
Futures Price under the BOPM

• Futures prices form a martingale under the risk-neutral

probability pf.
a

– The expected futures price in the next period is

pfFu+ (1− pf)Fd = F

(
1− d

u− d
u+

u− 1

u− d
d

)
= F.

• Can be generalized to

Fi = Eπ
i [Fk ], i ≤ k,

where Fi is the futures price at time i.

• This equation holds under stochastic interest rates, too.b

aRecall Eq. (71) on p. 526.
bSee Exercise 13.2.11 of the textbook.
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Futures Price under the BOPM (concluded)

• Futures prices do not form a martingale under the

risk-neutral probability p = (R − d)/(u− d).a

– The expected futures price in the next period equals

Fu
R − d

u− d
+ Fd

u−R

u− d

= F
uR− ud

u− d
+ F

ud−Rd

u− d
= FR.

aRecall Eq. (34) on p. 257.

c©2025 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 571



Martingale Pricing and Numerairea

• The martingale pricing formula (77) on p. 567 uses the

money market account as numeraire.

– It expresses the price of any asset relative to the

money market account.b

• The money market account is not the only choice for

numeraire.

• Suppose asset S’s value is positive at all time.

aJohn Law (1671–1729), “Money to be qualified for exchaning goods

and for payments need not be certain in its value.”
bLeon Walras (1834–1910).
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Martingale Pricing and Numeraire (concluded)

• Choose S as numeraire.

• Martingale pricing says there exists a risk-neutral

probability π under which the relative price of any asset

C is a martingale:

C(i)

S(i)
= Eπ

i

[
C(k)

S(k)

]
, i ≤ k.

– S(j) denotes the price of S at time j.

• So the “discount” process remains a martingale.a

aThis result is related to Girsanov’s theorem (1960).
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Example

• Take the binomial model with two assets.

• In a period, asset one’s price can go from S to S1 or

S2.

• In a period, asset two’s price can go from P to P1 or

P2.

• Both assets must move up or down at the same time.

• Assume
S1

P1
<

S

P
<

S2

P2
(78)

to rule out arbitrage opportunities.
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Example (continued)

• For any derivative security, let C1 be its price at time

one if asset one’s price moves to S1.

• Let C2 be its price at time one if asset one’s price

moves to S2.

• Replicate the derivative by solving

αS1 + βP1 = C1,

αS2 + βP2 = C2,

using α units of asset one and β units of asset two.
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Example (continued)

• By inequalities (78) on p. 574, α and β have unique

solutions.

• In fact,

α =
P2C1 − P1C2

P2S1 − P1S2
and β =

S2C1 − S1C2

S2P1 − S1P2
.

• The derivative costs

C = αS + βP

=
P2S − PS2

P2S1 − P1S2
C1 +

PS1 − P1S

P2S1 − P1S2
C2.

c©2025 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 576



Example (continued)

• It is easy to verify that

C

P
= p

C1

P1
+ (1− p)

C2

P2

with

p
Δ
=

(S/P )− (S2/P2)

(S1/P1)− (S2/P2)
.

• By inequalities (78) on p. 574, 0 < p < 1.

• C’s price using asset two as numeraire (i.e., C/P ) is a

martingale under the risk-neutral probability p.

• The expected returns of the two assets are irrelevant.
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Example (concluded)

• In the BOPM, S is the stock and P is the bond.

• Furthermore, p assumes the bond is the numeraire.

• In the binomial option pricing formula (39) on p. 277,

S
∑

b(j;n, pu/R) uses stock as the numeraire.

– Its probability measure pu/R differs from p.

• SN(x) for the call and SN(−x) for the put in the

Black-Scholes formulas (p. 308) use stock as the

numeraire as well.a

aSee Exercise 13.2.12 of the textbook.
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Brownian Motiona

• Brownian motion is a stochastic process {X(t), t ≥ 0 }
with the following properties.

1. X(0) = 0, unless stated otherwise.

2. for any 0 ≤ t0 < t1 < · · · < tn, the random variables

X(tk)−X(tk−1)

for 1 ≤ k ≤ n are independent.b

3. for 0 ≤ s < t, X(t)−X(s) is normally distributed

with mean μ(t− s) and variance σ2(t− s), where μ

and σ �= 0 are real numbers.

aRobert Brown (1773–1858).
bSo X(t)−X(s) is independent of X(r) for r ≤ s < t.
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Brownian Motion (concluded)

• The existence and uniqueness of such a process is

guaranteed by Wiener’s theorem.a

• This process will be called a (μ, σ) Brownian motion

with drift μ and variance σ2.

• Although Brownian motion is a continuous function of t

with probability one, it is almost nowhere differentiable.

• The (0, 1) Brownian motion is called the Wiener process.

• If condition 3 is replaced by “X(t)−X(s) depends only

on t− s,” we have the more general Levy process.b

aNorbert Wiener (1894–1964). He received his Ph.D. from Harvard

in 1912.
bPaul Levy (1886–1971).
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Example

• If {X(t), t ≥ 0 } is the Wiener process, then

X(t)−X(s) ∼ N(0, t− s).

• A (μ, σ) Brownian motion Y = {Y (t), t ≥ 0 } can be

expressed in terms of the Wiener process:

Y (t) = μt+ σX(t). (79)

• Note that

Y (t+ s)− Y (t) ∼ N(μs, σ2s).
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Brownian Motion as Limit of Random Walk

Claim 1 A (μ, σ) Brownian motion is the limiting case of

random walk.

• A particle moves Δx to the right with probability p

after Δt time.

• It moves Δx to the left with probability 1− p.

• Define

Xi
Δ
=

⎧⎨⎩ +1 if the ith move is to the right,

−1 if the ith move is to the left.

– Xi are independent with

Prob[Xi = 1 ] = p = 1− Prob[Xi = −1 ].
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Brownian Motion as Limit of Random Walk (continued)

• Recall

E[Xi ] = 2p− 1,

Var[Xi ] = 1− (2p− 1)2.

• Assume n
Δ
= t/Δt is an integer.

• Its position at time t is

Y (t)
Δ
= Δx (X1 +X2 + · · ·+Xn) .
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Brownian Motion as Limit of Random Walk (continued)

• Therefore,

E[Y (t) ] = n(Δx)(2p− 1),

Var[Y (t) ] = n(Δx)2
[
1− (2p− 1)2

]
.

• With Δx
Δ
= σ

√
Δt and p

Δ
= [ 1 + (μ/σ)

√
Δt ]/2,a

E[Y (t) ] = nσ
√
Δt (μ/σ)

√
Δt = μt,

Var[Y (t) ] = nσ2Δt
[
1− (μ/σ)2Δt

] → σ2t,

as Δt → 0.

aIdentical to Eq. (42) on p. 300!
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Brownian Motion as Limit of Random Walk (concluded)

• Thus, {Y (t), t ≥ 0 } converges to a (μ, σ) Brownian

motion by the central limit theorem.

• Brownian motion with zero drift is the limiting case of

symmetric random walk by choosing μ = 0.

• Similarity to the the BOPM: The p is identical to the

probability in Eq. (42) on p. 300 and Δx = lnu.

• Note that

Var[Y (t+Δt)− Y (t) ]

=Var[ΔxXn+1 ] = (Δx)2 ×Var[Xn+1 ] → σ2Δt.

c©2025 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 585



Geometric Brownian Motion

• Let X
Δ
= {X(t), t ≥ 0 } be a Brownian motion process.

• The process

{Y (t)
Δ
= eX(t), t ≥ 0 },

is called geometric Brownian motion.

• Suppose further that X is a (μ, σ) Brownian motion.

• By assumption, Y (0) = e0 = 1.
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Geometric Brownian Motion (concluded)

• X(t) ∼ N(μt, σ2t) with moment generating function

E
[
esX(t)

]
= E [Y (t)s ] = eμts+(σ2ts2/2)

from Eq. (27) on p 173.

• In particular,a

E[Y (t) ] = eμt+(σ2t/2),

Var[Y (t) ] = E
[
Y (t)2

]− E[Y (t) ]2

= e2μt+σ2t
(
eσ

2t − 1
)
.

aRecall Eqs. (29) on p. 182.
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An Argument for Long-Term Investmenta

• Suppose the stock follows the geometric Brownian

motion

S(t) = S(0) eN(μt,σ2t) = S(0) etN(μ,σ2/t ), t ≥ 0,

where μ > 0.

• The annual rate of return has a normal distribution:

N

(
μ,

σ2

t

)
.

• The larger the t, the likelier the return is positive.

• The smaller the t, the likelier the return is negative.
aContributed by Dr. King, Gow-Hsing on April 9, 2015. See

http://www.cb.idv.tw/phpbb3/viewtopic.php?f=7&t=1025
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Continuous-Time Financial Mathematics
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A proof is that which convinces a reasonable man;

a rigorous proof is that which convinces an

unreasonable man.

— Mark Kac (1914–1984)

The pursuit of mathematics is a

divine madness of the human spirit.

— Alfred North Whitehead (1861–1947),

Science and the Modern World
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Stochastic Integrals

• Use W
Δ
= {W (t), t ≥ 0 } to denote the Wiener process.

• The goal is to develop integrals of X from a class of

stochastic processes,a

It(X)
Δ
=

∫ t

0

X dW, t ≥ 0.

• It(X) is a random variable called the stochastic integral

of X with respect to W .

• The stochastic process { It(X), t ≥ 0 } will be denoted

by
∫
X dW .

aKiyoshi Ito (1915–2008).
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Stochastic Integrals (concluded)

• Typical requirements for X in financial applications are:

– Prob[
∫ t

0
X2(s) ds < ∞ ] = 1 for all t ≥ 0 or the

stronger
∫ t

0
E[X2(s) ] ds < ∞.

– The information set at time t includes the history of

X and W up to that point in time.

– But it contains nothing about the evolution of X or

W after t (nonanticipating, so to speak).

– The future cannot influence the present.
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Ito Integral

• A theory of stochastic integration.

• As with calculus, it starts with step functions.

• A stochastic process {X(t) } is simple if there exist

0 = t0 < t1 < · · ·
such that

X(t) = X(tk−1) for t ∈ [ tk−1, tk), k = 1, 2, . . .

for any realization (see figure on next page).a

aIt is right-continuous.
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Ito Integral (continued)

• The Ito integral of a simple process is defined as

It(X)
Δ
=

n−1∑
k=0

X(tk)[W (tk+1)−W (tk) ], (80)

where tn = t.

– The integrand X is evaluated at tk, not tk+1.

• Define the Ito integral of more general processes as a

limiting random variable of the Ito integral of simple

stochastic processes.
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Ito Integral (continued)

• Let X = {X(t), t ≥ 0 } be a general stochastic process.

• There exists a random variable It(X), unique almost

certainly, such that It(Xn) converges in probability to

It(X) for each sequence of simple stochastic processes

X1, X2, . . . that Xn converge in probability to X .

• If X is continuous with probability one, then It(Xn)

converges in probability to It(X) as

δn
Δ
= max

1≤k≤n
(tk − tk−1)

goes to zero.
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Ito Integral (concluded)

• It is a fundamental fact that
∫
X dW is continuous

almost surely.

• The Ito integral is a martingale.a

Theorem 18 The Ito integral
∫
X dW is a martingale.

• A corollary is the mean value formula

E

[∫ b

a

X dW

]
= 0.

aExercise 14.1.1 covers simple stochastic processes.
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Discrete Approximation and Nonanticipation

• Recall Eq. (80) on p. 596.

• The following simple stochastic process { X̂(t) } can be

used in place of X to approximate
∫ t

0
X dW ,

X̂(s)
Δ
= X(tk−1) for s ∈ [ tk−1, tk), k = 1, 2, . . . , n.

• Note the nonanticipating feature of X̂.

– The information up to time s,

{ X̂(t),W (t), 0 ≤ t ≤ s },

cannot determine the future evolution of X or W .
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Discrete Approximation and Nonanticipation
(concluded)

• Suppose, unlike Eq. (80) on p. 596, we defined the

stochastic integral from

n−1∑
k=0

X(tk+1)[W (tk+1)−W (tk) ].

• Then we would be using the following different simple

stochastic process in the approximation,

Ŷ (s)
Δ
= X(tk) for s ∈ [ tk−1, tk), k = 1, 2, . . . , n.

• This clearly anticipates the future evolution of X .a

aSee Exercise 14.1.2 for an example where it matters.
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Ito Process

• The stochastic process X = {Xt, t ≥ 0 } that solves

Xt = X0 +

∫ t

0

a(Xs, s) ds+

∫ t

0

b(Xs, s) dWs, t ≥ 0

is called an Ito process.

– X0 is a scalar starting point.

– { a(Xt, t) : t ≥ 0 } and { b(Xt, t) : t ≥ 0 } are

stochastic processes satisfying certain regularity

conditions.

– a(Xt, t) is the drift.

– b(Xt, t) is the diffusion.
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Ito Process (continued)

• Typical regularity conditions are:a

– For all T > 0, x ∈ R
n, and 0 ≤ t ≤ T ,

| a(x, t) |+ | b(x, t) | ≤ C(1 + |x |)
for some constant C.b

– (Lipschitz continuity) For all T > 0, x ∈ R
n, and

0 ≤ t ≤ T ,

| a(x, t)− a(y, t) |+ | b(x, t)− b(y, t) | ≤ D |x− y |
for some constant D.

aØksendal (2007).
bThis condition is not needed in time-homogeneous cases, where a

and b do not depend on t.
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Ito Process (continued)

• A shorthanda is the following stochastic differential

equationb (SDE) for the Ito differential dXt,

dXt = a(Xt, t) dt+ b(Xt, t) dWt. (81)

– Or simply

dXt = at dt+ bt dWt.

– This is Brownian motion with an instantaneous drift

at and an instantaneous variance b2t .

• X is a martingale if at = 0.c

aPaul Langevin (1872–1946) in 1904.
bLike any equation, an SDE contains an unknown, the process Xt.
cRecall Theorem 18 (p. 598).
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Ito Process (concluded)

• From calculus, we would expect
∫ t

0
W dW = W (t)2/2.

• But W (t)2/2 is not a martingale, hence wrong!

• The correct answer is [W (t)2 − t ]/2.

• A popular representation of Eq. (81) is

dXt = at dt+ bt
√
dt ξ, (82)

where ξ ∼ N(0, 1).
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Euler Approximation

• Define tn
Δ
= nΔt.

• The following approximation follows from Eq. (82),

X̂(tn+1)

=X̂(tn) + a(X̂(tn), tn)Δt+ b(X̂(tn), tn)ΔW (tn). (83)

• It is called the Euler or Euler-Maruyama method.

• Recall that ΔW (tn) should be interpreted as

W (tn+1)−W (tn),

not W (tn)−W (tn−1)!
a

aRecall Eq. (80) on p. 596.
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Euler Approximation (concluded)

• With the Euler method, one can obtain a sample path

X̂(t1), X̂(t2), X̂(t3), . . .

from a sample path

W (t0),W (t1),W (t2), . . . .

• Under mild conditions, X̂(tn) converges to X(tn).
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More Discrete Approximations

• Under fairly loose regularity conditions, Eq. (83) on

p. 606 can be replaced by

X̂(tn+1)

=X̂(tn) + a(X̂(tn), tn)Δt+ b(X̂(tn), tn)
√
Δt Y (tn).

– Y (t0), Y (t1), . . . are independent and identically

distributed with zero mean and unit variance.
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More Discrete Approximations (concluded)

• An even simpler discrete approximation scheme:

X̂(tn+1)

=X̂(tn) + a(X̂(tn), tn)Δt+ b(X̂(tn), tn)
√
Δt ξ.

– Prob[ ξ = 1 ] = Prob[ ξ = −1 ] = 1/2.

– Note that E[ ξ ] = 0 and Var[ ξ ] = 1.

• This is a binomial model.

• As Δt goes to zero, X̂ converges to X .a

aHe (1990).
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Trading and the Ito Integral

• Consider an Ito process

dSt = μt dt+ σt dWt.

– St is the vector of security prices at time t.

• Let φt be a trading strategy denoting the quantity of

each type of security held at time t.

– Hence the stochastic process φtSt is the value of the

portfolio φt at time t.

• φt dSt
Δ
= φt(μt dt+ σt dWt) is the change in the

portfolio value from the changes in security prices at

time t.
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Trading and the Ito Integral (concluded)

• The equivalent Ito integral,

GT (φ)
Δ
=

∫ T

0

φt dSt =

∫ T

0

φtμt dt+

∫ T

0

φtσt dWt,

measures the gains realized by the trading strategy over

the period [ 0, T ].
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