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Abstract

This thesis develops an Adaptive Mesh Model for pricing discrete double
barrier options. Adaptive Mesh Model is a kind of trinomial tree lattice
that applying higher resolution to where nonlinearity errors occur. After
the Adaptive Mesh Model for discrete single barrier options was proposed
in 1999 by Ahn, Figlewski, and Gao, there is no further research has been
done in Adaptive Mesh Model for discrete barriers. Furthermore, numerical
data are also scarce in the paper of Ahn et al.. This thesis bases on the
lattice structure of Ahn et al. and extends the Adaptive Mesh Model to
price discrete double barrier options. Besides, there is no close-form solution
for discrete barrier options such that many methods have been suggested
and declared to price discrete barrier options fast and accurately but no one
can tell exactly that what method is the best. We also make a complete
comparisons of the Adaptive Mesh Model with other methods no matter
in accuracy or in efficiency. Our numerical data shows that the Adaptive
Mesh Model is generally surpassed the other tree lattice methods and the
BGK formula approach, and exceed the quadrature method in efficiency with
accurate enough outcomes.

Keywords: Adaptive Mesh, numerical valuation techniques, discrete barrier
options, double barrier options, trinomial trees, enhanced trinomial trees,
BGK model, quadrature method, option pricing
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Chapter 1

Introduction

Barrier options have become more and more popular. They are not only
desirable in speculation but also in risk management because of lower costs
than their plain vanilla counterparts. The typical analytic pricing formu-
las for single barrier options are derived assuming continuously monitoring
of the barrier. However, in real market barrier conditions of options are
generally monitored discretely but there is no close-form solution. Many
numerical methods have been proposed to price discrete monitored barrier
options including the Adaptive Mesh Model. Since the Adaptive Mesh Model
for pricing discrete single barrier options is first proposed in 1999 [14], the
concept of adaptive mesh has been widely discussed but further research is
absence. Also, numerical results of the Adaptive Mesh Model is rare in the
original paper. Hence, in this thesis we do not only implement the Adaptive
Mesh Model of Ahn et al. but also extend it to price discrete double barrier
options. Besides, we compare the Adaptive Mesh Model to other competing
methods with extensive numerical data both in efficiency and accuracy.

In Chapter 1 and Chapter 2, we shortly set the background and the con-
cept of barrier options. Chapter 3 introduces the Adaptive Mesh Model
starting from two kinds of approximation errors (i.e. distribution error and
nonlinearity error) generally existing in lattice models and then using Adap-
tive Mesh Model to ease the nonlinearity error in both European and Amer-
ican puts. In the latter part of Chapter 3, we propose the Adaptive Mesh
Model for pricing not only single but also discrete double barrier options.
At Last in Chapter 4 we compare the Adaptive Mesh with other competing
methods in pricing discrete barrier options numerically and end up with the
conclusions in Chapter 5.
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Chapter 2

Barrier Options

2.1 Barrier Option Basics

A barrier option is a kind of path-dependent options that comes into exis-
tence or is terminated depending on whether the underlying asset’s price S
reaches a certain price level H called ”barrier”. A knock-out option ceases to
exist if the underlying asset reaches the barrier, whereas a knock-in option
is activated if the barrier is reached by underlying asset. According to the
relative position of H and S, there are four kinds of typical barrier, which
are outlined below.

1. Down and Out: knock-out options with H < S.

2. Down and In: knock-in options with H < S.

3. Up and Out: knock-out options with H > S.

4. Up and In: knock-in options with H > S.

Besides, based on how frequently the barrier condition is checked, one
barrier can be continuous or discrete. Once a continuously monitored barrier
is reached the option is immediately knocked in or out, while in discretely
monitored conditions, barriers only come into effect in those monitored time,
e.g. close of every market day, every quarter, every month, or every half year.

Barrier options have become quite popular especially in the foreign ex-
change markets. One of the barrier option’s advantage is its cheaper price.
Take a down-and-out barrier call option for example, a trader with a bull
perspective view on the market may regard the condition of the barrier be-
ing reached as quite unlikely and be more interested in it than the regular
one. Or a hedger may buy a barrier contract to hedge a position with a
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natural barrier, e.g. the foreign currency exposure on a deal that will take
place only if the exchange rate remains above a certain level.

2.2 Pricing of Barrier Options

Barrier options were first traded on the OTC market in the late 60s, but
the first analytical formula for a down and out call option was proposed by
Merton (1973) [1] which was followed by the more detailed paper by Reiner
& Rubinstein (1991) [2] providing the formulas for all 4 types of barrier on
both call and put options. However, the analytic formulas mentioned above
only present methods to price barrier options in continuous time, but often
in the market, the asset price is discretely monitored. In other words, they
specify fixed times for monitored of the barrier.

Although discretely monitored barrier options are popular and important,
pricing them is not as easy as their continuous counterparts. There is essen-
tially no closed solution, except using m-dimensional normal distribution
function (m is the number of monitored points), which can hardly be com-
puted easily if, for example, m > 5 ( see Reiner (2000) [3] and closed-form
valuation equations for discrete barrier options in Heynen and Kat (1996)
[4]). When it comes to Direct Monte Carlo simulation, it takes too much
time to produce accurate enough results.

To deal with these difficulties, Broadie, Glasserman and Kou (1997) pro-
pose a continuity correction for discretely monitored barrier options, and
justify the correction both theoretically and numerically. They adjust the
barrier in the closed-form equations of continuous barrier options to account
for discrete sampling as follows:

H ′ = Heασ
√

T
m

It is so-called BGK barrier adjustment model. For up-barrier options,
the value of α is 0.52826, whereas for down-barrier options, the value of α
is −0.5826, where m is the number of times the underlying asset price is
monitored over the time period T [5].

Like most other path-dependent models, barrier options can be priced
by tree lattice techniques such as binomial or trinomial by solving the PDE
using a generalized finite difference method. However, even in continuously
monitored barrier options the convergence of lattice approach is very slow
and require a quite large number of time steps to obtain a reasonably accurate
result. It is because the barrier being assumed by the tree is different from
the true barrier. Define the inner barrier as the barrier formed by nodes just
on the inside of the true barrier and the outer barrier as the barrier formed
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by nodes just outside the true barrier. Fig. 2.1 shows the inner and outer
barrier for a binomial and trinomial tree when the true barrier is horizontal
and constantly monitored. The usual tree calculations implicitly assume the
outer barrier is the true barrier because the barrier condition is first met on
the outer barrier.

?
Outer barrier

?
True barrier

6
Inner barrier

(a)

6

?

?

Inner barrier

True barrier

Outer barrier

(b)

Figure 2.1: Barrier assumed by tree lattice

(a) Barriers assumed by binomial trees. (b) Barriers assumed by trinomial
trees.

Bolye and Lau [6] describe this condition and propose a method to con-
strain the time steps that make the true barrier coincide with or occur just
above the underlying asset price level in trees. Nevertheless, the time step
constraint makes the lattice impracticable to compute because of the incred-
ible large number of time steps when the initial asset price is too close to
the barrier. On the other hand, the constraint of time step number is also
annoying. In 1995, Derman et al. propose an adjusting for nodes not lying
on barriers by assuming the barrier calculated by the tree is incorrect[8].
Ritchken (1995) [9] offers another approach under trinomial framework in-
troducing a ”stretch” parameter into the lattice, which changes the price
step just enough to place nodes on the barrier. Cheuk and Vorst [10] also
introduce a deformation of the trinomial tree permitting one to adjust the
location of nodes differently in each time period, and allows great flexibility
in matching a time-varying barrier. Although those methods have been pro-
posed, a quite slow convergence rate still occur when they are used to price
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discretely monitored barrier options.
For pricing discrete barrier options, Wei (1998) [12] offers an approxi-

mation approach based on interpolating between the formula for a barrier
option with the highest number of monitored points that can be handled
with the analytic formula and the continuous case (infinite monitored dates).
Broadie, Glasserman and Kou (1999) develop the enhanced trinomial model

from Ritchken’s lattice framework. Like their earlier paper in 1997 [5], they

shift the discrete barrier at level H to a new barrier at level H ′ = He±0.5λ∗σ
√

h

(with + for an up option and - for a down option), where λ∗ ,
√

3/2 and
h is the size of one time step [11]. Both these techniques, however, can be
used only for European options, and in Broadie et al.’s model, the ”barrier-
too-close” problem still exists.

Figlewski and Gao (1999) [13] present the adaptive mesh model (AMM)
as an efficient trinomial lattice approach to deal with ”barrier-too-close”
problem in continuous barrier options. Furthermore, in the same year, an
another kind of adaptive mesh model is proposed for pricing discrete barrier
options by Ahn, Flglewski, and Gao [14]. The AMM model is very powerful
in both efficiency and flexibility and is going to be discussed further in this
thesis.

Besides, there is the quadrature method presented by Andricopoulos et
al. (2003) [15] using somewhat multinomial-like integral method to price
discrete barrier options with speed and accuracy which can also deal with
barrier-too-close problem. We will numerically compare it with the AMM
model later.
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Chapter 3

The Adaptive Mesh Model

3.1 Approximation Error in Lattice Models

Although lattice models provide powerful, intuitive and asymptotically exact
approximations to the theoretical option values under Black-Scholes assump-
tions, there are essentially two related but distinct kinds of approximation
errors in any pricing techniques of lattice framework, which we refer to as
distribution error and nonlinearity error, where the latter can be minimized
by the adaptive mesh model with slight computation increase.

1. Distribution error: The lattice model approximates the true asset
price distribution with continuous lognormal density by a finite set
of nodes with probabilities. Even though the mean and variance of
the continuous distribution are matched by the discrete distribution of
lattice model, the discrepancy between discrete and continuous distri-
bution still produces distribution error in option value.

2. Nonlinearity error: The finite set of nodes with probabilities used by
lattice model can be thought as a set of probability weighted average
option price over a range of the continuous price space around the
node. If the option payoff function is highly nonlinear, evaluating the
nonlinear region with only one or several nodes would gives a poor
approximation to the average value over the whole interval.

Fig. 3.1 illustrates the two sources of error graphically around at the
money nodes of a one year European put at expiration date with the initial
asset price S0 = 100, the exercise price X = 100, riskless rate r = 0.1 and
volatility σ = 0.25. The solid line represents the option payoff. The gray
shaded bars represent the nodes in the trinomial lattice, corresponding to
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Figure 3.1: Distribution error and nonlinearity error around the at-

the-money nodes at maturity date.

asset prices of 99.0, 99.5, 100.0, and 100.5. The heavy dashed line represents
the lognormal density over this region of the price space. The light dashed
bars indicate how the probability density is discretized over this price range.
The contribution of a particular node to the option value equals the value of
the node probability multiplies the option payoff at the asset price for that
node. The distribution error arises from the difference between the heavy
dashed line and the light dashed line. At the S = 100 node, the nonlinearity
error is caused by undervaluing the probability weighted average payoff to
zero in this interval [13].

The adaptive mesh model presented in this thesis can significantly reduce
the nonlinear error over a given region of the tree.
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3.2 Building the Model

Now we start to build a lattice model to price plain vanilla options using
adaptive mesh mechanism around the nonlinear payoff region of exercise
price at maturity. The essence of the AMM is to use a relatively coarse
lattice throughout the option life and insert meshes with higher resolution
into the tree where the nonlinear error is contributed. It is important for
the fine mesh structure (higher resolution mesh) to be isomorphic so that
additional, still finer mesh can be added using the same procedure. This
allows increasing resolution in a given region of the lattice as much as one
wishes without requiring the step size changes elsewhere.

Here we introduce an isomorphic AMM structure that can be easily ap-
plied to each region of the lattice. Trinomial tree is chose as the base lattice
to approximate the risk neutral distribution because it has more degrees of
freedom and has proven to be more useful and adaptable for many derivative
applications. Because the asset price is assumed to be lognormal, the tree is
based on the log of asset price S. Define X = ln(S), which implies that X is
normally distributed. Under risk neutral assumption, X follows the standard
diffusion process:

dX(t) = αdt + σdz

where α = r−q−σ2/2, σ denotes volatility, dz is standard Brownian motion,
and r and q are the riskless interest rate and dividend yield.

In trinomial tree, there are three different branches for any node to move
to next time state, which are called up (u), down (d), and middle (m). For
deduction’s convenience, we change the variable X by X ′ = X − αt. X ′ is
the mean-adjusted value of the log of asset price and the mean of X ′ would
be 0 at any time state. Hence, The trinomial tree of X ′ is symmetric. Let k
denote the length of a time step (decided by the option’s maturity T , and the
number of time steps N to be used for the tree with k = T/N) and h be the
size of an up and down move. Thus over one time period X goes to X + h
with probability pu, to X − h with probability pd, and remain unchanged
with probability pm.

Matching the mean, variance, and summing up all probabilities to be one,
there are three constraints must be obeyed by the three next state prices and
three probabilities at each node of tree.

1 = pu + pm + pd,

E[X ′(t + k) − X ′(t)] = 0 = puh + pm0 + pd(−h),

E[(X ′(t + k) − X ′(t))2] = σ2k = puh
2 + pm0 + pd(−h)2.

(3.1)
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By solving Eq. (3.1) we can get the following relations:

pu =
σ2k

2h2
,

pm = 1 − σ2k

h2
, (3.2)

pu =
σ2k

2h2
.

Besides, because the tree of X ′ is symmetric distributed, all odd-
numbered moments of the trinomial will be zero, as they are for the normal.
Therefore, we can set the kurtosis in the tree equal to that of the normal.

E[(X ′(t + k) − X ′(t))4] = 3σ4k2 = puh
4 + pm0 + pd(−h)4. (3.3)

Applying the relations in Eq. (3.2) into Eq. (3.3) for the probabilities
yields:

h = σ
√

3k,

pm = 2/3, (3.4)

pu = pd = 1/6.

This is the trinomial process approximating the asset price distribution:

X ′
t+k − X ′

t =







h, with probability pu = 1/6
0, with probability pm = 2/3

−h, with probability pd = 1/6.

which implies the process of X

Xt+k − Xt =







αk + h, with probability pu = 1/6
αk, with probability pm = 2/3

αk − h, with probability pd = 1/6.
(3.5)

The option value at a given asset price and time, V (X, t) is computed
from the values at the three successor nodes as:

V (X, t) = exp(−rk)[puV (X + αk + h, t + k) + pmV (X + αk, t + k)

+ pdV (X + αk − h, t + k)]. (3.6)

Note that for generality Eq. (3.6) allows that the probabilities may vary
with h and k, even though in the current case of Eq. (3.5) they are fixed.
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3.3 Application of the Adaptive Mesh Model

to Plain Vanilla Options

For a European option, nonlinearity error is around the exercise price at
expiration. It turns out that an American option’s nonlinearity error is also
largely accounted for by the error in the last time step, for the prices that
bracket the strike price. Besides, for an American option there is also an
approximation error with regard to where the early exercise occur. However,
by ”smooth pasting” property [16] of the American option value, this kind of
approximation error does not translate into significant error in valuing option
because the values of option price nodes is not highly nonlinear around the
early exercise boundary.

k/4
k

h

h/4

X

X

X+

_

A 7

A 6

A 5

A 4

A 3

A 2

A 1

Figure 3.2: An AMM for a put option around exercise price at ex-

piration.

14



While there is already a well-known analytic solution by Black and Sholes
for pricing European option, we do not only take an European put option
but also take an American put option with AMM mechanism applied around
exercise price at maturity date as examples. Fig. 3.2 illustrate the critical
region of Adaptive Mesh trinomial tree that we wish to construct to value
a put option. The base coarse lattice, with price and time steps h and k,
is represented by heavy lines, and light lines represent the finer mesh with
price step size h/2 and time step size k/4. The finer mesh covers all coarse
nodes at time state T − k, from which there are both fine-mesh paths that
end up in-the-money and out of-the money at expiration, i.e. A2, A3, A4,
and A5 in this figure. X is the strike price, and X+ and X− are the two date
T coarse-mesh node asset price that bracket the strike price. In finer mesh,
X+ is the highest out of-the money node that branches from A2 whereas X−

is the lowest in-the-money price node from A2. Since all branches starting
from nodes below A1 all end up in-the-money and paths start from nodes
above A6 are all expired at the end, there is no need to fine the mesh.

The finer mesh is set up with one-half price size of the previous coarser
mesh. To cut the price step size in half with maintaining the relationship in
Eq. (3.5), the time step price must be set one-quarter of the size of the coarser
one. By the isomorphism of AMM, the trinomial tree lattice introduced in
Fig. 3.2 can cut into any finer level as one wish in the same manner. Thus,
if we set the base mesh as level 0, then the finer mesh of level M has price
step size hM = h/2M and time step size kM = k/2M .

In the traditional trinomial tree model, there are (N + 1)2 nodes of price
computation in total, where N is the number of price steps. Therefore,
cutting the price step in half to reduce the nonlinear error makes N become
quadrupled (h is proportional to

√
k) which implies 16 times computation

amount than before. On the other hand, as we can see in Fig. 3.2 adding one
level of adaptive mesh model to cut the nonlinearity error down only needs
40 more nodes of price computation in critical region (9, 11, 13, and 7 for
time states T − 3/4k, T − 2/4k, T − 1/4k, and T ).

Fig. 3.3 shows the convergence behavior of an in-the-money American put
which is priced by Adaptive Mesh Model. The Label of AMM-M means the
AMM model of level M. The yellow line represents the Traditional Trinomial
Approach, while the blue line is the convergence behavior of Adaptive Mesh
Model of level 2. Although there is the approximation error contributed by
early exercise, AMM model still can improve the convergence behavior with a
little more calculations in American put options. If we rule out the influence
of early exercise, it comes to the European put option whose convergence
behavior is presented in Fig. 3.4 where we can see that a higher level of
AMM model gives rise to a better convergence rate.
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3.4 Extending the AMM Model to Discrete

Single Barrier Options

With only a little modification and extension, the model of Fig. 3.2 can be
extended to price discretely monitored barrier options. Fig. 3.5 shows how
this is done in a discretely monitored down-and-out barrier call by an AMM
structure with one level of fine mesh around the barrier. The coarse mesh
nodes are labelled as A and the finer mesh nodes are labelled as B. As to the
subscript, Aj,k node means the k-th coarse mesh price node at time state j.
The lattice before time state j + 1 are of the same structure as Fig. 3.2 with
only the exercise price is replaced by the barrier price at time j + 1. Lattice
between time states j +1 and j +2 connect the fine mesh lattice back to the
coarse lattice.

There are two kinds of B-level nodes at time state j + 1. Some are at
the same positions as A-level nodes, and the other are between two coarse
nodes. If we directly connect all B-level nodes at time j + 1 to all A-level
nodes at j + 2. The former can intuitively use trinomial method and the
latter may use quadrinomial branching mechanism such as in [13]. But when
we want to cut the mesh finer (i.e. add more level to the tree), it seems like
too complicated under this kind of lattice structure. Hence, the mechanism
in Fig. 3.5 is presented with isomorphism of adding any finer meshes. The
coarse time step is divided into two subperiods. The first subperiod is one
fine mesh time step ,and the second is three-quarters of a coarse time step.
That is, the first of length k/4 and the second of length 3k/4 in the example
lattice in Fig. 3.5.

Branching for the first subperiod is the same as at other B-level nodes.
However, it also leads to two kinds of B5,∗ nodes. For those nodes lying
at the same price level of coarse nodes, the trinomial branching method is
straightforward. The node values can be obtained from Eq. (3.6) with a price
step h and a time step 3k/4. And the branch probabilities of pu = pd = 1/8
and pm = 3/4 can be derived from Eq. (3.2) with replacing k with 3k/4
in probability equations of pu, pm, and pd, and maintaining the relationship
h = σ

√
3k (because it has been fixed by coarse mesh). Let k′ = 3k/4 Hence,

the new trinomial process for those nodes is as follows:

Xt+k − Xt+k/4 =







αk′ + h, with probability pu
′ = 1/8

αk′, with probability pm
′ = 3/4

αk′ − h, with probability pd
′ = 1/8.

(3.7)

Notice that the kurtosis is no longer matched by the process in Eq. (3.7)
because matching the mean, variance, constraining the all probabilities to be
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Figure 3.5: An AMM for discrete down-and-out barrier call options.
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one, and maintaining the relationship of h = σ
√

3k have used four degree of
freedom while there are only five variables pu, pm, pd, h, and k.

For the nodes lying between two coarse node price levels, a quadrinomial
branching mechanism should be applied. For example, we should connect
B5,13 to four A-level nodes at time t+2, i.e. Aj+2,6, Aj+2,7, Aj+2,8 ,and Aj+2,9

with price increments of 3h/2, h/2, −h/2, and −3h/2. Matching the mean,
variance, and adding four branch probabilities to be one give us the following
three equations under the condition of h = σ

√
3k.

puu + pu + pd + pdd = 1,

puu(αk′ + 3h/2) + pu(αk′ + h/2) + pd(αk′ − h/2) + pdd(αk′ − 3h/2) = αk′,

puu(3h/2)2 + pu(h/2)2 + pd(−h/2)2 + pdd(−3h/2)2 = σ2k′.

(3.8)

which can be solved as:

puu = pdd = 0,

pu = pd = 1/2.
(3.9)

Surprisingly the solution in Eq. (3.9) collapses the quadrinomial branch-
ing into binomial one, as follows:

X ′
t+k − X ′

t+1/4 =















αk′ + 3σh/2, with probability puu = 0
αk′ + σh/2, with probability pu = 1/2
αk′ − σh/2, with probability pd = 1/2
αk′ − 3σh/2, with probability pdd = 0.

The isomorphic structure of the fine mesh allows us to add the next
layer, with price and time steps hC = h/4 and kC = k/16, using exactly
the same procedure as described above. Fig. 3.6 illustrates the resulting
lattice structure. As we can see from this figure, we don’t care where the
barrier is and merely cut the lattice finer by adding more levels into the
structure around where the payoff function value is significantly nonlinear.
Hence, the ”barrier-too-close” problem does not exists under the AMM lattice
mechanism.

We can see the convergence behavior of a single discrete Down-and-Out
barrier European Call in Fig. 3.7 with S = 100, X = 100, down-and-out
barrier H = 90, σ = 20%, r = 10% , q = 0, and T = 0.5 year. The
monitoring frequency F of discrete barrier is 6 which means the barrier is
checked 0.5year/6, that is monthly. The number of time steps starts from
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24 and ends with 1200. The blue line with huge zig-zag phenomenon repre-
sents the convergence result of the trinomial model. The trinomial model we
use here is the same as AMM lattice with AMM level set to be zero. The
convergence of AMM level 2 in purple line is also somewhat sawtooth-like.
When it comes to level 8, the yellow line looks almost like a straight line. As
the result shows, the adaptive mesh model can not only contribute a better
convergence rate but also be helpful to eliminate the zig-zag occurrence in
convergence behavior when we apply a higher level of AMM mechanism to
the lattice model.

Number of Time steps
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ce

Figure 3.7: The AMM Model convergence for a single discrete down-

and-out barrier European call.

S = 100, X = 100, H = 90, σ = 20%, r = 10% , q = 0% and monitoring
frequency F = 6.

3.5 Further Extending to Discrete Double

Barrier Options

It is very intuitive for us to extend the AMM structure introduced in previous
section to price double discrete barrier options simply by applying the same
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adaptive mesh technique around both barriers. Fig. 3.8 shows the lattice
structure in most of the time. There are two fine mesh area. One is the
adaptive mesh of level 1 for high barrier ,and the other is for low barrier.
These two fine mesh work individually and will not influence any node’s value
of each other because there is no intersectional area in them. Moreover, no
matter the initial asset price is how close to either barriers, the lattice model
in Fig. 3.8 still functions well enough depending on the level of AMM model.

high barrier

low barrier

Figure 3.8: An level 1 AMM Model for double discrete barrier op-

tions.

However, there is still an extremely special situation that should be dealt
with. It occurs when two barriers are so close that there are both barriers
in fine mesh at the same time. Fig. 3.9 depicts this kind of situation. For
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illustration convenience this picture only present the adaptive mesh mecha-
nism around down-barrier while the high barrier part is omitted (but it still
exists). There are three kinds of meshes with different resolutions in Fig. 3.9,
that is it is a level 2 AMM model. The base lattice is in bold lines and its
nodes are labelled as Ai, where i is the index from the bottom node of base
mesh in this figure. The thin lines represent the first level mesh with nodes
named as Bi, where i is the index from the bottom node of first level mesh.
At last, the second level mesh is drawn by dotted line without any node la-
bel. As the picture shows, the high barrier is so close to the low barrier that
some B-level nodes such as B13, B14, and B15(= A8) are knocked out to be
zero by it. When the high barrier goes much closer to the low barrier such
as the price level below B11, not only the node values of first level fine mesh
but also those of the second level fine mesh would be affected by the high
barrier. Depending on how close the two barriers would be, further level of
fine meshes would be influenced. On the other hand, if we move the high
barrier away from low barrier such as the price level between the levels of A8

and A9, there will be no inter-influence of the two barrier ,and the adaptive
mesh model for the two barriers can be built up in individual finer lattice.
Nevertheless, building the finer mesh individually would not be a good idea
in this case. Because now the price level of high barrier is between nodes A8

and A9 and the lowest first level AMM model lattice node of high barrier at
barrier monitored date would be B9, there will be lots of fine mesh nodes
in the intersection area of two first level fine mesh that would be calculated
twice giving rise to redundant computation. The aim of AMM mechanism
is to reduce the nonlinearity error with limiting the increase of computation
amount as much as possible. Therefore, this kind of situation with redundant
node calculation is not desirable and the two level one fine mesh should be
combined to be one.

Since AMM mechanism have been notorious for its unfriendly complicated
structure for programmer to implement it, those situations describe above in
double barrier options highly enhance the difficulties in programming. We
are going to list some facts we have observed which would be quite helpful for
those who want to implement the AMM mechanism in pricing double barrier
options. First of all, let us define some inter-statuses of the two fine meshes
of high barrier and low barrier. If we call the two meshes are ”individual”, it
means that there is not any intersectional price node of both two fine mesh
of the same level at the barrier monitored date. On the other hand, the two
meshes are ”combined” while there is at least one overlapped price node of
the two fine meshes at barrier monitored date. We set the base lattice to be
combined. Here we list the facts below:
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1. If the two m-level meshes are combined, the two (m − 1)-level meshes
will be also combined.

2. If the two m-level meshes are individual, the two (m + 1)-level meshes
will be also individual.

3. There are only two situations that a level of meshes should be checked
combined or individual. One is when we stand at a level of combined
mesh and want to know the inter-status of next level meshes. The other
is when we stand at two individual m-level meshes and wonder whether
the two (m − 1)-level meshes are combined or individual.

In discrete double barrier options there are two areas that would generate
nonlinearity error at every barrier monitored dates, one is around high bar-
rier and the other is around low barrier. The error would be cumulative that
incorrectness is even mounting when the barrier condition is checked more
frequently. If we want to reduce the nonlinearity error contributed by barri-
ers in traditional trinomial mechanism, halving the price step may quadruple
the number of time steps and would make the node value calculation become
16 times. However, with AMM mechanism be applied, the same nonlinear-
ity error elimination can be accomplished by a reasonably small increase of
computation amount. Adding a finer mesh needs 60 extra nodes to be calcu-
lated. We can get the number by summing up all B-level nodes in Fig. 3.9,
but among these 60 nodes there are some nodes that need no extra calcula-
tion such as those nodes being knocked out at barrier check date and their
branching nodes at next fine mesh time state. Hence, we can say that to cut
the nonlinearity error half would increase the computation amount not more
than 120 nodes calculation (in worst case, fine meshes of the two barriers are
individual and 60 for each one). Fig. 3.10 depicts the convergence behavior
of AMM model for a double discrete out-barrier European call. The number
of time steps starts from 6 and ends with 1,200.

The AMM model for double barrier options proposed in this section can
be also applied to the moving double barrier without any modification. The
”moving” here means the two barrier can differ at different monitoring dates.
The essence of AMM mechanism is to reduce the nonlinearity error by adding
the density of lattice around the critical area. Hence, as we can find in the
mechanism proposed above that no matter the barriers are fixed or not, the
adaptive mesh mechanism just build up the finer mesh around the barriers.
It is an example of the strong flexibility of AMM model.
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Figure 3.9: An level 1 adaptive mesh model for double discrete bar-

rier options.
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Figure 3.10: The AMM Model convergence for a double discrete

out-barrier European call.

S = 100, X = 100, up-barrier H = 110, down-barrier L = 90, σ = 20%,
r = 10%, q = 0%, T = 0.5 year and monitoring frequency F = 6.
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Chapter 4

Numerical Results

In this chapter we compare the AMM model with other mechanisms divided
into three different categories: trinomial tree lattice mechanisms, the BGK
formula approach, and the quadrature method. There are three trinomial tree
mechanisms to compete with AMM model. The first is the trinomial method
for ordinary options provided by Kamrad and Ritchken (1991) [17]. The
second is a tree lattice with a stretch parameter proposed by Ritchken (1995)
[9] for continuously monitored not only single but also double barrier options.
However, with only a little modification the same mechanism can be also
applied to discrete barrier options where this paper is mainly focused. At last,
the Broadie, Glasserman, and Kou’s Enhanced Trinomial Tree mechanism
[11] is implemented to compare with AMM. In the category of formula-based
approach, Broadie, Glasserman, and Kou also propose a continuity correction
to the formula of continuous barrier option which is called BGK model for
pricing discrete barrier options[5]. Finally, the quadrature method firstly
suggested by Andricopoulos et al. (2003) is carried out. The quadrature
method has characteristics of multinomial lattice and finite difference method
and is especially powerful in pricing of discretely monitored derivatives.

All competing methods in this chapter are implemented in C++ programs
running on a PC with an Intel Pentium 4 3.2GHz CPU and 1.0 GB of RAM.

4.1 Trinomial Tree Lattice Mechanisms

4.1.1 The Ritchken Trinomial Tree Mechanism

In [9] Ritchken proposes an approximated tree lattice for continuous barrier
options. Let us set X = ln S, where S is the underlying asset price. The
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Figure 4.1: The Ritchken Trinomial Tree for continuous barrier op-

tions.

(a)Single barrier options. (b)Double barrier options.

Ritchken’s trinomial process is defined as below:

Xt+∆t − Xt =







λσ
√

∆t, with probability pu

0, with probability pm

−λσ
√

∆t, with probability pd.

(4.1)

and pu, pm, and pd are

pu =
1

2λ2
+

α
√

∆t

2λσ
,

pm = 1 − 1

λ2
,

pd =
1

2λ2
− α

√
∆t

2λσ
.

where 1 ≤ λ < 2 and α and σ are defined as before.
λ is the stretch parameter that controls the gap between layers of prices

on the lattice and can be adjusted to make the lattice ”hit” a single barrier
as shown in Fig. (a). As to double barrier options, Ritchken in the same
paper also proposes an additional stretch parameter, γ, to make the second
barrier be hit by lattice. The tree lattice of Ritchken for the double barrier
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option is presented in Fig. (b). Let Xa denotes the variable X at level a.
We have the process

Xa
t+∆t − Xa

t =







λσ
√

∆t, with probability p′u
0, with probability p′m

−γλσ
√

∆t, with probability p′d.

(4.2)

where 1 ≤ γ < 2.
Matching up the mean and variance for these nodes leads to

p′u =
b + aγ

1 + γ
,

p′m = 1 − p′u − p′d,

p′d =
b − a

γ(1 + γ)
.

where a = α
√

∆t
λσ

and b = 1
λ2 .

However, those mechanism proposed by Ritchken are all for continuous
barrier options. For those barriers monitored discretely we should not only
calculate lattice nodes between price levels of up-barrier and down-barrier
but also take into account those nodes above up-barrier and below down-
barrier. It would be no problem for us using the process in Eq. (4.1) except
for nodes at the same level of down-barrier. The process for the nodes at
down-barrier level should be as follows:

XHd
t+∆t − XHd

t =







γλσ
√

∆t, with probability p′′u
0, with probability p′′m

−λσ
√

∆t, with probability p′′d.

(4.3)

where

p′′u =
a + b

γ(γ − 1)
,

p′′m = 1 − p′′u − p′′d,

p′′d =
b − aγ

γ + 1
.

with a and b defined as earlier.

4.1.2 The Enhanced Trinomial Tree Mechanism

Broadie et al. followed their continuity correction concept [5] and proposed
a barrier-shifted lattice mechanism for discrete barrier options called en-

hanced trinomial method in 1999[11]. They use the same trinomial approach
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of Ritchken’s method described just above but shift the discrete barrier at
level H to H ′ = He±0.5λ∗σ

√
∆t(with + for an up barrier and − for a down

barrier). The λ∗ =
√

3/2 is recommended by Boyle [18] and Omberg [19],

and 0.5λ∗σ
√

∆t is the average overshoot over a boundary for the random
walk process. Broadie et al. suggest a procedure producing an n (time step
number) which is divisible by m (barrier monitoring frequency), a λ (stretch
parameter) which is close to λ∗, and a layer of nodes which coincides with
the shifted barrier, and then use those parameters to construct the enhanced
trinomial tree.

Nevertheless, for the convenience of comparing with other mechanisms,
the time step number n should be free for input. Hence, we use a different
procedure against Broadie et al.. Let λk = |log(H/S)|/(kσ

√
∆t), for k = 1, 2,

...,k′, where k′ corresponds to the first time a layer of nodes crosses the shifted
barrier without stretch of price step size (i.e. λ = 1). Then we choose the λ
from λk which minimizes |λk −λ∗| for k = 1, 2, ...,k′, no matter what kind of
n is input. But the λ we choose here can only make one barrier be matched
by a price level of enhanced trinomial tree so we apply the Ritchken’s second
stretch parameter technique described above to the enhanced trinomial tree
making the second barrier be hit.

Finally, there is a noteworthy point. Broadie et al. remark by themselves
that the enhanced trinomial method preforms better with less frequent mon-
itoring of the barrier.

4.1.3 Numerical Comparisons

Since the competing mechanisms have been shortly introduced, now we can
turn our focus onto the numerical comparisons of these methods.

Table. 4.1 shows numerical comparisons of AMM with its competitors
in a down-and-out option under different barriers and different condition
monitoring frequencies. We choose the benchmark as the AMM with AMM
level of 8 and time step number n = 1, 000, 000. It’s because we can find from
our research data that AMM contributes the best convergence rate, and result
prices of all other methods are getting closer to AMM-8’s value while time
step number is increasing. We see an example of this phenomenon in Table.
4.2 by numerical data, and also there are some figures of convergence rate in
Fig. 4.3.

In Table. 4.1 AMM-8 generally dominates over other methods in ac-
curacy. The enhanced trinomial lattice takes the second place followed by
the Ritchken’s method and standard trinomial tree. No matter what mon-
itoring frequency it is, all methods invoke worse outcomes while the down
barrier gets closer to the initial price. Moreover, we can see from the table
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Barrier Benchmarka

Enhanced

Trinomialb Ritchkenc Trinomiald AMM-8

valuee error(%)f value error(%) value error(%) value error(%)

monitoring frequency=2

80 8.2566 8.2559 −0.0093 8.2561 −0.0063 8.2561 −0.0068 8.2566 −0.0001

90 8.1273 8.1393 0.1473 8.1160 −0.1390 8.1272 −0.0015 8.1272 −0.0020

95 7.8092 7.8208 0.1486 7.7752 −0.4346 7.8092 0.0017 7.8091 −0.0006

99 7.3019 7.3348 0.4516 7.2202 −1.1186 7.3097 0.1065 7.3022 0.0047

monitoring frequency=5

80 8.2535 8.2526 −0.0099 8.2525 −0.0115 8.2529 −0.0063 8.2535 0.0000

90 7.9118 7.9463 0.4365 7.8799 −0.4027 7.9123 0.0060 7.9117 −0.0008

95 7.0217 7.0542 0.4633 6.9293 −1.3158 7.0226 0.0131 7.0214 −0.0047

99 5.7210 5.8010 1.3978 5.5310 −3.3207 5.7398 0.3277 5.7219 0.0158

monitoring frequency=25

80 8.2435 8.2426 −0.0116 8.2414 −0.0256 8.2431 −0.0050 8.2435 0.0001

90 7.5882 7.6530 0.8527 7.5305 −0.7614 7.5904 0.0285 7.5881 −0.0020

95 5.9302 5.9946 1.0871 5.7524 −2.9982 5.9335 0.0563 5.9297 −0.0080

99 3.4393 3.5885 4.3374 3.1095 −9.5892 3.4748 1.0329 3.4382 −0.0335

monitoring frequency=125

80 8.2350 8.2340 −0.0120 8.2322 −0.0346 8.2347 −0.0032 8.2350 0.0001

90 7.3683 7.4530 1.1482 7.2996 −0.9335 7.3729 0.0618 7.3684 0.0004

95 5.3370 5.4211 1.5745 5.1280 −3.9177 5.3470 0.1866 5.3370 −0.0007

99 2.1829 2.3881 9.4019 1.7717 −18.8369 2.2230 1.8374 2.1801 −0.1284

It is an down-and-out call with T = 0.5 year, r = 5%, q = 0%, σ = 25%, S = 100, and X = 100.

All methods are calculated with time steps n = 750.
aThe Benchmark comes from the AMM-8 lattice with 1, 000, 000 steps.
bThe Trinomial is the standard trinomial tree proposed by Kamrad and Ritchken[17] with

λ = 1.2533136[20].
cThe Ritchken is the Ritchken Trinomial Tree Mechanism[9] with modification described above.
dThe Enhanced Trinomial is proposed by Broadie et al.[11] with modification described above.
eAll the values are rounded off to the forth decimal place.
fThe error(%) field is the percentage pricing error = [approximation/(benchmark)−1]100% rounded

to the forth decimal place with all the values computed before rounding.

Table 4.1: Numerical comparisons of AMM with other tree lattice

methods in single discrete barrier options.
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n 1, 000 10, 000 100, 000 1, 000, 000

Trinomial 8.25230781 8.25328042 8.25345179 8.25347439

Ritchken 8.25262447 8.25321817 8.25338130 8.25343194

Enhanced Trinomial 8.25302744 8.25341562 8.25345090 8.25345481

AMM-8 8.25344311 8.25345525 8.25345551 8.25345628

Table 4.2: An numerical data of convergence of tree methods in a

down-and-out European Call.

S = 100, X = 100, H = 80, σ = 25%, r = 5% , q = 0%, T = 0.5 year and

monitoring frequency F = 5.

that the results of Ritchken’s method are even worse than those of the stan-
dard trinomial tree with a down barrier at the price level of 95 or 99. This
kind of error arises from the option value drop around the barrier price at
monitored date. Fig. 4.2 is a call value plotting related to the asset price
around barrier at 4T/5, which is just like the option value curve of a discrete
barrier option with monitoring frequency F = 5 before the barrier condition
at 4T/5 is checked. As the down barrier is shifted upper (i.e. 80, 90, 95,
and 99) and getting closer to initial asset price S(= 100), the drop of option
value after the barrier condition is checked is also increasing. The gap in
option value curve gives rise to some kind of error similar to the nonlinearity
error introduced before. Although the Ritchken’s method makes the lattice
hit the down-barrier price level, this kind of error still occurs in those nodes
whose down branch or middle branch hits the barrier at time 4T/5−∆t and
makes the result go awry. On the other, the enhanced trinomial tree with
the continuity correction and AMM-8 applying higher mesh resolution to the
critical area can both restrain this kind of error.

We can also observe from Table. 4.1 that the higher the monitoring
frequency is, the more erroneous the approximated option price values are. It
is very intuitive because the erroneousness contributed by option value drop
at each barrier monitored time is cumulative. Hence, the option with higher
monitoring frequency will be priced with greater fallaciousness. Furthermore,
just like Broadie et al. suggests in [11] that the enhanced trinomial method
is more accurate with low monitoring frequency, it gets a larger error rate
than others in the case of barrier price 80 and monitoring frequency 125.

Fig. 4.3 shows the convergence behaviors of discrete barrier option with
monitoring frequencies F = 5 and F = 25. It is very clear that AMM-8 has
the best convergence rate of result, values of the enhanced trinomial method
converge worse with higher monitoring frequency, outcomes of the Ritchken’s
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Figure 4.2: A call option value in relation to asset price at 4T/5.
S = 100, X = 100, σ = 25%, r = 5%, q = 0%, and T = 0.5 year.

lattice are usually under-estimated, and the results of all other methods are
going to converge to the one of AMM-8 with the increase of the increasing
time step number.

We are also interested in the pricing behavior of those methods under
barrier-too-close situation. Table. 4.3 is a table with numerical comparisons
with different too-close barriers. There is an answer come out from traditional
trinomial method in every close barrier. But a greater time step number n
doesn’t promise a smaller percentage error because of obvious zig-zag curve
shape and slow convergence rate as we can see in Fig. 4.3. The convergence
curve of AMM-8 is also sawtooth-like. However, because of AMM’s fast
convergence rate, the erroneousness of AMM-8 in Table. 4.3 decreases while
the time step number n increases except for the case between n = 20, 000
and n = 35, 000 with a barrier 99.5. Also, we can clearly see the influence
of the barrier-too-close problem in Ritchken’s lattice and enhanced trinomial
method. With the barrier getting closer to the initial asset price an extremely
large number of time steps should be used to price options. However, the
option value calculated by Ritchken’s lattice and the enhanced trinomial
method with n = 35, 000 can’t even compete against AMM-8 with only
500 time steps. There are some cases that the enhanced trinomial method
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(a) Monitoring Frequency = 5

(b) Monitoring Frequency = 25

Figure 4.3: The convergence behaviors for discrete down-and-out

European calls with different monitored frequencies in tree meth-

ods.

S = 100, X = 100, H = 80, σ = 25%, r = 5%, T = 0.5 year and q = 0%.
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Barrier Benchmark
a

Enhanced

Trinomial
b

Ritchken
c

Trinomial
d

AMM-8

n valuee error(%)f value error(%) value error(%) value error(%)

99.5 3.0962

500 3.1041 0.2563 NA NA 3.1022 0.1924 3.0957 −0.0177

1,500 2.9548 −4.5657 2.9302 −5.3617 3.0286 −2.1847 3.0953 −0.0296

5,000 3.0762 −0.6457 3.0071 −2.8795 3.0904 −0.1877 3.0965 0.0091

20,000 3.1284 1.0409 3.0539 −1.3650 3.0994 0.1027 3.0963 0.0019

35,000 3.1179 0.6991 3.0624 −1.0931 3.0977 0.0475 3.0963 0.0023

99.75 2.9267

500 3.1041 6.0625 NA NA NA NA 2.9274 0.0248

1,500 2.9548 0.9612 NA NA 2.9401 0.4582 2.9271 0.0143

5,000 2.8651 −2.1044 2.8606 −2.2602 2.8960 −1.0492 2.9266 −0.0039

20,000 2.9167 −0.3411 2.8846 −1.4400 2.9237 −0.1072 2.9268 0.0039

35,000 2.9577 1.0582 2.8849 −1.4290 2.9312 0.1542 2.9267 −0.0022

99.875 2.8428

500 3.1041 9.1950 NA NA NA NA 2.8452 0.0861

1,500 2.9548 3.9430 NA NA NA NA 2.8434 0.0230

5,000 2.8651 0.7869 NA NA 2.8531 0.3654 2.8430 0.0078

20,000 2.8118 −1.0878 2.8040 −1.3636 2.8270 −0.5542 2.8426 −0.0048

35,000 2.8781 1.2436 2.8012 −1.4625 2.8207 −0.7772 2.8427 −0.0015

99.9 2.8260

500 3.1041 9.8415 NA NA NA NA 2.8273 0.0460

1,500 2.9548 4.5585 NA NA NA NA 2.8268 0.0286

5,000 2.8651 1.3836 NA NA 2.8446 0.6592 2.8263 0.0109

20,000 2.8118 −0.5022 NA NA 2.8186 −0.2641 2.8259 −0.0018

35,000 2.7989 −0.9581 2.7928 −1.1757 2.8122 −0.4879 2.8260 −0.0013

It is an down-and-out call with T = 0.5 year, r = 5%, q = 0%, σ = 25%, S = 100, X = 100, and F = 25.
aThe Benchmark comes from the AMM-8 lattice with 1, 000, 000 steps.
bThe Trinomial is the standard trinomial tree proposed by Kamrad and Ritchken[17] with

λ = 1.2533136[20].
cThe Ritchken is the Ritchken Trinomial Tree Mechanism[9] with modification described above.
dThe Enhanced Trinomial is proposed by Broadie et al.[11].
eAll the values are rounded off to the forth decimal place.
fThe error(%) field is the percentage pricing error = [approximation/(benchmark)−1]100% rounded

off to the forth decimal place with all the values computed before rounding.

Table 4.3: Numerical comparisons of AMM with other tree lattice

methods under barrier-too-close situation in single discrete barrier

options.
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can come up with a result but Ritchken’s lattice. It is because the barrier
shift of the enhanced trinomial method increase the price distance between
the initial asset price and the adjusted barrier. The result data in Table.
4.3 also represents that Ritchken’s lattice is overwhelmed by the enhanced
trinomial method under too-close barrier situation, and AMM-8 is still the
method with the best convergence rate when barrier is too close.

Table. 4.4 and Fig. 4.4 depict comparing numerical results and pricing
convergence behaviors of discrete double knock-out barrier options. We can
see from those numerical data that all the observations just found from sin-
gle barrier options can also be adapted to double barrier case. Comparing
the percentage errors in Table. 4.4 with those of relative fields in Table.
4.1 shows that the fallaciousness of double barrier option pricing is generally
greater than that of pricing in single barrier options. It is because the pricing
error does not only originate from down barrier but also from up barrier, be-
sides the option value drop arising from condition check of up-barrier is also
larger than that from down-barrier. We can see the convergence behavior of
those methods in Fig. 4.4. AMM-8 performs well enough even with small
numbers of time steps. The convergence of the enhanced trinomial method is
also good enough with monitoring frequency F = 5. However, when it comes
to the case with monitoring frequency F = 25 (i.e. a higher monitoring
frequency), we can find results of the enhanced trinomial method with un-
acceptable errors when the time step number n ≤ 500. Like the convergence
behaviors in single barrier options, the standard trinomial method converges
with an obvious zip-zap phenomenon ,and the results of Ritchken’s lattice are
always under-estimated and converge along the lower edge of sawtooth-like
curve of the standard trinomial method.

Fig. 4.5 is the time-error plotting with x-axis denoting execution time of
programs and y-axis denoting percentage error of results. All the programs
are optimized by omitting to calculate those nodes whose backward induction
nodes are going to hit the barrier. The marks in Fig. 4.5 are generated by
programs with input parameter n starting from 25 and incrementing by 25
under other input parameters being fixed. Although there are still some
uncontrolled variables which would influence the execution time of programs
such as the temperature of CPU, the loading of operating system and memory
size etc., the plotting in Fig. 4.5 can still give us a rough sketch of the
time-error relationship of those competing methods. We can see from Fig.
4.5 that spending extra node calculation for finer mesh nodes makes AMM
comes up with a more accurate result in a smaller number of time steps than
Ritchken’s lattice and the enhanced trinomial method. We can also tell from
Fig. 4.5 that AMM-8 is generally more accurate and faster than other three
methods.

37



Enhanced

Barrier Benchmarka Trinomialb Ritchkenc Trinomiald AMM-8

H L valuee error(%)f value error(%) value error(%) value error(%)

monitoring frequency=2

120

80 2.8384 2.8302 −0.2880 2.7442 −3.3190 2.8392 0.0305 2.8386 0.0074

90 2.7287 2.7294 0.0278 2.6256 −3.7784 2.7291 0.0158 2.7287 0.0028

95 2.4855 2.4851 −0.0157 2.3566 −5.1857 2.4842 −0.0524 2.4857 0.0062

99 2.1376 2.1507 0.6117 2.0044 −6.2303 2.1085 −1.3592 2.1380 0.0178

monitoring frequency=5

120

80 2.4499 2.4439 −0.2455 2.3562 −3.8234 2.4510 0.0453 2.4498 −0.0033

90 2.2028 2.2173 0.6586 2.0900 −5.1194 2.2028 0.0014 2.2026 −0.0066

95 1.6831 1.6926 0.5642 1.5302 −9.0865 1.6799 −0.1938 1.6829 −0.0126

99 1.0812 1.1078 2.4606 0.9499 −12.1364 1.0402 −3.7926 1.0813 0.0104

monitoring frequency=25

120

80 1.9420 1.9490 0.3613 1.8545 −4.5065 1.9438 0.0924 1.9421 0.0041

90 1.5354 1.5630 1.7998 1.4248 −7.2006 1.5362 0.0502 1.5353 −0.0036

95 0.8668 0.8823 1.7828 0.7343 −15.2866 0.8644 −0.2825 0.8667 −0.0127

99 0.2931 0.3153 7.5488 0.2224 −24.1209 0.2703 −7.8077 0.2931 −0.0242

monitoring frequency=125

120

80 1.6808 1.7477 3.9800 1.6044 −4.5466 1.6846 0.2230 1.6810 0.0082

90 1.2029 1.2370 2.8394 1.1057 −8.0785 1.2064 0.2924 1.2029 0.0038

95 0.5532 0.5699 3.0274 0.4568 −17.4136 0.5543 0.2123 0.5531 −0.0017

99 0.1042 0.1201 15.2063 0.0688 −33.9769 0.0969 -7.0129 0.1041 −0.1119

It is an down-and-out call with T = 0.5 year, r = 5%, q = 0%, σ = 25%, S = 100, and X = 100.

All methods are calculated with time steps n = 750.
aThe Benchmark comes from the AMM-8 lattice with 1, 000, 000 steps.
bThe Trinomial is the standard trinomial tree proposed by Kamrad and Ritchken[17] with

λ = 1.2533136[20].
cThe Ritchken is the Ritchken Trinomial Tree Mechanism[9] with modification described above. A λ

is chose to hit the up barrier and a γ is chose to hit the down barrier.
dThe Enhanced Trinomial is proposed by Broadie et al.[11] with modification described above. A λ

is chose to hit the shifted up barrier and a γ is chose to hit the shifted down barrier.
eAll the values are rounded off to the forth decimal place.
fThe error(%) field is the percentage pricing error = [approximation/(benchmark)−1]100% rounded

to the fourth decimal place with all the values computed before rounding.

Table 4.4: Numerical comparisons of AMM with other tree lattice

methods in double discrete barrier options.

38



Number of Time steps

C
al

l p
ri

ce

Number of Time steps

C
al

l p
ri

ce

(a) Monitoring Frequency = 5

(b) Monitoring Frequency = 25

Figure 4.4: The convergence behaviors for discrete down-and-out

up-and-out European calls with different monitored frequencies in

tree methods.

S = X = 100, L = 80, H = 120, σ = 25%, r = 5%, T = 0.5 year and q = 0%.
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Figure 4.5: The time-error plotting for discrete barrier options in

tree methods.

(a)Single down barrier case with L = 80. (b)Double barrier case with H = 120
and L = 80. Both cases are generated from setting the number of time steps n

starting from 25 by an increment amount 25 with parameters S = 100, X = 100,
σ = 25%, r = 5%, T = 0.5 year, q = 0%, and F = 5. The percentage error is

relative to the benchmark from AMM-8 with n = 1, 000, 000.
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4.2 The BGK Formula Approach

The BGK formula approach is the method proposed by Broadie, Glasser-
man, and Kuo in [5] to price a discrete barrier option using the continuous
monitored formula with an adjustment to the barrier away from the initial
asset price. The continuity correction formula for discrete barrier options is
as follows:

Vm(H) = V (He±βσ
√

T/m) + o(
1√
m

).

where H is the barrier price, Vm(H) is the price of a discretely monitored
down-barrier call and up-barrier put with monitoring frequency F = m,
V (H) is the price of the corresponding continuously monitored barrier option,
+ is for the case of up barrier, − is for down-barrier, and β = −ζ(1

2
)/
√

2π ≈
0.5826, with ζ the Riemann zeta function.

When the stock price follows a continuous path and is monitored contin-
uously, the stock price is always equal to the barrier level at the moment the
barrier is breached, but when the barrier is monitored discretely, there will
almost always be an overshooting whenever the barrier is breached (i.e. the
stock price is almost always below the barrier when the barrier is reached
from above, and vice versa). It turns out that the value of a discrete bar-
rier option can be Taylor-expanded in terms of the size of the overshooting,
and it can then be approximated by using the closed-form formula for the
continuous monitoring case with the barrier adjusted by the overshooting
amount.

4.2.1 Numerical Comparisons

There is no close-form solution for continuous double barrier options such
that the BGK method can only be used to price options with a single discrete
barrier. Fig. 4.5 shows the numerical comparisons of AMM-8 with the BGK
method in different monitoring frequencies and barrier prices. As Broadie
et al. have mentioned in their paper, we can see from the table that the
BGK model works with high accuracy when the barrier is not too close
to the initial asset price. Also, the higher the monitoring frequency is, the
smaller the pricing error of the BGK method is. Comparing AMM-8 with the
BGK method, AMM-8 dominates the BGK method in monitoring frequencies
F = 5, 25, and 125. However, the gap of pricing errors between these two
methods is shrinking as the monitoring frequency is rising. When it comes
to the case of monitoring frequency F = 250, the BGK method can beat
AMM-8 under those cases of L = 80, 90, and 95.
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Barrier Benchmark
a BGK

b
AMM-8

c

valued error(%)e value error(%)

monitoring frequency=5

80 8.2535 8.2540 0.0062 8.2535 0.0000

90 7.9118 7.9206 0.1119 7.9117 −0.0008

95 7.0217 6.9208 −1.4373 7.0214 −0.0047

99 5.7210 5.0769 −11.2581 5.7219 0.0158

99.9 5.3700 4.4853 −16.4756 5.3701 0.0009

monitoring frequency=25

80 8.2435 8.2436 0.0012 8.2435 0.0001

90 7.5882 7.5891 0.0115 7.5881 −0.0020

95 5.9302 5.9341 0.0664 5.9297 −0.0080

99 3.4393 3.2039 −6.8438 3.4382 −0.0335

99.9 2.8260 2.3728 −16.0357 2.8279 0.0675

monitoring frequency=125

80 8.2350 8.2350 0.0001 8.2350 0.0001

90 7.3683 7.3684 0.0012 7.3684 0.0004

95 5.3370 5.3371 0.0011 5.3370 −0.0007

99 2.1829 2.1431 −1.8222 2.1801 −0.1284

99.9 1.3928 1.1924 −14.3883 1.3946 0.1266

monitoring frequency=250

80 8.2324 8.2324 −0.0000 8.2324 −0.0001

90 7.3080 7.3080 0.0004 7.3081 0.0009

95 5.1795 5.1795 0.0004 5.1795 0.0018

99 1.8797 1.8699 −0.5238 1.8752 −0.2407

99.9 1.0256 0.8899 −13.2265 1.0249 −0.0672

It is an down-and-out call with T = 0.5 year, r = 5%, q = 0%, σ = 25%, S = 100, and X = 100.
aThe Benchmark comes from the AMM-8 lattice with 1, 000, 000 steps.
bThe BGK model is continuity correction to the formula proposed by Broadie et al.[5].
cThe values of AMM-8 is calculated by AMM level 8 with the number of time steps n = 750.
dAll the values are rounded off after the forth decimal place.
eThe error(%) field is the percentage pricing error = [approximation/(benchmark)−1]100% rounded
off to the forth decimal place with all the values computed before rounding.

Table 4.5: Numerical comparisons of AMM with BGK model in

single discrete barrier options.
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4.3 The Quadrature Method

The quadrature method is first proposed by Andricopoulos et al.[15] for single
barrier options in 2003 and enhanced and extended for double barrier options
by Tsai[21] in 2005. Here we use the quadrature method of Tsai which is
going to be introduced below to compare with AMM.

The concept of quadrature method for single discrete barrier options is
depicted by Fig. 4.6 and Fig. 4.7 that we first calculate all option values of
nodes at maturity date (i.e. m = 4), and then induct backward to the initial
date (i.e. m = 0) by integrating each node value at each barrier monitoring
date. Define S0 as the initial asset price, X as the exercise price, M as the
monitoring frequency, T as the option lifetime, and ∆t = T/M as the time
interval between barrier observations. The option value at time t with asset
price St denoted by V (St, t) can be expressed as follows.

V (St, t) = e−r∆t

∫ ∞

0

V (St+∆t, t + ∆t)f(St+∆t)dSt+∆t.

where f(.) is the probability density function of the lognormal discribution
which is assumed to be followed by underlying asset price. With the stan-
dard transformation by x = log(St/X) and y = log(St+∆t/X), the equation
becomes

V (x, t) = er∆t

∫ ∞

−∞
V (y, t + ∆t)f(y)dy,

f(y) : N(x + [(r − q)
1

2
σ2]∆t, σ

√
∆t).

It can be simplified thus:

V (x, t) = A(x)

∫ ∞

−∞
B(x, y)V (y, t + ∆t)dy, (4.4)

where

A(x) =
1√

2σ2π∆t
e−

1
2
kx− 1

8
σ2k2∆t−r∆t,

B(x, y) = e−
(x−y)2

2σ2∆t
+ 1

2
ky,

k =
2(r − q)

σ2
− 1.

Eq. 4.4 contains an integral that has to be evaluated by numerical
techniques. The Simpson’s rule is requested to approximate the integral.
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The idea of Simpson’s rule is simple. For a function of y, divide the desired
range of y, [a1, a2] into n intervals of a fixed length δy such that nδy = a2−a1.
Then approximate the integral by summing the area of the individual regions.
This yields the following expression:

∫ a2

a1

f(y)dy ≈ δy

6
{f(a1) + 4f(a1 +

1

2
δy) + 2f(a1 + δy) + 4f(a1 +

3

2
δy)

+ 2f(a1 + 2δy) + · · · + 2f(a2 − δy) + 4f(a2 −
1

2
δy) + f(a2)}. (4.5)

Because there are a desired range [a1, a2] and a fixed interval δy needed
by Simpson’s rule, the integral bounds in Eq. 4.4 must be truncated and
then an interval length δy has to be decided. Now we can have a more clear
picture of the scenario of pricing discrete barrier options by the quadrature
method which is listed below.

1. Decide the desired integral range [a1, a2] and interval δy for each barrier
monitoring date. It is where the price level of those nodes are decided
in Fig. 4.6 and Fig. 4.7 at each barrier monitoring date.

2. Calculate option values of all nodes at maturity date.

3. Backward induct node’s value at time t, V (x, t) by integrating with
Simpson’s rule to those option values of nodes at time t + ∆t, V (y, t +
∆t).

4.3.1 Pricing Discrete Down-and-Out Barrier Options

There is an upper bound Y maxm depicted by Ko[22] that can be used for
Simpson’s rule in single barrier’s case.

Y maxm = log(S0/X) + Rσ
√

m∆t

where R can be any number greater than 7.5 and m = 1, 2, 3, · · · ,M de-
pending on which monitoring date it is. We set the lower bound of y at
maturity to be zero because values of V (y, t+∆t) in Eq. 4.4 is extinguished
with y = log(ST /X) < 0. As to the lower bound at other barrier monitoring
dates, it will be l = log(L/X) because any y < l is going to be knocked out.

Define xi,m = log(Si,m∆t/X) as a variable transformation of the asset
price at the i-th node from the bottom at the m-th barrier monitoring date
in Fig. 4.6. Next we can calculate option values of nodes at maturity date
as
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Figure 4.6: The multinomial tree structure of quadrature method

for single barrier options.
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V (xi,M , T ) = X(exi,M − 1),

where

xi,M =
i

2
δy, i = 0, 1, 2, 3, · · · , 2NM

NM = [
Y maxM

δy
],

and δy can be any number smaller that
√

δt/4.
After constructing the last column of the multinomial tree as in Fig. 4.6,

we can work on the option values of nodes with price level xi,M−1 as

V (xi,M−1, T − ∆t) = A(xi,M−1)

∫ Y maxM

0

B(xi,M−1, y)V (y, T )dy, (4.6)

where

xi,M−1 = l +
i

2
δy, i = 0, 1, 2, 3, · · · , 2NM−1

NM−1 = [
Y maxM−1

δy
].

However, the bounds in Eq. 4.6 can be further truncated to [xi,M−1 −
10σ

√
∆t, xi,M−1+10σ

√
∆t] because an asset price walk following the geomet-

ric Brownian motion is unlikely to move more than 10 standard deviations
within one time period. According to the range, all the node values at matu-
rity that should be used by Simpson’s rule for integration of V (xi,M−1, T−∆t)
are

V (y = xi,M , T ), i = 2v, 2v + 1, 2v + 2, · · · , 2u

where

v = ([
xi,M−1 − 10σ

√
∆t

δy
], 0)+,

u = ([
xi,M−1 + 10σ

√
∆t

δy
], NM)−.

Then we can iteratively use the same procedure mentioned above to per-
form backward induction as in Fig. 4.6 until the result option price comes
out. Note that the node price level at initial date x0,0 = log(S0/X) and
the bounds for monitoring dates except for maturity should be [l, Y maxm]
which could be truncated into [xi,m − 10σ

√
∆t− l, xi,m + 10σ

√
∆t− l] where

m = 1, 2, · · · ,M − 1.
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Figure 4.7: The multinomial tree structure of quadrature method

for double barrier options.

Moreover, because the Simpson’s rule converges at a rate of order (δy)4,
the outcomes of quadrature method can be further enhanced by the Richard-
son’s extrapolation as

Vext =
(δy1)

4V2 − (δy2)
4V1

(δy1)4 − (δy4
2)

,

where V1 and V2 are option prices calculated by quadrature method with
δy1 and δy2.

4.3.2 Pricing Discrete Double Moving Knock-out Op-

tions

The quadrature method for moving discrete double barrier is sketched in Fig.
4.7. It is completely the same as the down-and-out case except for the way
bounds being chose and the interval size δy being decided. The bounds for
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the m-th barrier monitoring date is

[lm, hm] m = 1, 2, · · · ,M

where

lM = log(max(X,LM)/X),

lm = log(Lm/X), m = 1, 2, · · · ,M − 1

hm = log(Hm/X). m = 1, 2, · · · ,M

To make the barriers are hit by the price levels of nodes, we must set the
step size δy as

δym =
hm − lm

Km

where Km represents the number of steps between up barrier and down
barrier which must be an even integer. Besides, for the condition δym <√

∆tm/4, Km can be any integer greater than 4(hm − lm)/
√

∆tm.
Hence, the m-th column has nodes with option values V (xi,m, Tm), where

x0,0 = log(S0/X),

xi,m = lm +
i

2
δym.

i = 0, 1, · · · , 2Km,m = 1, 2, · · · ,M

The nodes needed for valuing V (xi,m, Tm), m = 0, 1, 2, · · · ,M − 1, are

V (xj,m+1, Tm+1), j = 0, 1, 2, · · · , 2Km+1

By adopting backward induction and the quadrature method, we can
come up with the result by valuing every node V (xi,m, Tm) for m =
0, 1, · · · ,M − 1 as:

V (xi,m, Tm) ≈A(xi,m)δym+1

6
{B(xi,m, x0,m+1)V (x0,m+1, Tm+1)

+ 4B(xi,m, x1,m+1)V (x1,m+1, Tm+1)

+ 2B(xi,m, x2,m+1)V (x2,m+1, Tm+1) + · · · · · ·
+ 2B(xi,m, x2Km+1−2,m+1)V (x2Km+1−2,m+1, Tm+1)

+ 4B(xi,m, x2Km+1−1,m+1)V (x2Km+1−1,m+1, Tm+1)

+ B(xi,m, x2Km+1,m+1)V (x2Km+1,m+1, Tm+1)},
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where

A(Xi,m) =
1

√

2σ2π∆tm+1

e−
1
2
kx− 1

8
σ2k2∆tm+1−r∆tm+1 ,

B(xi,m, xj,m+1) = e
−

(xi,m−xj,m+1)2

2σ2∆tm+1
+ 1

2
kxj,m+1

,

k =
2(r − q)

σ2
− 1.

4.3.3 Numerical Comparisons

Before we compare AMM with the quadrature method, we must first decide
what is the benchmark. There are two candidates. One is AMM-8 with
n = 1, 000, 000 as before, and the other is come out from the quadrature
method with small δy (extrapolation by results of δy1 =

√
∆t/150 and δy2 =√

∆t/300 in single barrier case; Km = 200 where m = 1, 2, · · · ,M in double
barrier case). Both two candidates output fairly precise outcomes which are
generally the same to the 6-th decimal place and at least to the 4-th decimal
place. Here we choose the result of quadrature to be our benchmark.

In Table 4.6 there are numerical results of QUAD, QUADext, and AMM-8
in single barrier options with different barriers and different monitoring fre-
quency. QUAD is the quadrature method and QUADext is the quadrature
method with extrapolation applied. We can see from the percentage error
fields that AMM-8 is usually more accurate than QUAD, but is overwhelmed
by QUADext in every case. However, when we look at the value fields, all
values including barrier-too-close cases are accurate to the second decimal
place and generally precise to the third or forth decimal place which are well
enough to be used in real market. Hence we can turn our focus onto the
efficiency of these methods. Fig. 4.6 shows the relationship between moni-
toring frequency and execution time in single barrier options. Under other
parameters are fixed, both AMM and the quadrature method require extra
computation amount with the increase of monitoring frequency. The extra
computation amount comes from finer mesh node calculation of additional
barrier monitoring times in AMM. In quadrature method, it arises from the
increase of time state number. Yet Fig. 4.8(a) shows that the execution time
of AMM-8 is not always rising with the increase of monitoring frequency.
It is because the optimization of our program omitting calculation of those
nodes destined for being knocked out between two monitoring date offsets
the computation amount gain by increasing monitoring time. Fig. 4.8(b)
compare the frequency-time curve of AMM-8 with QUAD and QUADext.
We can get a clear picture that the quadrature method is less efficient than
AMM with higher monitoring frequency. In this figure the execution time of
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Barrier Benchmarka
QUADb QUADext

c AMM-8d

valuee error(%)f value error(%) value error(%)

monitoring frequency=2

80 8.2566 8.2573 0.0080 8.2566 −0.0000 8.2566 −0.0001

90 8.1273 8.1277 0.0049 8.1273 0.0000 8.1272 −0.0020

95 7.8092 7.8101 0.0114 7.8092 0.0000 7.8091 −0.0007

99 7.3019 7.3033 0.0199 7.3018 −0.0001 7.3022 0.0050

99.9 7.1514 7.1529 0.0215 7.1514 −0.0001 7.1517 0.0045

monitoring frequency=5

80 8.2535 8.2535 0.0007 8.2535 −0.0000 8.2534 0.0000

90 7.9118 7.9114 −0.0046 7.9118 0.0000 7.9117 −0.0004

95 7.0216 7.0219 0.0039 7.0216 0.0000 7.0214 −0.0036

99 5.7208 5.7219 0.0191 5.7208 −0.0001 5.7219 0.0187

99.9 5.3699 5.3711 0.0223 5.3699 −0.0001 5.3701 0.0030

monitoring frequency=25

80 8.2435 8.2435 −0.0002 8.2435 0.0000 8.2435 0.0001

90 7.5882 7.5879 −0.0043 7.5882 0.0000 7.5881 −0.0020

95 5.9302 5.9297 −0.0086 5.9302 0.0001 5.9297 −0.0080

99 3.4393 3.4398 0.0151 3.4393 0.0000 3.4382 −0.0327

99.9 2.8260 2.8266 0.0221 2.8260 −0.0001 2.8279 0.0676

monitoring frequency=125

80 8.2350 8.2350 −0.0001 8.2350 0.0000 8.2350 0.0001

90 7.3683 7.3682 −0.0020 7.3683 0.0000 7.3684 0.0004

95 5.3367 5.3367 −0.0071 5.3370 0.0000 5.3370 −0.0007

99 2.1829 2.1829 0.0019 2.1829 0.0000 2.1801 −0.1272

99.9 1.3928 1.3931 0.0185 1.3928 −0.0001 1.3946 0.1269

monitoring frequency=250

80 8.2324 8.2324 −0.0001 8.2324 0.0000 8.2324 −0.0001

90 7.3080 7.3079 −0.0015 7.3080 0.0000 7.3081 0.0009

95 5.1795 5.1792 −0.0053 5.1795 0.0000 5.1795 0.0018

99 1.8797 1.8796 −0.0056 1.8797 0.0001 1.8752 −0.2402

99.9 1.0256 1.0257 0.0170 1.0256 −0.0001 1.0249 −0.0682

It is an down-and-out call with T = 0.5 year, r = 5%, q = 0%, σ = 25%, S = 100, and X = 100.
aThe Benchmark comes from the quadrature method with δy =

√
∆t/150 and the Richardson

extrapolation applied.
bThe QUAD is the quadrature method with δy =

√
∆t/5.

cThe QUADext is the Richardson extrapolation of the quadrature method results in

δy1 =
√

∆t/5 and δy2 =
√

∆t/10.
dThe values of AMM-8 is calculated by AMM level 8 with the number of time steps n = 750.
eAll the values are rounded off to the forth decimal place.
fThe error(%) field is the percentage pricing error = [approximation/(benchmark)−1]100%

rounded to the forth decimal place with all the values computed before rounding.

Table 4.6: Numerical comparisons of AMM with the quadrature

method in single discrete barrier options.
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(b) QUAD, QUAD    , and AMM-8ext

Figure 4.8: The frequency-time chart for single barrier options in

QUAD, QUADext, and AMM-8.

(a)AMM-8. (b)QUAD, QUADext, and AMM-8. Plotting with parameters
S = 100, X = 100, L = 80, σ = 25%, r = 5%, T = 0.5 year q = 0%, and

n = 750 for AMM-8.
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QUAD exceed AMM-8 around F = 10 and QUADext is explicit slower than
AMM-8 when F > 5.

Table 4.7 and Fig. 4.9 are comparisons in the case of double barrier op-
tions. The AMM-8 are calculated with n = 1, 500. QUAD-K20 and QUAD-
K30 are the quadrature method with K = 20 and K = 30 in δy = (h− l)/K.
The benchmark in Table 4.7 comes from quadrature method with K = 200.
We can see from the percentage error fields in Table 4.7 that QUAD-K30 is
more precise than AMM-8 except for the case of F = 500 and L = 80,
and QUAD-20 is also more accurate than AMM-8 in most of the cases.
There is one thing should be noteworthy that we release the constraint of
K > (h− l)/

√
∆t in this table to see what would happen when the region of

h − l is not divided fine enough. All of the released outcomes are marked a
star. We can find that the stared answers which would be generally more er-
roneous show up in those cases with higher monitoring frequency and larger
price gap between H and L. The larger price gap between H and L enlarges
h− l and higher monitoring frequency decreases ∆t(= T/M). Both two fac-
tors confine K to be a larger number which would reduce the efficiency of
quadrature method. The situation is even worse in the increase of monitoring
frequency. As we can see in Fig. 4.9(b), higher monitoring frequency largely
raises execution time of quadrature method against AMM-8. However, as
the increase of monitoring times, an larger K is required to come up with
an accurate enough result, which would make efficiency of the quadrature
method worse.

Fig. 4.9(a) is a frequency-time curve of AMM-8. As in the single barrier
case, the optimization increase efficiency of AMM-8 at first, but the compu-
tation amount of extra fine mesh nodes offsets the efficiency gain while the
monitoring frequency increases. Fig. 4.9(b) compares AMM-8 with QUAD-
K20 and QUAD-K30. We can see from this figure that the efficiency of all
methods reduces while barrier monitoring times increase. However, the in-
crease rates of execution time in the three methods are different that AMM-8
is the smaller than QUAD-K20 which has a slower increase rate than QUAD-
K30.
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Barrier Benchmarka QUAD-K20b QUAD-K30c AMM-8d

H L valuee error(%)f value error(%) value error(%)

monitoring frequency=5

120

80 2.4499 2.4499 0.0000 2.4499 0.0000 2.4499 −0.0026

90 2.2028 2.2028 0.0000 2.2028 0.0000 2.2027 −0.0020

95 1.6831 1.6831 0.0000 1.6831 0.0000 1.6830 −0.0099

99 1.0811 1.0811 0.0000 1.0811 0.0000 1.0811 −0.0019

99.9 0.9432 0.9432 0.0000 0.9432 0.0000 0.9433 0.0057

monitoring frequency=25

120

80 1.9420 1.9420 −0.0014 1.9420 −0.0001 1.9419 −0.0063

90 1.5354 1.5354 −0.0009 1.5354 −0.0001 1.5353 −0.0071

95 0.8668 0.8668 −0.0005 0.8668 0.0000 0.8668 −0.0063

99 0.2931 0.2931 0.0002 0.2931 0.0000 0.2932 0.0091

99.9 0.2023 0.2023 0.0002 0.2023 0.0000 0.2024 0.0261

monitoring frequency=125

120

80 1.6808 ∗1.6803 ∗−0.0281 1.6808 −0.0025 1.6807 −0.0081

90 1.2029 1.2026 −0.0212 1.2029 −0.0012 1.2028 −0.0076

95 0.5532 0.5531 −0.0173 0.5532 −0.0010 0.5531 −0.0039

99 0.1042 0.1042 −0.0075 0.1042 −0.0004 0.1043 0.0816

99.9 0.0513 0.0513 −0.0027 0.0513 −0.0002 0.0513 0.1074

monitoring frequency=250

120

80 1.6165 ∗1.8581 ∗14.9440 ∗1.6164 ∗−0.0089 1.6163 −0.0141

90 1.1237 ∗1.1234 ∗−0.0328 1.1237 −0.0041 1.1236 −0.0144

95 0.4867 ∗0.4864 ∗−0.0602 0.4867 −0.0035 0.4867 −0.0049

99 0.0758 0.0758 −0.0396 0.0758 −0.0022 0.0759 0.1153

99.9 0.0311 0.0311 0.0103 0.0311 −0.0006 0.0311 0.1575

monitoring frequency=500

120

80 1.5706 ∗651.1038 ∗41355.3859 ∗1.5712 ∗0.0394 1.5701 −0.0335

90 1.0680 ∗1.4357 ∗34.4207 ∗1.0679 ∗−0.0134 1.0676 −0.0410

95 0.4420 ∗0.4475 ∗1.2413 0.4420 −0.0111 0.4419 −0.0418

99 0.0593 ∗0.0592 ∗−0.1755 0.0593 −0.0101 0.0600 1.2477

99.9 0.0198 ∗0.0198 ∗−0.0188 0.0198 −0.0018 0.0198 0.0786

It is an double knock-out call with T = 0.5 year, r = 5%, q = 0%, σ = 25%, S = 100, and X = 100.
aThe Benchmark comes from the quadrature method with Km = 200, where m = 1, 2, · · · , M .
bThe QUAD-K20 is the quadrature method with Km = 20, where m = 1, 2, · · · , M .
cThe QUAD-K30 is the quadrature method with Km = 30, where m = 1, 2, · · · , M .
dThe values of AMM-8 is calculated by AMM level 8 with the number of time steps n = 1500.
eAll the values are rounded off to the forth decimal place.
fThe error(%) field is the percentage pricing error = [approximation/(benchmark)−1]100%

rounded to the forth decimal place with all the values computed before rounding.

Table 4.7: Numerical comparisons of AMM with the quadrature

method in double barrier options.
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(a) AMM-8

(b) QUAD-K20, QUAD-K30, and AMM-8

Figure 4.9: The frequency-time chart for double discrete barrier

options in QUAD-K20, QUAD-K30, and AMM-8.

(a)AMM-8. (b)QUAD-K20, QUAD-K30, and AMM-8. Plotting with
parameters S = 100, X = 100, H = 120, L = 95, σ = 25%, r = 5%, T = 0.5

year q = 0%, and n = 1500 for AMM-8.
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Chapter 5

Conclusions

This thesis does not only implement the Adaptive Mesh Model for single
discrete barrier options but also extend the Adaptive Mesh Model to price
double discrete barrier options. Besides, we also comprehensively implement
other competitive methods with detailed numerical results to compare with
AMM such as the standard trinomial tree, Ritchken’s trinomial lattice, the
enhanced trinomial tree, the BGK formula approach, and the quadrature
method. Reducing nonlinearity error by applying higher resolution lattices
in critical area makes AMM converge to accurate option price more efficiently
than other tree lattice methods. Comparing with the BGK formula approach,
AMM is more precise under the barrier-too-close situation and lower barrier
monitoring frequency. Although the quadrature method is generally more
exact than AMM, AMM can beat the quadrature method in efficiency under
higher barrier monitoring frequency with accurate enough outcomes. From
our research data, we numerically prove the accuracy and the efficiency of the
Adaptive Mesh Model no matter where the barrier price is or what barrier
monitoring frequency it is.
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