
Pricing Discrete and Moving Barrier Options

• Barrier options whose barrier is monitored only at

discrete times are called discrete barrier options.

• They are less common than the continuously monitored

versions for single stocks.a

• The main difficulty with pricing discrete barrier options

lies in matching the monitored times.

• Here is why.

aBennett (2014).
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Pricing Discrete and Moving Barrier Options
(continued)

• Suppose each period has a duration of Δt and the

� > 1 monitored times are

t0 = 0, t1, t2, . . . , t� = T.

• It is unlikely that all monitored times coincide with the

end of a period on the tree, or Δt divides ti for all i.

• The binomial-trinomial tree can handle discrete options

with ease, however.

• Simply build a binomial-trinomial tree from time 0 to

time t1, followed by one from time t1 to time t2, and so

on until time t�.
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Pricing Discrete and Moving Barrier Options
(concluded)

• This procedure works even if each ti is associated with

a distinct barrier or if each window [ ti, ti+1) has its own

continuously monitored barrier or double barriers.

• Pricing in both scenarios can actually be done in time

O[�n ln(n/�) ].a

• For typical discrete barriers, placing barriers midway

between two price levels on the tree may increase

accuracy.b

aY. Lu (R06723032, D08922008) & Lyuu (2021, 2023).
bSteiner & Wallmeier (1999); Tavella & Randall (2000).
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Options on a Stock That Pays Known Dividends

• Many ad hoc assumptions have been postulated for

option pricing with known dividends.a

1. The one we saw earlierb models the stock price minus

the present value of the anticipated dividends as

following geometric Brownian motion.

2. One can also model the stock price plus the forward

values of the dividends as following geometric

Brownian motion.

aFrishling (2002).
bOn p. 331.
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Options on a Stock That Pays Known Dividends (continued)

• Realistic models assume:

– The stock price decreases by the amount of the

dividend paid at the ex-dividend date.

– The dividend is part cash and part yield (i.e.,

α(t)S0 + β(t)St), for practitioners.
a

• The stock price follows geometric Brownian motion

between adjacent ex-dividend dates.

• But they result in exponential-sized binomial trees.b

• The binomial-trinomial tree can avoid this problem in

most cases.
aHenry-Labordère (2009).
bRecall p. 330.
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Options on a Stock That Pays Known Dividends (continued)

• Suppose that the known dividend is D dollars and the

ex-dividend date is at time t.

• So there are m
Δ
= t/Δt periods between time 0 and the

ex-dividend date.a

• To avoid negative stock prices, we need to make sure the

lowest stock price at time t is at least D, i.e.,

Se−(t/Δt)σ
√
Δt ≥ D.

– Or,

Δt ≥
[

tσ

ln(S/D)

]2
.

aThat is, m is an integer input and Δt
Δ
= t/m.
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Options on a Stock That Pays Known Dividends (continued)

• Build a CRR tree from time 0 to time t as before.

• Subtract D from all the stock prices on the tree at time

t to represent the price drop on the ex-dividend date.

• Assume the top node’s price equals S′.

– As usual, its two successor nodes will have prices

S′u and S′u−1.

• The remaining nodes’ successor nodes at time t+Δt

will choose from prices

S′u, S′, S′u−1, S′u−2, S′u−3, . . . ,

same as the CRR tree.
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Options on a Stock That Pays Known Dividends (continued)

• For each node at time t below the top node, we build

the trinomial connection.

• Note that the binomial-trinomial structure remains valid

in the special case when Δt′ = Δt on p. 767.
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Options on a Stock That Pays Known Dividends (concluded)

• Hence the construction can be completed.

• From time t+Δt onward, the standard binomial tree

will be used until the maturity date or the next

ex-dividend date when the procedure can be repeated.

• The resulting tree is called the stair tree.a

aT. Dai (B82506025, R86526008, D8852600) & Lyuu (2004); T. Dai

(B82506025, R86526008, D8852600) (2009).
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Other Applications of Binomial-Trinomial Trees

• Pricing guaranteed minimum withdrawal benefits.a

• Option pricing with stochastic volatilities.b

• Efficient Parisian option pricing.c

• Defaultable bond pricing.d

• Implied barrier.e

aH. Wu (R96723058) (2009).
bC. Huang (R97922073) (2010).
cY. Huang (R97922081) (2010).
dT. Dai (B82506025, R86526008, D8852600), Lyuu, & C. Wang

(F95922018) (2009, 2010, 2014).
eY. Lu (R06723032, D08922008) (2019); Y. Lu (R06723032, D08922008)

& Lyuu (2021, 2023).
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Mean Trackinga

• The general idea behind the binomial-trinomial tree on

pp. 766ff is very powerful.

• One finds the sucessor middle node as the one closest to

the mean.

• The two flanking successor nodes are then spaced at

cσ
√
Δt from the middle node for a suitably large c > 0.

• The resulting trinomial structure are then guaranteed to

have valid branching probabilities.

aLyuu & C. Wu (R90723065) (2003, 2005).
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Default Boundary as Implied Barrier

• Under the structural model,a the default boundary is

modeled as a barrier.b

• The constant barrier can be inferred from the

closed-form formula given the firm’s market

capitalization, etc.c

• More generally, the moving barrier can be inferred from

the term structure of default probabilities with the

binomial-trinomial tree.d

aRecall p. 377.
bBlack & Cox (1976).
cBrockman & Turtle (2003).
dY. Lu (R06723032, D08922008) (2019); Y. Lu (R06723032, D08922008)

& Lyuu (2021, 2023).
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Default Boundary as Implied Barrier (continued)

• This barrier is called the implied barrier.a

• If the barrier is a step function, the implied barrier can

be obtained in O(n lnn) time.b

• The next plot shows the convergence of the implied

barrier (as a percentage of the initial stock price).c

– The implied barrier is already very good with n = 1!

aBrockman & Turtle (2003).
bY. Lu (R06723032, D08922008) & Lyuu (2021, 2023). The error is

O(1/n): This is linear convergence.
cPlot supplied by Mr. Lu, Yu-Ming (R06723032, D08922008) on

November 20. 2021.
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Default Boundary as Implied Barrier (continued)

1 ≤ n ≤ 101.
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Default Boundary as Implied Barrier (concluded)

• The next plot shows the implied barriers of Freddie Mac

and Fannie Mae as of February 2008 (as percentages of

the initial asset values).a

aPlot supplied by Mr. Lu, Yu-Ming (R06723032, D08922008) on Febru-

ary 26. 2021.

c©2025 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 804



c©2025 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 805



Time-Varying Double Barriers under Time-Dependent
Volatilitya

• More general models allow a time-varying σ(t) (p. 322).

• Let the two barriers L(t) and H(t) be functions of time.b

– Exponential functions are popular.c

• Still, we can price double-barrier options in O(n2) time

or less with trinomial trees.

• Continuously monitored double-barrier knock-out

options with time-varying barriers are called hot dog

options.d

aY. Zhang (R05922052) (2019).
bSo the barriers are continuously monitored.
cC. Chou (R97944012) (2010); C. I. Chen (R98922127) (2011).
dEl Babsiri & Noel (1998).
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General Local-Volatility Models and Their Trees

• Consider the general local-volatility model

dS

S
= (rt − qt) dt+ σ(S, t) dW,

where L ≤ σ(S, t) ≤ U for some positive L and U .

• This model has a unique (weak) solution.a

• The positive lower bound is justifiable because prices

fluctuate.

aAchdou & Pironneau (2005).
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General Local-Volatility Models and Their Trees
(continued)

• The upper-bound assumption is also reasonable.

• Even on October 19, 1987, the CBOE S&P 100 Volatility

Index (VXO) was about 150%, the highest ever.a

• An efficient quadratic-sized tree for this range-bounded

model is easy.b

• Pick any σ′ > U .

• Grow the trinomial tree with the node spacing σ′√Δt.c

• The branching probabilities are valid for small Δt.
aCaprio (2012).
bLok (D99922028) & Lyuu (2016, 2017, 2020).
cHaahtela (2010).
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General Local-Volatility Models and Their Trees
(continued)

• They are

pu =
σ2(S, t)

2σ′2 +
r − q − σ2(S, t)/2

2σ′
√
Δt

+

[
r − q − σ2(S, t)/2

]2
2σ′2 Δt,

pd =
σ2(S, t)

2σ′2 − r − q − σ2(S, t)/2

2σ′
√
Δt

+

[
r − q − σ2(S, t)/2

]2
2σ′2 Δt,

pm = 1− σ2(S, t)

σ′2 −
[
r − q − σ2(S, t)/2

]2
σ′2 Δt.
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General Local-Volatility Models and Their Trees
(concluded)

• The same idea can be applied to price double-barrier

options.

• Pick any

σ′ > max

[
max

S,0≤t≤T
σ(S, t),

√
2σ(S0, 0)

]
.

• Grow the trinomial tree with the node spacing σ′√Δt.

• For the first period, apply the mean-tracking idea Eqs.

(106)–(111) on p. 772 to obtain the probabilities.
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Merton’s Jump-Diffusion Model

• Empirically, stock returns tend to have fat tails,

inconsistent with the Black-Scholes model’s assumptions.

• Stochastic volatility and jump processes have been

proposed to address this problem.

• Merton’s (1976) jump-diffusion model is our focus here.
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Merton’s Jump-Diffusion Model (continued)

• This model superimposes a jump component on a

diffusion component.

• The diffusion component is the familiar geometric

Brownian motion.

• The jump component is composed of lognormal jumps

driven by a Poisson process.

– It models the rare but large changes in the stock

price because of the arrival of important news.a

aDerman & M. B. Miller (2016), “There is no precise, universally

accepted definition of a jump, but it usually comes down to magnitude,

duration, and frequency.”
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Merton’s Jump-Diffusion Model (continued)

• Let St be the stock price at time t.

• The risk-neutral jump-diffusion process for the stock

price followsa

dSt

St
= (r − λk̄) dt+ σ dWt + k dqt. (113)

• Above, σ denotes the volatility of the diffusion

component.

aDerman &M. B. Miller (2016), “[M]ost jump-diffusion models simply

assume risk-neutral pricing without convincing justification.”
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Merton’s Jump-Diffusion Model (continued)

• The jump event is governed by a compound Poisson

process qt with intensity λ, where k denotes the

magnitude of the random jump.

– The distribution of k obeys

ln(1 + k) ∼ N
(
γ, δ2

)
with mean k̄

Δ
= E (k) = eγ+δ2/2 − 1.

– Note that k > −1.

– Note also that k is not related to dt.

• The model with λ = 0 reduces to the Black-Scholes

model.
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Merton’s Jump-Diffusion Model (continued)

• The solution to Eq. (113) on p. 813 is

St = S0e
(r−λk̄−σ2/2) t+σWtU(n(t)), (114)

where

U(n(t)) =

n(t)∏
i=0

(1 + ki) .

– ki is the magnitude of the ith jump with

ln(1 + ki) ∼ N(γ, δ2).

– k0 = 0.

– n(t) is a Poisson process with intensity λ.
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Merton’s Jump-Diffusion Model (concluded)

• Recall that n(t) denotes the number of jumps that

occur up to time t.

• It is known that E[n(t) ] = Var[n(t) ] = λt.

• As ki > −1, stock prices will stay positive.

• The geometric Brownian motion, the lognormal jumps,

and the Poisson process are assumed to be independent.
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Tree for Merton’s Jump-Diffusion Modela

• Define the S-logarithmic return of the stock price S′ as

ln(S′/S).

• Define the logarithmic distance between stock prices S′

and S as

| ln(S′)− ln(S) | = | ln(S′/S) |.
aT. Dai (B82506025, R86526008, D8852600), C. Wang (F95922018),

Lyuu, & Y. Liu (2010).
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Tree for Merton’s Jump-Diffusion Model (continued)

• Take the logarithm of Eq. (114) on p. 815:

Mt
Δ
= ln

(
St

S0

)
= Xt + Yt, (115)

where

Xt
Δ
=

(
r − λk̄ − σ2

2

)
t+ σWt, (116)

Yt
Δ
=

n(t)∑
i=0

ln (1 + ki) . (117)

• It decomposes the S0-logarithmic return of St into the

diffusion component Xt and the jump component Yt.
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Tree for Merton’s Jump-Diffusion Model (continued)

• Motivated by decomposition (115) on p. 818, the tree

construction divides each period into a diffusion phase

followed by a jump phase.

• In the diffusion phase, Xt is approximated by the

BOPM.

• So Xt moves up to Xt + σ
√
Δt with probability pu

and down to Xt − σ
√
Δt with probability pd.
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Tree for Merton’s Jump-Diffusion Model (continued)

• According to BOPM,

pu =
eμΔt − d

u− d
,

pd = 1− pu,

except that μ = r − λk̄ here.

• The diffusion component gives rise to diffusion nodes.

• They are spaced at 2σ
√
Δt apart such as the white

nodes A, B, C, D, E, F, and G on p. 821.
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( 1) t− Δ� tΔ� ( 1) t+ Δ�

1q

1q−

up

dp

0q

2 2h γ δ= +

2 tσ Δ

White nodes are diffusion nodes.

Gray nodes are jump nodes. In

the diffusion phase, the solid black

lines denote the binomial structure

of BOPM; the dashed lines denote

the trinomial structure. Only the

double-circled nodes will remain af-

ter the construction. Note that a

and b are diffusion nodes because

no jump occurs in the jump phase.
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Tree for Merton’s Jump-Diffusion Model (continued)

• In the jump phase, Yt+Δt is approximated by moves

from each diffusion node to 2m jump nodes that match

the first 2m moments of the lognormal jump.

• The m jump nodes above the diffusion node are spaced

at h
Δ
=
√
γ2 + δ2 apart.

• Note that h is independent of Δt.
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Tree for Merton’s Jump-Diffusion Model (concluded)

• The same holds for the m jump nodes below the

diffusion node.

• The gray nodes at time �Δt on p. 821 are jump nodes.

– We set m = 1 on p. 821.

• The size of the tree is O(n2.5).
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Multivariate Contingent Claims

• They depend on two or more underlying assets.

• The basket call on m assets has the terminal payoff

max

(
m∑
i=1

αiSi(τ)−X, 0

)
,

where αi is the percentage of asset i.

• Basket options are essentially options on a portfolio of

stocks (or index options).a

• Option on the best of two risky assets and cash has a

terminal payoff of max(S1(τ), S2(τ), X).

aExcept that membership and weights do not change for basket op-

tions (Bennett, 2014).
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Multivariate Contingent Claims (concluded)a

Name Payoff

Exchange option max(S1(τ) − S2(τ), 0)

Better-off option max(S1(τ), . . . , Sk(τ), 0)

Worst-off option min(S1(τ), . . . , Sk(τ), 0)

Binary maximum option I{max(S1(τ), . . . , Sk(τ)) > X }
Maximum option max(max(S1(τ), . . . , Sk(τ)) − X, 0)

Minimum option max(min(S1(τ), . . . , Sk(τ)) − X, 0)

Spread option max(S1(τ) − S2(τ) − X, 0)

Basket average option max((S1(τ) + · · · + Sk(τ))/k − X, 0)

Multi-strike option max(S1(τ) − X1, . . . , Sk(τ) − Xk, 0)

Pyramid rainbow option max(|S1(τ) − X1 | + · · · + |Sk(τ) − Xk | − X, 0)

Madonna option max(
√

(S1(τ) − X1)2 + · · · + (Sk(τ) − Xk)2 − X, 0)

aLyuu & Teng (R91723054) (2011).
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Correlated Trinomial Modela

• Two risky assets S1 and S2 follow

dSi

Si
= r dt+ σi dWi

in a risk-neutral economy, i = 1, 2.

• Let

Mi
Δ
= erΔt,

Vi
Δ
= M2

i (e
σ2
iΔt − 1).

– SiMi is the mean of Si at time Δt.

– S2
i Vi the variance of Si at time Δt.

aBoyle, Evnine, & Gibbs (1989).
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Correlated Trinomial Model (continued)

• The value of S1S2 at time Δt has a joint lognormal

distribution with mean S1S2M1M2e
ρσ1σ2Δt, where ρ is

the correlation between dW1 and dW2.

• Next match the 1st and 2nd moments of the

approximating discrete distribution to those of the

continuous counterpart.

• At time Δt from now, there are 5 distinct outcomes.
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Correlated Trinomial Model (continued)

• The five-point probability distribution of the asset prices

is

Probability Asset 1 Asset 2

p1 S1u1 S2u2

p2 S1u1 S2d2

p3 S1d1 S2d2

p4 S1d1 S2u2

p5 S1 S2

• As usual, impose uidi = 1.
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Correlated Trinomial Model (continued)

• The probabilities must sum to one, and the means must

be matched:

1 = p1 + p2 + p3 + p4 + p5,

S1M1 = (p1 + p2)S1u1 + p5S1 + (p3 + p4)S1d1,

S2M2 = (p1 + p4)S2u2 + p5S2 + (p2 + p3)S2d2.
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Correlated Trinomial Model (concluded)

• Let R
Δ
= M1M2e

ρσ1σ2Δt.

• Match the variances and covariance:

S
2
1V1 = (p1 + p2)

[
(S1u1)

2 − (S1M1)
2
]
+ p5

[
S

2
1 − (S1M1)

2
]

+(p3 + p4)
[
(S1d1)

2 − (S1M1)
2
]
,

S2
2V2 = (p1 + p4)

[
(S2u2)

2 − (S2M2)
2
]
+ p5

[
S2
2 − (S2M2)

2
]

+(p2 + p3)
[
(S2d2)

2 − (S2M2)
2
]
,

S1S2R = (p1u1u2 + p2u1d2 + p3d1d2 + p4d1u2 + p5)S1S2.

• The solutions appear on p. 246 of the textbook.
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Correlated Trinomial Model Simplifieda

• Let μ′
i
Δ
= r − σ2

i /2 and ui
Δ
= eλσi

√
Δt for i = 1, 2.

• The following simpler scheme is often good enough:

p1 =
1

4

[
1

λ2
+

√
Δt

λ

(
μ′
1

σ1

+
μ′
2

σ2

)
+

ρ

λ2

]
,

p2 =
1

4

[
1

λ2
+

√
Δt

λ

(
μ′
1

σ1

−
μ′
2

σ2

)
−

ρ

λ2

]
,

p3 =
1

4

[
1

λ2
+

√
Δt

λ

(
−

μ′
1

σ1

−
μ′
2

σ2

)
+

ρ

λ2

]
,

p4 =
1

4

[
1

λ2
+

√
Δt

λ

(
−

μ′
1

σ1

+
μ′
2

σ2

)
−

ρ

λ2

]
,

p5 = 1 −
1

λ2
.

aMadan, Milne, & Shefrin (1989).
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Correlated Trinomial Model Simplified (continued)

• All of the probabilities lie between 0 and 1 if and only if

−1 + λ
√
Δt

∣∣∣∣ μ
′
1

σ1
+

μ′
2

σ2

∣∣∣∣ ≤ ρ ≤ 1− λ
√
Δt

∣∣∣∣ μ
′
1

σ1
− μ′

2

σ2

∣∣∣∣ ,(118)
1 ≤ λ. (119)

• We call a multivariate tree (correlation-) optimal if it

guarantees valid probabilities as long as

−1 +O(
√
Δt) < ρ < 1−O(

√
Δt),

such as the above one.a

aW. Kao (R98922093) (2011); W. Kao (R98922093), Lyuu, & Wen

(D94922003) (2014).
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Correlated Trinomial Model Simplified (continued)

• But this model cannot price 2-asset 2-barrier options

accurately.a

• Few multivariate trees are both optimal and able to

handle multiple barriers.b

• An alternative is to use orthogonalization.c

aSee Y. Chang (B89704039, R93922034), Hsu (R7526001, D89922012),

& Lyuu (2006); W. Kao (R98922093), Lyuu, & Wen (D94922003) (2014)

for solutions.
bSee W. Kao (R98922093), Lyuu, & Wen (D94922003) (2014) for an

exception.
cHull & White (1990); T. Dai (B82506025, R86526008, D8852600), C.

Wang (F95922018), & Lyuu (2013).
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Correlated Trinomial Model Simplified (concluded)

• Suppose we allow each asset’s volatility to be a function

of time.a

• There are k assets.

• One can build an optimal multivariate tree that handles

two barriers on each asset in time O(nk+1).b

aRecall p. 321.
bY. Zhang (R05922052) (2019); Y. Zhang (R05922052) & Lyuu (2023).
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Numerical Methods
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All science is dominated

by the idea of approximation.

— Bertrand Russell
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Finite-Difference Methods

• Place a grid of points on the space over which the

desired function takes value.

• Then approximate the function value at each of these

points (p. 838).

• Solve the equation numerically by introducing difference

equations in place of derivatives.
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Example: Poisson’s Equation

• It is ∂2θ/∂x2 + ∂2θ/∂y2 = −ρ(x, y), which describes the

electrostatic field.

• Replace second derivatives with finite differences

through central difference.

• Introduce evenly spaced grid points with distance of Δx

along the x axis and Δy along the y axis.

• The finite-difference form is

−ρ(xi, yj) =
θ(xi+1, yj)− 2θ(xi, yj) + θ(xi−1, yj)

(Δx)2

+
θ(xi, yj+1)− 2θ(xi, yj) + θ(xi, yj−1)

(Δy)2
.
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Example: Poisson’s Equation (concluded)

• In the above, Δx
Δ
= xi − xi−1 and Δy

Δ
= yj − yj−1 for

i, j = 1, 2, . . . .

• When the grid points are evenly spaced in both axes so

that Δx = Δy = h, the difference equation becomes

−h2ρ(xi, yj) = θ(xi+1, yj) + θ(xi−1, yj)

+θ(xi, yj+1) + θ(xi, yj−1)− 4θ(xi, yj).

• Given boundary values, we can solve for the xis and the

yjs within the square [±L,±L ].

• From now on, θi,j will denote the finite-difference

approximation to the exact θ(xi, yj).
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Explicit Methods

• Consider the diffusion equationa

D(∂2θ/∂x2)− (∂θ/∂t) = 0, D > 0.

• Use evenly spaced grid points (xi, tj) with distances

Δx and Δt, where Δx
Δ
= xi+1 − xi and Δt

Δ
= tj+1 − tj .

• Employ central difference for the second derivative and

forward difference for the time derivative to obtain

∂θ(x, t)

∂t

∣∣∣∣
t=tj

=
θ(x, tj+1 )− θ(x, tj )

Δt
+ · · · , (120)

∂2θ(x, t)

∂x2

∣∣∣∣
x=xi

=
θ( xi+1 , t)− 2θ( xi , t) + θ( xi−1 , t)

(Δx)2
+ · · · .(121)

aIt is a parabolic partial differential equation.
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Explicit Methods (continued)

• Next, assemble Eqs. (120) and (121) into a single

equation at (xi, tj).

• But we need to decide how to evaluate x in the first

equation and t in the second.

• Since central difference around xi is used in Eq. (121),

we might as well use xi for x in Eq. (120).

• Two choices are possible for t in Eq. (121).

• The first choice uses t = tj to yield the following

finite-difference equation,

θi,j+1 − θi,j
Δt

= D
θi+1,j − 2θi,j + θi−1,j

(Δx)2
. (122)
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Explicit Methods (continued)

• The stencil of grid points involves four values, θi,j+1,

θi,j , θi+1,j, and θi−1,j.

• Rearrange Eq. (122) on p. 842 as

θi,j+1 =
DΔt

(Δx)2
θi+1,j +

(
1 −

2DΔt

(Δx)2

)
θi,j +

DΔt

(Δx)2
θi−1,j . (123)

• We can calculate θi,j+1 from θi,j , θi+1,j, θi−1,j, at the

previous time tj (see exhibit (a) on next page).
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Explicit Methods (concluded)

• Starting from the initial conditions at t0, that is,

θi,0 = θ(xi, t0), i = 1, 2, . . . , we calculate

θi,1, i = 1, 2, . . . .

• And then

θi,2, i = 1, 2, . . . .

• And so on.
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Stability

• The explicit method is numerically unstable unless

Δt ≤ (Δx)2/(2D).

– A numerical method is unstable if the solution is

highly sensitive to changes in initial conditions.

• The stability condition may lead to high running times

and memory requirements.

• For instance, halving Δx would imply quadrupling

(Δt)−1, resulting in a running time 8 times as much.

c©2025 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 846



Explicit Method and Trinomial Tree

• Recall Eq. (123) on p. 843:

θi,j+1 =
DΔt

(Δx)2
θi+1,j +

(
1− 2DΔt

(Δx)2

)
θi,j +

DΔt

(Δx)2
θi−1,j .

• When the stability condition is satisfied, the three

coefficients for θi+1,j, θi,j , and θi−1,j all lie between

zero and one and sum to one.

• They can be interpreted as probabilities.

• So the finite-difference equation becomes identical to

backward induction on trinomial trees!
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Explicit Method and Trinomial Tree (concluded)

• The freedom in choosing Δx corresponds to similar

freedom in the construction of trinomial trees.

• The explicit finite-difference equation is also identical to

backward induction on a binomial tree.a

– Let the binomial tree take 2 steps each of length

Δt/2.

– It is now a trinomial tree.

aHilliard (2014).
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Implicit Methods

• Suppose we use t = tj+1 in Eq. (121) on p. 841 instead.

• The finite-difference equation becomes

θi,j+1 − θi,j
Δt

= D
θi+1,j+1 − 2θi,j+1 + θi−1,j+1

(Δx)2
. (124)

• The stencil involves θi,j , θi,j+1, θi+1,j+1, and θi−1,j+1.

• This method is now implicit:

– The value of any one of the three quantities at tj+1

cannot be calculated unless the other two are known.

– See exhibit (b) on p. 844.
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Implicit Methods (continued)

• Equation (124) can be rearranged as

θi−1,j+1 − (2 + γ) θi,j+1 + θi+1,j+1 = −γθi,j,

where γ
Δ
= (Δx)2/(DΔt).

• This equation is unconditionally stable.

• Suppose the boundary conditions are given at x = x0

and x = xN+1.

• After θi,j has been calculated for i = 1, 2, . . . , N , the

values of θi,j+1 at time tj+1 can be computed as the

solution to the following tridiagonal linear system,
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Implicit Methods (continued)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a 1 0 · · · · · · · · · 0

1 a 1 0 · · · · · · 0

0 1 a 1 0 · · · 0

.

.

.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.

.

.

.

.

.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.

.

.

0 · · · · · · 0 1 a 1

0 · · · · · · · · · 0 1 a

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

θ1,j+1

θ2,j+1

θ3,j+1

.

.

.

.

.

.

.

.

.

θN,j+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−γθ1,j − θ0,j+1

−γθ2,j

−γθ3,j

.

.

.

.

.

.

−γθN−1,j

−γθN,j − θN+1,j+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where a
Δ
= −2− γ.
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Implicit Methods (concluded)

• Tridiagonal systems can be solved in O(N) time and

O(N) space.

– Never invert a matrix to solve a tridiagonal system.

• The matrix above is nonsingular when γ ≥ 0.

– A square matrix is nonsingular if its inverse exists.
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Crank-Nicolson Method
• Take the average of explicit method (122) on p. 842 and
implicit method (124) on p. 849:

θi,j+1 − θi,j

Δt

=
1

2

(
D

θi+1,j − 2θi,j + θi−1,j

(Δx)2
+ D

θi+1,j+1 − 2θi,j+1 + θi−1,j+1

(Δx)2

)
.

• After rearrangement,

γθi,j+1 −
θi+1,j+1 − 2θi,j+1 + θi−1,j+1

2
= γθi,j +

θi+1,j − 2θi,j + θi−1,j

2
.

• This is an unconditionally stable implicit method with

excellent rates of convergence.
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Stencil

tj tj+1

xi

xi+1

xi+1
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Numerically Solving the Black-Scholes PDE (95) on p.
689

• See text.

• Brennan and Schwartz (1978) analyze the stability of

the implicit method.
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Monte Carlo Simulationa

• Monte Carlo simulation is a sampling scheme.

• In many important applications within finance and

without, Monte Carlo is one of the few feasible tools.

• When the time evolution of a stochastic process is not

easy to describe analytically, Monte Carlo may very well

be the only strategy that succeeds consistently.

aA top 10 algorithm (Dongarra & Sullivan, 2000).
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The Big Idea

• Assume X1, X2, . . . , Xn have a joint distribution.

• θ
Δ
= E[ g(X1, X2, . . . , Xn) ] for some function g is

desired.

• We generate(
x
(i)
1 , x

(i)
2 , . . . , x(i)

n

)
, 1 ≤ i ≤ N

independently with the same joint distribution as

(X1, X2, . . . , Xn).

• Output Y
Δ
= (1/N)

∑N
i=1 Yi, where

Yi
Δ
= g

(
x
(i)
1 , x

(i)
2 , . . . , x(i)

n

)
.
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The Big Idea (concluded)

• Y1, Y2, . . . , YN are independent and identically

distributed random variables.

• Each Yi has the same distribution as

Y
Δ
= g(X1, X2, . . . , Xn).

• Since the average of these N random variables, Y ,

satisfies E[Y ] = θ, it can be used to estimate θ.

• The strong law of large numbers says that this

procedure converges almost surely.

• The number of replications (or independent trials), N , is

called the sample size.
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Accuracy

• The Monte Carlo estimate and true value may differ

owing to two reasons:

1. Sampling variation.

2. The discreteness of the sample paths.a

• The first can be controlled by the number of replications.

• The second can be controlled by the number of

observations along the sample path.

aThis may not be an issue if the financial derivative only requires

discrete sampling along time, such as the discrete barrier option.
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Accuracy and Number of Replications

• The statistical error of the sample mean Y of the

random variable Y grows as 1/
√
N .

– Because Var[Y ] = Var[Y ]/N .

• In fact, this convergence rate is asymptotically optimal.a

• So the variance of the estimator Y can be reduced by a

factor of 1/N by doing N times as much work.

• This is amazing because the same order of convergence

holds independently of the dimension n.

aThe Berry-Esseen theorem.
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Accuracy and Number of Replications (concluded)

• In contrast, classic numerical integration schemes have

an error bound of O(N−c/n) for some constant c > 0.

• The required number of evaluations thus grows

exponentially in n to achieve a given level of accuracy.

– The curse of dimensionality.

• The Monte Carlo method is more efficient than

alternative procedures for multivariate derivatives for n

large.
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Monte Carlo Option Pricing

• For the pricing of European options on a

dividend-paying stock, we may proceed as follows.

• Assume
dS

S
= μ dt+ σ dW.

• Stock prices S1, S2, S3, . . . at times Δt, 2Δt, 3Δt, . . .

can be generated via

Si+1

= Sie
(μ−σ2/2)Δt+σ

√
Δt ξ, ξ ∼ N(0, 1), (125)

by Eq. (88) on p. 623.
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Monte Carlo Option Pricing (continued)

• If we discretize dS/S = μ dt+ σ dW directly, we will

obtain

Si+1 = Si + SiμΔt+ Siσ
√
Δt ξ.

• But this is locally normally distributed, not lognormally,

hence biased.a

• Negative stock prices are also possible.b

• In practice, this is not expected to be a major problem

as long as Δt is sufficiently small.

aContributed by Mr. Tai, Hui-Chin (R97723028) on April 22, 2009.
bContributed by Mr. Chen, Yu-Hsing (B06901048, R11922045) on May

5, 2023.
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Monte Carlo Option Pricing (continued)

Non-dividend-paying stock prices in a risk-neutral economy

can be generated by setting μ = r and Δt = T .a

1: C := 0; {Accumulated terminal option value.}
2: for i = 1, 2, 3, . . . , N do

3: P := S × e(r−σ2/2)T+σ
√
T ξ, ξ ∼ N(0, 1);

4: C := C +max(P −X, 0);

5: end for

6: return Ce−rT /N ;

aIt is sometimes called a one-shot simulation (Brigo & Mercurio,

2006).
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Monte Carlo Option Pricing (concluded)

Pricing Asian options is also easy.

1: C := 0;

2: for i = 1, 2, 3, . . . , N do

3: P := S; M := S;

4: for j = 1, 2, 3, . . . , n do

5: P := P × e(r−σ2/2)(T/n)+σ
√

T/n ξ;

6: M := M + P ;

7: end for

8: C := C +max(M/(n+ 1)−X, 0);

9: end for

10: return Ce−rT /N ;
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How about American Options?

• Standard Monte Carlo simulation is inappropriate for

American options because of early exercise.

– Given a sample path S0, S1, . . . , Sn, how to decide

which Si is an early-exercise point?

– What is the option price at each Si if the option is

not exercised?

• It is difficult to determine the early-exercise point based

on one single path.a

• But Monte Carlo simulation can be modified to price

American options with small biases.b

aUnless, of course, the exercise boundary is given (recall pp. 405ff).

Contributed by Mr. Chen, Tung-Li (D09922014) on May 5, 2023.
bLongstaff & Schwartz (2001). See pp. 929ff.
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Obtaining Profit and Loss of Delta Hedgea

• Profit and loss of delta hedge should be calculated under

the real-world probability measure.b

• So stock prices should be sampled from

dS

S
= μ dt+ σ dW.

• Suppose backward induction on a tree under the

risk-neutral measure is performed for the delta.c

aContributed by Mr. Lu, Zheng-Liang (D00922011) on August 12,

2021.
bRecall p. 715.
cBecause, say, no closed-form formulas are available for the delta.
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Obtaining Profit and Loss of Delta Hedge (concluded)

• Note that one needs a delta per stock price.

• So Nn trees are needed for the distribution of the profit

and loss from N paths with n+ 1 stock prices per path.

• These are a lot of trees!

• How to do it efficiently to generate plots like that on p.

658?

c©2025 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 868



Delta and Common Random Numbers

• In estimating delta, it is natural to start with the

finite-difference estimate

e−rτ E[P (S + ε) ]− E[P (S − ε) ]

2ε
.

– P (x) is the terminal payoff of the derivative security

when the underlying asset’s initial price equals x.

• Use simulation to estimate E[P (S + ε) ] first.

• Use another simulation to estimate E[P (S − ε) ].

• Finally, apply the formula to approximate the delta.

• This is also called the bump-and-revalue method.

c©2025 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 869



Delta and Common Random Numbers (concluded)

• This method is not recommended because of its high

variance.

• A much better approach is to use common random

numbers to lower the variance:

e−rτ E

[
P (S + ε)− P (S − ε)

2ε

]
.

• Here, the same random numbers are used for P (S + ε)

and P (S − ε).

• This holds for gamma and cross gamma.a

aFor multivariate derivatives.
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Problems with the Bump-and-Revalue Method

• Consider the binary option with payoff⎧⎨
⎩ 1, if S(T ) > X,

0, otherwise.

• Then, if common random numbers are used,

P (S+ε)−P (S−ε) =

⎧⎨
⎩ 1, if P (S + ε) > X and P (S − ε) < X,

0, otherwise.

• So the finite-difference estimate per run for the

(undiscounted) delta is 0 or O(1/ε).

• This means high variance.
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Problems with the Bump-and-Revalue Method
(concluded)

• The price of the binary option equals

e−rτN(x− σ
√
τ).

– It equals minus the derivative of the European call

with respect to X .

– It also equals Xτ times the rho of a European call (p.

366).

• Its delta is
N ′ (x− σ

√
τ)

Sσ
√
τ

.
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Gamma

• The finite-difference formula for gamma is

e−rτ E

[
P (S + ε)− 2× P (S) + P (S − ε)

ε2

]
.

• For a correlation option with multiple underlying assets,

the finite-difference formula for the cross gamma

∂2P (S1, S2, . . .)/(∂S1∂S2) is:

e−rτ E

[
P (S1 + ε1, S2 + ε2)− P (S1 − ε1, S2 + ε2)

4ε1ε2

−P (S1 + ε1, S2 − ε2) + P (S1 − ε1, S2 − ε2)
]
.
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Gamma (continued)

• Choosing an ε of the right magnitude can be

challenging.

– If ε is too large, inaccurate Greeks result.

– If ε is too small, unstable Greeks result.

• This phenomenon is sometimes called the curse of

differentiation.a

aAı̈t-Sahalia & Lo (1998); Bondarenko (2003).
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Gamma (continued)

• In general, suppose (in some sense)

∂i

∂θi
e−rτE[P (S) ] = e−rτE

[
∂iP (S)

∂θi

]

holds for all i > 0, where θ is a parameter of interest.a

– A common requirement is Lipschitz continuity.b

• Then Greeks become integrals.

• As a result, we avoid ε, finite differences, and

resimulation.

aThe ∂iP (S)/∂θi within E[ · ] may not be partial differentiation in

the classic sense.
bBroadie & Glasserman (1996).
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Gamma (continued)

• This is indeed possible for a broad class of payoff

functions.a

– Roughly speaking, any payoff function that is equal

to a sum of products of differentiable functions and

indicator functions with the right kind of support.

– For example, the payoff of a call is

max(S(T )−X, 0) = (S(T )−X)I{S(T )−X≥0 }.

– The results are too technical to cover here (see next

page).

aTeng (R91723054) (2004); Lyuu & Teng (R91723054) (2011).
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Gamma (continued)

• Suppose h(θ, x) ∈ H with pdf f(x) for x and gj(θ, x) ∈ G
for j ∈ B, a finite set of natural numbers.

• Then
∂

∂θ

∫
�

h(θ, x)
∏

j∈B
1{gj (θ,x)>0}(x) f(x) dx

=

∫
�

hθ(θ, x)
∏

j∈B
1{gj (θ,x)>0}(x) f(x) dx

+
∑

l∈ B

⎡
⎢⎣h(θ, x)Jl(θ, x)

∏
j∈B\l

1{gj (θ, x)>0}(x) f(x)

⎤
⎥⎦
x=χl(θ)

,

where
Jl(θ, x) = sign

(
∂gl(θ, x)

∂xk

)
∂gl(θ, x)/∂θ

∂gl(θ, x)/∂x
for l ∈ B.
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Gamma (concluded)

• Similar results have been derived for Levy processes.a

• Formulas are also available for credit derivatives.b

• In queueing networks, this is called infinitesimal

perturbation analysis (IPA).c

aLyuu, Teng (R91723054), & S. Wang (2013).
bLyuu, Teng (R91723054), Tseng, & S. Wang (2014, 2019).
cCao (1985); Y. C. Ho & Cao (1985).
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Biases in Pricing Continuously Monitored Options
with Monte Carlo

• We are asked to price a continuously monitored

up-and-out call with barrier H.

• The Monte Carlo method samples the stock price at n

discrete time points t1, t2, . . . , tn.

• A sample path

S(t0), S(t1), . . . , S(tn)

is produced.

– Here, t0 = 0 is the current time, and tn = T is the

expiration time of the option.
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Biases in Pricing Continuously Monitored Options
with Monte Carlo (continued)

• If all of the sampled prices are below the barrier, this

sample path pays max(S(tn)−X, 0).

• Repeat these steps and average the payoffs for a Monte

Carlo estimate.
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1: C := 0;

2: for i = 1, 2, 3, . . . , N do

3: P := S; hit := 0;

4: for j = 1, 2, 3, . . . , n do

5: P := P × e(r−σ2/2) (T/n)+σ
√

(T/n) ξ; {By Eq. (125) on p.

862.}
6: if P ≥ H then

7: hit := 1;

8: break;

9: end if

10: end for

11: if hit = 0 then

12: C := C +max(P −X, 0);

13: end if

14: end for

15: return Ce−rT /N ;
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Biases in Pricing Continuously Monitored Options
with Monte Carlo (continued)

• This estimate is biased.a

– Suppose none of the sampled prices on a sample path

equals or exceeds the barrier H.

– It remains possible for the continuous sample path

that passes through them to hit the barrier between

sampled time points (see plot on next page).

– Hence the knock-out probability is underestimated.

aShevchenko (2003).
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Biases in Pricing Continuously Monitored Options
with Monte Carlo (concluded)

• The bias can be lowered by increasing the number of

observations along the sample path.

– For trees, the knock-out probability may decrease as

the number of time steps is increased.

• However, even daily sampling may not suffice.

• The computational cost also rises as a result.
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