Toward the Black-Scholes Formula

- As *n* increases, the stock price ranges over ever larger numbers of possible values, and trading takes place nearly continuously.
- Need to calibrate the BOPM's parameters u, d, and R to make it converge to the continuous-time model.
- We now skim through the proof.

- Let τ denote the time to expiration of the option measured in years.
- Let r be the continuously compounded annual rate.
- With n periods during the option's life, each period represents a time interval of τ/n .
- Need to adjust the period-based u, d, and interest rate \hat{r} to match the empirical results as $n \to \infty$.

• First,
$$\hat{r} = r\tau/n$$
.

– Each period is τ/n years long.

– The period gross return $R = e^{\hat{r}}$.

• Let

$$\ln \frac{S_{\tau}}{S}$$

denote the continuously compounded rate of return of the stock.

- Assume the stock's true continuously compounded rate of return has mean $\mu\tau$ and variance $\sigma^2\tau$.
- Call σ the stock's (annualized) volatility.
- We need one more condition to have a solution for u, d, q.
- Impose

ud = 1.

 It makes nodes at the same horizontal level of the tree have identical price.^a

^aOther choices are possible (see text).

• Pick

$$u = e^{\sigma\sqrt{\tau/n}}, \quad d = e^{-\sigma\sqrt{\tau/n}}, \quad q = \frac{1}{2} + \frac{1}{2} \frac{\mu}{\sigma} \sqrt{\frac{\tau}{n}}.$$
 (12)

- With Eqs. (12), it can be checked that the mean $\mu\tau$ is matched by the BOPM.
- Furthermore, the variance $\sigma^2 \tau$ is asymptotically matched as well.

- The choices (12) result in the CRR binomial model.^a
- The no-arbitrage inequalities d < R < u may not hold under Eqs. (12) on p. 80 or Eq. (8) on p. 56.

- If this happens, the probabilities lie outside [0, 1].

• The problem disappears if n is large enough.

^aCox, Ross, and Rubinstein (1979).

- What is the limiting probabilistic distribution of the continuously compounded rate of return $\ln(S_{\tau}/S)$?
- It approaches $N(\mu \tau + \ln S, \sigma^2 \tau)$.
- Conclusion: S_{τ} has a lognormal distribution in the limit.

• In the risk-neutral economy, pick

$$q = \frac{R-d}{u-d}$$

by Eq. (8) on p. 56.

Lemma 1 The continuously compounded rate of return $\ln(S_{\tau}/S)$ approaches the normal distribution with mean $(r - \sigma^2/2)\tau$ and variance $\sigma^2\tau$ in a risk-neutral economy.^a

^aSee Lemma 9.3.3 of the textbook.

Toward the Black-Scholes Formula (concluded) Theorem 2 (The Black-Scholes Formula) $C = SN(x) - Xe^{-r\tau}N(x - \sigma\sqrt{\tau}),$ $P = Xe^{-r\tau}N(-x + \sigma\sqrt{\tau}) - SN(-x),$ where

$$x \equiv \frac{\ln(S/X) + (r + \sigma^2/2)\tau}{\sigma\sqrt{\tau}}$$

BOPM and **Black-Scholes** Model

- The Black-Scholes formula needs 5 parameters: S, X, σ , τ , and r.
- Binomial tree algorithms take 6 inputs: S, X, u, d, \hat{r} , and n.
- The connections are

$$u = e^{\sigma\sqrt{\tau/n}},$$

$$d = e^{-\sigma\sqrt{\tau/n}},$$

$$\hat{r} = r\tau/n.$$

BOPM and Black-Scholes Model (concluded)

- The binomial tree algorithms converge reasonably fast.
- The error is O(1/n).^a
- Oscillations can be dealt with by the judicious choices of *u* and *d*.^b

^aChang and Palmer (2007). ^bSee Exercise 9.3.8 of the textbook.

Implied Volatility

- Volatility is the sole parameter not directly observable.
- The Black-Scholes formula can be used to compute the market's opinion of the volatility.
 - Solve for σ given the option price, S, X, τ , and r with numerical methods.
- Implied volatility is

the wrong number to put in the wrong formula to get the right price of plain-vanilla options.^a

• It is often preferred to historical volatility in practice.

^aRebonato (2004).

Problems; the Smile

- Options written on the same underlying asset usually do not produce the same implied volatility.
- A typical pattern is a "smile" in relation to the strike price.
 - The implied volatility is lowest for at-the-money options.
 - It becomes higher the further the option is in- or out-of-the-money.
- Other patterns have also been observed.

Binomial Tree Algorithms for American Puts

- Early exercise has to be considered.
- The binomial tree algorithm starts with the terminal payoffs

$$\max(0, X - Su^j d^{n-j})$$

and applies backward induction.

- At each intermediate node, it compares the payoff if exercised and the continuation value.
- It keeps the larger one.

Extensions of Options Theory

And the worst thing you can have is models and spreadsheets.— Warren Buffet, May 3, 2008

Barrier Options

- Their payoff depends on whether the underlying asset's price reaches a certain price level *H*.
- A knock-out option is like an ordinary European option.
- But it ceases to exist if the barrier *H* is reached by the price of its underlying asset.

Barrier Options (concluded)

- A knock-in option comes into existence if a certain barrier is reached.
- A down-and-in option is a call knock-in option that comes into existence only when the barrier is reached and H < S.

A Formula for Down-and-In Calls^{\rm a}

- Assume $X \ge H$.
- The value of a European down-and-in call on a stock paying a dividend yield of q is

$$Se^{-q\tau} \left(\frac{H}{S}\right)^{2\lambda} N(x) - Xe^{-r\tau} \left(\frac{H}{S}\right)^{2\lambda-2} N(x - \sigma\sqrt{\tau}),$$

$$x \equiv \frac{\ln(H^2/(SX)) + (r - q + \sigma^2/2)\tau}{\sigma\sqrt{\tau}}.$$
(13)

$$-\lambda \equiv (r - q + \sigma^2/2)/\sigma^2.$$

^aMerton (1973).

Binomial Tree Algorithms

- Barrier options can be priced by binomial tree algorithms.
- Below is for the down-and-out option.

Binomial Tree Algorithms (continued)

• But convergence is erratic because *H* is not at a price level on the tree.^a

- The barrier H is moved to a node price.

- This "effective barrier" changes as n increases.
- In fact, the binomial tree is $O(1/\sqrt{n})$ convergent.^b

^aBoyle and Lau (1994). ^bLin (**R95221010**) (2008).

Path-Dependent Derivatives

- Let S_0, S_1, \ldots, S_n denote the prices of the underlying asset over the life of the option.
- S_0 is the known price at time zero.
- S_n is the price at expiration.
- The standard European call has a terminal value depending only on the last price, $\max(S_n X, 0)$.
- Its value thus depends only on the underlying asset's terminal price regardless of how it gets there.

Path-Dependent Derivatives (continued)

- Some derivatives are path-dependent in that their terminal payoff depends *critically* on the path.
- The (arithmetic) average-rate call has this terminal value:

$$\max\left(\frac{1}{n+1}\sum_{i=0}^{n}S_{i}-X,0\right).$$

• The average-rate put's terminal value is given by

$$\max\left(X - \frac{1}{n+1}\sum_{i=0}^{n} S_i, 0\right).$$

Path-Dependent Derivatives (concluded)

- Average-rate options are also called Asian options.^a
- They are useful hedging tools for firms that will make a stream of purchases over a time period because the costs are likely to be linked to the average price.
- The averaging clause is also common in convertible bonds and structured notes.

^aAs of the late 1990s, the outstanding volume was in the range of 5–10 billion U.S. dollars (Nielsen & Sandmann, 2003).

Average-Rate Options

- Average-rate options are notoriously hard to price.
- The binomial tree for the averages does not combine (see next page).
- A naive algorithm enumerates the 2ⁿ paths for an *n*-period binomial tree and then averages the payoffs.^a
- But the complexity is exponential.
- The Monte Carlo method^b and approximation algorithms are some of the alternatives left.

^aDai (B82506025, R86526008, D8852600) and Lyuu (2007) reduce it to $2^{O(\sqrt{n})}$. Hsu (R7526001, D89922012) and Lyuu (2004) reduce it to $O(n^2)$ given some regularity assumptions. ^bSee pp. 142ff.

Continuous-Time Financial Mathematics

A proof is that which convinces a reasonable man; a rigorous proof is that which convinces an unreasonable man. — Mark Kac (1914–1984)

Brownian Motion $^{\rm a}$

- Brownian motion is a stochastic process $\{X(t), t \ge 0\}$ with the following properties.
 - **1.** X(0) = 0, unless stated otherwise.
 - **2.** for any $0 \le t_0 < t_1 < \cdots < t_n$, the random variables

 $X(t_k) - X(t_{k-1})$

for $1 \le k \le n$ are independent.^b

3. for $0 \le s < t$, X(t) - X(s) is normally distributed with mean $\mu(t-s)$ and variance $\sigma^2(t-s)$, where μ and $\sigma \ne 0$ are real numbers.

^aRobert Brown (1773–1858).

^bSo X(t) - X(s) is independent of X(r) for $r \le s < t$.

Brownian Motion (concluded)

- The existence and uniqueness of such a process is guaranteed by Wiener's theorem.^a
- This process will be called a (μ, σ) Brownian motion with drift μ and variance σ^2 .
- The (0,1) Brownian motion is called the Wiener process.

^aNorbert Wiener (1894–1964). He received his Ph.D. from Harvard in 1912.

Ito $\mathsf{Process}^{\mathrm{a}}$

• A shorthand^b is the following stochastic differential equation for the Ito differential dX_t ,

$$dX_t = a(X_t, t) dt + b(X_t, t) dW_t.$$
 (14)

– Or simply

$$dX_t = a_t \, dt + b_t \, dW_t.$$

^aIto (1944). ^bPaul Langevin (1872–1946) in 1904.
Ito Process (concluded)

- dW is normally distributed with mean zero and variance dt.
- An equivalent form of Eq. (14) is

$$dX_t = a_t \, dt + b_t \sqrt{dt} \, \xi, \tag{15}$$

where $\xi \sim N(0, 1)$.

Modeling Stock Prices

• The most popular stochastic model for stock prices has been the geometric Brownian motion,

$$\frac{dS}{S} = \mu \, dt + \sigma \, dW.$$

• The continuously compounded rate of return $X \equiv \ln S$ follows

$$dX = (\mu - \sigma^2/2) dt + \sigma dW$$

by Ito's lemma.^a

^aConsistent with Lemma 1 (p. 84).

Local-Volatility Models

• The more general deterministic volatility model posits

$$\frac{dS}{S} = (r_t - q_t) dt + \sigma(S, t) dW,$$

where instantaneous volatility $\sigma(S, t)$ is called the local volatility function.^a

• One needs to recover $\sigma(S, t)$ from the implied volatilities.

^aDerman and Kani (1994); Dupire (1994).

Implied Trees

- The trees for the local volatility model are called implied trees.^a
- Their construction requires an implied volatility surface.
- An exponential-sized implied tree exists.^b
- How to construct a valid implied tree with efficiency has been open for a long time.^c

^aDerman & Kani (1994); Dupire (1994); Rubinstein (1994).
^bCharalambousa, Christofidesb, & Martzoukosa (2007).
^cRubinstein (1994); Derman & Kani (1994); Derman, Kani, & Chriss (1996); Jackwerth & Rubinstein (1996); Jackwerth (1997); Coleman, Kim, Li, & Verma (2000); Li (2000/2001); Moriggia, Muzzioli, & Torricelli (2009).

Implied Trees (concluded)

• It is solved for separable local volatilities σ .^a

– The local-volatility function $\sigma(S, V)$ is separable^b if

$$\sigma(S,t) = \sigma_1(S) \, \sigma_2(t).$$

• A general solution is close.^c

^aLok (D99922028) & Lyuu (2015, 2016). ^bRebonato (2004); Brace, Gątarek, & Musiela (1997). ^cLok (D99922028) & Lyuu (2016).

The Hull-White Model

• Hull and White (1987) postulate the following model,

$$\frac{dS}{S} = r dt + \sqrt{V} dW_1,$$

$$dV = \mu_v V dt + bV dW_2$$

- Above, V is the instantaneous variance.
- They assume μ_v depends on V and t (but not S).

The SABR Model

• Hagan, Kumar, Lesniewski, and Woodward (2002) postulate the following model,

$$\frac{dS}{S} = r dt + S^{\theta} V dW_1,$$

$$dV = bV dW_2,$$

for $0 \le \theta \le 1$.

The Hilliard-Schwartz Model

• Hilliard and Schwartz (1996) postulate the following general model,

$$\frac{dS}{S} = r dt + f(S)V^a dW_1,$$

$$dV = \mu(V) dt + bV dW_2,$$

for some well-behaved function f(S) and constant a.

Heston's Stochastic-Volatility Model

• Heston (1993) assumes the stock price follows

$$\frac{dS}{S} = (\mu - q) dt + \sqrt{V} dW_1, \qquad (16)$$

$$dV = \kappa(\theta - V) dt + \sigma \sqrt{V} dW_2.$$
 (17)

- -V is the instantaneous variance, which follows a square-root process.
- dW_1 and dW_2 have correlation ρ .
- The riskless rate r is constant.

Heston's Stochastic-Volatility Model (concluded)

- It may be the most popular continuous-time stochastic-volatility model.^a
- For American options, we will need a tree for Heston's model.^b
- They are all $O(n^3)$ -sized.

^aChristoffersen, Heston, & Jacobs (2009). ^bLeisen (2010); Beliaeva & Nawalka (2010); Chou (R02723073) (2015).

Why Are Trees for Stochastic-Volatility Models Difficult?

- The CRR tree is 2-dimensional.^a
- The constant volatility makes the span from any node fixed.
- But a tree for a stochastic-volatility model must be 3-dimensional.
 - Every node is associated with a pair of stock price and a volatility.

^aRecall p. 82.

Why Are Trees for Stochastic-Volatility Models Difficult? (concluded)

- Locally, the tree looks fine for one time step.
- But the volatility regulates the spans of the nodes on the stock-price plane.
- Unfortunately, those spans differ from node to node because the volatility varies.
- So two time steps from now, the branches will not combine!

Complexities of Stochastic-Volatility Models

- A few stochastic-volatility models suffer from subexponential $(c^{\sqrt{n}})$ tree size.
- Examples include the Hull-White (1987), Hilliard-Schwartz (1996), and SABR (2002) models.^a

^aChiu (R98723059) (2012).

I love a tree more than a man. — Ludwig van Beethoven (1770–1827)

Trinomial Tree

• Set up a trinomial approximation to the geometric Brownian motion^a

$$\frac{dS}{S} = r \, dt + \sigma \, dW.$$

- The three stock prices at time Δt are S, Su, and Sd, where ud = 1.
- Let the mean and variance of the stock price be SM and S^2V , respectively.

^aBoyle (1988).

Trinomial Tree (continued)

• By Eqs. (5) on p. 24,

$$M \equiv e^{r\Delta t},$$

$$V \equiv M^2 (e^{\sigma^2 \Delta t} - 1).$$

• Impose the matching of mean and that of variance:

$$1 = p_u + p_m + p_d,$$

$$SM = (p_u u + p_m + (p_d/u)) S,$$

$$S^2V = p_u (Su - SM)^2 + p_m (S - SM)^2 + p_d (Sd - SM)^2.$$

Trinomial Tree (concluded)

• Use linear algebra to verify that

$$p_u = \frac{u \left(V + M^2 - M \right) - (M - 1)}{(u - 1) (u^2 - 1)},$$

$$p_d = \frac{u^2 \left(V + M^2 - M \right) - u^3 (M - 1)}{(u - 1) (u^2 - 1)}$$

We must also make sure the probabilities lie between 0 and 1.

A Trinomial Tree

• Use $u = e^{\lambda \sigma \sqrt{\Delta t}}$, where $\lambda \ge 1$ is a tunable parameter.

• Then

$$p_u \rightarrow \frac{1}{2\lambda^2} + \frac{\left(r + \sigma^2\right)\sqrt{\Delta t}}{2\lambda\sigma},$$

 $p_d \rightarrow \frac{1}{2\lambda^2} - \frac{\left(r - 2\sigma^2\right)\sqrt{\Delta t}}{2\lambda\sigma}$

Multivariate Contingent Claims

- They depend on two or more underlying assets.
- The basket call on m assets has the terminal payoff

$$\max\left(\sum_{i=1}^{m} \alpha_i S_i(\tau) - X, 0\right).$$

Multivariate Contingent Claims (continued)^a

Name	Payoff	
Exchange option	$\max(S_1(\tau) - S_2(\tau), 0)$	
Better-off option	$\max(S_1(\tau),\ldots,S_k(\tau),0)$	
Worst-off option	$\min(S_1(\tau),\ldots,S_k(\tau),0)$	
Binary maximum option	$I\{\max(S_1(\tau),\ldots,S_k(\tau))>X\}$	
Maximum option	$\max(\max(S_1(\tau),\ldots,S_k(\tau))-X,0)$	
Minimum option	$\max(\min(S_1(\tau),\ldots,S_k(\tau))-X,0)$	
Spread option	$\max(S_1(\tau) - S_2(\tau) - X, 0)$	
Basket average option	$\max((S_1(\tau) + \dots + S_k(\tau))/k - X, 0)$	
Multi-strike option	$\max(S_1(\tau) - X_1, \dots, S_k(\tau) - X_k, 0)$	
Pyramid rainbow option	$\max(S_1(\tau) - X_1 + \dots + S_k(\tau) - X_k - X$	0)
Madonna option	$\max(\sqrt{(S_1(\tau) - X_1)^2 + \dots + (S_k(\tau) - X_k)^2})$	-X, 0)
^a Lyuu & Teng (R91723054) (2011).		

Multivariate Contingent Claims (concluded)

- Trees for multivariate contingent claims typically has size exponential in the number of assets.
- This is called the curse of dimensionality.

Numerical Methods

All science is dominated by the idea of approximation. — Bertrand Russell

Monte Carlo Simulation $^{\rm a}$

- Monte Carlo simulation is a sampling scheme.
- In many important applications within finance and without, Monte Carlo is one of the few feasible tools.

^aA top 10 algorithm according to Dongarra and Sullivan (2000).

Monte Carlo Option Pricing

- For the pricing of European options, we sample the stock prices.
- Then we average the payoffs.
- The variance of the estimator is now 1/N of that of the original random variable.

How about American Options?

- Standard Monte Carlo simulation is inappropriate for American options because of early exercise.
- It is difficult to determine the early-exercise point based on one single path.
- But Monte Carlo simulation can be modified to price American options with small biases.^a
- The LSM can be easily parallelized.^b

^bHuang (B96902079, R00922018) (2013); Chen (B97902046, R01922005) (2014); Chen (B97902046, R01922005), Huang (B96902079, R00922018) & Lyuu (2015).

^aLongstaff and Schwartz (2001).

Delta and Common Random Numbers

• In estimating delta $\partial f/\partial S$, it is natural to start with the finite-difference estimate

$$e^{-r\tau} \, \frac{E[P(S+\epsilon)] - E[P(S-\epsilon)]}{2\epsilon}$$

- -P(x) is the terminal payoff of the derivative security when the underlying asset's initial price equals x.
- Use simulation to estimate $E[P(S + \epsilon)]$ first.
- Use another simulation to estimate $E[P(S \epsilon)]$.
- Finally, apply the formula to approximate the delta.

Delta and Common Random Numbers (concluded)

- This method is not recommended because of its high variance.
- A much better approach is to use common random numbers to lower the variance:

$$e^{-r\tau} E\left[\frac{P(S+\epsilon) - P(S-\epsilon)}{2\epsilon}\right]$$

• Here, the same random numbers are used for $P(S + \epsilon)$ and $P(S - \epsilon)$.

Gamma

• The finite-difference formula for gamma $\partial^2 f / \partial S^2$ is

$$e^{-r\tau} E\left[\frac{P(S+\epsilon) - 2 \times P(S) + P(S-\epsilon)}{\epsilon^2}\right]$$

- Choosing an ϵ of the right magnitude can be challenging.
 - If ϵ is too large, inaccurate Greeks result.
 - If ϵ is too small, unstable Greeks result.
- This phenomenon is sometimes called the curse of differentiation.^a

^aAït-Sahalia and Lo (1998); Bondarenko (2003).
Gamma (continued)

• In general, suppose

$$\frac{\partial^{i}}{\partial\theta^{i}}e^{-r\tau}E[P(S)] = e^{-r\tau}E\left[\frac{\partial^{i}P(S)}{\partial\theta^{i}}\right]$$

holds for all i > 0, where θ is a parameter of interest.

- A common requirement is Lipschitz continuity.^a
- Then formulas for the Greeks become integrals.
- As a result, we avoid ϵ , finite differences, and resimulation.

^aBroadie and Glasserman (1996).

Gamma (concluded)

- This is indeed possible for a broad class of payoff functions.^a
- In queueing networks, this is called infinitesimal perturbation analysis (IPA).^b

^aTeng (**R91723054**) (2004) and Lyuu and Teng (**R91723054**) (2011). ^bCao (1985); Ho and Cao (1985).

Interest Rate Models

[Meriwether] scoring especially high marks in mathematics — an indispensable subject for a bond trader. — Roger Lowenstein, When Genius Failed (2000)

Bond market terminology was designed less to convey meaning than to bewilder outsiders. — Michael Lewis, *The Big Short* (2011)

The Vasicek Model $^{\rm a}$

• The short rate follows

$$dr = \beta(\mu - r) \, dt + \sigma \, dW.$$

- The short rate is pulled to the long-term mean level μ at rate β .
- Superimposed on this "pull" is a normally distributed stochastic term σdW .

^aVasicek (1977).

The Cox-Ingersoll-Ross Model $^{\rm a}$

• It is the following square-root short rate model:

$$dr = \beta(\mu - r) \, dt + \sigma \sqrt{r} \, dW. \tag{18}$$

- The diffusion differs from the Vasicek model by a multiplicative factor \sqrt{r} .
- The parameter β determines the speed of adjustment.
- The short rate can reach zero only if $2\beta\mu < \sigma^2$.

^aCox, Ingersoll, and Ross (1985).

The Ho-Lee $\mathsf{Model}^{\mathrm{a}}$

• The continuous-time limit of the Ho-Lee model is

 $dr = \theta(t) \, dt + \sigma \, dW.$

- This is Vasicek's model with the mean-reverting drift replaced by a deterministic, time-dependent drift.
- A nonflat term structure of volatilities can be achieved if the short rate volatility is also made time varying,

 $dr = \theta(t) \, dt + \sigma(t) \, dW.$

^aHo and Lee (1986). Thomas Lee is a "billionaire founder" of Thomas H. Lee Partners LP, according to *Bloomberg* on May 26, 2012.

The Black-Derman-Toy Model^a

• The continuous-time limit of the BDT model is

$$d\ln r = \left(\theta(t) + \frac{\sigma'(t)}{\sigma(t)}\ln r\right) dt + \sigma(t) dW.$$

- This model is extensively used by practitioners.
- The BDT short rate process is the lognormal binomial interest rate process.
- Lognormal models preclude negative short rates.

^aBlack, Derman, and Toy (BDT) (1990), but essentially finished in 1986 according to Mehrling (2005).

The Black-Karasinski Model^a

• The BK model stipulates that the short rate follows

$$d\ln r = \kappa(t)(\theta(t) - \ln r) dt + \sigma(t) dW.$$

- This explicitly mean-reverting model depends on time through $\kappa(\cdot)$, $\theta(\cdot)$, and $\sigma(\cdot)$.
- The BK model hence has one more degree of freedom than the BDT model.
- The speed of mean reversion $\kappa(t)$ and the short rate volatility $\sigma(t)$ are independent.

^aBlack and Karasinski (1991).

The Extended Vasicek Model $^{\rm a}$

• The extended Vasicek model adds time dependence to the original Vasicek model,

$$dr = (\theta(t) - a(t) r) dt + \sigma(t) dW.$$

- Like the Ho-Lee model, this is a normal model.
- Many European-style securities can be evaluated analytically.
- Efficient numerical procedures can be developed for American-style securities.

^aHull and White (1990).

The Hull-White Model

• The Hull-White model is the following special case,

$$dr = (\theta(t) - ar) dt + \sigma dW.$$

The Extended CIR Model

• In the extended CIR model the short rate follows

$$dr = (\theta(t) - a(t) r) dt + \sigma(t) \sqrt{r} dW.$$

- The functions $\theta(t)$, a(t), and $\sigma(t)$ are implied from market observables.
- With constant parameters, there exist analytical solutions to a small set of interest rate-sensitive securities.

