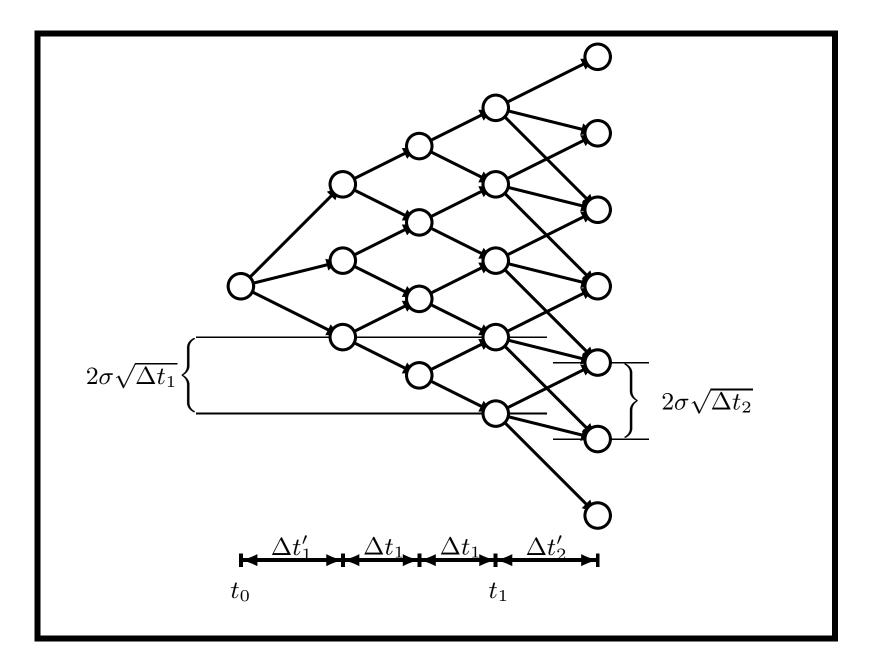
Pricing Discrete and Moving Barrier Options

- Barrier options whose barrier is monitored only at discrete times are called discrete barrier options.
- They are less common than the continuously monitored versions for single stocks.^a
- The main difficulty with pricing discrete barrier options lies in matching the monitored *times*.
- Here is why.


^aBennett (2014).

Pricing Discrete and Moving Barrier Options (continued)

• Suppose each period has a duration of Δt and the $\ell > 1$ monitored times are

$$t_0 = 0, t_1, t_2, \dots, t_\ell = T.$$

- It is unlikely that *all* monitored times coincide with the end of a period on the tree, or Δt divides t_i for all *i*.
- The binomial-trinomial tree can handle discrete options with ease, however.
- Simply build a binomial-trinomial tree from time 0 to time t₁, followed by one from time t₁ to time t₂, and so on until time t_ℓ.

Pricing Discrete and Moving Barrier Options (concluded)

- This procedure works even if each t_i is associated with a distinct barrier or if each window $[t_i, t_{i+1})$ has its own continuously monitored barrier or double barriers.
- Pricing in both scenarios can actually be done in time $O[\ell n \ln(n/\ell)]$.^a
- For typical discrete barriers, placing barriers midway between two price levels on the tree may increase accuracy.^b

^aY. Lu (R06723032, D08922008) & Lyuu (2021, 2023). ^bSteiner & Wallmeier (1999); Tavella & Randall (2000).

Options on a Stock That Pays Known Dividends

- Many ad hoc assumptions have been postulated for option pricing with known dividends.^a
 - The one we saw earlier^b models the stock price minus the present value of the anticipated dividends as following geometric Brownian motion.
 - One can also model the stock price plus the forward values of the dividends as following geometric Brownian motion.

^aFrishling (2002). ^bOn p. 331.

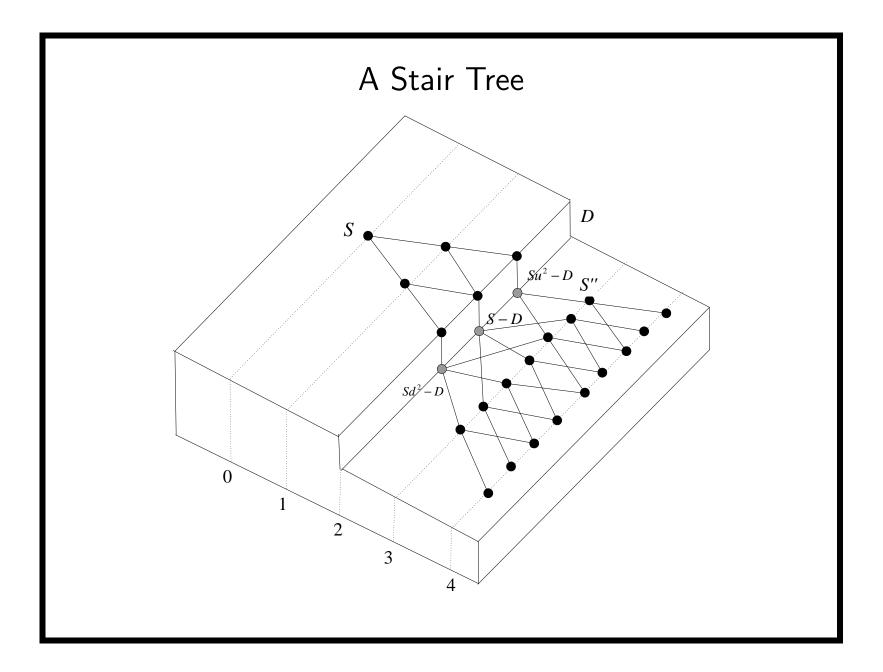
- Realistic models assume:
 - The stock price decreases by the amount of the dividend paid at the ex-dividend date.
 - The dividend is part cash and part yield (i.e., $\alpha(t)S_0 + \beta(t)S_t$), for practitioners.^a
- The stock price follows geometric Brownian motion between adjacent ex-dividend dates.
- But they result in exponential-sized binomial trees.^b
- The binomial-trinomial tree can avoid this problem in most cases.

```
<sup>a</sup>Henry-Labordère (2009).
<sup>b</sup>Recall p. 330.
```

- Suppose that the known dividend is D dollars and the ex-dividend date is at time t.
- So there are $m \stackrel{\Delta}{=} t/\Delta t$ periods between time 0 and the ex-dividend date.^a
- To avoid negative stock prices, we need to make sure the lowest stock price at time t is at least D, i.e.,

$$Se^{-(t/\Delta t)\sigma\sqrt{\Delta t}} \ge D.$$

$$- \text{ Or},$$


$$\Delta t \ge \left[\frac{t\sigma}{\ln(S/D)}\right]^2.$$

^aThat is, m is an integer input and $\Delta t \stackrel{\Delta}{=} t/m$.

- Build a CRR tree from time 0 to time t as before.
- Subtract *D* from all the stock prices on the tree at time *t* to represent the price drop on the ex-dividend date.
- Assume the top node's price equals S'.
 - As usual, its two successor nodes will have prices S'u and $S'u^{-1}$.
- The remaining nodes' successor nodes at time $t + \Delta t$ will choose from prices

$$S'u, S', S'u^{-1}, S'u^{-2}, S'u^{-3}, \ldots,$$

same as the CRR tree.

- For each node at time t below the top node, we build the trinomial connection.
- Note that the binomial-trinomial structure remains valid in the special case when $\Delta t' = \Delta t$ on p. 767.

- Hence the construction can be completed.
- From time $t + \Delta t$ onward, the standard binomial tree will be used until the maturity date or the next ex-dividend date when the procedure can be repeated.
- The resulting tree is called the stair tree.^a

^aT. Dai (B82506025, R86526008, D8852600) & Lyuu (2004); T. Dai (B82506025, R86526008, D8852600) (2009).

Other Applications of Binomial-Trinomial Trees

- Pricing guaranteed minimum withdrawal benefits.^a
- Option pricing with stochastic volatilities.^b
- Efficient Parisian option pricing.^c
- Defaultable bond pricing.^d
- Implied barrier.^e

```
<sup>a</sup>H. Wu (R96723058) (2009).
```

^bC. Huang (**R97922073**) (2010).

^cY. Huang (**R97922081**) (2010).

^dT. Dai (B82506025, R86526008, D8852600), Lyuu, & C. Wang (F95922018) (2009, 2010, 2014).

^eY. Lu (R06723032, D08922008) (2019); Y. Lu (R06723032, D08922008) & Lyuu (2021, 2023).

$Mean\ Tracking^{\rm a}$

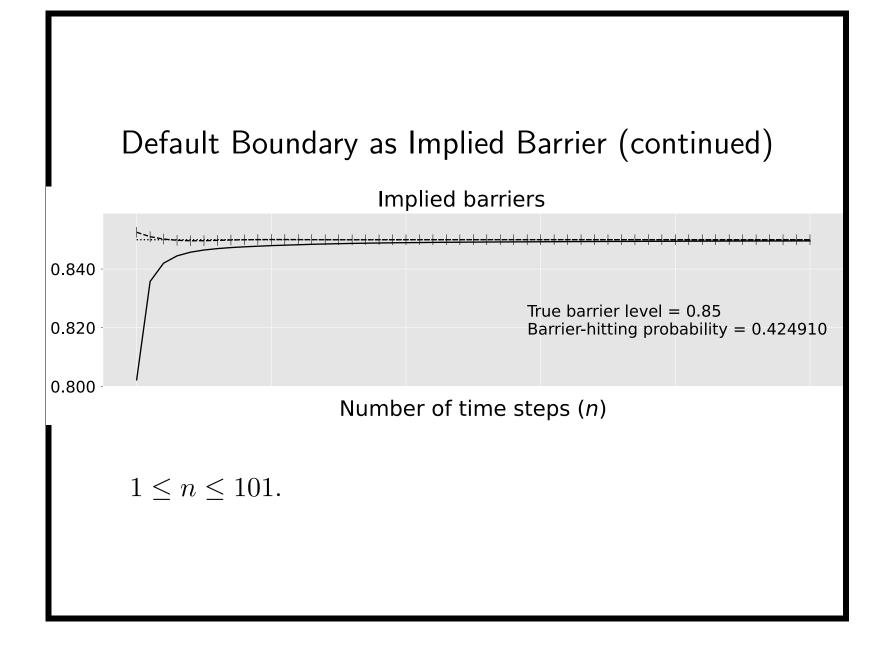
- The general idea behind the binomial-trinomial tree on pp. 766ff is very powerful.
- One finds the successor middle node as the one closest to the mean.
- The two flanking successor nodes are then spaced at $c\sigma\sqrt{\Delta t}$ from the middle node for a suitably large c > 0.
- The resulting trinomial structure are then guaranteed to have valid branching probabilities.

^aLyuu & C. Wu (R90723065) (2003, 2005).

Default Boundary as Implied Barrier

- Under the structural model,^a the default boundary is modeled as a barrier.^b
- The constant barrier can be inferred from the closed-form formula given the firm's market capitalization, etc.^c
- More generally, the moving barrier can be inferred from the term structure of default probabilities with the binomial-trinomial tree.^d

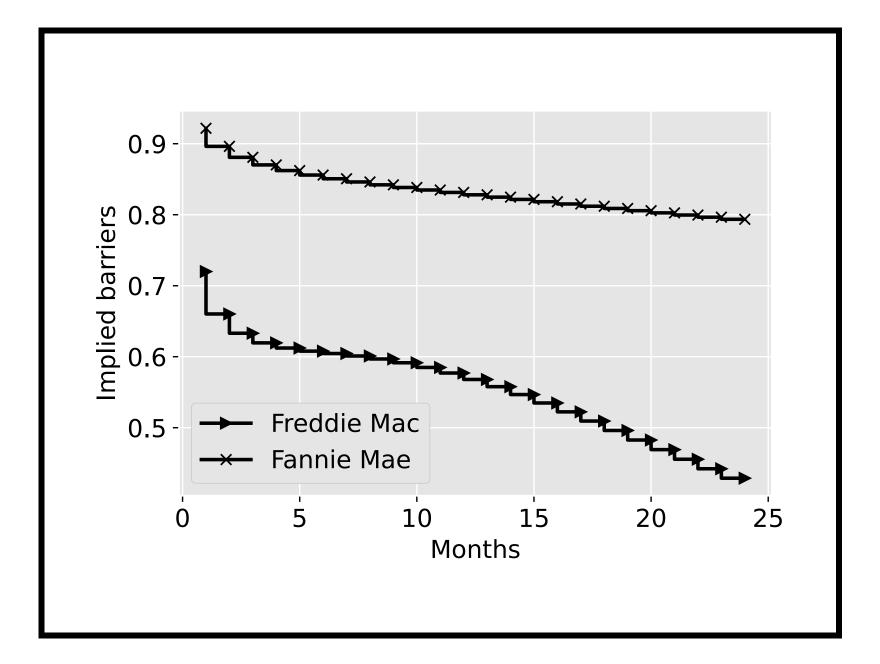
^aRecall p. 377.
^bBlack & Cox (1976).
^cBrockman & Turtle (2003).
^dY. Lu (R06723032, D08922008) (2019); Y. Lu (R06723032, D08922008)
& Lyuu (2021, 2023).


Default Boundary as Implied Barrier (continued)

- This barrier is called the implied barrier.^a
- If the barrier is a step function, the implied barrier can be obtained in $O(n \ln n)$ time.^b
- The next plot shows the convergence of the implied barrier (as a percentage of the initial stock price).^c
 - The implied barrier is already very good with n = 1!

^aBrockman & Turtle (2003).

^bY. Lu (R06723032, D08922008) & Lyuu (2021, 2023). The error is O(1/n): This is linear convergence.


^cPlot supplied by Mr. Lu, Yu-Ming (R06723032, D08922008) on November 20. 2021.

Default Boundary as Implied Barrier (concluded)

• The next plot shows the implied barriers of Freddie Mac and Fannie Mae as of February 2008 (as percentages of the initial asset values).^a

^aPlot supplied by Mr. Lu, Yu-Ming (R06723032, D08922008) on February 26. 2021.

Time-Varying Double Barriers under Time-Dependent Volatility^a

- More general models allow a time-varying $\sigma(t)$ (p. 322).
- Let the two barriers L(t) and H(t) be functions of time.^b
 - Exponential functions are popular.^c
- Still, we can price double-barrier options in $O(n^2)$ time or less with trinomial trees.
- Continuously monitored double-barrier knock-out options with time-varying barriers are called hot dog options.^d

^aY. Zhang (**R05922052**) (2019).

^bSo the barriers are continuously monitored. ^cC. Chou (R97944012) (2010); C. I. Chen (R98922127) (2011). ^dEl Babsiri & Noel (1998).

General Local-Volatility Models and Their Trees

• Consider the general local-volatility model

$$\frac{dS}{S} = (r_t - q_t) dt + \sigma(S, t) dW,$$

where $L \leq \sigma(S, t) \leq U$ for some positive L and U.

- This model has a unique (weak) solution.^a
- The positive lower bound is justifiable because prices fluctuate.

^aAchdou & Pironneau (2005).

General Local-Volatility Models and Their Trees (continued)

- The upper-bound assumption is also reasonable.
- Even on October 19, 1987, the CBOE S&P 100 Volatility Index (VXO) was about 150%, the highest ever.^a
- An efficient quadratic-sized tree for this range-bounded model is easy.^b
- Pick any $\sigma' > U$.
- Grow the trinomial tree with the node spacing $\sigma' \sqrt{\Delta t}$.^c
- The branching probabilities are valid for small Δt .

```
<sup>a</sup>Caprio (2012).

<sup>b</sup>Lok (D99922028) & Lyuu (2016, 2017, 2020).

<sup>c</sup>Haahtela (2010).
```

General Local-Volatility Models and Their Trees (continued)

• They are

$$p_{u} = \frac{\sigma^{2}(S,t)}{2\sigma'^{2}} + \frac{r - q - \sigma^{2}(S,t)/2}{2\sigma'} \sqrt{\Delta t} \\ + \frac{\left[r - q - \sigma^{2}(S,t)/2\right]^{2}}{2\sigma'^{2}} \Delta t, \\ p_{d} = \frac{\sigma^{2}(S,t)}{2\sigma'^{2}} - \frac{r - q - \sigma^{2}(S,t)/2}{2\sigma'} \sqrt{\Delta t} \\ + \frac{\left[r - q - \sigma^{2}(S,t)/2\right]^{2}}{2\sigma'^{2}} \Delta t, \\ p_{m} = 1 - \frac{\sigma^{2}(S,t)}{\sigma'^{2}} - \frac{\left[r - q - \sigma^{2}(S,t)/2\right]^{2}}{\sigma'^{2}} \Delta t.$$

General Local-Volatility Models and Their Trees (concluded)

- The same idea can be applied to price double-barrier options.
- Pick any

$$\sigma' > \max\left[\max_{S,0 \le t \le T} \sigma(S,t), \sqrt{2}\,\sigma(S_0,0)\right].$$

- Grow the trinomial tree with the node spacing $\sigma' \sqrt{\Delta t}$.
- For the first period, apply the mean-tracking idea Eqs. (106)–(111) on p. 772 to obtain the probabilities.

Merton's Jump-Diffusion Model

- Empirically, stock returns tend to have fat tails, inconsistent with the Black-Scholes model's assumptions.
- Stochastic volatility and jump processes have been proposed to address this problem.
- Merton's (1976) jump-diffusion model is our focus here.

- This model superimposes a jump component on a diffusion component.
- The diffusion component is the familiar geometric Brownian motion.
- The jump component is composed of lognormal jumps driven by a Poisson process.
 - It models the *rare* but *large* changes in the stock price because of the arrival of important news.^a

^aDerman & M. B. Miller (2016), "There is no precise, universally accepted definition of a jump, but it usually comes down to magnitude, duration, and frequency."

- Let S_t be the stock price at time t.
- The risk-neutral jump-diffusion process for the stock price follows^a

$$\frac{dS_t}{S_t} = (r - \lambda \bar{k}) dt + \sigma dW_t + k dq_t.$$
(113)

• Above, σ denotes the volatility of the diffusion component.

^aDerman & M. B. Miller (2016), "[M]ost jump-diffusion models simply assume risk-neutral pricing without convincing justification."

- The jump event is governed by a compound Poisson process q_t with intensity λ , where k denotes the magnitude of the *random* jump.
 - The distribution of k obeys

 $\ln(1+k) \sim N\left(\gamma, \delta^2\right)$

with mean $\bar{k} \stackrel{\Delta}{=} E(k) = e^{\gamma + \delta^2/2} - 1.$

- Note that k > -1.
- Note also that k is not related to dt.
- The model with $\lambda = 0$ reduces to the Black-Scholes model.

• The solution to Eq. (113) on p. 813 is

$$S_t = S_0 e^{(r - \lambda \bar{k} - \sigma^2/2)t + \sigma W_t} U(n(t)), \qquad (114)$$

where

$$U(n(t)) = \prod_{i=0}^{n(t)} (1+k_i).$$

-
$$k_i$$
 is the magnitude of the *i*th jump with
 $\ln(1+k_i) \sim N(\gamma, \delta^2).$
- $k_0 = 0.$

-n(t) is a Poisson process with intensity λ .

- Recall that n(t) denotes the number of jumps that occur up to time t.
- It is known that $E[n(t)] = \operatorname{Var}[n(t)] = \lambda t$.
- As $k_i > -1$, stock prices will stay positive.
- The geometric Brownian motion, the lognormal jumps, and the Poisson process are assumed to be independent.

Tree for Merton's Jump-Diffusion $\mathsf{Model}^{\mathrm{a}}$

- Define the S-logarithmic return of the stock price S' as $\ln(S'/S)$.
- Define the logarithmic distance between stock prices S'and S as

$$|\ln(S') - \ln(S)| = |\ln(S'/S)|.$$

^aT. Dai (B82506025, R86526008, D8852600), C. Wang (F95922018), Lyuu, & Y. Liu (2010).

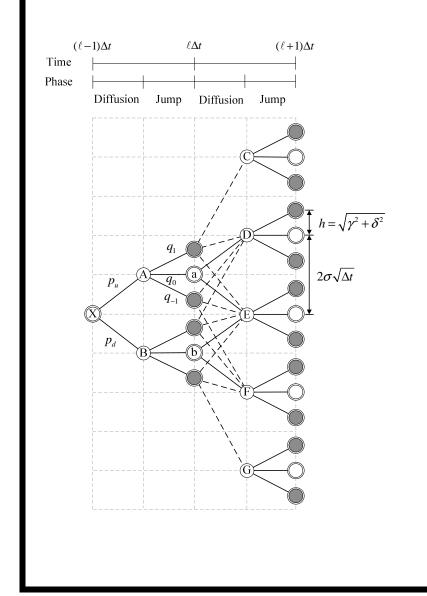
• Take the logarithm of Eq. (114) on p. 815:

$$M_t \stackrel{\Delta}{=} \ln\left(\frac{S_t}{S_0}\right) = X_t + Y_t,\tag{115}$$

where

$$X_{t} \stackrel{\Delta}{=} \left(r - \lambda \bar{k} - \frac{\sigma^{2}}{2}\right) t + \sigma W_{t}, \quad (116)$$
$$Y_{t} \stackrel{\Delta}{=} \sum_{i=0}^{n(t)} \ln\left(1 + k_{i}\right). \quad (117)$$

• It decomposes the S_0 -logarithmic return of S_t into the diffusion component X_t and the jump component Y_t .


- Motivated by decomposition (115) on p. 818, the tree construction divides each period into a diffusion phase followed by a jump phase.
- In the diffusion phase, X_t is approximated by the BOPM.
- So X_t moves up to $X_t + \sigma \sqrt{\Delta t}$ with probability p_u and down to $X_t - \sigma \sqrt{\Delta t}$ with probability p_d .

• According to BOPM,

$$p_u = \frac{e^{\mu\Delta t} - d}{u - d},$$

$$p_d = 1 - p_u,$$

except that $\mu = r - \lambda \bar{k}$ here.

- The diffusion component gives rise to diffusion nodes.
- They are spaced at $2\sigma\sqrt{\Delta t}$ apart such as the white nodes A, B, C, D, E, F, and G on p. 821.

White nodes are *diffusion nodes*. Gray nodes are *jump nodes*. In the diffusion phase, the solid black lines denote the binomial structure of BOPM; the dashed lines denote the trinomial structure. Only the double-circled nodes will remain after the construction. Note that a and b are diffusion nodes because no jump occurs in the jump phase.

- In the jump phase, $Y_{t+\Delta t}$ is approximated by moves from *each* diffusion node to 2m jump nodes that match the first 2m moments of the lognormal jump.
- The *m* jump nodes above the diffusion node are spaced at $h \stackrel{\Delta}{=} \sqrt{\gamma^2 + \delta^2}$ apart.
- Note that h is independent of Δt .

- The same holds for the *m* jump nodes below the diffusion node.
- The gray nodes at time $\ell \Delta t$ on p. 821 are jump nodes. - We set m = 1 on p. 821.
- The size of the tree is $O(n^{2.5})$.

Multivariate Contingent Claims

- They depend on two or more underlying assets.
- The basket call on m assets has the terminal payoff

$$\max\left(\sum_{i=1}^{m} \alpha_i S_i(\tau) - X, 0\right),\,$$

where α_i is the percentage of asset *i*.

- Basket options are essentially options on a portfolio of stocks (or index options).^a
- Option on the best of two risky assets and cash has a terminal payoff of $\max(S_1(\tau), S_2(\tau), X)$.

^aExcept that membership and weights do *not* change for basket options (Bennett, 2014).

Name	Payoff
Exchange option	$\max(S_1(\tau) - S_2(\tau), 0)$
Better-off option	$\max(S_1(\tau),\ldots,S_k(\tau),0)$
Worst-off option	$\min(S_1(\tau),\ldots,S_k(\tau),0)$
Binary maximum option	$I\{\max(S_1(\tau),\ldots,S_k(\tau))>X\}$
Maximum option	$\max(\max(S_1(\tau),\ldots,S_k(\tau))-X,0)$
Minimum option	$\max(\min(S_1(\tau),\ldots,S_k(\tau))-X,0)$
Spread option	$\max(S_1(\tau) - S_2(\tau) - X, 0)$
Basket average option	$\max((S_1(\tau) + \dots + S_k(\tau))/k - X, 0)$
Multi-strike option	$\max(S_1(\tau) - X_1, \dots, S_k(\tau) - X_k, 0)$
Pyramid rainbow option	$\max(S_1(\tau) - X_1 + \dots + S_k(\tau) - X_k - X, 0)$
Madonna option	$\max(\sqrt{(S_1(\tau) - X_1)^2 + \dots + (S_k(\tau) - X_k)^2} - X_k)^2 - X_k)^2 - X_k$

^aLyuu & Teng (**R91723054**) (2011).

Correlated Trinomial Model^{\rm a}

• Two risky assets S_1 and S_2 follow

$$\frac{dS_i}{S_i} = r \, dt + \sigma_i \, dW_i$$

in a risk-neutral economy, i = 1, 2.

• Let

$$M_i \stackrel{\Delta}{=} e^{r\Delta t},$$
$$V_i \stackrel{\Delta}{=} M_i^2 (e^{\sigma_i^2 \Delta t} - 1).$$

 $-S_iM_i$ is the mean of S_i at time Δt .

 $-S_i^2 V_i$ the variance of S_i at time Δt .

^aBoyle, Evnine, & Gibbs (1989).

Correlated Trinomial Model (continued)

- The value of S_1S_2 at time Δt has a joint lognormal distribution with mean $S_1S_2M_1M_2e^{\rho\sigma_1\sigma_2\Delta t}$, where ρ is the correlation between dW_1 and dW_2 .
- Next match the 1st and 2nd moments of the approximating discrete distribution to those of the continuous counterpart.
- At time Δt from now, there are 5 distinct outcomes.

Correlated Trinomial Model (continued)

• The five-point probability distribution of the asset prices is

Probability	Asset 1	Asset 2
p_1	S_1u_1	S_2u_2
p_2	S_1u_1	$S_2 d_2$
p_3	S_1d_1	$S_2 d_2$
p_4	S_1d_1	$S_2 u_2$
p_5	S_1	S_2

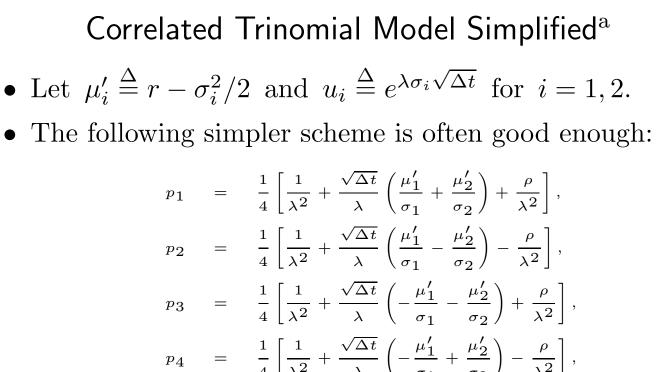
• As usual, impose $u_i d_i = 1$.

Correlated Trinomial Model (continued)

• The probabilities must sum to one, and the means must be matched:

$$1 = p_1 + p_2 + p_3 + p_4 + p_5,$$

$$S_1 M_1 = (p_1 + p_2) S_1 u_1 + p_5 S_1 + (p_3 + p_4) S_1 d_1,$$


$$S_2 M_2 = (p_1 + p_4) S_2 u_2 + p_5 S_2 + (p_2 + p_3) S_2 d_2.$$

Correlated Trinomial Model (concluded)

- Let $R \stackrel{\Delta}{=} M_1 M_2 e^{\rho \sigma_1 \sigma_2 \Delta t}$.
- Match the variances and covariance:

$$S_{1}^{2}V_{1} = (p_{1} + p_{2}) \left[(S_{1}u_{1})^{2} - (S_{1}M_{1})^{2} \right] + p_{5} \left[S_{1}^{2} - (S_{1}M_{1})^{2} \right] + (p_{3} + p_{4}) \left[(S_{1}d_{1})^{2} - (S_{1}M_{1})^{2} \right] ,$$

$$S_{2}^{2}V_{2} = (p_{1} + p_{4}) \left[(S_{2}u_{2})^{2} - (S_{2}M_{2})^{2} \right] + p_{5} \left[S_{2}^{2} - (S_{2}M_{2})^{2} \right] + (p_{2} + p_{3}) \left[(S_{2}d_{2})^{2} - (S_{2}M_{2})^{2} \right] ,$$

$$S_{1}S_{2}R = (p_{1}u_{1}u_{2} + p_{2}u_{1}d_{2} + p_{3}d_{1}d_{2} + p_{4}d_{1}u_{2} + p_{5}) S_{1}S_{2} .$$

• The solutions appear on p. 246 of the textbook.

$$p_{4} \qquad 4 \left[\lambda^{2} \right] \quad \lambda \quad \left(\sigma_{1} \right] \quad \sigma_{2}$$
$$p_{5} = 1 - \frac{1}{\lambda^{2}}.$$

^aMadan, Milne, & Shefrin (1989).

Correlated Trinomial Model Simplified (continued)

• All of the probabilities lie between 0 and 1 if and only if

$$-1 + \lambda \sqrt{\Delta t} \left| \frac{\mu_1'}{\sigma_1} + \frac{\mu_2'}{\sigma_2} \right| \leq \rho \leq 1 - \lambda \sqrt{\Delta t} \left| \frac{\mu_1'}{\sigma_1} - \frac{\mu_2'}{\sigma_2} \right| (118)$$

$$1 \leq \lambda. \qquad (119)$$

• We call a multivariate tree (correlation-) optimal if it guarantees valid probabilities as long as

$$-1 + O(\sqrt{\Delta t}) < \rho < 1 - O(\sqrt{\Delta t}),$$

such as the above one.^a

^aW. Kao (**R98922093**) (2011); W. Kao (**R98922093**), Lyuu, & Wen (**D94922003**) (2014).

Correlated Trinomial Model Simplified (continued)

- But this model cannot price 2-asset 2-barrier options accurately.^a
- Few multivariate trees are both optimal and able to handle multiple barriers.^b
- An alternative is to use orthogonalization.^c

^aSee Y. Chang (B89704039, R93922034), Hsu (R7526001, D89922012), & Lyuu (2006); W. Kao (R98922093), Lyuu, & Wen (D94922003) (2014) for solutions.

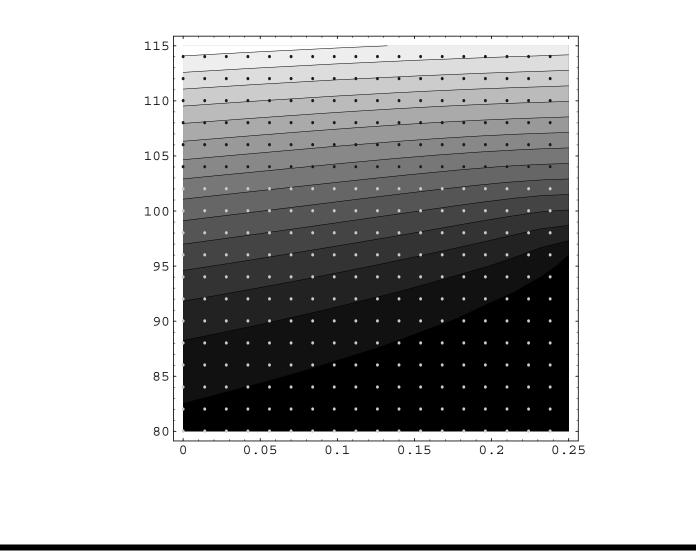
^bSee W. Kao (R98922093), Lyuu, & Wen (D94922003) (2014) for an exception.

^cHull & White (1990); T. Dai (B82506025, R86526008, D8852600), C. Wang (F95922018), & Lyuu (2013).

Correlated Trinomial Model Simplified (concluded)

- Suppose we allow each asset's volatility to be a function of time.^a
- There are k assets.
- One can build an optimal multivariate tree that handles two barriers on each asset in time $O(n^{k+1})$.^b

^aRecall p. 321.


^bY. Zhang (R05922052) (2019); Y. Zhang (R05922052) & Lyuu (2023).

Numerical Methods

All science is dominated by the idea of approximation. — Bertrand Russell

Finite-Difference Methods

- Place a grid of points on the space over which the desired function takes value.
- Then approximate the function value at each of these points (p. 838).
- Solve the equation numerically by introducing difference equations in place of derivatives.

Example: Poisson's Equation

- It is $\partial^2 \theta / \partial x^2 + \partial^2 \theta / \partial y^2 = -\rho(x, y)$, which describes the electrostatic field.
- Replace second derivatives with finite differences through central difference.
- Introduce evenly spaced grid points with distance of Δx along the x axis and Δy along the y axis.
- The finite-difference form is

$$-\rho(x_i, y_j) = \frac{\theta(x_{i+1}, y_j) - 2\theta(x_i, y_j) + \theta(x_{i-1}, y_j)}{(\Delta x)^2} + \frac{\theta(x_i, y_{j+1}) - 2\theta(x_i, y_j) + \theta(x_i, y_{j-1})}{(\Delta y)^2}.$$

Example: Poisson's Equation (concluded)

- In the above, $\Delta x \stackrel{\Delta}{=} x_i x_{i-1}$ and $\Delta y \stackrel{\Delta}{=} y_j y_{j-1}$ for $i, j = 1, 2, \dots$
- When the grid points are evenly spaced in both axes so that $\Delta x = \Delta y = h$, the difference equation becomes

$$-h^{2}\rho(x_{i}, y_{j}) = \theta(x_{i+1}, y_{j}) + \theta(x_{i-1}, y_{j}) + \theta(x_{i}, y_{j+1}) + \theta(x_{i}, y_{j-1}) - 4\theta(x_{i}, y_{j}).$$

- Given boundary values, we can solve for the x_i s and the y_j s within the square $[\pm L, \pm L]$.
- From now on, $\theta_{i,j}$ will denote the finite-difference approximation to the exact $\theta(x_i, y_j)$.

Explicit Methods

- Consider the diffusion equation^a $D(\partial^2 \theta / \partial x^2) - (\partial \theta / \partial t) = 0, D > 0.$
- Use evenly spaced grid points (x_i, t_j) with distances Δx and Δt , where $\Delta x \stackrel{\Delta}{=} x_{i+1} x_i$ and $\Delta t \stackrel{\Delta}{=} t_{j+1} t_j$.
- Employ central difference for the second derivative and forward difference for the time derivative to obtain

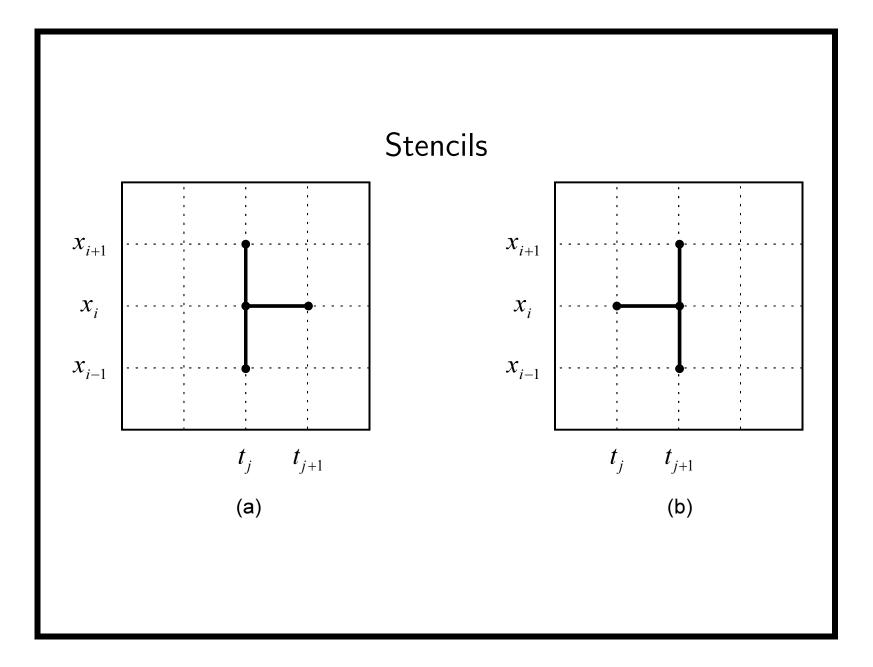
$$\frac{\partial \theta(x,t)}{\partial t}\Big|_{t=t_{j}} = \frac{\theta(x, \boxed{t_{j+1}}) - \theta(x, \boxed{t_{j}})}{\Delta t} + \cdots, \qquad (120)$$

$$\frac{\partial^2 \theta(x,t)}{\partial x^2}\Big|_{x=x_i} = \frac{\theta(x_{i+1},t) - 2\theta(x_i,t) + \theta(x_{i-1},t)}{(\Delta x)^2} + (121)$$

^aIt is a parabolic partial differential equation.

Explicit Methods (continued)

- Next, assemble Eqs. (120) and (121) into a single equation at (x_i, t_j) .
- But we need to decide how to evaluate x in the first equation and t in the second.
- Since central difference around x_i is used in Eq. (121), we might as well use x_i for x in Eq. (120).
- Two choices are possible for t in Eq. (121).
- The first choice uses $t = t_j$ to yield the following finite-difference equation,


$$\frac{\theta_{i,j+1} - \theta_{i,j}}{\Delta t} = D \frac{\theta_{i+1,j} - 2\theta_{i,j} + \theta_{i-1,j}}{(\Delta x)^2}.$$
 (122)

Explicit Methods (continued)

- The stencil of grid points involves four values, $\theta_{i,j+1}$, $\theta_{i,j}$, $\theta_{i+1,j}$, and $\theta_{i-1,j}$.
- Rearrange Eq. (122) on p. 842 as

$$\theta_{i,j+1} = \frac{D\Delta t}{(\Delta x)^2} \,\theta_{i+1,j} + \left(1 - \frac{2D\Delta t}{(\Delta x)^2}\right) \theta_{i,j} + \frac{D\Delta t}{(\Delta x)^2} \,\theta_{i-1,j}. \tag{123}$$

• We can calculate $\theta_{i,j+1}$ from $\theta_{i,j}, \theta_{i+1,j}, \theta_{i-1,j}$, at the previous time t_j (see exhibit (a) on next page).

Explicit Methods (concluded)

• Starting from the initial conditions at t_0 , that is, $\theta_{i,0} = \theta(x_i, t_0), i = 1, 2, \dots$, we calculate

$$\theta_{i,1}, \quad i = 1, 2, \dots$$

• And then

$$\theta_{i,2}, \quad i = 1, 2, \dots$$

• And so on.

Stability

• The explicit method is numerically unstable unless

 $\Delta t \le (\Delta x)^2 / (2D).$

- A numerical method is unstable if the solution is highly sensitive to changes in initial conditions.
- The stability condition may lead to high running times and memory requirements.
- For instance, halving Δx would imply quadrupling $(\Delta t)^{-1}$, resulting in a running time 8 times as much.

Explicit Method and Trinomial Tree

• Recall Eq. (123) on p. 843:

$$\theta_{i,j+1} = \frac{D\Delta t}{(\Delta x)^2} \,\theta_{i+1,j} + \left(1 - \frac{2D\Delta t}{(\Delta x)^2}\right) \theta_{i,j} + \frac{D\Delta t}{(\Delta x)^2} \,\theta_{i-1,j}.$$

- When the stability condition is satisfied, the three coefficients for $\theta_{i+1,j}$, $\theta_{i,j}$, and $\theta_{i-1,j}$ all lie between zero and one and sum to one.
- They can be interpreted as probabilities.
- So the finite-difference equation becomes identical to backward induction on trinomial trees!

Explicit Method and Trinomial Tree (concluded)

- The freedom in choosing Δx corresponds to similar freedom in the construction of trinomial trees.
- The explicit finite-difference equation is also identical to backward induction on a binomial tree.^a
 - Let the binomial tree take 2 steps each of length $\Delta t/2.$
 - It is now a trinomial tree.

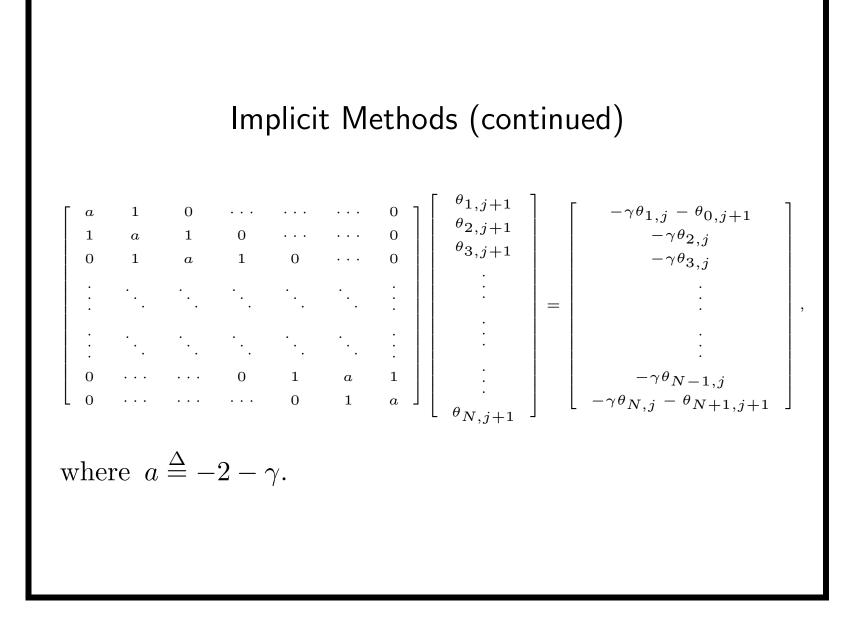
^aHilliard (2014).

Implicit Methods

- Suppose we use $t = t_{j+1}$ in Eq. (121) on p. 841 instead.
- The finite-difference equation becomes

$$\frac{\theta_{i,j+1} - \theta_{i,j}}{\Delta t} = D \,\frac{\theta_{i+1,j+1} - 2\theta_{i,j+1} + \theta_{i-1,j+1}}{(\Delta x)^2}.$$
 (124)

- The stencil involves $\theta_{i,j}$, $\theta_{i,j+1}$, $\theta_{i+1,j+1}$, and $\theta_{i-1,j+1}$.
- This method is now implicit:
 - The value of any one of the three quantities at t_{j+1} cannot be calculated unless the other two are known.
 - See exhibit (b) on p. 844.


Implicit Methods (continued)

• Equation (124) can be rearranged as

$$\theta_{i-1,j+1} - (2+\gamma) \theta_{i,j+1} + \theta_{i+1,j+1} = -\gamma \theta_{i,j},$$

where $\gamma \stackrel{\Delta}{=} (\Delta x)^2 / (D\Delta t)$.

- This equation is unconditionally stable.
- Suppose the boundary conditions are given at $x = x_0$ and $x = x_{N+1}$.
- After $\theta_{i,j}$ has been calculated for i = 1, 2, ..., N, the values of $\theta_{i,j+1}$ at time t_{j+1} can be computed as the solution to the following tridiagonal linear system,

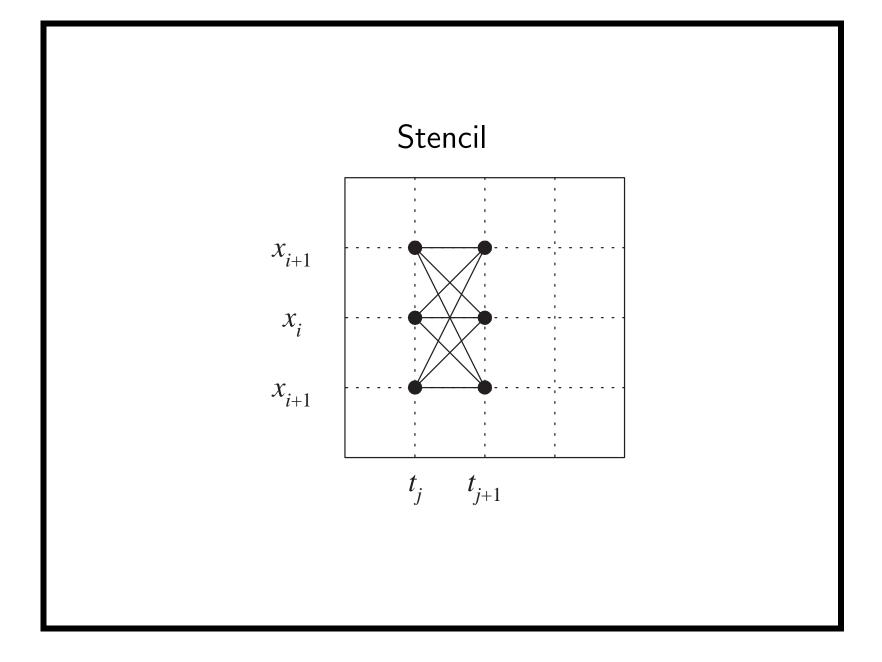
Implicit Methods (concluded)

• Tridiagonal systems can be solved in O(N) time and O(N) space.

- Never invert a matrix to solve a tridiagonal system.

- The matrix above is nonsingular when $\gamma \geq 0$.
 - A square matrix is nonsingular if its inverse exists.

Crank-Nicolson Method


• Take the average of explicit method (122) on p. 842 and implicit method (124) on p. 849:

$$= \frac{\frac{\theta_{i,j+1} - \theta_{i,j}}{\Delta t}}{\left(D \frac{\theta_{i+1,j} - 2\theta_{i,j} + \theta_{i-1,j}}{(\Delta x)^2} + D \frac{\theta_{i+1,j+1} - 2\theta_{i,j+1} + \theta_{i-1,j+1}}{(\Delta x)^2}\right)$$

• After rearrangement,

$$\gamma \theta_{i,j+1} - \frac{\theta_{i+1,j+1} - 2\theta_{i,j+1} + \theta_{i-1,j+1}}{2} = \gamma \theta_{i,j} + \frac{\theta_{i+1,j} - 2\theta_{i,j} + \theta_{i-1,j}}{2}.$$

• This is an unconditionally stable implicit method with excellent rates of convergence.

Numerically Solving the Black-Scholes PDE (95) on p. 689

- See text.
- Brennan and Schwartz (1978) analyze the stability of the implicit method.

Monte Carlo Simulation $^{\rm a}$

- Monte Carlo simulation is a sampling scheme.
- In many important applications within finance and without, Monte Carlo is one of the few feasible tools.
- When the time evolution of a stochastic process is not easy to describe analytically, Monte Carlo may very well be the only strategy that succeeds consistently.

^aA top 10 algorithm (Dongarra & Sullivan, 2000).

The Big Idea

- Assume X_1, X_2, \ldots, X_n have a joint distribution.
- $\theta \stackrel{\Delta}{=} E[g(X_1, X_2, \dots, X_n)]$ for some function g is desired.
- We generate

$$\left(x_1^{(i)}, x_2^{(i)}, \dots, x_n^{(i)}\right), \quad 1 \le i \le N$$

independently with the same joint distribution as (X_1, X_2, \ldots, X_n) .

• Output $\overline{Y} \stackrel{\Delta}{=} (1/N) \sum_{i=1}^{N} Y_i$, where $Y_i \stackrel{\Delta}{=} g\left(x_1^{(i)}, x_2^{(i)}, \dots, x_n^{(i)}\right)$.

The Big Idea (concluded)

- Y_1, Y_2, \ldots, Y_N are independent and identically distributed random variables.
- Each Y_i has the same distribution as

$$Y \stackrel{\Delta}{=} g(X_1, X_2, \dots, X_n).$$

- Since the average of these N random variables, \overline{Y} , satisfies $E[\overline{Y}] = \theta$, it can be used to estimate θ .
- The strong law of large numbers says that this procedure converges almost surely.
- The number of replications (or independent trials), N, is called the sample size.

Accuracy

- The Monte Carlo estimate and true value may differ owing to two reasons:
 - 1. Sampling variation.
 - 2. The discreteness of the sample paths.^a
- The first can be controlled by the number of replications.
- The second can be controlled by the number of observations along the sample path.

^aThis may not be an issue if the financial derivative only requires discrete sampling along time, such as the *discrete* barrier option.

Accuracy and Number of Replications

- The statistical error of the sample mean \overline{Y} of the random variable Y grows as $1/\sqrt{N}$.
 - Because $\operatorname{Var}[\overline{Y}] = \operatorname{Var}[Y]/N$.
- In fact, this convergence rate is asymptotically optimal.^a
- So the variance of the estimator \overline{Y} can be reduced by a factor of 1/N by doing N times as much work.
- This is amazing because the same order of convergence holds independently of the dimension n.

^aThe Berry-Esseen theorem.

Accuracy and Number of Replications (concluded)

- In contrast, classic numerical integration schemes have an error bound of $O(N^{-c/n})$ for some constant c > 0.
- The required number of evaluations thus grows exponentially in n to achieve a given level of accuracy.
 The curse of dimensionality.
- The Monte Carlo method is more efficient than alternative procedures for multivariate derivatives for *n* large.

Monte Carlo Option Pricing

- For the pricing of European options on a dividend-paying stock, we may proceed as follows.
- Assume

$$\frac{dS}{S} = \mu \, dt + \sigma \, dW.$$

• Stock prices S_1, S_2, S_3, \ldots at times $\Delta t, 2\Delta t, 3\Delta t, \ldots$ can be generated via

$$S_{i+1} = S_i e^{(\mu - \sigma^2/2) \Delta t + \sigma \sqrt{\Delta t} \xi}, \quad \xi \sim N(0, 1), \quad (125)$$

by Eq. (88) on p. 623.

Monte Carlo Option Pricing (continued)

• If we discretize $dS/S = \mu dt + \sigma dW$ directly, we will obtain

$$S_{i+1} = S_i + S_i \mu \,\Delta t + S_i \sigma \sqrt{\Delta t} \,\xi.$$

- But this is locally normally distributed, not lognormally, hence biased.^a
- Negative stock prices are also possible.^b
- In practice, this is not expected to be a major problem as long as Δt is sufficiently small.

 ^aContributed by Mr. Tai, Hui-Chin (R97723028) on April 22, 2009. ^bContributed by Mr. Chen, Yu-Hsing (B06901048, R11922045) on May 5, 2023.

Monte Carlo Option Pricing (continued)

Non-dividend-paying stock prices in a risk-neutral economy can be generated by setting $\mu = r$ and $\Delta t = T$.^a

1: C := 0; {Accumulated terminal option value.} 2: for i = 1, 2, 3, ..., N do 3: $P := S \times e^{(r - \sigma^2/2)T + \sigma\sqrt{T} \xi}, \xi \sim N(0, 1);$ 4: $C := C + \max(P - X, 0);$ 5: end for 6: return $Ce^{-rT}/N;$

^aIt is sometimes called a one-shot simulation (Brigo & Mercurio, 2006).

Monte Carlo Option Pricing (concluded)

Pricing Asian options is also easy.

1:
$$C := 0;$$

2: for $i = 1, 2, 3, ..., N$ do
3: $P := S; M := S;$
4: for $j = 1, 2, 3, ..., n$ do
5: $P := P \times e^{(r - \sigma^2/2)(T/n) + \sigma \sqrt{T/n} \xi};$
6: $M := M + P;$
7: end for
8: $C := C + \max(M/(n+1) - X, 0);$
9: end for
10: return $Ce^{-rT}/N;$

How about American Options?

- Standard Monte Carlo simulation is inappropriate for American options because of early exercise.
 - Given a sample path S_0, S_1, \ldots, S_n , how to decide which S_i is an early-exercise point?
 - What is the option price at each S_i if the option is not exercised?
- It is difficult to determine the early-exercise point based on one single path.^a
- But Monte Carlo simulation can be modified to price American options with small biases.^b

^aUnless, of course, the exercise boundary is given (recall pp. 405ff). Contributed by Mr. Chen, Tung-Li (D09922014) on May 5, 2023. ^bLongstaff & Schwartz (2001). See pp. 929ff.

Obtaining Profit and Loss of Delta $\mathsf{Hedge}^{\mathrm{a}}$

- Profit and loss of delta hedge should be calculated under the real-world probability measure.^b
- So stock prices should be sampled from

$$\frac{dS}{S} = \mu \, dt + \sigma \, dW.$$

• Suppose backward induction on a tree under the risk-neutral measure is performed for the delta.^c

^aContributed by Mr. Lu, Zheng-Liang (D00922011) on August 12, 2021.

^bRecall p. 715.

^cBecause, say, no closed-form formulas are available for the delta.

Obtaining Profit and Loss of Delta Hedge (concluded)

- Note that one needs a delta per stock price.
- So Nn trees are needed for the distribution of the profit and loss from N paths with n + 1 stock prices per path.
- These are a lot of trees!
- How to do it efficiently to generate plots like that on p. 658?

Delta and Common Random Numbers

• In estimating delta, it is natural to start with the finite-difference estimate

$$e^{-r\tau} \frac{E[P(S+\epsilon)] - E[P(S-\epsilon)]}{2\epsilon}$$

- -P(x) is the terminal payoff of the derivative security when the underlying asset's initial price equals x.
- Use simulation to estimate $E[P(S + \epsilon)]$ first.
- Use another simulation to estimate $E[P(S \epsilon)]$.
- Finally, apply the formula to approximate the delta.
- This is also called the bump-and-revalue method.

Delta and Common Random Numbers (concluded)

- This method is not recommended because of its high variance.
- A much better approach is to use common random numbers to lower the variance:

$$e^{-r\tau} E\left[\frac{P(S+\epsilon) - P(S-\epsilon)}{2\epsilon}\right]$$

- Here, the same random numbers are used for $P(S + \epsilon)$ and $P(S - \epsilon)$.
- This holds for gamma and cross gamma.^a

^aFor multivariate derivatives.

Problems with the Bump-and-Revalue Method

• Consider the binary option with payoff

 $\begin{cases} 1, & \text{if } S(T) > X, \\ 0, & \text{otherwise.} \end{cases}$

• Then, if common random numbers are used,

$$P(S+\epsilon)-P(S-\epsilon) = \begin{cases} 1, & \text{if } P(S+\epsilon) > X \text{ and } P(S-\epsilon) < X, \\ 0, & \text{otherwise.} \end{cases}$$

- So the finite-difference estimate per run for the (undiscounted) delta is 0 or $O(1/\epsilon)$.
- This means high variance.

Problems with the Bump-and-Revalue Method (concluded)

• The price of the binary option equals

$$e^{-r\tau}N(x-\sigma\sqrt{\tau}).$$

- It equals minus the derivative of the European call with respect to X.
- It also equals $X\tau$ times the rho of a European call (p. 366).
- Its delta is

$$\frac{N'\left(x-\sigma\sqrt{\tau}\right)}{S\sigma\sqrt{\tau}}.$$

Gamma

• The finite-difference formula for gamma is

$$e^{-r\tau} E\left[\frac{P(S+\epsilon) - 2 \times P(S) + P(S-\epsilon)}{\epsilon^2}\right]$$

• For a correlation option with multiple underlying assets, the finite-difference formula for the cross gamma $\partial^2 P(S_1, S_2, \ldots)/(\partial S_1 \partial S_2)$ is:

$$e^{-r\tau} E\left[\frac{P(S_1 + \epsilon_1, S_2 + \epsilon_2) - P(S_1 - \epsilon_1, S_2 + \epsilon_2)}{4\epsilon_1\epsilon_2} - P(S_1 + \epsilon_1, S_2 - \epsilon_2) + P(S_1 - \epsilon_1, S_2 - \epsilon_2)}\right].$$

- Choosing an ϵ of the right magnitude can be challenging.
 - If ϵ is too large, inaccurate Greeks result.
 - If ϵ is too small, unstable Greeks result.
- This phenomenon is sometimes called the curse of differentiation.^a

^aAït-Sahalia & Lo (1998); Bondarenko (2003).

• In general, suppose (in some sense)

$$\frac{\partial^{i}}{\partial\theta^{i}}e^{-r\tau}E[P(S)] = e^{-r\tau}E\left[\frac{\partial^{i}P(S)}{\partial\theta^{i}}\right]$$

holds for all i > 0, where θ is a parameter of interest.^a

– A common requirement is Lipschitz continuity.^b

- Then Greeks become integrals.
- As a result, we avoid ϵ , finite differences, and resimulation.

^aThe $\partial^i P(S)/\partial \theta^i$ within $E[\cdot]$ may not be partial differentiation in the classic sense.

^bBroadie & Glasserman (1996).

- This is indeed possible for a broad class of payoff functions.^a
 - Roughly speaking, any payoff function that is equal to a sum of products of differentiable functions and indicator functions with the right kind of support.
 - For example, the payoff of a call is

 $\max(S(T) - X, 0) = (S(T) - X)I_{\{S(T) - X \ge 0\}}.$

The results are too technical to cover here (see next page).

^aTeng (**R91723054**) (2004); Lyuu & Teng (**R91723054**) (2011).

- Suppose $h(\theta, x) \in \mathcal{H}$ with pdf f(x) for x and $g_j(\theta, x) \in \mathcal{G}$ for $j \in \mathcal{B}$, a finite set of natural numbers.
- Then

$$\begin{split} & \frac{\partial}{\partial \theta} \int_{\Re} h(\theta, x) \prod_{j \in \mathcal{B}} \mathbf{1}_{\{g_{j}(\theta, x) > 0\}}(x) f(x) dx \\ = & \int_{\Re} h_{\theta}(\theta, x) \prod_{j \in \mathcal{B}} \mathbf{1}_{\{g_{j}(\theta, x) > 0\}}(x) f(x) dx \\ & + \sum_{l \in \mathcal{B}} \left[h(\theta, x) J_{l}(\theta, x) \prod_{j \in \mathcal{B} \setminus l} \mathbf{1}_{\{g_{j}(\theta, x) > 0\}}(x) f(x) \right]_{x = \chi_{l}(\theta)} \end{split}$$

where

$$J_l(\theta, x) = \operatorname{sign}\left(\frac{\partial g_l(\theta, x)}{\partial x_k}\right) \frac{\partial g_l(\theta, x) / \partial \theta}{\partial g_l(\theta, x) / \partial x} \text{ for } l \in \mathcal{B}.$$

Gamma (concluded)

- Similar results have been derived for Levy processes.^a
- Formulas are also available for credit derivatives.^b
- In queueing networks, this is called infinitesimal perturbation analysis (IPA).^c

^aLyuu, Teng (**R91723054**), & S. Wang (2013). ^bLyuu, Teng (**R91723054**), Tseng, & S. Wang (2014, 2019). ^cCao (1985); Y. C. Ho & Cao (1985).

Biases in Pricing Continuously Monitored Options with Monte Carlo

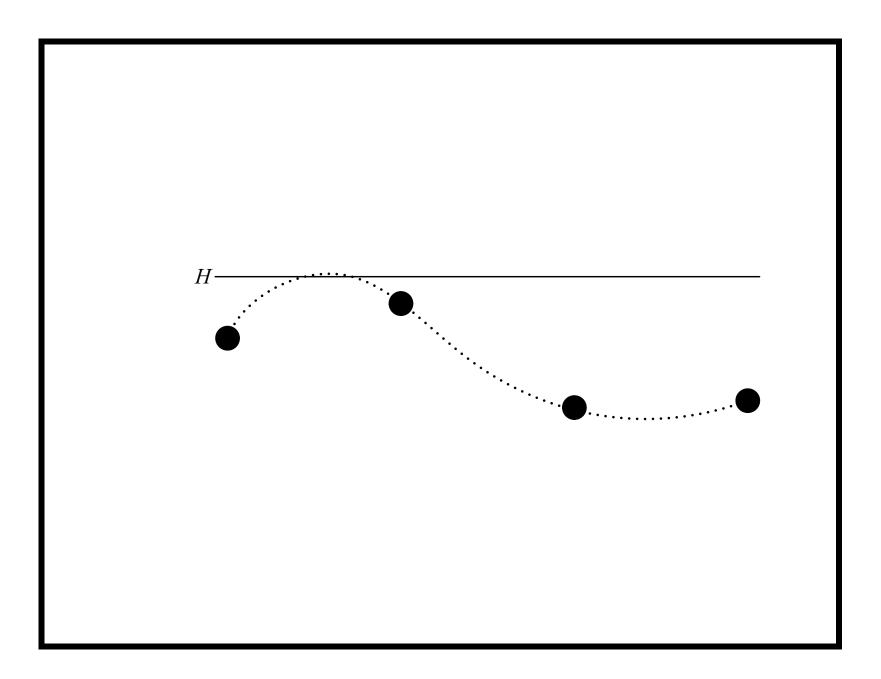
- We are asked to price a continuously monitored up-and-out call with barrier *H*.
- The Monte Carlo method samples the stock price at n discrete time points t_1, t_2, \ldots, t_n .
- A sample path

$$S(t_0), S(t_1), \ldots, S(t_n)$$

is produced.

- Here, $t_0 = 0$ is the current time, and $t_n = T$ is the expiration time of the option.

Biases in Pricing Continuously Monitored Options with Monte Carlo (continued)


- If all of the sampled prices are below the barrier, this sample path pays $\max(S(t_n) X, 0)$.
- Repeat these steps and average the payoffs for a Monte Carlo estimate.

1:
$$C := 0;$$

2: for $i = 1, 2, 3, ..., N$ do
3: $P := S;$ hit $:= 0;$
4: for $j = 1, 2, 3, ..., n$ do
5: $P := P \times e^{(r - \sigma^2/2) (T/n) + \sigma \sqrt{(T/n)}} \xi;$ {By Eq. (125) on p.
862.}
6: if $P \ge H$ then
7: hit $:= 1;$
8: break;
9: end if
10: end for
11: if hit = 0 then
12: $C := C + \max(P - X, 0);$
13: end if
14: end for
15: return $Ce^{-rT}/N;$

Biases in Pricing Continuously Monitored Options with Monte Carlo (continued)

- This estimate is biased.^a
 - Suppose none of the sampled prices on a sample path equals or exceeds the barrier H.
 - It remains possible for the continuous sample path that passes through them to hit the barrier *between* sampled time points (see plot on next page).
 - Hence the knock-out probability is underestimated.

^aShevchenko (2003).

Biases in Pricing Continuously Monitored Options with Monte Carlo (concluded)

- The bias can be lowered by increasing the number of observations along the sample path.
 - For trees, the knock-out probability may *decrease* as the number of time steps is increased.
- However, even daily sampling may not suffice.
- The computational cost also rises as a result.