPT ’96, vol. 1070 of LNCS,

pp. 354–371, Springer-Verlag, 1996.

[101] H. Ghodosi, J. Pieprzyk, C. Charnes, and R. Safavi-Naini, “Cryptosystems for

hierarchical groups,” in Australasian Conference on Information Security and

Privacy, pp. 275–286, 1996.

[102] J. K. Gibson, “Some comments on damg̊ard’s hashing principle,” Electronics

Letters, vol. 26, no. 15, pp. 1178–1179, 1990.

[103] J. K. Gibson, “Discrete logarithm hash functionthat is collision free and one

way,” IEE Proceedings-E, vol. 138, no. 6, pp. 407–410, 1991.

[104] O. Goldreich, S. Micali, and A. Wigderson, “How to play any mental game or a

completeness theorem for protocol with honest majority,” in Proceedings of the

BIBLIOGRAPHY 130

19th Annual Symposium on Theory of Computing (STOC ’87), pp. 218–229,

ACM Press, 1987.

[105] O. Goldreich, S. Micali, and A. Wigderson, “How to prove all NP statements

in zero-knowledge and a methodology of cryptographic protocol design,” in Ad-

vances in Cryptology—CRYPTO ’86, vol. 263 of LNCS, pp. 171–185, Springer-

Verlag, 1987.

[106] O. Goldreich, S. Micali, and A. Wigderson, “Proofs that yield nothing but their

validity or all languages in NP have zero-knowledge proof systems,” Journal of

the ACM, vol. 38, no. 1, pp. 691–729, 1991.

[107] O. Goldreich and Y. Oren, “Definitions and properties of zero-knowledge,” Jour-

nal of Cryptology, vol. 7, pp. 1–32, 1994.

[108] O. Goldreich, Foundations of Cryptography: Basic Tools. Cambridge University

Press, 2001.

[109] O. Goldreich and H. Krawczyk, “On the composition of zero-knowledge proof

systems,” SIAM Journal on Computing, vol. 25, no. 1, pp. 169–192, 1996. Pre-

liminary version appeared in ICALP ’90.

[110] S. Goldwasser, S. Micali, and C. Rackoff, “The knowledge complexity of inter-

active proof systems,” SIAM Journal on Computing, vol. 18, pp. 186–208, 1989.

Preliminary version in STOC ’85.

[111] S. Goldwasser and S. Micali, “Probabilistic encryption,” Journal of Computer

and System Sciences, vol. 28, pp. 270–299, 1984.

[112] S. Goldwasser, S. Micali, and R. L. Rivest, “A digital signature scheme se-

cure against adaptive chosen-message attacks,” SIAM Journal on Computing,

vol. 17, pp. 281–308, Apr. 1988.

[113] D. Halevi and A. Shamir, “The LSD broadcast encryption scheme,” in Advances

in Cryptology—CRYPTO 2002, vol. 2442 of LNCS, pp. 47–60, Springer-Verlag,

2002.

BIBLIOGRAPHY 131

[114] S. Halevi, “Efficient commitment schemes with bounded sender and unbounded

receiver,” in Advances in Cryptology—CRYPTO ’95, vol. 963 of LNCS, pp. 84–

96, Springer-Verlag, 1995.

[115] S. Halevi and S. Micali, “Practical and provably-secure commitment schemes

from collision-free hashing,” in Advances in Cryptology—CRYPTO ’96,

vol. 1109 of LNCS, pp. 201–215, Springer-Verlag, 1996.

[116] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers.

Oxford University Press, 5th ed., 1979.

[117] L. Harn, “Group-oriented (t, n) threshold digital signature scheme and digi-

tal multisignature,” IEE Proc. Computers and Digital Techniques, vol. 141,

pp. 307–313, September 1994.

[118] I. N. Herstein, Topics in Algebra. Xerox College Publishing, 1975.

[119] E. V. Heyst and T. P. Pedersen, “How to make efficient fail-stop signatures,”

in Advances in Cryptology—EUROCRYPT ’92, vol. 658 of LNCS, pp. 366–377,

Springer-Verlag, 1993.

[120] P. Horster, M. Michels, and H. Petersen, “Meta-multisignatures schemes based

on the discrete logarithm problem,” in Information Security:The Next Decade.

Proceedings of the IFIP TC11 Eleventh International Conference on Informa-

tion Security, IFIP/SEC’95, pp. 128–141, Chapman & Hall, 1995.

[121] R. Impagliazzo and M. Luby, “One-way functions are essential for complexity-

based cryptography,” in Proceedings of the 30th Annual Symposium on Foun-

dations of Computer Science, FOCS ’89, pp. 230–235, IEEE Computer Society,

1989.

[122] ISO/IEC 10118-4, “Information technology—Security techniques—Hash-

functions—Part 4: Hash-functions using modular arithmetic,” 1998.

[123] K. Itakura and K. Nakamura, “A public-key cryptosystem suitable for digital

multisignatures,” NEC Research & Development, vol. 71, pp. 1–8, Oct. 1983.

BIBLIOGRAPHY 132

[124] M. Jakobsson, “Blackmailing using undeniable signatures,” in Advances in

Cryptology—EUROCRYPT ’94, vol. 950 of LNCS, pp. 425–427, Springer-

Verlag, 1994.

[125] M. Jakobsson, K. Sako, and R. Impagliazzo, “Designated verifier proofs and

their applications,” in Advances in Cryptology—EUROCRYPT ’96, vol. 1070

of LNCS, pp. 143–154, Springer-Verlag, 1996.

[126] M. Jakobsson and M. Yung, “Proving without knowing: On oblivious, agnostic

and blindfolded provers,” in Advances in Cryptology—CRYPTO ’96, vol. 1109

of LNCS, pp. 201–215, Springer-Verlag, 1996.

[127] M. Just, E. Kranakis, D. Krizanc, and P. C. van Oorschot, “On key distribution

via true broadcasting,” in CCS ’94, Proceedings of the 2nd ACM Conference on

Computer and Communications Security, pp. 81–88, ACM Press, Nov. 1994.

[128] A. Kiayias and M. Yung, “Traitor tracing with constant transmission rate,” in

Advances in Cryptology—EUROCRYPT 2002, vol. 2332 of LNCS, pp. 450–465,

Springer-Verlag, 2002.

[129] J. Kilian, “Founding cryptography on oblivious transfer,” in Proceedings of the

20th Annual Symposium on Theory of Computing (STOC ’88), pp. 20–31, IEEE

Computer Society, 1988.

[130] J. Kilian and E. Petrank, “Identity escrow,” in Advances in Cryptology—

CRYPTO ’98, vol. 1462 of LNCS, pp. 169–185, Springer-Verlag, 1998.

[131] D. E. Knuth, The Art of Computer Programming: Volume 2/Seminumerical

Algorithms. Addison-Wesley, 2nd ed., 1981.

[132] N. Koblitz, A Course in Number Theory and Cryptography, vol. 114 of Graduate

Texts in Mathematics. Springer-Verlag, 2nd ed., 1994.

[133] C. Koç, “RSA hardware implementation,” Tech. Rep. TR-801, RSA Labora-

tories, 1996.

BIBLIOGRAPHY 133

[134] K. Kurosawa and Y. Desmedt, “Optimum traitor tracing and asymmetric

schemes,” in Advances in Cryptology—EUROCRYPT ’98, vol. 1403 of LNCS,

pp. 145–157, Springer-Verlag, 1998.

[135] K. Kurosawa and T. Yoshida, “Linear code implies public-key traitor tracing,”

in Public Key Cryptography, 5th International Workshop on Practice and The-

ory in Public Key Cryptosystems, PKC 2002, vol. 2274 of LNCS, pp. 172–187,

Springer-Verlag, 2002.

[136] X. Lai and J. L. Massey, “Hash functions based on block ciphers,” in Advances in

Cryptology—EUROCRYPT ’92, vol. 658 of LNCS, pp. 55–70, Springer-Verlag,

1993.

[137] C. S. Laih and L. Harn, “Generalized threshold cryptosystems,” in Advances in

Cryptology—ASIACRYPT ’91, vol. 739 of LNCS, pp. 159–166, Springer-Verlag,

1993.

[138] C. H. Lee, X. Deng, and H. Zhu, “Design and security analysis of anonymous

group identification protocols,” in Public Key Cryptography, 5th International

Workshop on Practice and Theory in Public Key Cryptosystems, PKC 2002,

vol. 2274 of LNCS, pp. 188–198, Springer-Verlag, 2002.

[139] C.-M. Li, T. Hwang, and N.-Y. Lee, “Threshold-multisignature schemes where

suspected forgery implies traceability of adversarial shareholders,” in Advances

in Cryptology—EUROCRYPT ’94, vol. 950 of LNCS, pp. 194–204, Springer-

Verlag, 1995.

[140] C.-M. Li, T. Hwang, N.-Y. Lee, and J.-J. Tsai, “(t, n) threshold-multisignature

schemes and generalized-multisignature scheme where suspected forgery implies

traceability of adversarial shareholders,” Cryptologia, vol. 24, no. 3, pp. 250–

268, 2000.

[141] C. H. Lim and P. J. Lee, “A key recovery attack on discrete log-based schemes

using a prime order subgroup,” in Advances in Cryptology—CRYPTO ’97,

vol. 1296 of LNCS, pp. 249–263, Springer-Verlag, 1997.

BIBLIOGRAPHY 134

[142] H. K. Lo and H. F. Chau, “Is quantum bit commitment really possible?,”

Physical Review Letters, vol. 78, pp. 3410–3413, 1997. Preliminary version in

Los Alamos preprint archive, xxx.lanl.gov/abs/quant-ph/9603004 (1996).

[143] M. Luby and J. Staddon, “Combinatorial bounds for broadcast encryption,” in

Advances in Cryptology—EUROCRYPT ’98, vol. 1403 of LNCS, pp. 512–526,

Springer-Verlag, 1998.

[144] A. Lysyanskaya, R. L. Rivest, A. Sahai, and S. Wolf, “Pseudonym systems,” in

Selected Areas in Cryptography, 6th Annual International Workshop, SAC ’99,

vol. 1758 of LNCS, pp. 184–214, Springer-Verlag, 1999.

[145] Y.-D. Lyuu and M.-L. Wu, “A fully public-key traitor-tracing scheme,” WSEAS

Transactions on Circuits, vol. 1, no. 1, pp. 88–93, 2002.

[146] Y.-D. Lyuu and M.-L. Wu, “A fully public-key traitor-tracing scheme,” in Pro-

ceedings of the 6th WSEAS International Multiconference on Circuits, Systems,

Communications, and Computers (CSCC 2002), July 2002.

[147] Y.-D. Lyuu and M.-L. Wu, “Group undeniable signatures,” in Proceedings of

the 2002 International Conference On Information Security, ICIS 2002, (Rio

De Janeiro, Brazil), Oct. 2002.

[148] Y.-D. Lyuu and M.-L. Wu, “Convertible group undeniable signatures,” in Infor-

mation Security and Cryptology— ICISC 2002, vol. 2587 of LNCS, pp. 49–62,

Springer Verlag, 2003.

[149] Y.-D. Lyuu and M.-L. Wu, “Group undeniable signatures,” International Jour-

nal of Computer Research, vol. 12, no. 2, 2003.

[150] Y.-D. Lyuu and M.-L. Wu, “Group undeniable signatures with convertibility.”

submitted, 2003.

[151] S. M. Matyas, “Key processing with control vectors,” Journal of Cryptology,

vol. 3, pp. 113–136, 1991.

BIBLIOGRAPHY 135

[152] S. M. Matyas, C. H. Meyer, and J. Oseas, “Generating strong one-way func-

tions with cryptographic algorithm,” IBM Technical Disclosure Bulletin, vol. 27,

pp. 5658–5659, 1985.

[153] U. Maurer, “Towards the equivalence of breaking the Diffie-Hellman protocol

and computing discrete logarithms,” in Advances in Cryptology—CRYPTO ’94,

vol. 839 of LNCS, pp. 271–281, Springer-Verlag, 1994.

[154] U. Maurer and S. Wolf, “The relationship between breaking the Diffie-Hellman

protocol and computing discrete logarithms,” SIAM Journal on Computing,

vol. 28, no. 5, pp. 1689–1721, 1999.

[155] U. Maurer and S. Wolf, “The Diffie-Hellman protocol,” Designs, Codes, and

Cryptography, vol. 19, pp. 147–171, 2000.

[156] D. Mayers, “Unconditionally secure quantum bit commitment is impossible,”

Physical review letters, vol. 78, pp. 3414–3417, 1997.

[157] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone, Handbook of Applied

Cryptography. CRC Press, Boca Raton, FL, 1997.

[158] R. C. Merkle, “A fast software one-way hash function,” Journal of Cryptology,

vol. 3, pp. 43–58, 1990.

[159] R. C. Merkle, “One way hash functions and DES,” in Advances in Cryptology—

CRYPTO ’89, vol. 435 of LNCS, pp. 428–446, Springer-Verlag, 1990.

[160] C. H. Meyer and M. Schilling, “Secure program load with manipulation de-

tection code,” in Proceedings of the 6th Worldwide Congress on Computer and

Communicatios Security and Protection (SECURICOM’88), pp. 111–130, 1988.

[161] S. Micali, K. Ohta, and L. Reyzin, “Accountable-subgroup multisignatures:

extended abstract,” in CCS 2001, Proceedings of the 8th ACM Conference on

Computer and Communications Security, pp. 245–254, ACM Press, 2001.

[162] S. Micali, C. Rackoff, and B. Sloan, “The notion of security for probabilistic

cryptosystems,” SIAM Journal on Computing, vol. 17, pp. 412–426, Apr. 1988.

BIBLIOGRAPHY 136

[163] M. Michel, “Breaking and repairing a convertible undeniable signature scheme,”

in CCS ’96, Proceedings of the 3rd ACM Conference on Computer and Com-

munications Security, pp. 148–152, ACM Press, 1996.

[164] M. Michels and M. Stadler, “Efficient convertible undeniable signature

schemes,” in Selected Areas in Cryptography, 4th Annual International Work-

shop, SAC ’97, pp. 231–244, 1997.

[165] G. L. Miller, “Riemann’s hypothesis and tests for primality,” Journal of Com-

puter and Systems Science, vol. 13, pp. 300–317, 1976.

[166] S. Miyaguchi, K. Ohta, and M. Iwata, “128-bit hash function (n-hash),” NTT

Review, vol. 2, pp. 128–132, 1990.

[167] M. Nao and M. Yung, “Universal one-way hash function and their cryptographic

application,” in Proceedings of the 21th Annual Symposium on Theory of Com-

puting (STOC), pp. 33–43, ACM Press, 1989.

[168] M. Nao, “Bit commitment using pseudorandomness,” Journal of Cryptology,

vol. 2, no. 2, pp. 151–158, 1991.

[169] D. Naor, M. Naor, and J. Lotspiech, “Revocation and tracing schemes for state-

less receivers,” in Advances in Cryptology—CRYPTO 2001, vol. 2139 of LNCS,

pp. 41–62, Springer-Verlag, 2001.

[170] M. Naor and B. Pinkas, “Threshold traitor tracing,” in Advances in

Cryptology—CRYPTO ’98, vol. 1462 of LNCS, pp. 502–517, Springer-Verlag,

1998.

[171] M. Naor and M. Yung, “Public-key cryptosystems provably secure against cho-

sen ciphertext attack,” in Proceedings of the 22nd Annual Symposium on Theory

of Computing (STOC), pp. 427–437, ACM, 1990.

[172] M. J. Norris and G. J. Simmons, “Algorithms for high-speed modular arith-

metic,” Congressus Numerantium, vol. 31, pp. 153–163, 1981.

BIBLIOGRAPHY 137

[173] K. Ohta, T. Okamoto, and A. Fujioka, “Secure bit commitment function against

divertibility,” in Advances in Cryptology—EUROCRYPT ’92, vol. 658 of LNCS,

pp. 324–340, Springer-Verlag, 1992.

[174] T. Okamoto, “Provable secure and practical identification schemes and cor-

responding signature schemes,” in Advances in Cryptology—CRYPTO ’92,

vol. 740 of LNCS, pp. 31–53, Springer-Verlag, 1993.

[175] T. Okamoto, “Designated confirmer signatures and public-key encryption are

equivalent,” in Advances in Cryptology—CRYPTO ’94, vol. 839 of LNCS,

pp. 61–74, Springer-Verlag, 1994.

[176] R. Ostrovsky, R. Venkatesan, and M. Yung, “Secure commitment against a

powerful adversary,” in Proceedings of STACS 92, vol. 577 of LNCS, pp. 439–

448, Springer-Verlag, 1992.

[177] C. H. Papadimitriou, Computational Complexity. Addison-Wesley, 1994.

[178] R. Pass, “On deniability in the common reference string and random oracle

model,” in Advances in Cryptology—CRYPTO 2003, LNCS, Springer-Verlag,

2003.

[179] T. Pedersen, “Distributed provers with applications to undeniable signatures,”

in Advances in Cryptology—EUROCRYPT ’91, vol. 547 of LNCS, pp. 221–242,

Springer-Verlag, 1991.

[180] H. Petersen, “How to convert any digital signature scheme into a group signa-

ture scheme,” in Security Protocols Workshop’97, vol. 1361 of LNCS, pp. 67–78,

Springer-Verlag, 1991.

[181] B. Pfitzmann, “Trials of traced traitors,” in Information Hiding, First Interna-

tional Workshop, IH ’96, vol. 1174 of LNCS, pp. 49–64, Springer-Verlag, 1996.

[182] J. Pieprzyk, J. Seberry, and Y. Zheng, “A one-way hashing algorithm with

variable length of output,” in AUSCRYPT ’92, vol. 921 of LNCS, pp. 83–104,

Springer-Verlag, 1993.

BIBLIOGRAPHY 138

[183] D. Pointcheval and J. Stern, “Security proofs for signature schemes,” in Ad-

vances in Cryptology—EUROCRYPT ’96, vol. 1070 of LNCS, pp. 387–398,

Springer-Verlag, 1996.

[184] D. Pointcheval and J. Stern, “Security arguments for digital signatures and

blind signatures,” Journal of Cryptology, vol. 13, pp. 361–396, Mar. 2000.

[185] B. Preneel, Analysis and Design of Cryptographic Hash Functions. PhD thesis,

Katholieke Universiteit Leuven, 1993.

[186] B. Preneel, “The state of cryptographic hash functions,” in Lectures on Data

Security, vol. 1561 of LNCS, pp. 158–182, Springer-Verlag, 1999.

[187] J. J. Quisquater and M. Girault, “2n-bit hash functios using n-bit symmet-

ric block cipher algorithms,” in Advances in Cryptology—EUROCRYPT ’89,

vol. 434 of LNCS, pp. 102–109, Springer-Verlag, 1990.

[188] M. Rabin, “How to exchange secrets by oblivious transfer,” Tech. Rep. TR-81,

Harvard Aiken Computation Laboratory, 1981.

[189] M. O. Rabin, “Digital signatures and public-key functions as intractible as

factorization,” Tech. Rep. MIT/LCS/TR-212, MIT Laboratory for Computer

Science, Jan. 1979.

[190] M. O. Rabin, “Probabilistic algorithms for testing primality,” Journal of Num-

ber Theory, vol. 12, pp. 128–138, 1980.

[191] C. Rackoff and D. R. Simon, “Non-interactive zero-knowledge proof of knowl-

edge and chosen ciphertext attack,” in Advances in Cryptology—CRYPTO ’91,

vol. 576 of LNCS, pp. 433–444, Springer-Verlag, 1992.

[192] RIPE, Integrity Primitives for Secure Information Systems. Final Report of

RACE Integrity Primitives Evaluation (RIPE-Race 1040), vol. 1007 of LNCS.

Springer-Verlag, 1995.

[193] R. Rivest, “The MD4 message-digest algorithm,” 1992. RFC 1320, the Internet

Engineering Task Force.

BIBLIOGRAPHY 139

[194] R. Rivest, “The MD5 message-digest algorithm,” 1992. RFC 1321, the Internet

Engineering Task Force.

[195] R. L. Rivest, A. Shamir, and L. M. Adleman, “A method for obtaining digital

signatures and public-key cryptosystems,” CACM, vol. 21, pp. 120–126, Feb.

1978.

[196] K. H. Rosen, Elementary Number Theory and Its Applications. Addison Wesley,

third ed., 1993.

[197] J. B. Rosser and L. Schoenfeld, “Approximate formulas for some functions of

prime numbers,” Illinois Journal of Mathematics, vol. 6, pp. 64–94, 1962.

[198] L. Salvail, “Quantum bit commitment from a physical assumption,” in Advances

in Cryptology—CRYPTO ’98, vol. 1462 of LNCS, pp. 338–353, Springer-Verlag,

1998.

[199] L. Salvail, “The search for the holy grail in quantum cryptography,” in Lectures

on Data Security, vol. 1561 of LNCS, pp. 183–216, Springer-Verlag, 1998.

[200] A. D. Santis, G. D. Crescenzo, G. Persiano, and M. Yung, “On monotone

formula closure of SZK,” in Proceedings of the 35th Annual Symposium on

Foundations of Computer Science, FOCS ’94, pp. 454–465, IEEE Computer

Society, 1994.

[201] A. D. Santis, G. D. Crescenzo, and G. Persiano, “Communication-efficient

anonymous group identification,” in CCS ’98, Proceedings of the 5th ACM

Conference on Computer and Communications Security, pp. 73–82, ACM, Nov.

1998.

[202] B. Schneier, Applied Cryptography. John Wiley & Sons, second ed., 1996.

[203] C. P. Schnorr, “Efficient signature generation by smart cards,” Journal of Cryp-

tology, vol. 4, no. 3, pp. 161–174, 1991.

[204] A. Shamir, “How to share a secret,” CACM, vol. 22, no. 11, pp. 612–613, 1979.

[205] D. Shanks, Solved and Unsolved Problems in Number Theory. Chelsea, 1985.

BIBLIOGRAPHY 140

[206] H. N. Shapiro, Introduction to the Theory of Numbers. John Wiley & Sons,

1983.

[207] V. Shoup and R. Gennaro, “Securing threshold cryptosystems against chosen

ciphertext attack,” in Advances in Cryptology—EUROCRYPT ’98, vol. 1403 of

LNCS, pp. 1–16, Springer-Verlag, 1998.

[208] V. Shoup, “Lower bounds for discrete logarithms and related problems,” in

Advances in Cryptology—EUROCRYPT ’97, vol. 1233 of LNCS, pp. 256–266,

Springer-Verlag, 1997.

[209] R. Solovay and V. Strassen, “A fast monte carlo test for primality,” SIAM

Journal on Computing, vol. 6, pp. 84–85, 1977.

[210] D. R. Stinson, Cryptography: Theory and Practice. CRC Press, 1995.

[211] D. R. Stinson and R. Wei, “Combinatorial properties and constructions of trace-

ability schemes and frameproof codes,” SIAM Journal on Discrete Math, vol. 11,

no. 1, pp. 41–53, 1998.

[212] D. R. Stinson, “On some methods for unconditionally secure key distribution

and broadcast encryption,” Designs, Codes, and Cryptography, vol. 12, pp. 215–

243, Nov. 1997.

[213] D. R. Stinson and R. Wei, “Key preassigned traceability schemes for broadcast

encryption,” in Selected Areas in Cryptography ’98 (SAC ’98), vol. 1556 of

LNCS, pp. 144–156, Springer-Verlag, 1998.

[214] H. C. A. V. Tilborg, Fundamentals of Cryptology: A Professional Reference

and Interactive Tutorial. Kluwer Academic Publishers, 2000.

[215] M. Tompa and H. Woll, “Random self-reducibility and zero knowledge inter-

active proofs of possession of information,” in Proceedings of the 28th Annual

Symposium on Foundations of Computer Science, FOCS ’87, pp. 472–482, IEEE

Computer Society, 1987.

BIBLIOGRAPHY 141

[216] Y. Tsiounis and M. Yung, “On the security of ElGamal-based encryption,” in

Public Key Cryptography, First International Workshop on Practice and The-

ory in Public Key Cryptography, PKC ’98, vol. 1431 of LNCS, pp. 117–134,

Springer-Verlag, 1998.

[217] M. Waidner and B. Pfitzmann, “The dining cryptographers in the disco: Uncon-

ditional sender and recipient untraceability with computationally secure service-

ability,” in Advances in Cryptology—EUROCRYPT ’89, vol. 434 of LNCS,

p. 690, Springer-Verlag, 1990.

[218] C. D. Walter, “Faster modular multiplication by operand scaling,” in Advances

in Cryptology—CRYPTO ’91, vol. 576 of LNCS, pp. 313–323, Springer-Verlag,

1992.

[219] G. Wang, “On the security of the Li-Hwang-Lee-Tsai threshold group signature

scheme,” in Information Security and Cryptology—ICISC 2002, vol. 2587 of

LNCS, pp. 76–90, Springer-Verlag, 2002.

[220] R. S. Winternitz, “Producing one-way hash function from DES,” in Advances

in Cryptology: Proceedings of Crypto 83, LNCS, pp. 202–207, Springer-Verlag,

1984.

[221] R. S. Winternitz, “A secure one-way hash function built from DES,” in Proc.

1984 IEEE Symposium on Security and Privacy, pp. 88–90, IEEE Computer

Society, 1984.

[222] Y. Zeng, T. Matsumoto, and H. Imai, “Connections between several version of

one-way hash functions,” in Proc. SCIS90, the 1990 Symposium on Cryptogra-

phy and Information Security, (Nihondaira, Japan), 1990.

Index

algorithm

deterministic, 10

division, 15

Euclidean, 16

exponential-time, 12

extended Euclidean, 16

Las Vegas, 13

Monte Carlo, 13

polynomial-time, 12

probabilistic, 10

probabilistic polynomial-time, 12

randomized, 10

subexponential-time, 13

anonymous credential system, 5

anonymous credential systems

non-transferability, 5

assumptions

decision Diffie-Hellman, 29

Diffie-Hellman, 28

discrete logarithm, 28

equality of discrete logarithms, 30

factoring, 31

quadratic residuosity, 32

representation, 30

RSA, 32

binary relation

polynomially bounded, 14

broadcast encryption, 3, 77, 79

collision-resistant hash function, 36

commitment scheme, 57

binding, 58

bit commitment, 60

commit, 57

hiding, 58

number commitment, 61

reveal, 57

complexity class

BPP, 14

IP, 43

NP, 14

NP-relation, 14

witness, 14

P, 14

congruent, 20

encryption scheme, 51

active attack

non-adaptive chosen-ciphertext, 54

adaptive chosen-ciphertext, 54

chosen-plaintext, 54

Diffie-Hellman protocol, 55

ElGamal, 56

indistinguishability of encryptions, 52

142

INDEX 143

non-malleability, 54

passive attack, 54

polynomial security, 53

public-key, 52

Rabin, 56

RSA, 55

semantical security, 53

Euler phi function, totient, 21

field, 20

group, 17

abelian, 17

commutative, 17

cyclic, 18

generator, 18

order of a group, 17

order of an element, 18

subgroup, 18

group identification, 4

group undeniable signature, 101

anonymity, 101

coalition resistance, 103

convertible, 6, 92, 101

exculpability, 103

nontransferability, 101

traceability, 101

unforgeability, 103

unlinkability, 103

zero knowledge, 103

group-oriented signature

group signature, 4, 91

group undeniable signature, see group

undeniable signature

multisignature, 5

accountability, 5

flexibility, 5

threshold group signature, 6

threshold signature, 5

hash function, 34

birthday attack, 37

collision resistance, 35

strong, 35

weak, 35

preimage resistance, one way, 35

second preimage resistance, 35

identification protocol, 62

Schnorr, 62

identity escrow, 5

appointed verifiers, 5

subset queries, 5

indistinguishability

computational, 40

perefect, 40

statistical, 40

interactive proof, 42

completeness, 43

computationally sound, argument, 43

soundness, 43

system for a language, 43

transcript, 42

interactive protocol, 41

round, 41

Jacobi symbol, 21

Legendre symbol, 21

INDEX 144

negligible function, 39

oblivious transfer, 58

one-way function, 35

primitive root, 21

probability ensemble, 39

problem

intractable, computationally infeasible,

14

tractable, computationally feasible, 14

proof of knowledge, 44

completeness, 44

knowledge extractor, 44, 64

soundness, 44

validity, 44

quadratic

nonresidue, 21

residue, 21

random oracle model, 37, 68

ring, 19

signature of knowledge, 71

of a discrete logarithm, 72, 98

of a representation, 73

of a root of a discrete logarithm, 99,

101

of equality of discrete logarithms, 74

of several representations, 75, 98

signature scheme, 66

attack

adaptive chosen-message, 68

key-only, 67

known-message, 67

non-adaptive chosen-message, 67

digital signature algorithm, 70

ElGamal, 69

existential forgery, 67

nonrepudiation, 90

RSA, 69

Schnorr, 70

selective forgery, 67

total break, 67

universal verifiability, 90

statistical closeness, 40

statistical difference, distance, 40

theorem

Chinese remainder theorem, 22

Euler’s theorem, 23

Fermat’s little theorem, 23

fundamental theorem of arithmetic, 16

Lagrange’s theorem, 18

threshold cryptosystems, 3

traitor tracing, 3, 78, 80

anonymity, 79, 80

black-box traceable, 78

fully public-key, 4, 81

long-lived, 78

perfectly, 79, 80

public-key, 3, 80

Turing machine

deterministic, 10

probabilistic, 10

undeniable signature, 91

INDEX 145

convertible, 91

universal exponent, 22

minimal, 22

witness hiding, 50

witness indistinguishability, 48

zero knowledge, 45

auxiliary-input, 46

black-box, 45

black-box simulator, 45

computational, 45

deniable, 47

honest-verifier, 46

non-black-box simulator, 46

perfect, 45

statistical, 45

