
Toward the Black-Scholes Formula

• As n increases, the stock price ranges over ever larger

numbers of possible values, and trading takes place

nearly continuously.

• Need to calibrate the BOPM’s parameters u, d, and R

to make it converge to the continuous-time model.

• We now skim through the proof.
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Toward the Black-Scholes Formula (continued)

• Let τ denote the time to expiration of the option

measured in years.

• Let r be the continuously compounded annual rate.

• With n periods during the option’s life, each period

represents a time interval of τ/n.

• Need to adjust the period-based u, d, and interest rate

r̂ to match the empirical results as n → ∞.
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Toward the Black-Scholes Formula (continued)

• First, r̂ = rτ/n.

– Each period is τ/n years long.

– The period gross return R = er̂.

• Let

ln
Sτ

S

denote the continuously compounded rate of return of

the stock.
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Toward the Black-Scholes Formula (continued)

• Assume the stock’s true continuously compounded rate

of return has mean μτ and variance σ2τ .

• Call σ the stock’s (annualized) volatility.

• We need one more condition to have a solution for u, d, q.

• Impose

ud = 1.

– It makes nodes at the same horizontal level of the

tree have identical price.a

aOther choices are possible (see text).
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Toward the Black-Scholes Formula (continued)

• Pick

u = eσ
√

τ/n, d = e−σ
√

τ/n, q =
1

2
+

1

2

μ

σ

√
τ

n
. (12)

• With Eqs. (12), it can be checked that the mean μτ is

matched by the BOPM.

• Furthermore, the variance σ2τ is asymptotically

matched as well.

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 80



Toward the Black-Scholes Formula (continued)

• The choices (12) result in the CRR binomial model.a

• The no-arbitrage inequalities d < R < u may not hold

under Eqs. (12) on p. 80 or Eq. (8) on p. 56.

– If this happens, the probabilities lie outside [ 0, 1 ].

• The problem disappears if n is large enough.

aCox, Ross, and Rubinstein (1979).
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Toward the Black-Scholes Formula (continued)

• What is the limiting probabilistic distribution of the

continuously compounded rate of return ln(Sτ/S)?

• It approaches N(μτ + lnS, σ2τ).

• Conclusion: Sτ has a lognormal distribution in the limit.
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Toward the Black-Scholes Formula (continued)

• In the risk-neutral economy, pick

q =
R − d

u− d
.

by Eq. (8) on p. 56.

Lemma 1 The continuously compounded rate of return

ln(Sτ/S) approaches the normal distribution with mean

(r − σ2/2) τ and variance σ2τ in a risk-neutral economy.a

aSee Lemma 9.3.3 of the textbook.
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Toward the Black-Scholes Formula (concluded)

Theorem 2 (The Black-Scholes Formula)

C = SN(x)−Xe−rτN(x− σ
√
τ),

P = Xe−rτN(−x+ σ
√
τ)− SN(−x),

where

x ≡ ln(S/X) +
(
r + σ2/2

)
τ

σ
√
τ

.
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BOPM and Black-Scholes Model

• The Black-Scholes formula needs 5 parameters: S, X , σ,

τ , and r.

• Binomial tree algorithms take 6 inputs: S, X , u, d, r̂,

and n.

• The connections are

u = eσ
√

τ/n,

d = e−σ
√

τ/n,

r̂ = rτ/n.
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• S = 100, X = 100 (left), and X = 95 (right).
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BOPM and Black-Scholes Model (concluded)

• The binomial tree algorithms converge reasonably fast.

• The error is O(1/n).a

• Oscillations can be dealt with by the judicious choices of

u and d.b

aChang and Palmer (2007).
bSee Exercise 9.3.8 of the textbook.
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Implied Volatility

• Volatility is the sole parameter not directly observable.

• The Black-Scholes formula can be used to compute the

market’s opinion of the volatility.

– Solve for σ given the option price, S, X , τ , and r

with numerical methods.

• Implied volatility is

the wrong number to put in the wrong formula to

get the right price of plain-vanilla options.a

• It is often preferred to historical volatility in practice.

aRebonato (2004).
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Problems; the Smile

• Options written on the same underlying asset usually do

not produce the same implied volatility.

• A typical pattern is a “smile” in relation to the strike

price.

– The implied volatility is lowest for at-the-money

options.

– It becomes higher the further the option is in- or

out-of-the-money.

• Other patterns have also been observed.
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Binomial Tree Algorithms for American Puts

• Early exercise has to be considered.

• The binomial tree algorithm starts with the terminal

payoffs

max(0, X − Sujdn−j)

and applies backward induction.

• At each intermediate node, it compares the payoff if

exercised and the continuation value.

• It keeps the larger one.
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Extensions of Options Theory
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And the worst thing you can have

is models and spreadsheets.

— Warren Buffet, May 3, 2008
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Barrier Options

• Their payoff depends on whether the underlying asset’s

price reaches a certain price level H.

• A knock-out option is like an ordinary European option.

• But it ceases to exist if the barrier H is reached by the

price of its underlying asset.
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Barrier Options (concluded)

• A knock-in option comes into existence if a certain

barrier is reached.

• A down-and-in option is a call knock-in option that

comes into existence only when the barrier is reached

and H < S.
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A Formula for Down-and-In Callsa

• Assume X ≥ H.

• The value of a European down-and-in call on a stock
paying a dividend yield of q is

Se−qτ

(
H

S

)2λ

N(x)−Xe−rτ

(
H

S

)2λ−2

N(x− σ
√
τ),

(13)

– x ≡ ln(H2/(SX))+(r−q+σ2/2) τ
σ
√
τ

.

– λ ≡ (r − q + σ2/2)/σ2.

aMerton (1973).
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Binomial Tree Algorithms

• Barrier options can be priced by binomial tree

algorithms.

• Below is for the down-and-out option.

0 H
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8

16

4

32

8

2

64

16

4

1

4.992

12.48

1.6

27.2

4.0

0

58

10

0

0

X

0.0

S = 8, X = 6, H = 4, R = 1.25, u = 2, and d = 0.5.

Backward-induction: C = (0.5× Cu + 0.5× Cd)/1.25.
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Binomial Tree Algorithms (continued)

• But convergence is erratic because H is not at a price

level on the tree.a

– The barrier H is moved to a node price.

– This “effective barrier” changes as n increases.

• In fact, the binomial tree is O(1/
√
n) convergent.b

aBoyle and Lau (1994).
bLin (R95221010) (2008).
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Binomial Tree Algorithms (concluded)a

100 150 200 250 300 350 400
#Periods

3
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4.5

5

5.5

Down-and-in call value

aLyuu (1998).
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Path-Dependent Derivatives

• Let S0, S1, . . . , Sn denote the prices of the underlying

asset over the life of the option.

• S0 is the known price at time zero.

• Sn is the price at expiration.

• The standard European call has a terminal value

depending only on the last price, max(Sn −X, 0).

• Its value thus depends only on the underlying asset’s

terminal price regardless of how it gets there.
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Path-Dependent Derivatives (continued)

• Some derivatives are path-dependent in that their

terminal payoff depends critically on the path.

• The (arithmetic) average-rate call has this terminal

value:

max

(
1

n+ 1

n∑
i=0

Si −X, 0

)
.

• The average-rate put’s terminal value is given by

max

(
X − 1

n+ 1

n∑
i=0

Si, 0

)
.
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Path-Dependent Derivatives (concluded)

• Average-rate options are also called Asian options.a

• They are useful hedging tools for firms that will make a

stream of purchases over a time period because the costs

are likely to be linked to the average price.

• The averaging clause is also common in convertible

bonds and structured notes.

aAs of the late 1990s, the outstanding volume was in the range of

5–10 billion U.S. dollars (Nielsen & Sandmann, 2003).
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Average-Rate Options

• Average-rate options are notoriously hard to price.

• The binomial tree for the averages does not combine (see

next page).

• A naive algorithm enumerates the 2n paths for an

n-period binomial tree and then averages the payoffs.a

• But the complexity is exponential.

• The Monte Carlo methodb and approximation

algorithms are some of the alternatives left.

aDai (B82506025, R86526008, D8852600) and Lyuu (2007) reduce it to

2O(
√
n ). Hsu (R7526001, D89922012) and Lyuu (2004) reduce it to O(n2)

given some regularity assumptions.
bSee pp. 142ff.
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Continuous-Time Financial Mathematics
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A proof is that which convinces a reasonable man;

a rigorous proof is that which convinces an

unreasonable man.

— Mark Kac (1914–1984)
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Brownian Motiona

• Brownian motion is a stochastic process {X(t), t ≥ 0 }
with the following properties.

1. X(0) = 0, unless stated otherwise.

2. for any 0 ≤ t0 < t1 < · · · < tn, the random variables

X(tk)−X(tk−1)

for 1 ≤ k ≤ n are independent.b

3. for 0 ≤ s < t, X(t)−X(s) is normally distributed

with mean μ(t− s) and variance σ2(t− s), where μ

and σ �= 0 are real numbers.

aRobert Brown (1773–1858).
bSo X(t)−X(s) is independent of X(r) for r ≤ s < t.
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Brownian Motion (concluded)

• The existence and uniqueness of such a process is

guaranteed by Wiener’s theorem.a

• This process will be called a (μ, σ) Brownian motion

with drift μ and variance σ2.

• The (0, 1) Brownian motion is called the Wiener process.

aNorbert Wiener (1894–1964). He received his Ph.D. from Harvard

in 1912.
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Ito Processa

• A shorthandb is the following stochastic differential

equation for the Ito differential dXt,

dXt = a(Xt, t) dt+ b(Xt, t) dWt. (14)

– Or simply

dXt = at dt+ bt dWt.

aIto (1944).
bPaul Langevin (1872–1946) in 1904.
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Ito Process (concluded)

• dW is normally distributed with mean zero and

variance dt.

• An equivalent form of Eq. (14) is

dXt = at dt+ bt
√
dt ξ, (15)

where ξ ∼ N(0, 1).
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Modeling Stock Prices

• The most popular stochastic model for stock prices has

been the geometric Brownian motion,

dS

S
= μ dt+ σ dW.

• The continuously compounded rate of return X ≡ lnS

follows

dX = (μ− σ2/2) dt+ σ dW

by Ito’s lemma.a

aConsistent with Lemma 1 (p. 84).
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Local-Volatility Models

• The more general deterministic volatility model posits

dS

S
= (rt − qt) dt+ σ(S, t) dW,

where instantaneous volatility σ(S, t) is called the local

volatility function.a

• One needs to recover σ(S, t) from the implied

volatilities.

aDerman and Kani (1994); Dupire (1994).
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By Mr. Lok, U Hou (D99922028) on April 5, 2014.
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Implied Trees

• The trees for the local volatility model are called implied

trees.a

• Their construction requires an implied volatility surface.

• An exponential-sized implied tree exists.b

• How to construct a valid implied tree with efficiency has

been open for a long time.c

aDerman & Kani (1994); Dupire (1994); Rubinstein (1994).
bCharalambousa, Christofidesb, & Martzoukosa (2007).
cRubinstein (1994); Derman & Kani (1994); Derman, Kani, & Chriss

(1996); Jackwerth & Rubinstein (1996); Jackwerth (1997); Coleman,

Kim, Li, & Verma (2000); Li (2000/2001); Moriggia, Muzzioli, & Torri-

celli (2009).
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Implied Trees (concluded)

• It is solved for separable local volatilities σ.a

– The local-volatility function σ(S, V ) is separableb if

σ(S, t) = σ1(S)σ2(t).

• A general solution is close.c

aLok (D99922028) & Lyuu (2015, 2016).
bRebonato (2004); Brace, Ga̧tarek, & Musiela (1997).
cLok (D99922028) & Lyuu (2016).
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The Hull-White Model

• Hull and White (1987) postulate the following model,

dS

S
= r dt+

√
V dW1,

dV = μvV dt+ bV dW2.

• Above, V is the instantaneous variance.

• They assume μv depends on V and t (but not S).
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The SABR Model

• Hagan, Kumar, Lesniewski, and Woodward (2002)

postulate the following model,

dS

S
= r dt+ SθV dW1,

dV = bV dW2,

for 0 ≤ θ ≤ 1.
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The Hilliard-Schwartz Model

• Hilliard and Schwartz (1996) postulate the following

general model,

dS

S
= r dt+ f(S)V a dW1,

dV = μ(V ) dt+ bV dW2,

for some well-behaved function f(S) and constant a.
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Heston’s Stochastic-Volatility Model

• Heston (1993) assumes the stock price follows

dS

S
= (μ− q) dt+

√
V dW1, (16)

dV = κ(θ − V ) dt+ σ
√
V dW2. (17)

– V is the instantaneous variance, which follows a

square-root process.

– dW1 and dW2 have correlation ρ.

– The riskless rate r is constant.
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Heston’s Stochastic-Volatility Model (concluded)

• It may be the most popular continuous-time

stochastic-volatility model.a

• For American options, we will need a tree for Heston’s

model.b

• They are all O(n3)-sized.

aChristoffersen, Heston, & Jacobs (2009).
bLeisen (2010); Beliaeva & Nawalka (2010); Chou (R02723073) (2015).
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Why Are Trees for Stochastic-Volatility Models
Difficult?

• The CRR tree is 2-dimensional.a

• The constant volatility makes the span from any node

fixed.

• But a tree for a stochastic-volatility model must be

3-dimensional.

– Every node is associated with a pair of stock price

and a volatility.

aRecall p. 82.
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Why Are Trees for Stochastic-Volatility Models
Difficult: Binomial Case?
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Why Are Trees for Stochastic-Volatility Models
Difficult: Trinomial Case?
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Why Are Trees for Stochastic-Volatility Models
Difficult? (concluded)

• Locally, the tree looks fine for one time step.

• But the volatility regulates the spans of the nodes on

the stock-price plane.

• Unfortunately, those spans differ from node to node

because the volatility varies.

• So two time steps from now, the branches will not

combine!
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Complexities of Stochastic-Volatility Models

• A few stochastic-volatility models suffer from

subexponential (c
√
n) tree size.

• Examples include the Hull-White (1987),

Hilliard-Schwartz (1996), and SABR (2002) models.a

aChiu (R98723059) (2012).
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Trees
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I love a tree more than a man.

— Ludwig van Beethoven (1770–1827)
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Trinomial Tree

• Set up a trinomial approximation to the geometric

Brownian motiona

dS

S
= r dt+ σ dW.

• The three stock prices at time Δt are S, Su, and Sd,

where ud = 1.

• Let the mean and variance of the stock price be SM and

S2V , respectively.

aBoyle (1988).
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Trinomial Tree (continued)

• By Eqs. (5) on p. 24,

M ≡ erΔt,

V ≡ M2(eσ
2Δt − 1).

• Impose the matching of mean and that of variance:

1 = pu + pm + pd,

SM = (puu+ pm + (pd/u))S,

S2V = pu(Su− SM)2 + pm(S − SM)2 + pd(Sd− SM)2.
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Trinomial Tree (concluded)

• Use linear algebra to verify that

pu =
u
(
V +M2 −M

)− (M − 1)

(u− 1) (u2 − 1)
,

pd =
u2
(
V +M2 −M

)− u3(M − 1)

(u− 1) (u2 − 1)
.

– We must also make sure the probabilities lie between

0 and 1.
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A Trinomial Tree

• Use u = eλσ
√
Δt, where λ ≥ 1 is a tunable parameter.

• Then

pu → 1

2λ2
+

(
r + σ2

)√
Δt

2λσ
,

pd → 1

2λ2
−
(
r − 2σ2

)√
Δt

2λσ
.
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Barrier Options Priced by Trinomial Trees
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Multivariate Contingent Claims

• They depend on two or more underlying assets.

• The basket call on m assets has the terminal payoff

max

(
m∑
i=1

αiSi(τ)−X, 0

)
.
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Multivariate Contingent Claims (continued)a

Name Payoff

Exchange option max(S1(τ)− S2(τ), 0)

Better-off option max(S1(τ), . . . , Sk(τ), 0)

Worst-off option min(S1(τ), . . . , Sk(τ), 0)

Binary maximum option I{max(S1(τ), . . . , Sk(τ)) > X }
Maximum option max(max(S1(τ), . . . , Sk(τ))−X, 0)

Minimum option max(min(S1(τ), . . . , Sk(τ))−X, 0)

Spread option max(S1(τ)− S2(τ)−X, 0)

Basket average option max((S1(τ) + · · ·+ Sk(τ))/k −X, 0)

Multi-strike option max(S1(τ)−X1, . . . , Sk(τ)−Xk, 0)

Pyramid rainbow option max(|S1(τ)−X1 |+ · · ·+ |Sk(τ)−Xk | −X, 0)

Madonna option max(
√

(S1(τ)−X1)2 + · · ·+ (Sk(τ)−Xk)2 −X, 0)

aLyuu & Teng (R91723054) (2011).
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Multivariate Contingent Claims (concluded)

• Trees for multivariate contingent claims typically has

size exponential in the number of assets.

• This is called the curse of dimensionality.
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Numerical Methods
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All science is dominated

by the idea of approximation.

— Bertrand Russell
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Monte Carlo Simulationa

• Monte Carlo simulation is a sampling scheme.

• In many important applications within finance and

without, Monte Carlo is one of the few feasible tools.

aA top 10 algorithm according to Dongarra and Sullivan (2000).
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Monte Carlo Option Pricing

• For the pricing of European options, we sample the

stock prices.

• Then we average the payoffs.

• The variance of the estimator is now 1/N of that of the

original random variable.
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How about American Options?

• Standard Monte Carlo simulation is inappropriate for

American options because of early exercise.

• It is difficult to determine the early-exercise point based

on one single path.

• But Monte Carlo simulation can be modified to price

American options with small biases.a

• The LSM can be easily parallelized.b

aLongstaff and Schwartz (2001).
bHuang (B96902079, R00922018) (2013); Chen (B97902046,

R01922005) (2014); Chen (B97902046, R01922005), Huang (B96902079,

R00922018) & Lyuu (2015).
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Delta and Common Random Numbers

• In estimating delta ∂f/∂S, it is natural to start with the

finite-difference estimate

e−rτ E[P (S + ε) ]− E[P (S − ε) ]

2ε
.

– P (x) is the terminal payoff of the derivative security

when the underlying asset’s initial price equals x.

• Use simulation to estimate E[P (S + ε) ] first.

• Use another simulation to estimate E[P (S − ε) ].

• Finally, apply the formula to approximate the delta.
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Delta and Common Random Numbers (concluded)

• This method is not recommended because of its high

variance.

• A much better approach is to use common random

numbers to lower the variance:

e−rτ E

[
P (S + ε)− P (S − ε)

2ε

]
.

• Here, the same random numbers are used for P (S + ε)

and P (S − ε).
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Gamma

• The finite-difference formula for gamma ∂2f/∂S2 is

e−rτ E

[
P (S + ε)− 2× P (S) + P (S − ε)

ε2

]
.

• Choosing an ε of the right magnitude can be

challenging.

– If ε is too large, inaccurate Greeks result.

– If ε is too small, unstable Greeks result.

• This phenomenon is sometimes called the curse of

differentiation.a

aAı̈t-Sahalia and Lo (1998); Bondarenko (2003).
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Gamma (continued)

• In general, suppose

∂i

∂θi
e−rτE[P (S) ] = e−rτE

[
∂iP (S)

∂θi

]

holds for all i > 0, where θ is a parameter of interest.

– A common requirement is Lipschitz continuity.a

• Then formulas for the Greeks become integrals.

• As a result, we avoid ε, finite differences, and

resimulation.

aBroadie and Glasserman (1996).
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Gamma (concluded)

• This is indeed possible for a broad class of payoff

functions.a

• In queueing networks, this is called infinitesimal

perturbation analysis (IPA).b

aTeng (R91723054) (2004) and Lyuu and Teng (R91723054) (2011).
bCao (1985); Ho and Cao (1985).
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Interest Rate Models
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[Meriwether] scoring especially high marks

in mathematics — an indispensable subject

for a bond trader.

— Roger Lowenstein,

When Genius Failed (2000)

Bond market terminology was designed less

to convey meaning than to bewilder outsiders.

— Michael Lewis, The Big Short (2011)
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The Vasicek Modela

• The short rate follows

dr = β(μ− r) dt+ σ dW.

• The short rate is pulled to the long-term mean level μ

at rate β.

• Superimposed on this “pull” is a normally distributed

stochastic term σ dW .

aVasicek (1977).
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The Cox-Ingersoll-Ross Modela

• It is the following square-root short rate model:

dr = β(μ− r) dt+ σ
√
r dW. (18)

• The diffusion differs from the Vasicek model by a

multiplicative factor
√
r .

• The parameter β determines the speed of adjustment.

• The short rate can reach zero only if 2βμ < σ2.

aCox, Ingersoll, and Ross (1985).
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The Ho-Lee Modela

• The continuous-time limit of the Ho-Lee model is

dr = θ(t) dt+ σ dW.

• This is Vasicek’s model with the mean-reverting drift

replaced by a deterministic, time-dependent drift.

• A nonflat term structure of volatilities can be achieved if

the short rate volatility is also made time varying,

dr = θ(t) dt+ σ(t) dW.

aHo and Lee (1986). Thomas Lee is a “billionaire founder” of Thomas

H. Lee Partners LP, according to Bloomberg on May 26, 2012.
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The Black-Derman-Toy Modela

• The continuous-time limit of the BDT model is

d ln r =

(
θ(t) +

σ′(t)
σ(t)

ln r

)
dt+ σ(t) dW.

• This model is extensively used by practitioners.

• The BDT short rate process is the lognormal binomial

interest rate process.

• Lognormal models preclude negative short rates.

aBlack, Derman, and Toy (BDT) (1990), but essentially finished in

1986 according to Mehrling (2005).
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The Black-Karasinski Modela

• The BK model stipulates that the short rate follows

d ln r = κ(t)(θ(t)− ln r) dt+ σ(t) dW.

• This explicitly mean-reverting model depends on time

through κ( · ), θ( · ), and σ( · ).
• The BK model hence has one more degree of freedom

than the BDT model.

• The speed of mean reversion κ(t) and the short rate

volatility σ(t) are independent.

aBlack and Karasinski (1991).
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The Extended Vasicek Modela

• The extended Vasicek model adds time dependence to

the original Vasicek model,

dr = (θ(t)− a(t) r) dt+ σ(t) dW.

• Like the Ho-Lee model, this is a normal model.

• Many European-style securities can be evaluated

analytically.

• Efficient numerical procedures can be developed for

American-style securities.

aHull and White (1990).
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The Hull-White Model

• The Hull-White model is the following special case,

dr = (θ(t)− ar) dt+ σ dW.
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The Extended CIR Model

• In the extended CIR model the short rate follows

dr = (θ(t)− a(t) r) dt+ σ(t)
√
r dW.

• The functions θ(t), a(t), and σ(t) are implied from

market observables.

• With constant parameters, there exist analytical

solutions to a small set of interest rate-sensitive

securities.
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Finis
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