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ABSTRACT
Monte Carlo simulation has proved to be a valuable tool for estimatin
g security prices for which closed form solutions do not exist. This thesis evaluate the Quasi-Monte Carlo method that has attractive properties for the numerical valuation of derivatives and examines the use of Monte Carlo simulation with low discrepancy 
sequences for valuing derivatives versus the traditional Monte Carlo method using pseudo-random sequences.
The relative performance of the methods is evaluated based on three financial securities pricing problems: European call options, rainbow options, and Asian options.
Chapter 1
Introduction
1.1 Introduction

With the growth of financial market, lots of exotic options are trade in the OTC market to meet clients’ needs. However, few of the exotic options have analytical solution. Hence, numerical methods come to play an important role in modern finance. One approach is finite difference method. Another popular technique is use lattice or tree model. Monte Carlo methods are often used when these methods are difficult to implement. Since Boyle proposed Monte Carlo (MC) simulation for estimating security prices, simulation has proved to be a powerful and flexible tool for many types of derivatives calculations. Even so, there are some deficiencies with this method. First the error bound is probabilistic, not a concrete guarantee about the accuracy. Another fatal drawback of the Monte Carlo method is that many simulation paths may be required to obtain a high level of accuracy as the convergence rate is proportional to 
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, where N is the number of simulations.

The Quasi-Monte Carlo (QMC) integration addresses the above-mentioned problems. Quasi-Monte Carlo integration is a method of numerical integration that operates in the same way as Monte Carlo integration. However, it uses sequences of quasi-random numbers which have a more uniform behavior for computing the integral.
In this thesis we use both pseudo-random number generators and low-discrepancy sequences in Monte Carlo simulation to value various derivative contracts, including vanilla call options, rainbow options, and Asian options and discuss the problems that may be encountered in implementing these sequences. We also compare their performance relative to pseudo-random sequences.
1.2 Organization of This Thesis

There are five chapters in this thesis. In chapter 1, a brief introduction is presented. In Chapter 2, we introduce some basic concepts of Monte Carlo method. In chapter 3, we introduce the Quasi-Monte Carlo method and the random number generators. In chapter 4, we show the numerical results. Finally, conclusions are in Chapter 5.
Chapter 2
Background
2.1 Monte Carlo Simulation
In a risk-neutral environment, the value of the derivative security is the discounted value of its expected terminal date cash flow:
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Monte Carlo simulation approximates the expectation of the derivative’s terminal cash flows with a simple arithmetic average of the cash flows taken over a finite number of simulated price paths:
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For a large sample of simulated price paths, the mean of the sample will closely approximate the derivative’s true price. The rate of convergence is 
[image: image4.wmf]1

N

. Unfortunately, the use of pseudo-random numbers yields an error bound which is probabilistic and the rate of convergence is slow. Therefore, high accuracy requirements may lead to long computation times.

To simulate a 
price path of the underlying asset, we assume the asset follows a geometric Brownian motion process:
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After a large number of simulation paths, we compute a simple arithmetic average of the resulting terminal values. This gives us the expected terminal value of the derivative, which we discount to the present at the risk-free rate to obtain the derivative’s current price.

2.2 Estimating the Greeks Using Simulation
Most of the discussion in this thesis centers on the use of Monte Carlo for pricing securities. In practice, the evaluation of price sensitivities is often as important as the evaluation of the prices. For hedging purposes, when managing a lot of derivatives it is also important to know the risk exposure. Whereas prices for some derivatives can be observed in the market, their sensitivities to parameter changes typically cannot and must therefore be computed. The sensitivities are the partial derivatives of the derivative price with respect to parameters of interest. Sensitivity measures of derivatives for which closed-form formulas do not exist have to be computed numerically.
The two important Greeks estimated in this thesis are Delta and Gamma.
Delta is defined as 


[image: image6.wmf]f

S

¶

D=

¶

,
where 
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 is a small change in the stock price and 
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is the resulting change in the derivative’s price.

Gamma is defined as
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Gamma measures how sensitive delta is to changes in the price of the underlying asset.
We use finite differences to approximate the real differentials. Delta can be estimated through
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and gamma can be estimated through
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by choosing a small enough 
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Blandford, Butterworth and Good discuss the estimation of price sensitivities and point out that it is important to use the same sequence of random numbers when calculating the Greeks. The method is usually referred to as common random numbers.
2.3 Antithetic Variates
The antithetic-variate method is one of the most widely used variance-reduction techniques.Let 
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 be generated from a random sample
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of independent standard normal numbers. Now generate a second variable 
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from the random sample
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which is also a standard normal distribution.Then
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is also an unbiased estimator with

[image: image18.wmf]µ

[

]

µ

,

222

CovYY

VarY

YY

Var

éù

éù

+

ëû

=+

êú

ëû

.
If 
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 uses twice as many replications as 
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[image: image25.wmf]µ

[

]

2

2

YY

VarVarY

éù

+

£

êú

ëû

,
which means 
[image: image26.wmf]µ

,0

CovYY

éù

£

ëû

.
Chapter 3
Quasi-Monte Carlo Methods
Quasi-Monte Carlo simulation is like the traditional Monte Carlo simulation except that it uses quasi-random sequences instead of pseudo-random number sequences. The quasi-random sequences are also called low-discrepancy sequences (see Appendix A).
In reality, the low-discrepancy sequences are totally deterministic, so the name “quasi-random” can be misleading.
Quasi-Monte Carlo simulation generates a deterministic upper bound to the error that is of the order of 
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, where s is the number of dimensions of the problem. 
This chapter will introduce three kinds of low discrepancy sequences and two kinds of pseudo random number generators for generating uniform distribution sequences.
3.1 Low Discrepancy Sequences
3.1.1 Halton Sequences
The Halton sequence uses one different prime base for each dimension. The first dimension uses base 2, the second dimension base 3, the third dimension base 5, and so on. Higher base means longer cycle and more computational time. The sequence corresponding to the prime m has cycles of length m in which numbers increase monotonically. This characteristic makes the initial terms of two sequences highly correlated (see Appendix B). Therefore, the first 10 to 200 Halton points are usually discarded.

To generate Halton sequences, we follow the two-step procedure.
Step1:

Each integer I is expanded in a base m, where m is any prime number greater than or equal to 2. That is, each integer is converted to its representation in the base m number system
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Step2:

The base m number is transformed into a number in the interval [0,1 ) by reflection about the decimal point. 
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3.1.2 Faure Sequences
The Faure sequence is a permutation of the Halton sequence. Unlike the Halton sequence, it uses the same base for each dimension. The base m is the smallest prime number that is greater than or equal to the number of dimensions in the problem and not smaller than 2. Denote the kth point by 
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The first component 
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 is the one-dimensional Halton sequence
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To generate Faure sequences, follow the following procedure.

If
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where
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Unlike the Halton sequence, the Faure sequence no longer lies in cycles of increasing terms with the exception of the first dimension. Because the Faure sequence is essentially a reordering of the Halton sequence, it suffers from the same start-up maladies. For low values of k  and high dimensions, the Faure points tend to cluster about zero and cause higher correlation between neighboring components of the points (see Appendix B). Additionally, the points become repetitive at low values of n. To minimize these effects, it is suggested that we discard the first 
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3.1.3 Sobol Sequences
The Sobol sequence, like the Faure sequence, is a reordering of the Halton sequence. Unlike the two other sequences, the multidimensional Sobol sequence eliminates the problems caused by large prime numbers by using the same base m=2. So, there is some computational time advantage due the shorter cycle length. This thesis uses the faster algorithm of Antonov and Saleev.
The construction of a multidimensional Sobol sequence follows a three-step procedure. Because the steps are identical for each dimension, we illustrate the procedure for one dimension.

Step1:

Generate a set of odd integers mi, for 
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where N is the number number of price paths, and 
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 is the maximum number of digits in the expansion of N in base 2.
To generate the Sobol sequence, a primitive polynomial is needed for each dimension.
Let the polynomial be 
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Our interest in the primitive polynomial is only in its coefficients. 
For each polynomial a set of q initial odd integers mi is also required. Then, we generate the set of mi for all i>q using the coefficients of the primitive polynomial and the recursive relationship:
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Step2:

Convert the odd integer mi into a binary fraction in the base 2 number system to gain the direction number vi.
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 in base 2.
Step3:

Use the Antonov and Saleev recursive algorithm to calculate the nth Sobol number 
[image: image48.wmf]()

n

Æ

:


[image: image49.wmf]()(1)()

nnvc

Æ=Æ-Å

,
where 
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 is the cth direction number, and c is the rightmost zero-bit in the base 2 expansion of 
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3.2 Pseudo Random Uniform Sequences
To evaluate quasi-random sequences, we need pseudo-random number generators. Pseudo-random sequences look like random numbers because they look unpredictable. However, pseudo-random numbers are generated with deterministic algorithms. The rand() function and the Mersenne Twister  are two commonly used pseudo-random number generators. Table 3 illustrates the statistical properties of quasi-random sequences and pseudo-random sequences. 
3.2.1 rand()

The most commonly used random generator is the rand() function. In this thesis we use the rand() function in Borland C++ 6.0 to produce random integers I in  [0,M] and then divide them by M to yield uniform random variables. 

3.2.2 The Mersenne Twister
The Mersenne twister (MT) algorithm was developed in 1997 by Makoto Matsumoto and Takuji Nishimura, which provides the fast generation of high quality random numbers. The algorithm provides a high quality distribution and its output is free of long-term correlations.
Table 3.1
	Comparison(n=1000)for Uniform Dist.  U[0,1]

	　
	Theoretical
	Rand()
	MT
	Halton
	Faure
	Sobol

	　
	　
	　
	　
	dim=1
	dim=1 (base3)
	dim=1

	Mean
	0.50000
	0.49900
	0.49380
	0.50011
	0.49892
	0.50030

	variance
	0.08333
	0.08410
	0.08348
	0.08322
	0.08333
	0.08335

	Skew
	0.00000
	0.05444
	(0.02996)
	(0.00123)
	(0.00001)
	0.00168

	Kurtosis
	(1.20000)
	(1.19365)
	(1.24380)
	(1.19722)
	(1.19822)
	(1.19951)

	Max
	1.00000
	0.99918
	0.99508
	0.99902
	0.99863
	0.99902

	Min
	0.00000
	0.00021
	0.00005
	0.00049
	0.00046
	0.00195


As we can notice from Table 3.1, in general, the quasi-random sequence outperforms the pseudo-random sequence and presents better uniformity. 
3.3 Normal Inversion Methods
Algorithms are available to transform a uniform distribution into any other distribution. The most important distribution for financial applications is the standard normal distribution. In this section, we compare three normal inversion methods;  the Acklam inversion (PJA), the Moro Inversion, and the NORMINV function of Excel 2000.
The traditional inversion algorithm given by Beasley and Springer is not good for the tails of the normal distribution. Moro improves the algorithm by using the Beasley and Springer algorithm for the central part of the normal distribution and the truncated Chebyshev series to approximate for the tails of the distribution for higher accuracy. Acklam uses similar idea but different coefficients in rational approximations to generate the inversion algorithm. Both inversion methods can produce satisfactory accuracy.
The following table shows that Moro's inversion and PJA’s inversion are at least exact for the precision of 5 decimal digits. But the NORMINV function of Excel is not accurate for the tails of the normal distribution. So the numerical results in this thesis use Moro's inversion and PJA’s inversion to produce the normal distribution.
Tabe3.2
	Comparison of Normal Inversion Functions 

	u
	Normal[0,1]
	Moro
	PJA
	Excel

	0.99999 
	4.26489
	4.26489
	4.26489
	4.26504

	0.99900 
	3.09232
	3.09023
	3.09023
	3.09025

	0.90000 
	1.28155
	1.28155
	1.28155
	1.28155

	0.49990 
	(0.00025)
	(0.00025)
	(0.00025)
	(0.00025)

	0.10000 
	(1.28155)
	(1.28155)
	(1.28155)
	(1.28155)

	0.01000 
	(2.32635)
	(2.32635)
	(2.32635)
	(2.32635)

	0.00100 
	(3.09023)
	(3.09023)
	(3.09023)
	(3.09025)

	0.00010 
	(3.71902)
	(3.71902)
	(3.71902)
	(3.71909)

	0.00001 
	(4.26489)
	(4.26489)
	(4.26489)
	(4.26504)


There are other algorithms for translating the uniform normal into a normal distribution. The most common of these is the polar method. The polar method transforms two uniform random variables to two standardized normal random variables at the same time. But, for quasi random number there are repots that say that it is not satisfactory to use polar method because it alters the order of the sequence and destroys the uniformity. 

In this thesis, we incorporate the polar method uses the rand() function to generate standardized normal random variables.  
Chapter 4
Numerical Results
We test the efficiency of Quasi-Monte Carlo and standard Monte Carlo by using them here to price three kinds of options: vanilla call options, rainbow options, and Asian options.
4.1 Evaluation with Vanilla Call Options
A vanilla call option provides the holder of the option with the right to buy the underlying asset by a certain date for a given price known as the strike price. The date in the contract is known as the maturity. The payoff function is the following:

X=max(ST-K,0),
where ST  is the asset price at the maturity, and K is the strike price. 

Parameters: S0=100,K=100, T=1, r=5%, q=2%, and σ=0.1
As vanilla call option follows a path-independent process, we only need to simulate the terminal asset price. But we still simulate the entire price path using a discrete approximation to explore the impact of increasing dimensionality on the low-discrepancy sequences in two cases: 1) 12 time intervals (Table 4.1.1) and 2) 100 time intervals (Table 4.1.2) and implement antithetic variance reduction (Table 4.1.3).

Table 4.1.1:
	Comparison of Vanilla Option Prices (n=50000) time intervals=12 

	　
	Theoretical
	Rand()
	MT
	Polar
	Halton
	Faure
	Sobol

	Price
	5.47135 
	5.48885 
	5.51034 
	5.52741 
	5.46661 
	5.47259 
	5.47134 

	Delta 
	0.62410 
	0.62385 
	0.62634 
	0.62439 
	0.62414 
	0.62553 
	0.62434 

	Gamma 
	0.03700 
	0.03728 
	0.03590 
	0.03708 
	0.03613 
	0.03774 
	0.03653 


Table 4.1.2:
	Comparison of Vallina Option Prices (n=50000) time intervals =100

	　
	Theoretical
	Rand()
	MT
	Polar
	Halton
	Faure
	Sobol

	Price
	5.47135 
	5.37234 
	5.59871 
	5.63641 
	4.03794 
	2.62522 
	5.47994 

	Delta 
	0.62410 
	0.62555 
	0.62855 
	0.64147 
	0.60140 
	0.70365 
	0.62368 

	Gamma 
	0.03700 
	0.04222 
	0.03618 
	0.03778 
	0.04806 
	0.20773 
	0.03876 


Table 4.1.3
	Comparison of Vallina Option Prices (n=50000) time intervals =12 using Antithetics

	　
	Theoretical
	Rand()
	MT
	Polar
	Halton
	Faure
	Sobol

	Price
	5.47135 
	5.50737 
	5.48778 
	5.45605 
	5.47479 
	5.47307 
	5.47069 

	Delta 
	0.62410 
	0.62578 
	0.62384 
	0.62571 
	0.62463 
	0.62491 
	0.62426 

	Gamma 
	0.03700 
	0.03742 
	0.03593 
	0.03719 
	0.03627 
	0.03727 
	0.03739 


In the above tables, exact values for the prices and sensitivities are available in this case and we use these as benchmarks when examining convergence. In time interval 12, using QMC we could acquire more accurate and stable prices and Greeks than standard MC after 50000 simulations, and there is no obvious difference in the three quasi-random number sequences. However, in time interval 100, due to the cluster problem and high correlation of the Halton and the Faure sequences, only the Sobol sequence outperforms the pseudo random sequences after 50000 simulation paths.
Next, the convergence plots (see Appendix C) shows the relative error of the simulation estimates in percentage. Through the plots we compare the convergence behaviors and detect the vast improvement in convergence when QMC methods are employed. The graphs also illustrate both QMC and standard MC benefit from antithetic variates.

4.2 Evaluation with Rainbow Options

Rainbow option is a term used to describe the derivatives linked to two or more underling assets. Rainbow options are usually calls or puts on the best or worst of n underlying assets. The maximum call option on n assets is an example of the rainbow option, whose payoff at maturity is 
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This section we evaluate two rainbow options, one is maximum on two assets call options, and the other is maximum on five assets call options. The closed-form solution for the maximum on two assets call options is available and easy to implement. However, the exact formula for the maximum on five call options is difficult to calculate the multi-variate normal distribution for the closed-form solution. Hence, we use simulation to gain the approximation.
Maximum on Two Assets Call Options:
The payoff of a call option on the maximum of two assets with maturity T is 
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Parameters are S1=100, S2=100, K=100, T=1, r1=5%, r2=5%, q1=2%, q2=2%,σ1=0.1, σ2=0.2, andρ12=0.5.
Table 4.2.1:
	Comparison of Maxmum on Two Assets Call Option (n=50000) time intervals =12

	　
	Theoretical
	Rand()
	MT
	Polar
	Halton
	Faure
	Sobol

	Price
	11.35114
	11.36434
	11.43523
	11.39887
	11.26552
	11.34947
	11.35083

	Delta S1
	0.33369
	0.33986
	0.33418
	0.33477
	0.33211
	0.33488
	0.33365

	Delta S2
	0.47107
	0.46688
	0.47329
	0.47267
	0.47092
	0.47033
	0.47052

	Gamma S1
	0.03398
	0.03434
	0.03324
	0.03399
	0.03462
	0.03356
	0.03378

	Gamma S2 
	0.02186
	0.02152
	0.02122
	0.02200
	0.02284
	0.02104
	0.02162

	Cross Gamma 
	(0.05729)
	(0.05705)
	(0.05653)
	(0.05738)
	(0.05881)
	(0.05615)
	(0.05653)


Table 4.2.2:
	Comparison of Maxmum on Two Assets Call Option  Prices (n=50000) time intervals =12 Using Anti-thetic Variates

	　
	Theoretical
	Rand()
	MT
	Polar
	Halton
	Faure
	Sobol

	Price
	11.35114
	11.56897
	11.35833
	11.30896
	11.32715
	11.35089
	11.34208

	Delta S1
	0.33369
	0.33519
	0.33403
	 0.33385
	 0.33239
	 0.33324
	 0.33336

	Delta S2
	0.47107
	0.47314
	0.47014
	 0.47030
	 0.47084
	 0.47145
	 0.47088

	Gamma S1
	0.03398
	0.03416
	0.03300
	 0.03388 
	 0.03436
	 0.03381
	 0.03408

	Gamma S2 
	0.02186
	0.02200
	0.02164
	 0.02222
	 0.02248
	 0.02136
	 0.02146

	Cross Gamma 
	(0.05729)
	(0.05770)
	(0.05646)
	 (0.05796)
	 (0.05781)
	 (0.05674)
	( 0.05729)


To evaluate maximum on two assets call options, as there are two assets and 12 time intervals, we have to use 24 dimensional random numbers to simulate the price path. From Table 4.2.1, we observe that the Halton sequence underperforms the pseudo random numbers, whereas the Faure and the Sobol sequences still outperform them; furthermore, the Sobol sequence outperforms the Faure sequence after 50000 simulations. 

Table 4.2.2 shows the performance of QMC can also be improved by antithetic methods.
Maximum on Five Assets Call Options:
The payoff of a call option on the maximum of five assets with maturity T is 
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Parameters are S1=100, S2=100, S3=100, S4=100, S5=100, K=100, T=1, r1=5%, r2=5%, r3=5%, r4=5%, r5=5%, q1=2%, q2=2%, q3=2%, q4=2%, q5=2%, σ1=0.1, σ2=0.2, σ3=0.2, σ4=0.2, σ5=0.2, ρ12=0.5 and the correlation matrix is
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Table 4.2.3
	Comparison of Maxmum on Five Assets Call Option Prices (n=50000) 
time intervals =12

	　
	Rand()
	MT
	Polar
	Halton
	Faure
	Sobol

	Price
	22.14372 
	22.13207 
	22.20841 
	22.06235 
	22.18164 
	22.15743 

	Delta S1
	 0.10277 
	 0.10251 
	 0.10053 
	 0.10208 
	 0.10011 
	 0.10192 

	Delta S2
	 0.22885 
	 0.23213 
	 0.23355 
	 0.23107 
	 0.23132 
	 0.23375 

	Delta S3
	 0.23604 
	 0.23401 
	 0.23462 
	 0.23990 
	 0.23440 
	 0.23413 

	Delta S4
	 0.25129 
	 0.24977 
	 0.25182 
	 0.25263 
	 0.25383 
	 0.25100 

	Delta S5
	 0.27260 
	 0.27445 
	 0.27280 
	 0.26934 
	 0.27480 
	 0.27282 

	Gamma S1
	 0.01370 
	 0.01672 
	 0.01613 
	 0.01666 
	 0.01639 
	 0.01399 

	Gamma S2
	 0.01620 
	 0.01746 
	 0.01631 
	 0.01675 
	 0.01413 
	 0.01613 

	Gamma S3
	 0.01526 
	 0.01835 
	 0.01378 
	 0.01569 
	 0.01700 
	 0.01292 

	Gamma S4
	 0.01402 
	 0.01724 
	 0.01506 
	 0.01449 
	 0.01546 
	 0.01675 

	Gamma S5
	 0.01441 
	 0.01258 
	 0.01452 
	 0.01496 
	 0.01549 
	 0.01527 


Table 4.2.4
	Comparison of Maxmum on Five Assets Call Option Prices (n=50000) 
time intervals =12 Using Anti-thetic Variates

	　
	Rand()
	MT
	Polar
	Halton
	Faure
	Sobol

	Price
	22.58089 
	22.12437 
	22.17476 
	22.14969 
	22.15299 
	22.16016 

	Delta S1
	0.10202 
	0.10252 
	0.10084 
	0.10075 
	0.10108 
	0.10184 

	Delta S2
	0.23349 
	0.23411 
	0.23295 
	0.23321 
	0.23206 
	0.23399 

	Delta S3
	0.23624 
	0.23484 
	0.23542 
	0.24027 
	0.23395 
	0.23541 

	Delta S4
	0.25120 
	0.24951 
	0.24970 
	0.25214 
	0.25301 
	0.24993 

	Delta S5
	0.27397 
	0.27138 
	0.27381 
	0.27119 
	0.27427 
	0.27244 

	Gamma S1
	0.01481 
	0.01657 
	0.01600 
	0.01535 
	0.01594 
	0.01438 

	Gamma S2
	0.01621 
	0.01612 
	0.01524 
	0.01723 
	0.01463 
	0.01585 

	Gamma S3
	0.01673 
	0.01539 
	0.01411 
	0.01492 
	0.01701 
	0.01438 

	Gamma S4
	0.01645 
	0.01593 
	0.01560 
	0.01552 
	0.01671 
	0.01697 

	Gamma S5
	0.01685 
	0.01384 
	0.01462 
	0.01442 
	0.01490 
	0.01609 


For hedging purpose, it is important to know the hedge ratio of rainbow options. However, closed-form formula is not feasible for this problem. To gain the approximations of the prices and the Greeks, we use 60 dimensional random numbers to simulate. The result shows that, regardless of the speed, simulation is a feasible method to calculate the prices and the Greeks of rainbow options which are convergence after 50000 simulations. The table 4.2.4 illustrates using anti-thetic variates speed the convergence.
4.3 Evaluation with Asian Call Options
In practice the most likely applications of the Monte Carlo approach concern situations where there is no analytic solution. Asian options fall into this category. In this section we use QMC and MC methods to evaluate the price of Asian call options.
An Asian option is an option whose payoff is linked to the average value of the underlying asset on a specific set of dates during the life of the option. 
The payoff function of an Asian call is:

X=Max(Save－K, 0),
where Save is the average value of the underlying asset calculated over the life of the option. Parameters in the evaluation will be S0=100, K=100, T=1, r=5%, q=2%, and. σ=0.1
The price of Asian call option depends on the average price experienced by the underlying asset during the life of the option. The longer life of the option the higher dimension problem we have to price this option. This leads to slower convergence for both methods. 

Table 4.3.1:
	Comparison of Asian Option Prices (n=50000) time intervals =52

	　
	Rand()
	MT
	Polar
	Halton
	Faure
	Sobol

	Price
	2.98301 
	3.03042 
	3.03857 
	2.96383 
	2.99117 
	2.99507 

	Delta 
	0.58899 
	0.59390 
	0.59135 
	0.59013 
	0.58977 
	0.58853 

	Gamma
	0.06576 
	0.06245 
	0.06591 
	0.06398 
	0.06413 
	0.06333 


Table 4.3.2:
	Comparison of Asian Option Prices (n=50000) time intervals =52 Using Anti-thetic Variates

	　
	Rand()
	MT
	Polar
	Halton
	Faure
	Sobol

	Price
	3.03857 
	2.99948 
	2.98635 
	2.97271 
	2.99399 
	2.99596 

	Delta 
	0.59135 
	0.59037 
	0.59168 
	0.58975 
	0.59076 
	0.59016 

	Gamma
	0.06518 
	0.06380 
	0.06476 
	0.06393 
	0.06408 
	0.06418 


In this problem an exact analytic pricing formula is not available. Hence we compare the results against each other. We detect that the prices generated by the Halton sequences are undervalued. This result may be due to the cluster problem and high correlation again.
As the problem lacks exact prices, relative errors can not be calculated; therefore the convergence plots use the estimated prices given by QMC and MC instead of relative errors.  

These results confirm that the prices evaluated by QMC are more stable, and that the Halton is somewhat biased.
Chapter 5

Conclusions
Here we summarize our findings below.
· To inverse a uniform distribution into standard normal distribution, Moro and PJA inversion are more accurate than EXCEL NORMINV function.
· In low dimensions, the performance of QMC is much better than standard MC.

· In low dimensions, there is no obvious difference in the three quasi-random number sequences.  

· The major problem of QMC is high-dimensional clustering. According to the above analysis, Halton sequences and Faure sequences suffer from the clustering problem in high dimensions, so the price in high-dimensions calculated from them may not be reliable. Sobol with regular breaking initialization can solve this problem.  

· Overall, for high-dimensional integrals, Sobol sequences (with regularity breaking initialization) exhibit better convergence properties than either the Faure or the Halton.

· If the dimension is 100, QMC using Sobol (with regularity breaking initialization) exhibits better convergence than standard MC.

· The performance of QMC can also be improved by using antithetic methods.
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Appendices
A.

Discrepancy is a measure for how inhomogeneously a set of d-dimensional vectors {xi} distributed in the unit hypercube.The definition of discrepancy is 
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The sequence is called a low-discrepancy if it satisfies
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B. Two–Dimensional Projections of Radom Number Generators
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C. Convergence Plots 
[image: image68.jpg]Rehtive Error in Percetage

Valina Call Option

—rand(
—mt

~ polar
~ Inlton
— fawe

—— sobol

Numbers of Simulations

Rehtive Error in Percetage

Valina Call Option (Using Anti-thetic)

=
: |

——rand(
——mt

polar
~ Inlton
— fawe

—— sobol

10m

2m

4 S0 e W w0 Wm0 om0
Numbers of Sinmbtions





[image: image69.jpg]Relative Error in Percetage

1

3

Maximum Call Option on 2 Assets

— rand(
—mt
-~ polar

~— Inton|

10m

0m

Numbers of Sinmlations

P —— sobol
oo om em s @ w0 om0 @0 0o
Numbers of Simulations
Maximun Call Option on 2 Assets (Using Anti-theic)
i
¢, I
T 3
; ] ,&l}” ——rand()
CRY i it
sl P ~ polar
z -~ Ialton|
&
s 4 — fame
£ —— sobol
2
2
om s @ om0 w0 00





[image: image70.jpg]Price

Maxitum On Five Assets Call Options

—— pseudo

—mt
~ polar
~ halton
— faure
—— sobol

20 A0 AW S0 G0 M0 wm om0 oo

Numbers of Sinmbtions

Maxmum On Five Assets Call Otions (Using Anti-thetic)

—— pseudo

—mt
- paar
~ halton
— fawre

—— sobal

Wm0 am som eom

Numbers of Sinmbtions





[image: image71.jpg]Price

Maxitum On Five Assets Call Options

—— pseudo

—mt
~ polar
~ halton
— faure
—— sobol

20 A0 AW S0 G0 M0 wm om0 oo

Numbers of Sinmbtions

Maxmum On Five Assets Call Otions (Using Anti-thetic)

—— pseudo

—mt
- paar
~ halton
— fawre

—— sobal

Wm0 am som eom

Numbers of Sinmbtions











�You must turn on 追蹤修訂 all the time. 


Do not remove any balloons. In fact, reply to the balloons. If you agree with it, write “done”.


Do NOT touch 接受變更 or 拒絕 變更. I will do it myself. (Because if you do it, I will lose track of the changes you did or I asked you to do.)


�Use 左右對齊 throughout the thesis


�See � HYPERLINK "http://www.csie.ntu.edu.tw/~lyuu/thesis_guides.html" ��http://www.csie.ntu.edu.tw/~lyuu/thesis_guides.html� for my conventions





�Use 左右對其齊





�“low-discrepancy”


Global change


[You should not remove my balloons; add your reply below for me to track your progress]


�I recommend you indent each paragraph!


�Use one single equation editor object and align the equations at =


�Must be sorted based on last name. This bibliography is NOT sorted


�Use – not - 








PAGE  
7

_1178098842.unknown

_1178099529.unknown

_1178108633.unknown

_1178109237.unknown

_1178646238.unknown

_1178649800.unknown

_1178650674.unknown

_1178650730.unknown

_1178649775.unknown

_1178214905.unknown

_1178215009.unknown

_1178646153.unknown

_1178214917.unknown

_1178214890.unknown

_1178109178.unknown

_1178109187.unknown

_1178108930.unknown

_1178108994.unknown

_1178104899.unknown

_1178105282.unknown

_1178105295.unknown

_1178104935.unknown

_1178103662.unknown

_1178104847.unknown

_1178099555.unknown

_1178099157.unknown

_1178099276.unknown

_1178099513.unknown

_1178099252.unknown

_1178098871.unknown

_1178098892.unknown

_1178098857.unknown

_1178098039.unknown

_1178098132.unknown

_1178098765.unknown

_1178098810.unknown

_1178098244.unknown

_1178098266.unknown

_1178098211.unknown

_1178098118.unknown

_1178098125.unknown

_1178098053.unknown

_1178098072.unknown

_1177499011.unknown

_1177504879.unknown

_1178028685.unknown

_1178097329.unknown

_1177606913.unknown

_1177934220.unknown

_1177609047.unknown

_1177606884.unknown

_1177501419.unknown

_1177501435.unknown

_1177501352.unknown

_1177501363.unknown

_1177498772.unknown

_1177498793.unknown

_1177358960.unknown

_1177495594.unknown

_1177441552.unknown

_1177358885.unknown

