Toward the Black-Scholes Formula

e As n increases, the stock price ranges over ever larger
numbers of possible values, and trading takes place

nearly continuously.

e Need to calibrate the BOPM’s parameters u, d, and R
to make it converge to the continuous-time model.

e We now skim through the proof.
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Toward the Black-Scholes Formula (continued)

Let 7 denote the time to expiration of the option

measured in years.
Let r be the continuously compounded annual rate.

With n periods during the option’s life, each period

represents a time interval of 7/n.

Need to adjust the period-based u, d, and interest rate
7 to match the empirical results as n — oo.
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Toward the Black-Scholes Formula (continued)

o First, 7 = r7/n.
— Each period is 7/n years long.

— The period gross return R = e”.

o Let
S

In —

S

denote the continuously compounded rate of return of
the stock.
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Toward the Black-Scholes Formula (continued)

Assume the stock’s true continuously compounded rate

of return has mean u7 and variance o°r.

Call o the stock’s (annualized) volatility.
We need one more condition to have a solution for u, d, q.

Impose
ud = 1.

— It makes nodes at the same horizontal level of the

tree have identical price.?

20ther choices are possible (see text).
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Toward the Black-Scholes Formula (continued)

e Pick

’LLIGUVT/TL, d—=e° T/n, g=~ + H 7'. (12>
o)

n
e With Egs. (12), it can be checked that the mean u7 is
matched by the BOPM.

2

e Furthermore, the variance o“7 is asymptotically

matched as well.
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Toward the Black-Scholes Formula (continued)

e The choices (12) result in the CRR binomial model.?

e The no-arbitrage inequalities d < R < u may not hold
under Egs. (12) on p. 80 or Eq. (8) on p. 56.

— If this happens, the probabilities lie outside [0, 1].

e The problem disappears if n is large enough.

2Cox, Ross, and Rubinstein (1979).
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Toward the Black-Scholes Formula (continued)

e What is the limiting probabilistic distribution of the

continuously compounded rate of return In(S,/5)?
e It approaches N(ur +1n S, o°7).

e Conclusion: S, has a lognormal distribution in the limit.
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Toward the Black-Scholes Formula (continued)

e In the risk-neutral economy, pick

 R-—d

1= —a

by Eq. (8) on p. 56.

Lemma 1 The continuously compounded rate of return

In(S;/S) approaches the normal distribution with mean

2

(r —0%/2) 7 and variance o*7 in a risk-neutral economy.?

8See Lemma 9.3.3 of the textbook.
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Toward the Black-Scholes Formula (concluded)

Theorem 2 (The Black-Scholes Formula)

C = SN(z)—Xe ""N(x—o\T1),
P = Xe ""N(—z+o0+v71)— SN(—x),

In(S/X)+ (r+02/2) 7
o\/T '

X
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BOPM and Black-Scholes Model

e The Black-Scholes formula needs 5 parameters: S, X, o,

T, and 7.

e Binomial tree algorithms take 6 inputs: S, X, u, d, 7,

and n.

e The connections are

U
d
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Call wvalue Call wvalue

. AAAAAAA
i VVVVVV

5 10 15 20 25 30 35
n

e S =100, X =100 (left), and X = 95 (right).
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BOPM and Black-Scholes Model (concluded)

e The binomial tree algorithms converge reasonably fast.
e The error is O(1/n).?

e Oscillations can be dealt with by the judicious choices of
v and d.P

2Chang and Palmer (2007).
bSee Exercise 9.3.8 of the textbook.
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Implied Volatility

e Volatility is the sole parameter not directly observable.
e The Black-Scholes formula can be used to compute the
market’s opinion of the volatility.
— Solve for o given the option price, S, X, 7, and r
with numerical methods.
e Implied volatility is
the wrong number to put in the wrong formula to

get the right price of plain-vanilla options.?

e It is often preferred to historical volatility in practice.

2Rebonato (2004).
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Problems: the Smile

e Options written on the same underlying asset usually do

not produce the same implied volatility.

e A typical pattern is a “smile” in relation to the strike
price.
— The implied volatility is lowest for at-the-money
options.

— It becomes higher the further the option is in- or

out-of-the-money.

e Other patterns have also been observed.

©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 90



Binomial Tree Algorithms for American Puts
Early exercise has to be considered.

The binomial tree algorithm starts with the terminal

payofts

max (0, X — Su’d" )

and applies backward induction.

At each intermediate node, it compares the payoff if

exercised and the continuation value.

It keeps the larger one.
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Extensions of Options Theory
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And the worst thing you can have

is models and spreadsheets.
— Warren Buffet, May 3, 2008
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Barrier Options

e Their payoff depends on whether the underlying asset’s
price reaches a certain price level H.

e A knock-out option is like an ordinary European option.

e But it ceases to exist if the barrier H is reached by the

price of its underlying asset.
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Barrier hit
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Barrier Options (concluded)

e A knock-in option comes into existence if a certain

barrier is reached.

e A down-and-in option is a call knock-in option that

comes into existence only when the barrier is reached
and H < S.
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A Formula for Down-and-In Calls?

o Assume X > H.

e The value of a European down-and-in call on a stock
paying a dividend yield of ¢ is

H H

s (2) 7 Ny - xem (A) 7 N —ovm)

S S

(13)

_ Wn(H?/(SX)+(r—q+o®/2)T

@Merton (1973).
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Binomial Tree Algorithms

e Barrier options can be priced by binomial tree

algorithms.

e Below is for the down-and-out option.
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S=8 X=6,H=4, R=1.25,u=2,and d=0.5.
Backward-induction: C' = (0.5 x C, + 0.5 x Cy)/1.25.
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Binomial Tree Algorithms (continued)

e But convergence is erratic because H is not at a price

level on the tree.?
— The barrier H is moved to a node price.

— This “effective barrier” changes as n increases.

e In fact, the binomial tree is O(1//n) convergent.”

2Boyle and Lau (1994).
PLin (R95221010) (2008).
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Binomial Tree Algorithms (concluded)?®

T

Down-and-in call wvalue

250
HPeriods

aLyuu (1998).
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Path-Dependent Derivatives

Let So, S1,...,5, denote the prices of the underlying

asset over the life of the option.
So is the known price at time zero.
S, is the price at expiration.

The standard European call has a terminal value
depending only on the last price, max(S, — X, 0).

Its value thus depends only on the underlying asset’s

terminal price regardless of how it gets there.
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Path-Dependent Derivatives (continued)

e Some derivatives are path-dependent in that their

terminal payoft depends critically on the path.

e The (arithmetic) average-rate call has this terminal

value:

1 n
max (n_i_liz;Si—X,O).

e The average-rate put’s terminal value is given by
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Path-Dependent Derivatives (concluded)

Average-rate options are also called Asian options.?

They are useful hedging tools for firms that will make a
stream of purchases over a time period because the costs

are likely to be linked to the average price.

The averaging clause is also common in convertible

bonds and structured notes.

2As of the late 1990s, the outstanding volume was in the range of
5-10 billion U.S. dollars (Nielsen & Sandmann, 2003).
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Average-Rate Options

Average-rate options are notoriously hard to price.

The binomial tree for the averages does not combine (see

next page).

A naive algorithm enumerates the 2" paths for an

n-period binomial tree and then averages the payoffs.?
But the complexity is exponential.

The Monte Carlo method® and approximation
algorithms are some of the alternatives left.

2Daj (B82506025, R86526008, D8852600) and Lyuu (2007) reduce it to
20(vn)  Hsu (R7526001, D89922012) and Lyuu (2004) reduce it to O(n?)

given some regularity assumptions.
bSee pp. 142fF.
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C = maX(S + Su3+ Sud X,O)

_ maX(S+Sd3+ Sdu —X,O)

Ca

U

C. = pCy + (l—p) Cu
a= o

C, =max(S+Sd3+de —X,O)
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Continuous-Time Financial Mathematics
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A proof is that which convinces a reasonable man;

a rigorous proof is that which convinces an

unreasonable man.
— Mark Kac (1914-1984)
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Brownian Motion?

e Brownian motion is a stochastic process { X (t),t >0}

with the following properties.

1. X(0) = 0, unless stated otherwise.
2. forany 0 <tyg <t; <---<t,, the random variables

X(tk) — X(tk_l)

for 1 < k < n are independent.P

3. for 0 <s<t, X(t)— X(s) is normally distributed

with mean pu(t — s) and variance o?(t — s), where pu

and o # 0 are real numbers.

2Robert Brown (1773-1858).
PSo X (t) — X(s) is independent of X(r) for r < s < .

©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 109



Brownian Motion (concluded)

e The existence and uniqueness of such a process is

guaranteed by Wiener’s theorem.?

e This process will be called a (u, o) Brownian motion

with drift © and variance o?2.

e The (0,1) Brownian motion is called the Wiener process.

2Norbert Wiener (1894-1964). He received his Ph.D. from Harvard
in 1912.
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lto Process?

o A shorthand® is the following stochastic differential
equation for the Ito differential d.X;,

dXt = CL(Xt, t) dt + b(Xt, t) th (14)

— Or simply
dXt — Q¢ dt + bt th

2Tto (1944).
PPaul Langevin (1872-1946) in 1904.
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Ito Process (concluded)

e dW 1is normally distributed with mean zero and

variance dt.

e An equivalent form of Eq. (14) is
dX; = a; dt + bV dt €,

where & ~ N(0,1).
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Modeling Stock Prices

e The most popular stochastic model for stock prices has

been the geometric Brownian motion,

% = pdt 4+ odW.

e The continuously compounded rate of return X =1In S

follows

dX = (u—0?/2)dt + o dW

by Ito’s lemma.?

2Consistent with Lemma 1 (p. 84).
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Local-Volatility Models

e The more general deterministic volatility model posits

© = (e~ a)dt + o (S, 1) W,

where instantaneous volatility o(.5,%) is called the local

volatility function.?

e One needs to recover o(S,t) from the implied

volatilities.

2Derman and Kani (1994); Dupire (1994).
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Implied Trees

The trees for the local volatility model are called implied

trees.?

Their construction requires an implied volatility surface.

An exponential-sized implied tree exists.”

How to construct a valid implied tree with efficiency has

been open for a long time.°

aDerman & Kani (1994); Dupire (1994); Rubinstein (1994).

PCharalambousa, Christofidesb, & Martzoukosa (2007).
“Rubinstein (1994); Derman & Kani (1994); Derman, Kani, & Chriss

(1996); Jackwerth & Rubinstein (1996); Jackwerth (1997); Coleman,
Kim, Li, & Verma (2000); Li (2000/2001); Moriggia, Muzzioli, & Torri-
celli (2009).
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Implied Trees (concluded)

e It is solved for separable local volatilities ¢.?

— The local-volatility function o (S, V) is separable® if
0(S,t) = 01(5) o2(t).

e A general solution is close.€

aLok (D99922028) & Lyuu (2015, 2016).

PRebonato (2004); Brace, Gatarek, & Musiela (1997).
Lok (D99922028) & Lyuu (2016).
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The Hull-White Model

e Hull and White (1987) postulate the following model,
dsS

< rdt +VV dWy,
dV 1V dt + bV dWs.

e Above, V is the instantaneous variance.

e They assume u, depends on V and t (but not 5).
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The SABR Model

e Hagan, Kumar, Lesniewski, and Woodward (2002)
postulate the following model,

ds
S
dv bV dWs,

rdt + SV dWy,

for 0 <60 <1.
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The Hilliard-Schwartz Model

e Hilliard and Schwartz (1996) postulate the following

general model,

rdt + f(S)Va dWl,
w(V) dt + bV dWs,

for some well-behaved function f(S5) and constant a.
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Heston's Stochastic-Volatility Model

e Heston (1993) assumes the stock price follows

ds
S
AV = k(0 —=V)dt+oVV dWs.

(1 — q) dt + V'V dW7y,

— V' is the instantaneous variance, which follows a

square-root, process.
— dW; and dWs have correlation p.

— The riskless rate r is constant.

©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 122



Heston's Stochastic-Volatility Model (concluded)

e It may be the most popular continuous-time

stochastic-volatility model.?

e For American options, we will need a tree for Heston’s

model.P

e They are all O(n?)-sized.

2Christoffersen, Heston, & Jacobs (2009).
PLeisen (2010); Beliaeva & Nawalka (2010); Chou (R02723073) (2015).
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Why Are Trees for Stochastic-Volatility Models
Difficult?

e The CRR tree is 2-dimensional.?

e The constant volatility makes the span from any node
fixed.

But a tree for a stochastic-volatility model must be

3-dimensional.

— Every node is associated with a pair of stock price

and a volatility.

@Recall p. 82.
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Why Are Trees for Stochastic-Volatility Models
Difficult: Binomial Case?
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Why Are Trees for Stochastic-Volatility Models
Difficult: Trinomial Case?

Pi3s P 2 3 Pi1> P
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Why Are Trees for Stochastic-Volatility Models
Difficult? (concluded)

Locally, the tree looks fine for one time step.

But the volatility regulates the spans of the nodes on
the stock-price plane.

Unfortunately, those spans differ from node to node

because the volatility varies.

So two time steps from now, the branches will not

combine!
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Complexities of Stochastic-Volatility Models

e A few stochastic-volatility models suffer from

subexponential (cV™) tree size.

e Examples include the Hull-White (1987),
Hilliard-Schwartz (1996), and SABR (2002) models.?

aChiu (R98723059) (2012).
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Trees
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I love a tree more than a man.

— Ludwig van Beethoven (1770-1827)
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Trinomial Tree

e Set up a trinomial approximation to the geometric

Brownian motion?®

% =rdt +odW.

e The three stock prices at time At are S, Su, and 5d,
where ud = 1.

e Let the mean and variance of the stock price be SM and

S?V, respectively.

2Boyle (1988).
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Trinomial Tree (continued)

e By Eqgs. (5) on p. 24,
M e?“At
1% M2(e7 At _ 1),
e Impose the matching of mean and that of variance:

1 Pu + Pm + Pd,
SM (puu+pm + (pd/u)) S,
S*V = pu(Su—SM)? + pm(S — SM)? + pa(Sd — SM)?.
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Trinomial Tree (concluded)

e Use linear algebra to verify that

B u(V+M>—M)—(M-1)
P (-1 @ -1

uw? (V+M?*— M) —u?(M—1)
ba = (u—1) (2 —1)

— We must also make sure the probabilities lie between
0 and 1.
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A Trinomial Tree

o Use u= e/\am, where X\ > 1 is a tunable parameter.

e Then

1 (r + o?) VAL
2)\2 + 2\o ’
1 (7“ — 202) \/Kt

Pd = 932~ NG

DPu ?
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Barrier Options Priced by Trinomial Trees

Down-and-in call value

100

HPeriods
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Multivariate Contingent Claims

e They depend on two or more underlying assets.

e The basket call on m assets has the terminal payoft

max (i a;9; (1) — X, O) .
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Multivariate Contingent Claims (continued)?®

Name Payoff

Exchange option max(S1(7) — S2(7),0)

Better-off option max(S1(7),...,Sg(7),0)

Worst-off option min(S1(7),...,Sk(7),0)

Binary maximum option  I{max(S1(7),...,Sk(7)) > X}

Maximum option max(max(S1(7),...,Sx(7)) — X,0)

Minimum option max(min(S1(7),...,Sk(7)) — X, 0)

Spread option max(S1(7) — S2(7) — X, 0)

Basket average option max((S1(7) + -+ Sk(7))/k — X,0)
Multi-strike option max(S1(7) — X1,...,Sk(7) — X§,0)

[51(7) = X1 |+ -+ + [ Sk(7) = X | = X]0)
Madonna option max(1/(S1(7) — X1)2 + - + (Sk(7) — Xi)?2 } X,0)

(
Pyramid rainbow option  max(
(

2Lyuu & Teng (R91723054) (2011).
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Multivariate Contingent Claims (concluded)

e Trees for multivariate contingent claims typically has

size exponential in the number of assets.

e This is called the curse of dimensionality.
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Numerical Methods
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All science is dominated

by the idea of approximation.
— Bertrand Russell
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Monte Carlo Simulation®

e Monte Carlo simulation is a sampling scheme.

e In many important applications within finance and

without, Monte Carlo is one of the few feasible tools.

2A top 10 algorithm according to Dongarra and Sullivan (2000).
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Monte Carlo Option Pricing

e For the pricing of European options, we sample the
stock prices.

e Then we average the payofis.

e The variance of the estimator is now 1/N of that of the

original random variable.
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How about American Options?

Standard Monte Carlo simulation is inappropriate for

American options because of early exercise.

It is difficult to determine the early-exercise point based

on one single path.

But Monte Carlo simulation can be modified to price

American options with small biases.?

e The LSM can be easily parallelized.?

2Longstaff and Schwartz (2001).
PHuang (B96902079, R00922018) (2013); Chen (B979020486,

R01922005) (2014); Chen (B97902046, R01922005), Huang (B96902079,
R00922018) & Lyuu (2015).
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Delta and Common Random Numbers

In estimating delta 0f /085, it is natural to start with the
finite-difference estimate

E[P(S+¢)] —E[P(S—e)].
2€

6—7"‘7'

— P(x) is the terminal payoff of the derivative security
when the underlying asset’s initial price equals x.

Use simulation to estimate E[P(S + ¢€)] first.

Use another simulation to estimate E[P(S —¢€)].

Finally, apply the formula to approximate the delta.
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Delta and Common Random Numbers (concluded)

e This method is not recommended because of its high

variance.

e A much better approach is to use common random
numbers to lower the variance:
P(S+¢)— P(S—¢)
2€

e " E

e Here, the same random numbers are used for P(S + ¢)
and P(S —e).
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Gamma

e The finite-difference formula for gamma 92 f/0S? is

P(S +¢) —2 x P(S) + P(S — ¢)

—rT
e E
2

e Choosing an € of the right magnitude can be
challenging.

— If € is too large, inaccurate Greeks result.
— If € is too small, unstable Greeks result.

e This phenomenon is sometimes called the curse of
differentiation.?

2 Ait-Sahalia and Lo (1998); Bondarenko (2003).
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Gamma (continued)

e In general, suppose

az’

00" 00"

e "TE[P(S)]|=e"E [

9 P(S) ]

holds for all 2 > 0, where 6 is a parameter of interest.

— A common requirement is Lipschitz continuity.?
e Then formulas for the Greeks become integrals.

e As a result, we avoid ¢, finite differences, and

resimulation.

2Broadie and Glasserman (1996).
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Gamma (concluded)

e This is indeed possible for a broad class of payoft

functions.?

e In queueing networks, this is called infinitesimal

perturbation analysis (IPA).P

2Teng (R91723054) (2004) and Lyuu and Teng (R91723054) (2011).
bCao (1985); Ho and Cao (1985).

©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 149



Interest Rate Models
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[Meriwether] scoring especially high marks

in mathematics — an indispensable subject
for a bond trader.

— Roger Lowenstein,
When Genius Failed (2000)

Bond market terminology was designed less

to convey meaning than to bewilder outsiders.
— Michael Lewis, The Big Short (2011)
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The Vasicek Model?

e The short rate follows

dr = B(u —r)dt + o dW.

e The short rate is pulled to the long-term mean level u
at rate (.

e Superimposed on this “pull” is a normally distributed
stochastic term o dW'.

aVasicek (1977).
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The Cox-Ingersoll-Ross Model?

e It is the following square-root short rate model:
dr = B(u — 1) dt + o/rdW.

e The diffusion differs from the Vasicek model by a
multiplicative factor /7.

e The parameter S determines the speed of adjustment.

e The short rate can reach zero only if 268 < o2.

2Cox, Ingersoll, and Ross (1985).
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The Ho-Lee Model?

e The continuous-time limit of the Ho-Lee model is

dr = 0(t)dt + o dW.
e This is Vasicek’s model with the mean-reverting drift
replaced by a deterministic, time-dependent drift.

e A nonflat term structure of volatilities can be achieved if

the short rate volatility is also made time varying,

dr =0(t)dt + o(t) dW.

2Ho and Lee (1986). Thomas Lee is a “billionaire founder” of Thomas

H. Lee Partners LP, according to Bloomberg on May 26, 2012.
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The Black-Derman-Toy Model?

e The continuous-time limit of the BDT model is

dlnr = (6’(75) + % lnr) dt + o(t) dW.

e This model is extensively used by practitioners.

e The BDT short rate process is the lognormal binomial

interest rate process.

e Lognormal models preclude negative short rates.

2Black, Derman, and Toy (BDT) (1990), but essentially finished in
1986 according to Mehrling (2005).
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The Black-Karasinski Model?

The BK model stipulates that the short rate follows

dinr = k(t)(0(t) — Inr) dt + o(t) dW.

This explicitly mean-reverting model depends on time

through x(-), 6(-), and o(-).

The BK model hence has one more degree of freedom
than the BDT model.

The speed of mean reversion x(t) and the short rate

volatility o(t) are independent.

2Black and Karasinski (1991).
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The Extended Vasicek Model?

The extended Vasicek model adds time dependence to

the original Vasicek model,

dr = (0(t) —a(t)r)dt + o(t) dW.

Like the Ho-Lee model, this is a normal model.

Many European-style securities can be evaluated

analytically.

Efficient numerical procedures can be developed for

American-style securities.

aHull and White (1990).
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The Hull-White Model

e The Hull-White model is the following special case,

dr = (0(t) — ar)dt + o dW.
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The Extended CIR Model

e In the extended CIR model the short rate follows

dr = (0(t) — a(t)r)dt + o(t)y/r dW.

e The functions 60(t), a(t), and o(t) are implied from

market observables.

e With constant parameters, there exist analytical
solutions to a small set of interest rate-sensitive

securities.
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Finas
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