Futures Price under the BOPM

e Futures prices form a martingale under the risk-neutral
probability pg.?

— The expected futures price in the next period is

1 —d —1
pfF’LL+<1—pf)Fd:F( u+u d)IF

u—d u—d
e Can be generalized to
F,=E"[F], i<k,

where F; is the futures price at time 1.

e This equation holds under stochastic interest rates, too.”

2Recall Eq. (71) on p. 526.
bSee Exercise 13.2.11 of the textbook.
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Futures Price under the BOPM (concluded)

e Futures prices do not form a martingale under the
risk-neutral probability p = (R —d)/(u —d).2

— The expected futures price in the next period equals

R—d u— R
F Fd
uu—al+ u—d
ulR — ud ud — Rd
F F

u—d + u—d

FR.

2Recall Eq. (34) on p. 257.
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Martingale Pricing and Numeraire®

e The martingale pricing formula (77) on p. 567 uses the

money market account as numeraire.

— It expresses the price of any asset relative to the

money market account b

e The money market account is not the only choice for

numeraire.

e Suppose asset S’s value is positive at all time.

2John Law (1671-1729), “Money to be qualified for exchaning goods

and for payments need not be certain in its value.”
PLeon Walras (1834-1910).
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Martingale Pricing and Numeraire (concluded)
e Choose S as numeraire.

e Martingale pricing says there exists a risk-neutral
probability m under which the relative price of any asset

C' is a martingale:

C(z’)_EF[%]’ i<k

S@) " | S(k)
— S(j) denotes the price of S at time j.

e So the “discount” process remains a martingale.?

2This result is related to Girsanov’s theorem (1960).
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Example

Take the binomial model with two assets.

In a period, asset one’s price can go from S to S or

Sa.

In a period, asset two’s price can go from P to P; or
Ps.

Both assets must move up or down at the same time.

Assume < . <
1 2
2 <5< o (78)

to rule out arbitrage opportunities.
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Example (continued)

e For any derivative security, let C be its price at time

one if asset one’s price moves to S;.

e Let (5 be its price at time one if asset one’s price

moves to Ss.

e Replicate the derivative by solving

OéSl +6P1 Cla
aSo + BPs Co,

using « units of asset one and S units of asset two.
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Example (continued)

e By inequalities (78) on p. 574, o and (8 have unique

solutions.

e In fact,

LRGP S0 =810
- PgSl — P152 N SQPl — Slpg .

04

e The derivative costs

C asS + BP

P,S — PSs PS; — P S
C .
P>51 — P15 L P51 — P15 ’
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Example (continued)

It is easy to verify that

¢c_,%
P Pp

A (5/P)—(5:/P)

P S /P) = (S3/Py)
By inequalities (78) on p. 574, 0 < p < 1.

C’s price using asset two as numeraire (i.e., C'/P) is a
martingale under the risk-neutral probability p.

The expected returns of the two assets are irrelevant.
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Example (concluded)

In the BOPM, S is the stock and P is the bond.
Furthermore, p assumes the bond is the numeraire.
In the binomial option pricing formula (39) on p. 277,
S> b(j;n,pu/R) uses stock as the numeraire.

— Its probability measure pu/R differs from p.

SN (x) for the call and SN(—x) for the put in the
Black-Scholes formulas (p. 308) use stock as the

numeraire as well.?

aSee Exercise 13.2.12 of the textbook.
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Brownian Motion?

e Brownian motion is a stochastic process { X (t),t >0}

with the following properties.

1. X(0) = 0, unless stated otherwise.
2. forany 0 <tyg <t; <---<t,, the random variables

X(tk) — X(tk_l)

for 1 < k < n are independent.P

3. for 0 <s<t, X(t)— X(s) is normally distributed

with mean pu(t — s) and variance o?(t — s), where pu

and o # 0 are real numbers.

2Robert Brown (1773-1858).
PSo X (t) — X(s) is independent of X(r) for r < s < .
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Brownian Motion (concluded)

The existence and uniqueness of such a process is
guaranteed by Wiener’s theorem.?

This process will be called a (u,0) Brownian motion

with drift ¢ and variance o?2.

Although Brownian motion is a continuous function of ¢

with probability one, it is almost nowhere differentiable.
The (0, 1) Brownian motion is called the Wiener process.

If condition 3 is replaced by “ X (t) — X(s) depends only

on t —s,” we have the more general Levy process.”

2Norbert Wiener (1894-1964). He received his Ph.D. from Harvard
in 1912.
PPaul Levy (1886-1971).
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Example

o If { X(¢),t >0} is the Wiener process, then
X(t)— X(s) ~ N(0,t—s).

e A (u,0) Brownian motion ¥ ={Y (¢),t >0} can be

expressed in terms of the Wiener process:
Y(t)=put+oX(t). (79)

e Note that

Y(t+s)—Y(t) ~ N(us,o°s).
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Brownian Motion as Limit of Random Walk

Claim 1 A (u,0) Brownian motion is the limiting case of
random walk.

e A particle moves Ax to the right with probability p
after At time.

e It moves Ax to the left with probability 1 — p.
e Define

A +1 if the 2th move is to the right,

X;
—1 if the 2th move is to the left.

— X, are independent with

Prob| X; =1]=p=1—Prob[ X; = —1].
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Brownian Motion as Limit of Random Walk (continued)
e Recall
Bl X |
V&I’[XZ']

o Assume n 2 t/At is an integer.

e Its position at time ¢ is

Y(£) 2 Az (X1 4+ Xo+ -+ Xn).
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Brownian Motion as Limit of Random Walk (continued)

e Therefore,

Var[Y(t)] = n(Az)* [1—(2p —1)*].

With Az 2 o/Af and p 2 |14 (u/o)VAL]/22

ElY(t)] = noVAt(u/o)VAt= ut,
Var[Y(t)] = no’At[1— (u/o)’At] — ot

as At — 0.
2Identical to Eq. (42) on p. 300!
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Brownian Motion as Limit of Random Walk (concluded)

Thus, {Y(t),t > 0} converges to a (u,c) Brownian
motion by the central limit theorem.

Brownian motion with zero drift is the limiting case of

symmetric random walk by choosing p© = 0.

Similarity to the the BOPM: The p is identical to the
probability in Eq. (42) on p. 300 and Az = Inu.

Note that

Var[Y(t + At) — Y (t) ]
=Var[ Az X,41] = (Az)? x Var[ X,,11] — 0 At.
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Geometric Brownian Motion

Let X 2 { X (t),t >0} be a Brownian motion process.

The process
{y(n2e® =0}
is called geometric Brownian motion.

Suppose further that X is a (u, o) Brownian motion.

By assumption, Y (0) = e’ = 1.
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Geometric Brownian Motion (concluded)

e X(t) ~ N(ut,0°t) with moment generating function

B[eX0] = B[y ()] = ert o772

from Eq. (27) on p 173.
e In particular,®
E[Y(t)] = eHt+(7t/2)
Var[Y(t)] = E[Y(t)*]| — E[Y ()]

2 2
_ 2utto’t (ea t 1) .

2Recall Egs. (29) on p. 182.

©2025 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 587



©2025 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 588



An Argument for Long-Term Investment?®

Suppose the stock follows the geometric Brownian

motion

S(t) = S(0) N Bt = §(0) !N/t >,

where pu > 0.

The annual rate of return has a normal distribution:

0.2

e The larger the ¢, the likelier the return is positive.

e The smaller the ¢, the likelier the return is negative.

aContributed by Dr. King, Gow-Hsing on April 9, 2015. See
http://www.cb.idv.tw/phpbb3/viewtopic.php?f=7&t=1025
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Continuous-Time Financial Mathematics
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A proof is that which convinces a reasonable man;

a rigorous proof is that which convinces an

unreasonable man.

— Mark Kac (1914-1984)

The pursuit of mathematics is a

divine madness of the human spirit.

— Alfred North Whitehead (1861-1947),
Science and the Modern World
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Stochastic Integrals

Use W 2 {W(t),t >0} to denote the Wiener process.

The goal is to develop integrals of X from a class of

stochastic processes,®

t
It(X)é/ Xdw, t>0.
0

[;(X) is a random variable called the stochastic integral
of X with respect to W.

The stochastic process {1;(X),t > 0} will be denoted
by [XdW.

aKiyoshi Ito (1915-2008).
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Stochastic Integrals (concluded)

e Typical requirements for X in financial applications are:

— Prob[fOtXQ(s) ds <oo]=1 forall t >0 or the
stronger fg E[X?(s)]ds < 0.

— The information set at time ¢ includes the history of
X and W up to that point in time.

— But it contains nothing about the evolution of X or

W after t (nonanticipating, so to speak).

— The future cannot influence the present.
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lto Integral

e A theory of stochastic integration.
e As with calculus, it starts with step functions.

e A stochastic process { X(t) } is simple if there exist
O=tyg<t; <---
such that
X(t) = X(tg—1) for t € [tp_1,tr), k=1,2,...

for any realization (see figure on next page).?

21t is right-continuous.
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Ito Integral (continued)

e The Ito integral of a simple process is defined as

LX) 2 S X () Wlter) - W)l (80)
k=0

where t,, = t.
— The integrand X is evaluated at tg, not tx.;.
e Define the Ito integral of more general processes as a

limiting random variable of the Ito integral of simple

stochastic processes.
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Ito Integral (continued)

Let X ={X(¢),t >0} be a general stochastic process.

There exists a random variable I;(X), unique almost
certainly, such that I;(X,) converges in probability to
I;(X) for each sequence of simple stochastic processes
X1,Xo,... that X,, converge in probability to X.

If X is continuous with probability one, then I;(X,,)
converges in probability to I;(X) as

On 2 max (tk — tkz—l)
1<k<n

goes to zero.
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Ito Integral (concluded)

e It is a fundamental fact that [ X dW is continuous
almost surely.

e The Ito integral is a martingale.?

Theorem 18 The Ito integral [ X dW is a martingale.

e A corollary is the mean value formula

b
5 /W]O.

dExercise 14.1.1 covers simple stochastic processes.
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Discrete Approximation and Nonanticipation
e Recall Eq. (80) on p. 596.

e The following simple stochastic process { X(t)} can be

used in place of X to approximate fg X dW,

a X(tg—1) for s € [tx_1,tr), k=1,2,...,n.

e Note the nonanticipating feature of X.

— The information up to time s,
{X(t),W(t),0<t< s},

cannot determine the future evolution of X or W.
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Discrete Approximation and Nonanticipation
(concluded)

e Suppose, unlike Eq. (80) on p. 596, we defined the

stochastic integral from

S Xty ) [ Wlts1) — W(te) |
k=0

e Then we would be using the following different simple

stochastic process in the approximation,
Y(s) 2 X(t) for s € [tr_1,tx), k=1,2,...,n.

This clearly anticipates the future evolution of X.?

@See Exercise 14.1.2 for an example where it matters.
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lto Process

The stochastic process X = { X;,t > 0} that solves

t t
Xt:XO+/ a(XS,s)ds+/ b(Xs,s)dWs, t>0
0 0

is called an Ito process.

— X 1s a scalar starting point.
{a(Xs,t):t >0} and {b(Xs,t):t >0} are
stochastic processes satistying certain regularity

conditions.
a(X¢,t) is the drift.
b(X;,t) is the diffusion.
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Ito Process (continued)

e Typical regularity conditions are:*

— Forall T >0,z R*, and 0 <t < T,
laz,t) [+ bz, 1) | < C(1+ |z ])

for some constant C.P

— (Lipschitz continuity) For all T' > 0, x € R", and
0<t<T,
la(z,t) —aly,t) | + bz, t) = b(y,?) | < D]z —y|

for some constant D.

2(ksendal (2007).
PThis condition is not needed in time-homogeneous cases, where a

and b do not depend on .
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Ito Process (continued)

e A shorthand? is the following stochastic differential
equation® (SDE) for the Ito differential dX,

dXt = CL(Xt, t) dt + b(Xt, t) th (81)

— Or simply
dXt = Q¢ dt + bt th

— This is Brownian motion with an instantaneous drift

a; and an instantaneous variance b2,

e X is a martingale if a; = 0.¢

2Paul Langevin (1872—-1946) in 1904.

PTike any equation, an SDE contains an unknown, the process X;.
“Recall Theorem 18 (p. 598).
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Ito Process (concluded)

From calculus, we would expect fg W dW = W (t)?/2.

But W (t)?/2 is not a martingale, hence wrong!
The correct answer is [W ()% —t]/2.

A popular representation of Eq. (81) is
dX; = a; dt + bV dt €,

where & ~ N(0,1).
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Euler Approximation

Define ¢, 2 DAL

The following approximation follows from Eq. (82),

A~

X(thrl)
=X (tn) + a(X(tn), tn) At + b(X (tn), tn) AW (tn).

It is called the Euler or Euler-Maruyama method.

Recall that AW (t,,) should be interpreted as
W(tni1) = Witn),

not Wit,) — W(t,—1)!®

2Recall Eq. (80) on p. 596.
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Euler Approximation (concluded)

e With the Euler method, one can obtain a sample path

AN

X(tl)a 55@2)7 X(tS)a SRR
from a sample path

W(to), W(t1), W(ts), .. ..

e Under mild conditions, X (t,) converges to X (ty).
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More Discrete Approximations

e Under fairly loose regularity conditions, Eq. (83) on
p. 606 can be replaced by

AN

X(thrl)
=X (tn) + a(X (tn), tn) At + b(X (£0), tn) VALY (£,).

— Y (t9),Y(t1),... are independent and identically

distributed with zero mean and unit variance.
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More Discrete Approximations (concluded)

e An even simpler discrete approximation scheme:

X(thrl)

AN

=X (t) + a(X (tn), tn) At + b(X (t), tn)VALE.

— Prob|é = 1] =Prob[¢ =—-1] =1/2.
— Note that E[¢] =0 and Var[{]| = 1.

e This is a binomial model.

AN

e As At goes to zero, X converges to X.?

aHe (1990).
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Trading and the lto Integral

e Consider an Ito process
dSt — ¢ dt + o0y th
— S} is the vector of security prices at time t.

e Let @, be a trading strategy denoting the quantity of
each type of security held at time t.

— Hence the stochastic process @,5; is the value of the

portfolio ¢, at time ¢.

o ¢,dS; 2 ¢,(ju dt + o dW,) is the change in the
portfolio value from the changes in security prices at

time t.
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Trading and the Ito Integral (concluded)

e The equivalent Ito integral,

T T T
Gr(¢) 2 /0 b, dS; = /0 Bopie dt + /0 $,00 AWV,

measures the gains realized by the trading strategy over
the period [0,7].
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