
Ito’s Lemmaa

A smooth function of an Ito process is itself an Ito process.

Theorem 19 Suppose f : R → R is twice continuously

differentiable and dX = at dt+ bt dW . Then f(X) is the

Ito process,

f(Xt)

= f(X0) +

∫ t

0

f ′(Xs) as ds+

∫ t

0

f ′(Xs) bs dW

+
1

2

∫ t

0

f ′′(Xs) b
2
s ds

for t ≥ 0.

aIto (1944).
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Ito’s Lemma (continued)

• In differential form, Ito’s lemma becomes

df(X)

= f ′(X) a dt+ f ′(X) b dW +
1

2
f ′′(X) b2 dt (84)

=
[
f ′(X) a+ 1

2 f
′′(X) b2

]
dt+ f ′(X) b dW.

• Compared with calculus, the extra term is boxed.

• A convenient formulation of Ito’s lemma is

df(X) = f ′(X) dX +
1

2
f ′′(X)(dX)2. (85)
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Ito’s Lemma (continued)

• We are supposed to multiply out

(dX)2 = (a dt+ b dW )2 symbolically according to

× dW dt

dW dt 0

dt 0 0

– The (dW )2 = dt entry is justified by a known result.

• Hence (dX)2 = (a dt+ b dW )2 = b2 dt in Eq. (85).

• This form is easy to remember because of its similarity

to the Taylor expansion.
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Ito’s Lemma (continued)

Theorem 20 (Higher-Dimensional Ito’s Lemma) Let

W1,W2, . . . ,Wn be independent Wiener processes and

X
Δ
= (X1, X2, . . . , Xm) be a vector process. Suppose

f : Rm → R is twice continuously differentiable and Xi is

an Ito process with dXi = ai dt+
∑n

j=1 bij dWj. Then

df(X) is an Ito process with the differential,

df(X) =
m∑
i=1

fi(X) dXi +
1

2

m∑
i=1

m∑
k=1

fik(X) dXi dXk,

where fi
Δ
= ∂f/∂Xi and fik

Δ
= ∂2f/∂Xi∂Xk.
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Ito’s Lemma (continued)

• The multiplication table for Theorem 20 is

× dWi dt

dWk δik dt 0

dt 0 0

in which

δik =

⎧⎨
⎩

1, if i = k,

0, otherwise.
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Ito’s Lemma (continued)

• In applying the higher-dimensional Ito’s lemma, usually

one of the variables, say X1, is time t and dX1 = dt.

• In this case, b1j = 0 for all j and a1 = 1.

• As an example, let

dXt = at dt+ bt dWt.

• Consider the process f(Xt, t).
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Ito’s Lemma (continued)

• Then

df

=
∂f

∂Xt
dXt +

∂f

∂t
dt+

1

2

∂2f

∂X2
t

(dXt)
2

=
∂f

∂Xt
(at dt+ bt dWt) +

∂f

∂t
dt

+
1

2

∂2f

∂X2
t

(at dt+ bt dWt)
2

=

(
∂f

∂Xt
at +

∂f

∂t
+

1

2

∂2f

∂X2
t

b2t

)
dt+

∂f

∂Xt
bt dWt. (86)
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Ito’s Lemma (continued)

Theorem 21 (Alternative Ito’s Lemma) Let

W1,W2, . . . ,Wm be Wiener processes and

X
Δ
= (X1, X2, . . . , Xm) be a vector process. Suppose

f : Rm → R is twice continuously differentiable and Xi is

an Ito process with dXi = ai dt+ bi dWi. Then df(X) is the

following Ito process,

df(X) =
m∑
i=1

fi(X) dXi +
1

2

m∑
i=1

m∑
k=1

fik(X) dXi dXk.
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Ito’s Lemma (concluded)

• The multiplication table for Theorem 21 is

× dWi dt

dWk ρik dt 0

dt 0 0

• Above, ρik denotes the correlation between dWi and

dWk.
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Geometric Brownian Motion

• Consider geometric Brownian motion

Y (t)
Δ
= eX(t).

– X(t) is a (μ, σ) Brownian motion.

– By Eq. (79) on p. 581,

dX = μ dt+ σ dW.

• Note that

∂Y

∂X
= Y,

∂2Y

∂X2
= Y.
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Geometric Brownian Motion (continued)

• Ito’s formula (84) on p. 613 implies

dY = Y dX + (1/2)Y (dX)2

= Y (μ dt+ σ dW ) + (1/2)Y (μ dt+ σ dW )2

= Y (μ dt+ σ dW ) + (1/2)Y σ2 dt.

• Hencea

dY

Y
=

(
μ+

σ2

2

)
dt+ σ dW. (87)

• The annualized instantaneous rate of return is μ+ σ2/2

(not μ).b

aEquation (87) is an abbreviation for dY = Y (μ+ σ2/2) dt+ σ dW .
bConsistent with Lemma 10 (p. 305).
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Geometric Brownian Motion (continued)

• Alternatively, from Eq. (79) on p. 581,

Xt = X0 + μt+ σWt,

admits an explicit (strong) solution.

• Hence

Yt = Y0 e
μt+σWt , (88)

a strong solution to the SDE (87) where Y0 = eX0 .
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Geometric Brownian Motion (concluded)

• On the other hand, suppose

dY

Y
= μ dt+ σ dW.

• Then X(t)
Δ
= lnY (t) follows

dX =
(
μ− σ2/2

)
dt+ σ dW.
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Exponential Martingale

• The Ito process

dXt = btXt dWt

is a martingale.a

• It is called an exponential martingale.

• By Ito’s formula (84) on p. 613,

X(t) = X(0) exp

[
−1

2

∫ t

0

b2s ds+

∫ t

0

bs dWs

]
.

aRecall Theorem 18 (p. 598).
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Product of Geometric Brownian Motion Processes

• Let

dY

Y
= a dt+ b dWY ,

dZ

Z
= f dt+ g dWZ .

• Assume dWY and dWZ have correlation ρ.

• Consider the Ito process

U
Δ
= Y Z.
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Product of Geometric Brownian Motion Processes
(continued)

• Apply Ito’s lemma (Theorem 21 on p. 619):

dU = Z dY + Y dZ + dY dZ

= ZY (a dt+ b dWY ) + Y Z(f dt+ g dWZ)

+Y Z(a dt+ b dWY )(f dt+ g dWZ)

= U(a+ f + bgρ) dt+ Ub dWY + Ug dWZ .

• The product of correlated geometric Brownian motion

processes thus remains geometric Brownian motion.

c©2025 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 627



Product of Geometric Brownian Motion Processes
(continued)

• Note that

Y (t) = Y (0) exp
[(
a− b2/2

)
t+ bWY (t)

]
,

Z(t) = Z(0) exp
[(
f − g2/2

)
t+ gWZ(t)

]
,

U(t) = U(0) exp
{ [

a+ f − (
b2 + g2

)
/2

]
t

+bWY (t) + gWZ(t) } .

• They are the strong solutions.
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Product of Geometric Brownian Motion Processes
(concluded)

• lnU is Brownian motion with a mean equal to the sum

of the means of lnY and lnZ.

• This holds even if Y and Z are correlated.

• Finally, lnY and lnZ have correlation ρ.
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Quotients of Geometric Brownian Motion Processes

• Suppose Y and Z are drawn from p. 626.

• Let

U
Δ
= Y/Z.

• We now show thata

dU

U
=

(
a− f + g2 − bgρ

)
dt+ b dWY − g dWZ . (89)

• Keep in mind that dWY and dWZ have correlation ρ.

aExercise 14.3.6 of the textbook is erroneous.
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Quotients of Geometric Brownian Motion Processes
(concluded)

• The multidimensional Ito’s lemma (Theorem 21 on

p. 619) can be employed to show thata

dU

= (1/Z) dY − (Y/Z2) dZ − (1/Z2) dY dZ + (Y/Z3) (dZ)2

= (1/Z)(aY dt+ bY dWY )− (Y/Z2)(fZ dt+ gZ dWZ)

−(1/Z2)(bgY Zρ dt) + (Y/Z3)(g2Z2 dt)

= U(a dt+ b dWY )− U(f dt+ g dWZ)

−U(bgρ dt) + U(g2 dt)

= U(a− f + g2 − bgρ) dt+ Ub dWY − Ug dWZ .

aAs ∂2U/∂Y 2 = 0, the (dY )2 term is ignored.
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Forward Price

• Suppose S follows

dS

S
= μ dt+ σ dW.

• Consider functional F (S, t)
Δ
= Sey(T−t) for constants y

and T .

• As F is a function of two variables, we need the various

partial derivatives of F (S, t) with respect to S and t.a

aIn partial differentiation with respect to one variable, other variables

are held constant. Contributed by Mr. Sun, Ao (R05922147) on April 26,

2017.

c©2025 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 632



Forward Prices (continued)

• Now,

∂F

∂S
= ey(T−t),

∂2F

∂S2
= 0,

∂F

∂t
= −ySey(T−t).

• Thena

dF = ey(T−t) dS − ySey(T−t) dt

= Sey(T−t) (μ dt+ σ dW )− ySey(T−t) dt

= F (μ− y) dt+ Fσ dW.

aOne can also prove it by Eq. (86) on p. 618.
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Forward Prices (concluded)

• Thus F follows

dF

F
= (μ− y) dt+ σ dW.

• This result has applications in forward and futures

contracts.

• In Eq. (61) on p. 494, μ = r = y.

• So
dF

F
= σ dW,

a martingale.a

aIt is consistent with p. 570. Furthermore, it explains why Black’s

formulas (69)–(70) on p. 522 use the volatility σ of the stock.
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Ornstein-Uhlenbeck (OU) Process

• The OU process:

dX = −κX dt+ σ dW,

where κ, σ ≥ 0.

• For t0 ≤ s ≤ t and X(t0) = x0, it is known that

E[X(t) ] = e−κ(t−t0) E[x0 ],

Var[X(t) ] =
σ2

2κ

[
1− e−2κ(t−t0)

]
+ e−2κ(t−t0) Var[x0 ],

Cov[X(s), X(t) ] =
σ2

2κ
e−κ(t−s)

[
1− e−2κ(s−t0)

]

+e−κ(t+s−2t0) Var[x0 ].
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Ornstein-Uhlenbeck Process (continued)

• X(t) is normally distributed if x0 is a constant or

normally distributed.

– E[x0 ] = x0 and Var[x0 ] = 0 if x0 is a constant.

• X is said to be a normal process.

• The OU process has the following mean-reverting

property if κ > 0.

– When X > 0, X is pulled toward zero.

– When X < 0, it is pulled toward zero again.
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Ornstein-Uhlenbeck Process (continued)

• A generalized version:

dX = κ(μ−X) dt+ σ dW,

where κ, σ ≥ 0.

• Given X(t0) = x0, a constant, it is known that

E[X(t) ] = μ+ (x0 − μ) e−κ(t−t0), (90)

Var[X(t) ] =
σ2

2κ

[
1− e−2κ(t−t0)

]
,

for t0 ≤ t.
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Ornstein-Uhlenbeck Process (concluded)

• The mean and standard deviation are roughly μ and

σ/
√
2κ , respectively.

• For large t, the probability of X < 0 is extremely

unlikely in any finite time interval when μ > 0 is large

relative to σ/
√
2κ .

• The process is mean-reverting.

– X tends to move toward μ.

– Useful for modeling term structure, stock price

volatility, and stock price return.a

aSee Knutson, Wimmer, Kuhnen, & Winkielman (2008) for the bio-

logical basis for mean reversion in financial decision making.
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Square-Root Process

• Suppose X is an OU process.

• Consider

V
Δ
= X2.

• Ito’s lemma says V has the differential,

dV = 2X dX + (dX)2

= 2
√
V (−κ

√
V dt+ σ dW ) + σ2 dt

=
(−2κV + σ2

)
dt+ 2σ

√
V dW,

a square-root process.
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Square-Root Process (continued)

• In general, the square-root process has the SDE,

dX = κ(μ−X) dt+ σ
√
X dW,

where κ, σ > 0, μ ≥ 0, and X(0) ≥ 0 is a constant.

• Like the OU process, it possesses mean reversion: X

tends to move toward μ, but the volatility is

proportional to
√
X instead of a constant.
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Square-Root Process (continued)

• When X hits zero and μ ≥ 0, the probability is one

that it will not move below zero.

– Zero is a reflecting boundary.

• Hence, the square-root process is a good candidate for

modeling interest rates.a

• The OU process, in contrast, allows negative interest

rates.b

• The two processes are related.c

aCox, Ingersoll, & Ross (1985).
bBut some rates did go negative in Europe in 2015.
cRecall p. 639.
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Square-Root Process (concluded)

• The random variable 2cX(t) follows the noncentral

chi-square distribution,a

χ

(
4κμ

σ2
, 2cX(0) e−κt

)
,

where c
Δ
= (2κ/σ2)(1− e−κt)−1 and μ > 0.

• Given X(0) = x0, a constant,

E[X(t) ] = x0e
−κt + μ

(
1− e−κt

)
,

Var[X(t) ] = x0
σ2

κ

(
e−κt − e−2κt

)
+ μ

σ2

2κ

(
1− e−κt

)2
,

for t ≥ 0.
aWilliam Feller (1906–1970) in 1951.

c©2025 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 642



Modeling Stock Prices

• The most popular stochastic model for stock prices has

been the geometric Brownian motion,

dS

S
= μ dt+ σ dW.

• The logarithmic price X
Δ
= lnS follows

dX =

(
μ− σ2

2

)
dt+ σ dW

by Eq. (87) on p. 622.
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Local-Volatility Models

• The deterministic-volatility model for “smile” posits

dS

S
= (rt − qt) dt+ σ(S, t) dW,

where instantaneous volatility σ(S, t) is called the

local-volatility function.a

– “The most popular model after Black-Scholes is a

local volatility model as it is the only completely

consistent volatility model.”

• A (weak) solution exists if Sσ(S, t) is continuous and

grows at most linearly in S and t.b

aDerman & Kani (1994); Dupire (1994).
bSkorokhod (1961); Achdou & Pironneau (2005).
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Local-Volatility Models (continued)

• One needs to recover the local volatility surface σ(S, t)

from the implied volatility surface.a

• Theoretically,b

σ(X,T )2 = 2
∂C
∂T + (rT − qT )X

∂C
∂X + qTC

X2 ∂2C
∂X2

. (91)

– C is the call price at time t = 0 (today) with strike

price X and time to maturity T .

– σ(X,T ) is the local volatility that will prevail at

future time T and stock price ST = X .

aAlso called the volatility smile surface (Alexander, 2001).
bDupire (1994); Andersen & Brotherton-Ratcliffe (1998).
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Local-Volatility Models (continued)

• For more general models, this equation gives the

expectation as seen from today, under the risk-neural

probability, of the instantaneous variance at time T

given that ST = X .a

• In practice, the σ(S, t)2 derived by Dupire’s formula (91)

may have spikes, vary wildly, or even be negative.

• The term ∂2C/∂X2 in the denominator often results in

numerical instability.

aDerman & Kani (1997); R. W. Lee (2001); Derman & M. B. Miller

(2016).
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Local-Volatility Models (continued)

• Denote the implied volatility surface by Σ(X,T ) and the

local volatility surface by σ(S, t).

• The relation between Σ(X,T ) and σ(X,T ) isa

σ(X,T )2 =
Σ2 + 2Στ

[
∂Σ
∂T

+ (rT − qT )X
∂Σ
∂X

]
(
1− Xy

Σ
∂Σ
∂X

)2
+XΣτ

[
∂Σ
∂X

− XΣτ
4

(
∂Σ
∂X

)2
+X ∂2Σ

∂X2

] ,
τ

Δ
= T − t,

y
Δ
= ln(X/St) +

∫ T

t

(qs − rs) ds.

aAndreasen (1996); Andersen & Brotherton-Ratcliffe (1998);

Gatheral (2003); Wilmott (2006); Kamp (2009).
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Local-Volatility Models (continued)

• Although this version may be more stable than Eq. (91)

on p. 645, it is expected to suffer from the same

problems.

• Small changes to the implied volatility surface may

produce big changes to the local volatility surface.
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Implied and Local Volatility Surfacesa
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aContributed by Mr. Lok, U Hou (D99922028) on April 5, 2014.
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Local-Volatility Models (continued)

• In reality, option prices only exist for a finite set of

maturities and strike prices.

• Hence interpolation and extrapolation may be needed to

construct the volatility surface.a

• But then some implied volatility surfaces generate

option prices that allow arbitrage opportunities.b

aAndreasen & Huge (2010). Doing it to the option prices produces

worse results (Li, 2000/2001).
bSee Rebonato (2004) for an example.
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Local-Volatility Models (concluded)

• There exist conditions for a set of option prices to be

arbitrage-free.a

• Some adopt parameterized implied volatility surfaces

that guarantee freedom from certain arbitrages.b

• For some vanilla equity options, the Black-Scholes model

seems better than the local-volatility model in predictive

power.c

• The exact opposite is concluded for hedging in equity

index markets!d

aKahalé (2004); Davis & Hobson (2007).
bGatheral & Jacquier (2014).
cDumas, Fleming, & Whaley (1998).
dCrépey (2004); Derman & M. B. Miller (2016).
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Local-Volatility Models: Popularity

• Hirsa and Neftci (2014), “most traders and firms

actively utilize this [local-volatility] model.”

• Bennett (2014), “Of all the four volatility regimes,

[sticky local volatility] is arguably the most realistic and

fairly prices skew.”

• Derman & M. B. Miller (2016), “Right or wrong, local

volatility models have become popular and ubiquitous in

modeling the smile.”
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Implied Trees

• The trees for the local-volatility model are called implied

trees.a

• Their construction requires option prices at all strike

prices and maturities.

– That is, an implied volatility surface.

• The local volatility model does not imply that the

implied tree must combine.

• Exponential-sized implied trees exist.b

aDerman & Kani (1994); Dupire (1994); Rubinstein (1994).
bCharalambousa, Christofidesb, & Martzoukosa (2007); Gong & Xu

(2019).
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Implied Trees (continued)

• How to construct a valid implied tree with efficiency has

been open for a long time.a

– Reasons may include: noise and nonsynchrony in

data, arbitrage opportunities in the smoothed and

interpolated/extrapolated implied volatility surface,

wrong model, wrong algorithms, nonlinearity,

instability, etc.

• Inversion is generally an ill-posed numerical problem.b

aRubinstein (1994); Derman & Kani (1994); Derman, Kani, & Chriss

(1996); Jackwerth & Rubinstein (1996); Jackwerth (1997); Coleman,

Kim, Li, & Verma (2000); Li (2000/2001); Rebonato (2004); Moriggia,

Muzzioli, & Torricelli (2009).
bAyache, Henrotte, Nassar, & X. Wang (2004).
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Implied Trees (continued)

• It is finally solved for separable local volatilities.a

– The local-volatility function σ(S, t) is separableb if

σ(S, t) = σ1(S)σ2(t).

• A solution is available for any range-bounded σ.c

• A combining implied trinomial tree can also be obtained

from double-barrier options.d

aLok (D99922028) & Lyuu (2015, 2016, 2017).
bBrace, Ga̧tarek, & Musiela (1997); Rebonato (2004).
cLok (D99922028) & Lyuu (2016, 2017, 2020, 2021).
dB. C. Chen (R09922147) (2022); Lok (D99922028) & Lyuu (2024).
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Implied Treesa (concluded)
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aPlot supplied by Prof. Lok, U Hou (D99922028) on May 4, 2019.
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Delta Hedge under the Local-Volatility Model

• Delta by the implied tree differs from delta by the

Black-Scholes model’s implied volatility.

– The latter is by formula (46) or (47) (p. 349) after

calculating the implied volatility from the same

option price by the implied tree.

• Hence the profits and losses of their delta hedges will

differ.

• The next plot shows the best 100 out of 100,000 random

paths where the implied tree delta outperforms the

Black-Scholes delta.a

aIn terms of profits and losses. Plot supplied by Mr. Chiu, Tzu-Hsuan

(R08723061) on November 20, 2021 when hedging a long call.
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Delta Hedge under the Local-Volatility Model
(concluded)

• The next plot shows the best 100 out of 100,000 random

paths where the Black-Scholes delta outperforms the

implied tree delta.a

aPlot supplied by Mr. Chiu, Tzu-Hsuan (R08723061) on November

20, 2021 when again hedging a long call.
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The Hull-White Model

• Hull and White (1987) postulate the following

stochastic-volatility model,

dS

S
= r dt+

√
V dW1,

dV = μvV dt+ bV dW2.

• Above, V is the instantaneous variance.

• They assume μv depends on V and t (but not S).
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The Barone-Adesi–Rasmussen–Ravanelli Model

• Barone-Adesi, Rasmussen, and Ravanelli (2005)

postulate the following model,

dS

S
= μ dt+

√
V dW1,

dV = κ(θ − V ) dt+ bV dW2.

• Above, W1 and W2 are correlated.
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The Stein-Stein Model

• E. Stein and J. Stein (1991) postulate the following

model,

dS

S
= r dt+ V dW1,

dV = κ(μ− V ) dt+ σ dW.

• Closed-form formulas exist for European calls and puts.a

aSchöbel & J. Zhu (1999).
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The SABR Model

• Hagan, Kumar, Lesniewski, and Woodward (2002)

postulate the following model,

dS

S
= r dt+ SθV dW1,

dV = bV dW2,

for 0 ≤ θ ≤ 1.

• A nice feature of this model is that the implied volatility

surface has a compact, approximate closed form.
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The Blacher Model

• Blacher (2001) postulates the following model,

dS

S
= r dt+ σ

[
1 + α(S − S0) + β(S − S0)

2
]
dW1,

dσ = κ(θ − σ) dt+ εσ dW2.

• The volatility σ follows a mean-reverting process to level

θ.
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The Hilliard-Schwartz Model

• Hilliard and Schwartz (1996) postulate the following

very general model,

dS

S
= r dt+ f(S)V a dW1,

dV = μ(V ) dt+ bV dW2,

for some well-behaved function f(S) and constant a.

• It includes all previously mentioned stochastic-volatility

models as special cases.a

aH. Chiu (R98723059) (2012).
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Heston’s Stochastic-Volatility Model

• Heston (1993) assumes the stock price follows

dS

S
= (μ− q) dt+

√
V dW1, (92)

dV = κ(θ − V ) dt+ σ
√
V dW2. (93)

– V is the instantaneous variance, which follows a

square-root process.

– dW1 and dW2 have correlation ρ.

– The riskless rate r is constant.

• It may be the most popular continuous-time

stochastic-volatility model.a

aChristoffersen, Heston, & Jacobs (2009).
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Heston’s Stochastic-Volatility Model (continued)

• Heston assumes the market price of risk is b2
√
V .

• So μ = r + b2V .

• Define

dW ∗
1 = dW1 + b2

√
V dt,

dW ∗
2 = dW2 + ρb2

√
V dt,

κ∗ = κ+ ρb2σ,

θ∗ =
θκ

κ+ ρb2σ
.

• dW ∗
1 and dW ∗

2 have correlation ρ.
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Heston’s Stochastic-Volatility Model (continued)

• Under the risk-neutral probability measure Q, both W ∗
1

and W ∗
2 are Wiener processes.

• Heston’s model becomes, under probability measure Q,

dS

S
= (r − q) dt+

√
V dW ∗

1 ,

dV = κ∗(θ∗ − V ) dt+ σ
√
V dW ∗

2 .

• The boundary conditions can be intricate.a

aS.-P. Zhu & C.-Y. Liu (2024).
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Heston’s Stochastic-Volatility Model (continued)

• Define

φ(u, τ) = exp { ıu(lnS + (r − q) τ)

+θ∗κ∗σ−2

[
(κ∗ − ρσuı− d) τ − 2 ln

1− ge−dτ

1− g

]

+
vσ−2(κ∗ − ρσuı− d)

(
1− e−dτ

)
1− ge−dτ

}
,

d =
√

(ρσuı− κ∗)2 − σ2(−ıu− u2) ,

g = (κ∗ − ρσuı− d)/(κ∗ − ρσuı+ d).
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Heston’s Stochastic-Volatility Model (continued)

The formulas for European calls and puts area

C = S

[
1

2
+

1

π

∫ ∞

0
Re

(
X−ıuφ(u− ı, τ)

ıuSerτ

)
du

]

−Xe−rτ

[
1

2
+

1

π

∫ ∞

0
Re

(
X−ıuφ(u, τ)

ıu

)
du

]
,

P = Xe−rτ

[
1

2
− 1

π

∫ ∞

0
Re

(
X−ıuφ(u, τ)

ıu

)
du

]
,

−S

[
1

2
− 1

π

∫ ∞

0
Re

(
X−ıuφ(u− ı, τ)

ıuSerτ

)
du

]
,

where ı =
√−1 and Re(x) denotes the real part of the

complex number x.

aContributed by Mr. Chen, Chun-Ying (D95723006) on August 17,

2008 and Mr. Liou, Yan-Fu (R92723060) on August 26, 2008. See Lord &

Kahl (2009) and Cui, Rollin, & Germano (2017) for alternative formulas.
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Heston’s Stochastic-Volatility Model (concluded)

• For American options, trees are needed.

• They are all O(n3)-sized and do not match all

moments.a

• An O(n2.5)-sized 9-jump tree that matches all means

and variances with valid probabilities is available.b

• The size reduces to O(n2) for knock-out double-barrier

options.c

aNelson & Ramaswamy (1990); Nawalkha & Beliaeva (2007); Leisen

(2010); Beliaeva & Nawalkha (2010); M. Chou (R02723073) (2015); M.

Chou (R02723073) & Lyuu (2016).
bZ. Lu (D00922011) & Lyuu (2018).
cZ. Lu (D00922011) & Lyuu (2018).
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Stochastic-Volatility Models and Further Extensionsa

• How to explain the October 1987 crash?

– The Dow Jones Industrial Average fell 22.61% on

October 19, 1987 (called the Black Monday).

– The CBOE S&P 100 Volatility Index (VXO) shot up

to 150%, the highest VXO ever recorded.b

• Stochastic-volatility models require an implausibly

high-volatility level prior to and after the crash.

– Because the processes are continuous.

• Discontinuous jump models in the asset price can

alleviate the problem somewhat.c

aEraker (2004).
bCaprio (2012).
cMerton (1976).
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Stochastic-Volatility Models and Further Extensions
(continued)

• But if the jump intensity is a constant, it cannot explain

the tendency of large movements to cluster over time.

• This assumption also has no impacts on option prices.

• Jump-diffusion models combine both.

– E.g., add a jump process to Eq. (92) on p. 667.

– Closed-form formulas exist for GARCH-jump option

pricing models.a

aLiou (R92723060) (2005).
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Stochastic-Volatility Models and Further Extensions
(concluded)

• But they still do not adequately describe the systematic

variations in option prices.a

• Jumps in volatility are alternatives.b

– E.g., add correlated jump processes to Eqs. (92) and

Eq. (93) on p. 667.

• Such models allow high level of volatility caused by a

jump to volatility.c

aBates (2000); Pan (2002).
bDuffie, Pan, & Singleton (2000).
cEraker, Johnnes, & Polson (2000); Y. Lin (2007); S.-P. Zhu & Lian

(2012).
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Why Are Trees for Stochastic-Volatility Models
Difficult?

• The CRR tree is 2-dimensional.a

• The constant volatility makes the span from any node

fixed.

• But a tree for a stochastic-volatility model must be

3-dimensional.

– Every node is associated with a combination of stock

price and volatility.

aRecall p. 302.
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Why Are Trees for Stochastic-Volatility Models
Difficult (Binomial Case)?
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Why Are Trees for Stochastic-Volatility Models
Difficult (Trinomial Case)?
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Why Are Trees for Stochastic-Volatility Models
Difficult? (concluded)

• Locally, the tree looks fine for one time step.

• But the volatility regulates the spans of the nodes on

the stock-price plane.

• Unfortunately, those spans differ from node to node

because the volatility varies.

• So two time steps from now, the branches will not

combine!

• Smart ideas are thus needed.
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Complexities of Stochastic-Volatility Models

• A few stochastic-volatility models suffer from

subexponential (c
√
n) tree size.

• Examples include the Hull-White (1987),

Hilliard-Schwartz (1996), and SABR (2002) models.a

• Future research may extend this negative result to more

stochastic-volatility models.

– We suspect many GARCH option pricing models

entertain similar problems.b

aH. Chiu (R98723059) (2012).
bY. C. Chen (R95723051) (2008); Y. C. Chen (R95723051), Lyuu, &

Wen (D94922003) (2011).
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Complexities of Stochastic-Volatility Models
(concluded)

• Flexible placement of nodes and removal of

low-probability nodes may make the models

O(n2.5)-sized!a

• Calibration can be computationally hard.

– Few have tried it on exotic options.b

• There are usually several local minima.c

– They will give different prices to options not used in

the calibration.

– But which set capture the smile dynamics?
aZ. Lu (D00922011) & Lyuu (2018).
bAyache, Henrotte, Nassar, & X. Wang (2004).
cAyache (2004).
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Continuous-Time Derivatives Pricing
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I have hardly met a mathematician

who was capable of reasoning.

— Plato (428 B.C.–347 B.C.)

Fischer [Black] is the only real genius

I’ve ever met in finance. Other people,

like Robert Merton or Stephen Ross,

are just very smart and quick,

but they think like me.

Fischer came from someplace else entirely.

— John C. Cox, quoted in Mehrling (2005)
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Toward the Black-Scholes Differential Equation

• The price of any derivative on a non-dividend-paying

stock must satisfy a partial differential equation (PDE).

• The key step is recognizing that the same random

process drives both securities.

– Their prices are perfectly correlated.

• We then figure out the amount of stock such that the

gain from it offsets exactly the loss from the derivative.

• The removal of uncertainty forces the portfolio’s return

to be the riskless rate.

• PDEs make many numerical methods applicable.
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Assumptionsa and Notations

• The stock price follows dS = μS dt+ σS dW .

• There are no dividends.

• Trading is continuous, and short selling is allowed.

• There are no transactions costs or taxes.

• All securities are infinitely divisible.

• The term structure of riskless rates is flat at r.

• There is unlimited riskless borrowing and lending.

• t is the current time, T is the expiration time, and

τ
Δ
= T − t.

aDerman & Taleb (2005) summarizes criticisms on these assumptions

and the replication argument.
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Black-Scholes Differential Equation

• Let C be the price of a simple derivativea on S.

• From Ito’s lemma (p. 615),

dC =

(
μS

∂C

∂S
+

∂C

∂t
+

1

2
σ2S2 ∂2C

∂S2

)
dt+ σS

∂C

∂S
dW.

– The same W drives both C and S.

– Unlike dS/S, the diffusion of dC/C is stochastic!

• Short one derivative and long ∂C/∂S shares of stock

(call it Π).

• By construction,

Π = −C + S(∂C/∂S).

aRecall p. 439.
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Black-Scholes Differential Equation (continued)

• The change in the value of the portfolio at time dt isa

dΠ = −dC +
∂C

∂S
dS. (94)

• Substitute the formulas for dC and dS into the above

to yield

dΠ =

(
−∂C

∂t
− 1

2
σ2S2 ∂2C

∂S2

)
dt.

• As this equation does not involve dW , the portfolio is

riskless during dt time: dΠ = rΠ dt.

aBergman (1982) and Bartels (1995) argue this is not quite right. But

see Macdonald (1997). Mathematically, it is wrong (Bingham & Kiesel,

2004).
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Black-Scholes Differential Equation (continued)

• So (
∂C

∂t
+

1

2
σ2S2 ∂2C

∂S2

)
dt = r

(
C − S

∂C

∂S

)
dt.

• Equate the terms to finally obtaina

∂C

∂t
+ rS

∂C

∂S
+

1

2
σ2S2 ∂2C

∂S2
= rC.

• This is a backward equation, which describes the

dynamics of a derivative’s price forward in physical time.

aKnown as the Feynman-Kac stochastic representation formula.
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Black-Scholes Differential Equation (concluded)

• When there is a dividend yield q,

∂C

∂t
+ (r − q)S

∂C

∂S
+

1

2
σ2S2 ∂2C

∂S2
= rC. (95)

• Dupire’s formulaa (91) for the local-volatility model is

simply its dual:b

∂C

∂T
+ (rT − qT )X

∂C

∂X
− 1

2
σ(X,T )2X2 ∂

2C

∂X2
= −qTC.

• This is a forward equation, which describes the dynamics

of a derivative’s price backward in maturity time.

aRecall p. 645.
bDerman & Kani (1997).
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Rephrase

• The Black-Scholes differential equation can be expressed

in terms of sensitivity numbers,

Θ + rSΔ+
1

2
σ2S2Γ = rC. (96)

• Identity (96) leads to an alternative way of computing

Θ numerically from Δ and Γ.

• When a portfolio is delta-neutral,

Θ +
1

2
σ2S2Γ = rC.

– A definite relation thus exists between Γ and Θ.

c©2025 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 690



[ Black ] got the equation [ in 1969 ] but then

was unable to solve it. Had he been a better

physicist he would have recognized it as a form

of the familiar heat exchange equation,

and applied the known solution. Had he been

a better mathematician, he could have

solved the equation from first principles.

Certainly Merton would have known exactly

what to do with the equation

had he ever seen it.

— Perry Mehrling (2005)
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