
Backward Induction on the RT Tree

• After the RT tree is constructed, it can be used to price

options by backward induction.

• Recall that each node keeps two variances h2
max and

h2
min.

• We now increase that number to K equally spaced

variances between h2
max and h2

min.

• Besides the minimum and maximum variances, the other

K − 2 variances in between are linearly interpolated.a

aLog-linear interpolation works better in practice (Lyuu & C. Wu

(R90723065), 2005). Log-cubic interpolation works even better (C. Liu

(R92922123), 2005).
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Backward Induction on the RT Tree (continued)

• For example, if K = 3, then a variance of

10.5436× 10−6

will be added between the maximum and minimum

variances at node (2, 0) on p. 977.a

• In general, the kth variance at node (i, j) is

h2
min(i, j)+k

h2
max(i, j)− h2

min(i, j)

K − 1
, k = 0, 1, . . . , K−1.

• Each interpolated variance’s jump parameter and

branching probabilities can be computed as before.

aRepeated on p. 997.

c©2025 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 996



13.4809

13.4809

12.2883

12.2883

11.7170

11.7170

12.2846

10.5733

10.9645

10.9645

10.5697

10.5256

13.4644

10.1305

10.9600

10.9600

10.5215

10.5215

10.9603

10.1269

10.6042

09.7717

10.9553

10.9553

12.2700

10.5173

11.7005

10.1231

10.9511

10.9511

12.2662

10.5135

13.4438

10.9473

yt

4.60517

4.61564

4.62611

4.63658

4.64705

4.65752

4.59470

4.58423

4.57376

0.01047

1

1

2

2

1

1

1

1

2

2

1

1

2

1

2

1

1

1

c©2025 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 997



Backward Induction on the RT Tree (concluded)

• Suppose a variance falls between two of the K variances

during backward induction.

• Linear interpolation of the option prices corresponding

to the two bracketing variances will be used as the

approximate option price.

• The above idea is reminiscent of the one in pricing Asian

options.a

aRecall p. 456.
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Numerical Examples

• We next use the tree on p. 997 to price a European call

option with a strike price of 100 and expiring at date 3.

• Recall that the riskless interest rate is zero.

• Assume K = 2; hence there are no interpolated

variances.

• The pricing tree is shown on p. 1000 with a call price of

0.66346.

– The branching probabilities needed in backward

induction can be found on p. 1001.
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Numerical Examples (continued)

• Let us derive some of the numbers on p. 1000.

• A gray line means the updated variance falls strictly

between h2
max and h2

min.

• The option price for a terminal node at date 3 equals

max(S3 − 100, 0), independent of the variance level.

• Now move on to nodes at date 2.

• The option price at node (2, 3) depends on those at

nodes (3, 5), (3, 3), and (3, 1).

• It therefore equals

0.1387× 5.37392 + 0.7197 × 3.19054 + 0.1416× 1.05240 = 3.19054.
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Numerical Examples (continued)

• Option prices for other nodes at date 2 can be computed

similarly.

• For node (1, 1), the option price for both variances is

0.1237× 3.19054 + 0.7499 × 1.05240 + 0.1264× 0.14573 = 1.20241.

• Node (1, 0) is most interesting.

• We knew that a down move from it gives a variance of

0.000105609 (p. 988).

• This number falls between the minimum variance

0.000105173 and the maximum variance 0.0001227 at

node (2,−1) on p. 997.

c©2025 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 1003



Numerical Examples (continued)

• The option price corresponding to the minimum

variance is 0 (p. 1000).

• The option price corresponding to the maximum

variance is 0.14573.

• The equation

x× 0.000105173 + (1− x)× 0.0001227 = 0.000105609

is satisfied by x = 0.9751.

• So the option for the down state is approximated by

x× 0 + (1− x)× 0.14573 = 0.00362.
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Numerical Examples (continued)

• The up move leads to the state with option price

1.05240.

• The middle move leads to the state with option price

0.48366.

• The option price at node (1, 0) is finally calculated as

0.4775× 1.05240 + 0.0400 × 0.48366 + 0.4825× 0.00362 = 0.52360.
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Numerical Examples (continued)

• A variance following an interpolated variance may

exceed the maximum variance or be lower than the

minimum variance.

• When this happens, the option price corresponding to

the maximum or minimum variance will be used during

backward induction.a

• This act reduces the dynamic range of the variance.

aCakici & Topyan (2000).
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Numerical Examples (concluded)

• Worse, an interpolated variance may choose a branch

that goes into a node that is not reached in forward

induction.a

• In this case, the algorithm fails.

• The RT algorithm does not have these problems.

– This is because all interpolated variances are involved

in the forward-induction phase.

• It may be hard to calculate the implied β1 and β2 from

option prices.b

aLyuu & C. Wu (R90723065) (2005).
bY. Chang (B89704039, R93922034) (2006).
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Complexities of GARCH Models

• The RT algorithm explodes exponentially even for

moderate n.a

• The mean-tracking tree of Lyuu and Wu guarantees

explosion not to happen for n not too large.b

– That tree is similar to, but earlier than, the

binomial-trinomial tree.c

– In fact, the binomial-trinomial tree could have been

used.d

aRecall p. 973.
bLyuu & C. Wu (R90723065) (2003, 2005).
cRecall pp. 766ff.
dContributed by Mr. Lu, Zheng-Liang (D00922011) on August 12,

2021.
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Complexities of GARCH Models (continued)

• Guo, Augustyniak, and Badescu’s (2024) truncated

mean-tracking tree improves upon the Lyuu-Wu tree.

• The next page summarizes the situations for many

GARCH option pricing models other than NGARCH.
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Complexities of GARCH Models (concluded)a

Model Explosion Non-explosion

NGARCH β1 + β2n > 1 β1 + β2(
√
n+ λ+ c)2 ≤ 1

LGARCH β1 + β2n > 1 β1 + β2(
√
n+ λ)2 ≤ 1

AGARCH β1 + β2n > 1 β1 + β2(
√
n+ λ)2 ≤ 1

GJR-GARCH β1 + β2n > 1 β1 + (β2 + β3)(
√
n+ λ)2 ≤ 1

TS-GARCH β1 + β2
√
n > 1 β1 + β2(λ+

√
n) ≤ 1

TGARCH β1 + β2
√
n > 1 β1 + (β2 + β3)(λ+

√
n) ≤ 1

Heston-Nandi β1 + β2(c− 1
2
)2 > 1 β1 + β2c2 ≤ 1

& c ≤ 1
2

VGARCH β1 + (β2/4) > 1 β1 ≤ 1

aY. C. Chen (R95723051) (2008); Y. C. Chen (R95723051), Lyuu, &

Wen (D94922003) (2012).
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Obtaining Profit and Loss of Delta Hedge

• Profit and loss of any hedging strategy should be

calculated under the real-world probability measure.a

• But hedging parameters such as delta should be

computed under the risk-neutral measure.

• Say we want the distribution of profit and loss for the

delta hedge under the GARCH model.

• If a tree is built for each sampled stock price to obtain

the delta, the complexity will be astronomical.b

• How to do it efficiently?c

aRecall p. 715.
bAugustyniak, Badescu, & Guo (2021).
cLu (D00922011), Lyuu, & Yang (D09922005) (2021).
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Introduction to Term Structure Modeling
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The fox often ran to the hole

by which they had come in,

to find out if his body was still thin enough

to slip through it.

— Grimm’s Fairy Tales
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And the worst thing you can have

is models and spreadsheets.

— Warren Buffet (2008, May 3)

Renaissance is 100% model driven.a

James Simons (2015, May 13, 37:09)

ahttps://www.youtube.com/watch?v=QNznD9hMEh0
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Outline

• Use the binomial interest rate tree to model stochastic

term structure.

– Illustrates the basic ideas underlying future models.

– Applications are generic in that pricing and hedging

methodologies can be easily adapted to other models.

• Although the idea is similar to the earlier one used in

option pricing, the current task is more complicated.

– The evolution of an entire term structure, not just a

single stock price, is to be modeled.

– Interest rates of various maturities cannot evolve

arbitrarily, or arbitrage profits may occur.
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Goals

• A stochastic interest rate model performs two tasks.

– Provides a stochastic process that defines future term

structures without arbitrage profits.

– “Consistent” with the observed term structures.
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History

• The methodology was founded by Merton (1970).

• Modern interest rate modeling is often traced to 1977

when Vasicek and Cox, Ingersoll, and Ross developed

simultaneously their influential models.

• Early models have fitting problems because they may

not price today’s benchmark bonds correctly.

• An alternative approach pioneered by Ho and Lee (1986)

makes fitting the market yield curve mandatory.

• Models based on such a paradigm are called

arbitrage-free or no-arbitrage models.a

aSomewhat misleadingly.
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Binomial Interest Rate Tree

• Goal is to construct a no-arbitrage interest rate tree

consistent with the yields — and sometimes yield

volatilities — of zero-coupon bonds of all maturities.

– This procedure is called calibration.a

• Pick a binomial tree model in which the logarithm of the

future short rate obeys the binomial distribution.

– Like the CRR tree for pricing options.

– Tuckman (2002) attributes this model to Salomon

Brothers.

• The limiting distribution of the short rate at any future

time is hence lognormal.
aDerman (2004), “complexity without calibration is pointless.”
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Binomial Interest Rate Tree (continued)

• A binomial tree of future short rates is constructed.

• Every short rate is followed by two short rates in the

following period.

• In the figure on p. 1020, node A coincides with the start

of period j during which the short rate r is in effect.

• At the conclusion of period j, a new short rate goes into

effect for period j + 1.
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� r�0.5

� rh0.5

A

B

C

period j − 1 period j period j + 1

time j − 1 time j
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Binomial Interest Rate Tree (continued)

• This may take one of two possible values:

– r�: the “low” short-rate outcome at node B.

– rh: the “high” short-rate outcome at node C.

• Each branch has a 50% chance of occurring in a

risk-neutral economy.

• We require that the paths combine as the binomial

process unfolds.
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Binomial Interest Rate Tree (continued)

• The short rate r can go to rh and r� with equal

risk-neutral probability 1/2 in a period of length Δt.

• Hence the volatility of ln r after Δt time isa

σ =
1

2

1√
Δt

ln

(
rh
r�

)
. (138)

• Above, σ is annualized,b whereas r� and rh are period

based.

aSee Exercise 23.2.3 in text.
bYou may remove the 1/

√
Δt term to revert it to being period based.
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Binomial Interest Rate Tree (continued)

• Note that
rh
r�

= e2σ
√
Δt.

• Thus greater volatility, hence uncertainty, leads to larger

rh/r� and wider ranges of possible short rates.

• The ratio rh/r� may depend on time if the volatility is a

function of time.

• Note that rh/r� has nothing to do with the current

short rate r if σ is independent of r.
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Binomial Interest Rate Tree (continued)

• In general there are j possible rates for period j,a

rj , rjvj , rjv
2
j , . . . , rjv

j−1
j ,

where

vj
Δ
= e2σj

√
Δt = 1 +O

(√
Δt

)
(139)

is the multiplicative ratio for the rates in period j (see

figure on next page).

• We shall call rj the baseline rates.

• The subscript j in σj means to emphasize that the

short rate volatility may be time dependent.

aNot j + 1. The subscript j refers to the period.
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Binomial Interest Rate Tree (concluded)

• In the limit, the short rate follows

r(t) = μ(t) eσ(t)W (t). (140)

– The (percent) short rate volatility σ(t) is a

deterministic function of time.

• The expected value of r(t) equals μ(t) eσ(t)
2(t/2).

• Hence a declining short rate volatility is needed to

preclude the short rate from assuming implausibly high

values.

• This is how the binomial interest rate tree achieves

mean reversion to some long-term mean.
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Memory Issues

• Path independency: The term structure at any node is

independent of the path taken to reach it.

• So only the baseline rates ri and the multiplicative

ratios vi need to be stored in computer memory.

• This takes up only O(n) space.a

• Storing the whole tree would take up O(n2) space.

– Daily interest rate movements for 30 years require

roughly (30× 365)2/2 ≈ 6× 107 double-precision

floating-point numbers (half a gigabyte!).

aThroughout, n denotes the depth of the tree.
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Set Things in Motion

• The abstract process is now in place.

• We need the yields to maturities of the riskless bonds

that make up the benchmark yield curve and their

volatilities.

• In the U.S., for example, the on-the-run yield curve

obtained by the most recently issued Treasury securities

may be used as the benchmark curve.
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Set Things in Motion (concluded)

• The term structure of (yield) volatilitiesa can be

estimated from:

– Historical data (historical volatility).

– Or interest rate option prices such as cap prices

(implied volatility).

• The binomial tree should be found that is consistent

with both term structures.

• Here we focus on the term structure of interest rates.

aOr simply the volatility (term) structure.
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Model Term Structures

• The model price is computed by backward induction.

• Refer back to the figure on p. 1020.

• Given that the values at nodes B and C are PB and PC,

respectively, the value at node A is then

PB + PC

2(1 + r)
+ cash flow at node A.

• We compute the values column by column (see next

page).

• This takes O(n2) time and O(n) space.
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Term Structure Dynamics

• An n-period zero-coupon bond’s price can be computed

by assigning $1 to every node at time n and then

applying backward induction.

• Repeat this step for n = 1, 2, . . . to obtain the market

discount function implied by the tree.

• The tree therefore determines a term structure.

• It also contains a term structure dynamics.

– Every node in the tree induces a binomial interest

rate tree and a term structure.
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Sample Term Structure

• We shall construct interest rate trees consistent with the

sample term structure in the table below.

– This is calibration (the reverse of pricing).

• Assume the short rate volatility is such that

v
Δ
=

rh
r�

= 1.5,

independent of time.

Period 1 2 3

Spot rate (%) 4 4.2 4.3

One-period forward rate (%) 4 4.4 4.5

Discount factor 0.96154 0.92101 0.88135
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An Approximate Calibration Scheme

• Start with the implied one-period forward rates.

• Equate the expected short rate with the forward rate.a

• For the first period, the forward rate is today’s

one-period spot rate.

• In general, let fj denote the forward rate in period j.

• This forward rate can be derived from the market

discount function viab

fj =
d(j)

d(j + 1)
− 1.

aSee Exercise 5.6.6 in text for the motivation.
bSee Exercise 5.6.3 in text.
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An Approximate Calibration Scheme (continued)

• As the ith short rate rjv
i−1
j , 1 ≤ i ≤ j, occurs with

probability 2−(j−1)
(
j−1
i−1

)
, we set up

j∑
i=1

2−(j−1)

(
j − 1

i− 1

)
rjv

i−1
j = fj .

• Thus

rj =

(
2

1 + vj

)j−1

fj . (141)

• This binomial interest rate tree is trivial to set up

(implicitly), in O(n) time.
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An Approximate Calibration Scheme (continued)

• The ensuing tree for the sample term structure appears

in figure on the next page.

• For example, the price of the zero-coupon bond paying
$1 at the end of the third period is

1

4
×

1

1.04
×
( 1

1.0352
×
( 1

1.0288
+

1

1.0432

)
+

1

1.0528
×
( 1

1.0432
+

1

1.0648

))

or 0.88155, which exceeds discount factor 0.88135.

• The tree is not calibrated.
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An Approximate Calibration Scheme (concluded)

• This bias is inherent: The tree overprices the bonds.a

• Suppose we replace the baseline rates rj by rjvj .

• Then the resulting tree underprices the bonds.b

• The true baseline rates are thus bounded between rj

and rjvj .

aSee Exercise 23.2.4 in text.
bLyuu & C. Wang (F95922018) (2009, 2011).
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Issues in Calibration

• The model prices generated by the binomial interest rate

tree should match the observed market prices.

• Perhaps the most crucial aspect of model building.

• Treat the backward induction for the model price of the

m-period zero-coupon bond as computing some function

f(rm) of the unknown baseline rate rm for period m.

• A root-finding method is applied to solve f(rm) = P for

rm given the zero’s price P and r1, r2, . . . , rm−1.

• This procedure is carried out for m = 1, 2, . . . , n.

• It runs in O(n3) time.
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Binomial Interest Rate Tree Calibration

• Calibration can be accomplished in O(n2) time by the

use of forward induction.a

• The scheme records how much $1 at a node contributes

to the model price.

• This number is called the state price.b

– It is the price of a state contingent claim that pays

$1 at that particular node (state) and 0 elsewhere.

• The column of state prices will be established by moving

forward from time 0 to time n.

aJamshidian (1991).
bRecall p. 214. Alternative names are the Arrow-Debreu price and

Green’s function.
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Binomial Interest Rate Tree Calibration (continued)

• Suppose we are at time j and there are j + 1 nodes.

– P1, P2, . . . , Pj are the known state prices at the

earlier time j − 1.

– The unknown baseline rate for period j is r
Δ
= rj .

– The known multiplicative ratio is v
Δ
= vj .

– The rates for period j are thus r, rv, . . . , rvj−1.a

• By definition,
∑j

i=1 Pi is the price of the (j − 1)-period

zero-coupon bond.

• We want to find r based on P1, P2, . . . , Pj and the price

of the j-period zero-coupon bond.

aRecall p. 1025, repeated on next page with j = 3.
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Binomial Interest Rate Tree Calibration (continued)
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Binomial Interest Rate Tree Calibration (continued)

• One dollar at time j has a known market value of

1/[ 1 + S(j) ]j, where S(j) is the j-period spot rate.

• Alternatively, this dollar has a present value of

g(r)
Δ
=

P1

(1 + r)
+

P2

(1 + rv)
+

P3

(1 + rv2)
+ · · ·+ Pj

(1 + rvj−1)

(see the next plot).

• So we solve

g(r) =
1

[ 1 + S(j) ]j
(142)

for r.
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Binomial Interest Rate Tree Calibration (continued)

• Given a decreasing market discount function, a unique

positive real-number solution for r is guaranteed.

• The state prices at time j can now be calculated (see

panel (a) of the next page with j = 2).

• We call a tree with these state prices a binomial state

price tree (see panel (b) of the next page).

• The calibrated tree is depicted on p. 1047.
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Binomial Interest Rate Tree Calibration (concluded)

• Use the Newton-Raphson method to solve for the r in

Eq. (142) on p. 1043 as g′(r) is easy to evaluate.

• The monotonicity and the convexity of g(r) facilitates

root finding.

• The total running time is O(n2) as each root-finding

routine consumes O(j) time.

• With a good initial guess,a the Newton-Raphson method

converges in only a few steps.b

aSuch as rj = ( 2
1+vj

)j−1 fj on p. 1035.
bLyuu (1999).
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A Numerical Example

• One dollar at the end of the second period should have a

present value of 0.92101 by the sample term structure.

• The baseline rate for the second period, r2, satisfies

0.480769

1 + r2
+

0.480769

1 + 1.5× r2
= 0.92101.

• The result is r2 = 3.526%.

• This is used to derive the next column of state prices

shown in panel (b) on p. 1046 as 0.232197, 0.460505,

and 0.228308.

• Their sum matches the market discount factor 0.92101.
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A Numerical Example (concluded)

• The baseline rate for the third period, r3, satisfies

0.232197

1 + r3
+

0.460505

1 + 1.5× r3
+

0.228308

1 + (1.5)2 × r3
= 0.88135.

• The result is r3 = 2.895%.

• Now, redo the calculation on p. 1036 using the new rates:

1

4
×

1

1.04
×
[ 1

1.03526
×
( 1

1.02895
+

1

1.04343

)
+

1

1.05289
×
( 1

1.04343
+

1

1.06514

)]
,

which equals 0.88135, an exact match.

• The tree on p. 1047 prices without bias the benchmark

securities.
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Spread of Nonbenchmark Bonds

• Model prices by the calibrated tree seldom match the

market prices of nonbenchmark bonds.

• The incremental return over the benchmark bonds is

called spread.

• If we add the spread uniformly over the short rates in

the tree, the model price will equal the market price.

• We will apply the spread concept to option-free bonds

next.
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Spread of Nonbenchmark Bonds (continued)

• We illustrate the idea with an example.

• Start with the tree on p. 1053.

• Consider a security with cash flow Ci at time i for

i = 1, 2, 3.

• Its model price is p(s), which is equal to

1

1.04 + s
×
[
C1 +

1

2
×

1

1.03526 + s
×
(
C2 +

1

2

(
C3

1.02895 + s
+

C3

1.04343 + s

))
+

1

2
×

1

1.05289 + s
×
(
C2 +

1

2

(
C3

1.04343 + s
+

C3

1.06514 + s

))]
.

• Given a market price of P , the spread is the s that

solves P = p(s).
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Spread of Nonbenchmark Bonds (continued)

• The model price p(s) is a monotonically decreasing,

convex function of s.

• Employ any root-finding method to solve

p(s)− P = 0

for s.

• But a quick look at the equation for p(s) reveals that

evaluating p′(s) directly is infeasible.

• Fortunately, the tree can be used to evaluate both p(s)

and p′(s) during backward induction.
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Spread of Nonbenchmark Bonds (continued)

• Consider an arbitrary node A in the tree associated with

the short rate r.

• While computing the model price p(s), a price pA(s) is

computed at A.

• Prices computed at A’s two successor nodes B and C are

discounted by r + s to obtain pA(s) as follows,

pA(s) = c+
pB(s) + pC(s)

2(1 + r + s)
,

where c denotes the cash flow at A.
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Spread of Nonbenchmark Bonds (continued)

• To compute p′A(s) as well, node A calculates

p′A(s) =
p′B(s) + p′C(s)
2(1 + r + s)

− pB(s) + pC(s)

2(1 + r + s)2
. (143)

• This is easy if p′B(s) and p′C(s) are also computed at

nodes B and C.

• When A is a terminal node, simply use the payoff

function for pA(s).
a

aContributed by Mr. Chou, Ming-Hsin (R02723073) on May 28, 2014.
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Spread of Nonbenchmark Bonds (continued)

• Apply the above procedure inductively to yield p(s) and

p′(s) at the root (p. 1057).

• This is called the differential tree method.a

– Similar ideas can be found in automatic

differentiationb (AD) and backpropagationc in

artificial neural networks.

• The total running time is O(n2).

• The memory requirement is O(n).

aLyuu (1999).
bRall (1981).
cWerbos (1974); Rumelhart, Hinton, & Williams (1986).
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Spread of Nonbenchmark Bonds (continued)

Number of Running Number of Number of Running Number of

partitions n time (s) iterations partitions time (s) iterations

500 7.850 5 10500 3503.410 5

1500 71.650 5 11500 4169.570 5

2500 198.770 5 12500 4912.680 5

3500 387.460 5 13500 5714.440 5

4500 641.400 5 14500 6589.360 5

5500 951.800 5 15500 7548.760 5

6500 1327.900 5 16500 8502.950 5

7500 1761.110 5 17500 9523.900 5

8500 2269.750 5 18500 10617.370 5

9500 2834.170 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

75MHz Sun SPARCstation 20.
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Spread of Nonbenchmark Bonds (concluded)

• Consider a three-year, 5% bond with a market price of

100.569.

• Assume the bond pays annual interest.

• The spread is 50 basis points over the tree.a

• Note that the idea of spread does not assume parallel

shifts in the term structure.

• It also differs from the yield spread (p. 135) and static

spread (p. 136) of the nonbenchmark bond over an

otherwise identical benchmark bond.

aSee plot on the next page.
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More Applications of the Differential Tree: Calculating
Implied Volatility (in seconds)a

American call American put

Number of Running Number of Number of Running Number of

partitions time iterations partitions time iterations

100 0.008210 2 100 0.013845 3

200 0.033310 2 200 0.036335 3

300 0.072940 2 300 0.120455 3

400 0.129180 2 400 0.214100 3

500 0.201850 2 500 0.333950 3

600 0.290480 2 600 0.323260 2

700 0.394090 2 700 0.435720 2

800 0.522040 2 800 0.569605 2

Intel 166MHz Pentium, running on Microsoft Windows 95.

aLyuu (1999).
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Fixed-Income Options

• Consider a 2-year 99 European call on the 3-year, 5%

Treasury.

• Assume the Treasury pays annual interest.

• On p. 1064 the 3-year Treasury’s price minus the $5

interest at year 2 are $102.046, $100.630, and $98.579.

– The accrued interest is not included as it belongs to

the bond seller.

• Now compare the strike price against the bond prices.

• The call is in the money in the first two scenarios out of

the money in the third.
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Fixed-Income Options (continued)

• The option value is calculated to be $1.458 on

p. 1064(a).

• European interest rate puts can be valued similarly.

• Consider a two-year 99 European put on the same

security.

• At expiration, the put is in the money only when the

Treasury is worth $98.579.

• The option value is computed to be $0.096 on p. 1064(b).
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Fixed-Income Options (concluded)

• The present value of the strike price is

PV(X) = 99× 0.92101 = 91.18.

• The Treasury is worth B = 101.955.

• The present value of the interest payments during the

life of the options isa

PV(I) = 5× 0.96154 + 5× 0.92101 = 9.41275.

• The call and the put are worth C = 1.458 and

P = 0.096, respectively.

• The put-call parity is preserved:

C = P +B − PV(I)− PV(X).
aThere is no coupon today.
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Delta or Hedge Ratio

• How much does the option price change in response to

changes in the price of the underlying bond?

• This relation is called delta (or hedge ratio), defined as

Oh −O�

Ph − P�
.

• In the above Ph and P� denote the bond prices if the

short rate moves up and down, respectively.

• Similarly, Oh and O� denote the option values if the

short rate moves up and down, respectively.

c©2025 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 1067



Delta or Hedge Ratio (concluded)

• Delta measures the sensitivity of the option value to

changes in the underlying bond price.

• So it shows how to hedge one with the other.

• Take the call and put on p. 1064 as examples.

• Their deltas are

0.774− 2.258

99.350− 102.716
= 0.441,

0.200− 0.000

99.350− 102.716
= −0.059,

respectively.
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Volatility Term Structures

• The binomial interest rate tree can be used to calculate

the yield volatility of zero-coupon bonds.

• Consider an n-period zero-coupon bond.

• First find its yield to maturity yh (y�, respectively) at

the end of the initial period if the short rate rises

(declines, respectively).

• The yield volatility for our model is defined as

1

2
ln

(
yh
y�

)
. (144)
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Volatility Term Structures (continued)

• For example, take the tree on p. 1047 (repeated on next

page).

• The two-year zero’s yield at the end of the first period is

5.289% if the rate rises and 3.526% if the rate declines.

• Its yield volatility is therefore

1

2
ln

(
0.05289

0.03526

)
= 20.273%.

c©2025 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 1070



Volatility Term Structures (continued)
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Volatility Term Structures (continued)

• Consider the three-year zero-coupon bond.

• If the short rate rises, the price of the zero one year from

now will be

1

2
× 1

1.05289
×
(

1

1.04343
+

1

1.06514

)
= 0.90096.

• Thus its yield is
√

1
0.90096 − 1 = 0.053531.

• If the short rate declines, the price of the zero one year

from now will be

1

2
× 1

1.03526
×
(

1

1.02895
+

1

1.04343

)
= 0.93225.
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Volatility Term Structures (continued)

• Thus its yield is
√

1
0.93225 − 1 = 0.0357.

• The yield volatility is hence

1

2
ln

(
0.053531

0.0357

)
= 20.256%,

slightly less than the one-year yield volatility.

• This is consistent with the reality that longer-term

bonds typically have lower yield volatilities than

shorter-term bonds.a

• The procedure can be repeated for longer-term zeros to

obtain their yield volatilities.

aThe relation is reversed for price volatilities (duration).
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(Short rate volatility given a flat %10 volatility structure.)
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Volatility Term Structures (concluded)

• We started with vi and then derived the volatility term

structure.

• In practice, the steps are reversed.

• The volatility term structure is supplied by the user

along with the term structure.

• The vi—hence the short rate volatilities via Eq. (139)

on p. 1024—and the ri are then simultaneously

determined.

• The result is the Black-Derman-Toy (1990) model of

Goldman Sachs.
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