Futures Price under the BOPM

- Futures prices form a martingale under the risk-neutral probability $p_{\rm f}$.^a
 - The expected futures price in the next period is

$$p_{\rm f}Fu + (1-p_{\rm f})Fd = F\left(\frac{1-d}{u-d}u + \frac{u-1}{u-d}d\right) = F.$$

• Can be generalized to

$$F_i = E_i^{\pi} [F_k], \quad i \le k,$$

where F_i is the futures price at time *i*.

• This equation holds under stochastic interest rates, too.^b

^aRecall Eq. (71) on p. 526.

^bSee Exercise 13.2.11 of the textbook.

Futures Price under the BOPM (concluded)

• Futures prices do *not* form a martingale under the risk-neutral probability p = (R - d)/(u - d).^a

– The expected futures price in the next period equals

$$Fu \frac{R-d}{u-d} + Fd \frac{u-R}{u-d}$$
$$= F\frac{uR-ud}{u-d} + F\frac{ud-Rd}{u-d}$$
$$= FR.$$

^aRecall Eq. (34) on p. 257.

Martingale Pricing and Numeraire $^{\rm a}$

- The martingale pricing formula (77) on p. 567 uses the money market account as numeraire.
 - It expresses the price of any asset *relative to* the money market account.^b
- The money market account is not the only choice for numeraire.
- Suppose asset S's value is *positive* at all time.

^aJohn Law (1671–1729), "Money to be qualified for exchaning goods and for payments need not be certain in its value." ^bLeon Walras (1834–1910).

Martingale Pricing and Numeraire (concluded)

- Choose S as numeraire.
- Martingale pricing says there exists a risk-neutral probability π under which the relative price of any asset C is a martingale:

$$\frac{C(i)}{S(i)} = E_i^{\pi} \left[\frac{C(k)}{S(k)} \right], \quad i \le k.$$

-S(j) denotes the price of S at time j.

• So the "discount" process remains a martingale.^a

^aThis result is related to Girsanov's theorem (1960).

Example

- Take the binomial model with two assets.
- In a period, asset one's price can go from S to S_1 or S_2 .
- In a period, asset two's price can go from P to P_1 or P_2 .
- Both assets must move up or down at the same time.
- Assume

$$\frac{S_1}{P_1} < \frac{S}{P} < \frac{S_2}{P_2}$$
 (78)

to rule out arbitrage opportunities.

Example (continued)

- For any derivative security, let C_1 be its price at time one if asset one's price moves to S_1 .
- Let C_2 be its price at time one if asset one's price moves to S_2 .
- Replicate the derivative by solving

$$\alpha S_1 + \beta P_1 = C_1,$$

$$\alpha S_2 + \beta P_2 = C_2,$$

using α units of asset one and β units of asset two.

Example (continued)

- By inequalities (78) on p. 574, α and β have unique solutions.
- In fact,

$$\alpha = \frac{P_2 C_1 - P_1 C_2}{P_2 S_1 - P_1 S_2}$$
 and $\beta = \frac{S_2 C_1 - S_1 C_2}{S_2 P_1 - S_1 P_2}$.

• The derivative costs

$$C = \alpha S + \beta P$$

= $\frac{P_2 S - P S_2}{P_2 S_1 - P_1 S_2} C_1 + \frac{P S_1 - P_1 S_1}{P_2 S_1 - P_1 S_2} C_2$

Example (continued)

• It is easy to verify that

$$\frac{C}{P} = p \, \frac{C_1}{P_1} + (1-p) \, \frac{C_2}{P_2}$$

with

$$p \stackrel{\Delta}{=} \frac{(S/P) - (S_2/P_2)}{(S_1/P_1) - (S_2/P_2)}.$$

- By inequalities (78) on p. 574, 0 .
- C's price using asset two as numeraire (i.e., C/P) is a martingale under the risk-neutral probability p.
- The expected returns of the two assets are *irrelevant*.

Example (concluded)

- In the BOPM, S is the stock and P is the bond.
- Furthermore, p assumes the bond is the numeraire.
- In the binomial option pricing formula (39) on p. 277, $S \sum b(j; n, pu/R)$ uses *stock* as the numeraire.
 - Its probability measure pu/R differs from p.
- SN(x) for the call and SN(-x) for the put in the Black-Scholes formulas (p. 308) use stock as the numeraire as well.^a

^aSee Exercise 13.2.12 of the textbook.

Brownian Motion $^{\rm a}$

- Brownian motion is a stochastic process $\{X(t), t \ge 0\}$ with the following properties.
 - **1.** X(0) = 0, unless stated otherwise.
 - **2.** for any $0 \le t_0 < t_1 < \cdots < t_n$, the random variables

 $X(t_k) - X(t_{k-1})$

for $1 \le k \le n$ are independent.^b

3. for $0 \le s < t$, X(t) - X(s) is normally distributed with mean $\mu(t-s)$ and variance $\sigma^2(t-s)$, where μ and $\sigma \ne 0$ are real numbers.

^aRobert Brown (1773–1858).

^bSo X(t) - X(s) is independent of X(r) for $r \le s < t$.

Brownian Motion (concluded)

- The existence and uniqueness of such a process is guaranteed by Wiener's theorem.^a
- This process will be called a (μ, σ) Brownian motion with drift μ and variance σ^2 .
- Although Brownian motion is a continuous function of t with probability one, it is almost nowhere differentiable.
- The (0,1) Brownian motion is called the Wiener process.
- If condition 3 is replaced by "X(t) X(s) depends only on t - s," we have the more general Levy process.^b

^aNorbert Wiener (1894–1964). He received his Ph.D. from Harvard in 1912.

^bPaul Levy (1886–1971).

Example

• If $\{X(t), t \ge 0\}$ is the Wiener process, then

$$X(t) - X(s) \sim N(0, t - s).$$

• A (μ, σ) Brownian motion $Y = \{Y(t), t \ge 0\}$ can be expressed in terms of the Wiener process:

$$Y(t) = \mu t + \sigma X(t). \tag{79}$$

• Note that

$$Y(t+s) - Y(t) \sim N(\mu s, \sigma^2 s).$$

Brownian Motion as Limit of Random Walk

Claim 1 A (μ, σ) Brownian motion is the limiting case of random walk.

- A particle moves Δx to the right with probability p after Δt time.
- It moves Δx to the left with probability 1-p.
- Define

 $X_i \stackrel{\Delta}{=} \begin{cases} +1 & \text{if the } i \text{th move is to the right,} \\ -1 & \text{if the } i \text{th move is to the left.} \end{cases}$

 $-X_i$ are independent with

$$\operatorname{Prob}[X_i = 1] = p = 1 - \operatorname{Prob}[X_i = -1].$$

Brownian Motion as Limit of Random Walk (continued)

• Recall

$$E[X_i] = 2p - 1,$$

 $Var[X_i] = 1 - (2p - 1)^2.$

- Assume $n \stackrel{\Delta}{=} t/\Delta t$ is an integer.
- Its position at time t is

$$Y(t) \stackrel{\Delta}{=} \Delta x \left(X_1 + X_2 + \dots + X_n \right).$$

Brownian Motion as Limit of Random Walk (continued)Therefore,

$$E[Y(t)] = n(\Delta x)(2p - 1),$$

Var[Y(t)] = $n(\Delta x)^2 [1 - (2p - 1)^2].$

• With
$$\Delta x \stackrel{\Delta}{=} \sigma \sqrt{\Delta t}$$
 and $p \stackrel{\Delta}{=} [1 + (\mu/\sigma)\sqrt{\Delta t}]/2,^{a}$
 $E[Y(t)] = n\sigma\sqrt{\Delta t} (\mu/\sigma)\sqrt{\Delta t} = \mu t,$
 $\operatorname{Var}[Y(t)] = n\sigma^{2}\Delta t [1 - (\mu/\sigma)^{2}\Delta t] \rightarrow \sigma^{2} t,$
as $\Delta t \rightarrow 0.$
^aIdentical to Eq. (42) on p. 300!

Brownian Motion as Limit of Random Walk (concluded)

- Thus, $\{Y(t), t \ge 0\}$ converges to a (μ, σ) Brownian motion by the central limit theorem.
- Brownian motion with zero drift is the limiting case of symmetric random walk by choosing $\mu = 0$.
- Similarity to the the BOPM: The p is identical to the probability in Eq. (42) on p. 300 and $\Delta x = \ln u$.
- Note that

 $\operatorname{Var}[Y(t + \Delta t) - Y(t)]$ = $\operatorname{Var}[\Delta x X_{n+1}] = (\Delta x)^2 \times \operatorname{Var}[X_{n+1}] \to \sigma^2 \Delta t.$

Geometric Brownian Motion

- Let $X \stackrel{\Delta}{=} \{ X(t), t \ge 0 \}$ be a Brownian motion process.
- The process

$$\{Y(t) \stackrel{\Delta}{=} e^{X(t)}, t \ge 0\},\$$

is called geometric Brownian motion.

- Suppose further that X is a (μ, σ) Brownian motion.
- By assumption, $Y(0) = e^0 = 1$.

Geometric Brownian Motion (concluded)

• $X(t) \sim N(\mu t, \sigma^2 t)$ with moment generating function

$$E\left[e^{sX(t)}\right] = E\left[Y(t)^s\right] = e^{\mu t s + (\sigma^2 t s^2/2)}$$

from Eq. (27) on p 173.

• In particular,^a

$$E[Y(t)] = e^{\mu t + (\sigma^2 t/2)},$$

$$\operatorname{Var}[Y(t)] = E[Y(t)^2] - E[Y(t)]^2$$

$$= e^{2\mu t + \sigma^2 t} \left(e^{\sigma^2 t} - 1\right).$$

^aRecall Eqs. (29) on p. 182.

An Argument for Long-Term Investment $^{\rm a}$

• Suppose the stock follows the geometric Brownian motion

$$S(t) = S(0) e^{N(\mu t, \sigma^2 t)} = S(0) e^{tN(\mu, \sigma^2/t)}, \quad t \ge 0,$$

where $\mu > 0$.

• The annual rate of return has a normal distribution:

$$N\left(\mu, \frac{\sigma^2}{t}\right)$$

- The larger the t, the likelier the return is positive.
- The smaller the t, the likelier the return is negative.

^aContributed by Dr. King, Gow-Hsing on April 9, 2015. See http://www.cb.idv.tw/phpbb3/viewtopic.php?f=7&t=1025

Continuous-Time Financial Mathematics

A proof is that which convinces a reasonable man; a rigorous proof is that which convinces an unreasonable man. — Mark Kac (1914–1984)

> The pursuit of mathematics is a divine madness of the human spirit. — Alfred North Whitehead (1861–1947), Science and the Modern World

Stochastic Integrals

- Use $W \stackrel{\Delta}{=} \{ W(t), t \ge 0 \}$ to denote the Wiener process.
- The goal is to develop integrals of X from a class of stochastic processes,^a

$$I_t(X) \stackrel{\Delta}{=} \int_0^t X \, dW, \quad t \ge 0.$$

- $I_t(X)$ is a random variable called the stochastic integral of X with respect to W.
- The stochastic process $\{I_t(X), t \ge 0\}$ will be denoted by $\int X \, dW$.

^aKiyoshi Ito (1915–2008).

Stochastic Integrals (concluded)

- Typical requirements for X in financial applications are: $-\operatorname{Prob}\left[\int_{0}^{t} X^{2}(s) \, ds < \infty\right] = 1 \text{ for all } t \ge 0 \text{ or the}$ stronger $\int_{0}^{t} E[X^{2}(s)] \, ds < \infty$.
 - The information set at time t includes the history of X and W up to that point in time.
 - But it contains nothing about the evolution of X or W after t (nonanticipating, so to speak).
 - The future cannot influence the present.

Ito Integral

- A theory of stochastic integration.
- As with calculus, it starts with step functions.
- A stochastic process $\{X(t)\}$ is simple if there exist

$$0 = t_0 < t_1 < \cdots$$

such that

$$X(t) = X(t_{k-1})$$
 for $t \in [t_{k-1}, t_k), k = 1, 2, ...$

for any realization (see figure on next page).^a

^aIt is right-continuous.

Ito Integral (continued)

• The Ito integral of a simple process is defined as

$$I_t(X) \stackrel{\Delta}{=} \sum_{k=0}^{n-1} X(t_k) [W(t_{k+1}) - W(t_k)], \quad (80)$$

where $t_n = t$.

- The integrand X is evaluated at t_k , not t_{k+1} .
- Define the Ito integral of more general processes as a limiting random variable of the Ito integral of simple stochastic processes.

Ito Integral (continued)

- Let $X = \{X(t), t \ge 0\}$ be a general stochastic process.
- There exists a random variable $I_t(X)$, unique almost certainly, such that $I_t(X_n)$ converges in probability to $I_t(X)$ for each sequence of simple stochastic processes X_1, X_2, \ldots that X_n converge in probability to X.
- If X is continuous with probability one, then $I_t(X_n)$ converges in probability to $I_t(X)$ as

$$\delta_n \stackrel{\Delta}{=} \max_{1 \le k \le n} (t_k - t_{k-1})$$

goes to zero.

Ito Integral (concluded)

- It is a fundamental fact that $\int X \, dW$ is continuous almost surely.
- The Ito integral is a martingale.^a

Theorem 18 The Ito integral $\int X \, dW$ is a martingale.

• A corollary is the mean value formula

$$E\left[\int_{a}^{b} X \, dW\right] = 0.$$

^aExercise 14.1.1 covers simple stochastic processes.

Discrete Approximation and Nonanticipation

- Recall Eq. (80) on p. 596.
- The following simple stochastic process $\{\hat{X}(t)\}$ can be used in place of X to approximate $\int_0^t X \, dW$,

$$\widehat{X}(s) \stackrel{\Delta}{=} X(t_{k-1}) \text{ for } s \in [t_{k-1}, t_k), \ k = 1, 2, \dots, n.$$

- Note the *nonanticipating* feature of \widehat{X} .
 - The information up to time s,

$$\{\,\widehat{X}(t), W(t), 0 \le t \le s\,\},\,$$

cannot determine the future evolution of X or W.

Discrete Approximation and Nonanticipation (concluded)

• Suppose, unlike Eq. (80) on p. 596, we defined the stochastic integral from

$$\sum_{k=0}^{n-1} X(t_{k+1}) [W(t_{k+1}) - W(t_k)].$$

• Then we would be using the following different simple stochastic process in the approximation,

$$\widehat{Y}(s) \stackrel{\Delta}{=} X(t_k) \text{ for } s \in [t_{k-1}, t_k), \ k = 1, 2, \dots, n.$$

• This clearly anticipates the future evolution of X.^a

^aSee Exercise 14.1.2 for an example where it matters.

Ito Process

• The stochastic process $X = \{X_t, t \ge 0\}$ that solves

$$X_t = X_0 + \int_0^t a(X_s, s) \, ds + \int_0^t b(X_s, s) \, dW_s, \quad t \ge 0$$

is called an Ito process.

- $-X_0$ is a scalar starting point.
- $\{a(X_t, t) : t \ge 0\}$ and $\{b(X_t, t) : t \ge 0\}$ are stochastic processes satisfying certain regularity conditions.
- $-a(X_t,t)$ is the drift.
- $-b(X_t,t)$ is the diffusion.

Ito Process (continued)

- Typical regularity conditions are:^a
 - For all $T > 0, x \in \mathbb{R}^n$, and $0 \le t \le T$,

$$|a(x,t)| + |b(x,t)| \le C(1 + |x|)$$

for some constant C.^b

- (Lipschitz continuity) For all $T > 0, x \in \mathbb{R}^n$, and $0 \le t \le T$,

$$|a(x,t) - a(y,t)| + |b(x,t) - b(y,t)| \le D |x - y|$$

for some constant D.

^aØksendal (2007).

^bThis condition is not needed in *time-homogeneous* cases, where a and b do not depend on t.

Ito Process (continued)

• A shorthand^a is the following stochastic differential equation^b (SDE) for the Ito differential dX_t ,

$$dX_t = a(X_t, t) dt + b(X_t, t) dW_t.$$
 (81)

- Or simply

$$dX_t = a_t \, dt + b_t \, dW_t.$$

- This is Brownian motion with an *instantaneous* drift a_t and an *instantaneous* variance b_t^2 .
- X is a martingale if $a_t = 0.^{c}$

^aPaul Langevin (1872-1946) in 1904.

^bLike any equation, an SDE contains an unknown, the process X_t . ^cRecall Theorem 18 (p. 598).

Ito Process (concluded)

- From calculus, we would expect $\int_0^t W \, dW = W(t)^2/2$.
- But $W(t)^2/2$ is not a martingale, hence wrong!
- The correct answer is $[W(t)^2 t]/2$.
- A popular representation of Eq. (81) is

$$dX_t = a_t \, dt + b_t \sqrt{dt} \, \xi, \tag{82}$$

where $\xi \sim N(0, 1)$.

Euler Approximation

- Define $t_n \stackrel{\Delta}{=} n\Delta t$.
- The following approximation follows from Eq. (82),

$$\widehat{X}(t_{n+1}) = \widehat{X}(t_n) + a(\widehat{X}(t_n), t_n) \,\Delta t + b(\widehat{X}(t_n), t_n) \,\Delta W(t_n).$$
(83)

- It is called the Euler or Euler-Maruyama method.
- Recall that $\Delta W(t_n)$ should be interpreted as

$$W(t_{n+1}) - W(t_n),$$

not $W(t_n) - W(t_{n-1})!^{a}$

^aRecall Eq. (80) on p. 596.

Euler Approximation (concluded)

• With the Euler method, one can obtain a sample path $\widehat{X}(t_1), \widehat{X}(t_2), \widehat{X}(t_3), \ldots$

from a sample path

 $W(t_0), W(t_1), W(t_2), \ldots$

• Under mild conditions, $\widehat{X}(t_n)$ converges to $X(t_n)$.

More Discrete Approximations

• Under fairly loose regularity conditions, Eq. (83) on p. 606 can be replaced by

$$\widehat{X}(t_{n+1}) = \widehat{X}(t_n) + a(\widehat{X}(t_n), t_n) \,\Delta t + b(\widehat{X}(t_n), t_n) \sqrt{\Delta t} \, Y(t_n).$$

- $Y(t_0), Y(t_1), \ldots$ are independent and identically distributed with zero mean and unit variance.

More Discrete Approximations (concluded)

• An even simpler discrete approximation scheme:

$$\widehat{X}(t_{n+1}) = \widehat{X}(t_n) + a(\widehat{X}(t_n), t_n) \,\Delta t + b(\widehat{X}(t_n), t_n) \sqrt{\Delta t} \,\xi.$$

$$- \operatorname{Prob}[\xi = 1] = \operatorname{Prob}[\xi = -1] = 1/2.$$

- Note that
$$E[\xi] = 0$$
 and $Var[\xi] = 1$.

- This is a binomial model.
- As Δt goes to zero, \widehat{X} converges to X.^a

^aHe (1990).

Trading and the Ito Integral

• Consider an Ito process

$$d\boldsymbol{S}_t = \mu_t \, dt + \sigma_t \, dW_t.$$

 $-S_t$ is the vector of security prices at time t.

- Let ϕ_t be a trading strategy denoting the quantity of each type of security held at time t.
 - Hence the stochastic process $\phi_t S_t$ is the value of the portfolio ϕ_t at time t.
- $\phi_t dS_t \stackrel{\Delta}{=} \phi_t(\mu_t dt + \sigma_t dW_t)$ is the change in the portfolio value from the changes in security prices at time t.

Trading and the Ito Integral (concluded)

• The equivalent Ito integral,

$$G_T(\boldsymbol{\phi}) \stackrel{\Delta}{=} \int_0^T \boldsymbol{\phi}_t \, d\boldsymbol{S}_t = \int_0^T \boldsymbol{\phi}_t \mu_t \, dt + \int_0^T \boldsymbol{\phi}_t \sigma_t \, dW_t,$$

measures the gains realized by the trading strategy over the period [0, T].