
Interest Rates and Bond Prices: Which Determines Which?^a

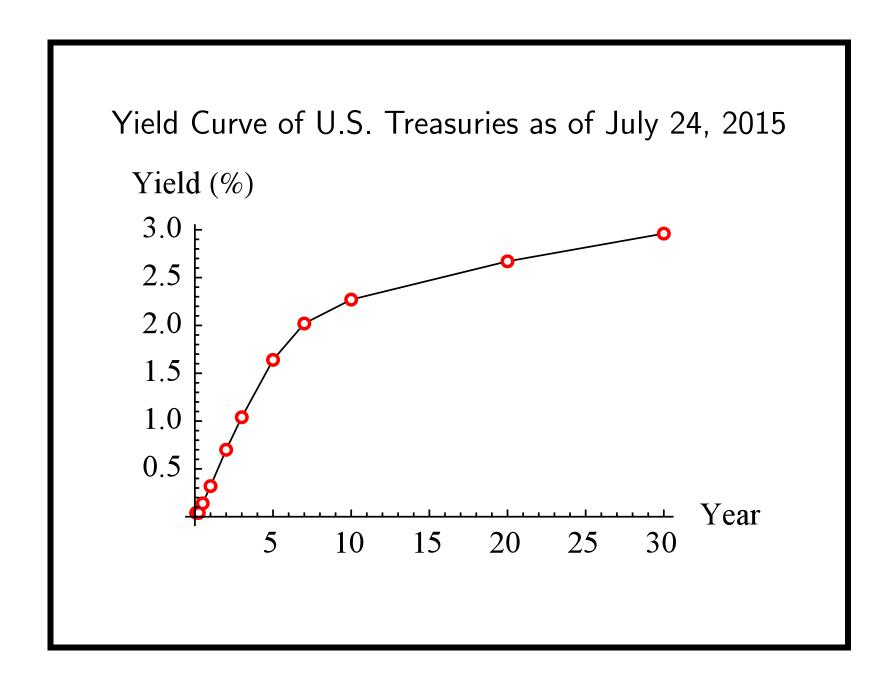
- If you have one, you have the other.
- So they are just two names given to the same thing: cost of fund.
- Traders most likely work with prices.
- Banks most likely work with interest rates.

^aContributed by Mr. Wang, Cheng (R01741064) on March 5, 2014.

Why is it that the interest of money is lower,
when money is plentiful?
— Samuel Johnson (1709–1784)

If you have money, don't lend it at interest.

Rather, give [it] to someone
from whom you won't get it back.


— Thomas Gospel 95

Term Structure of Interest Rates

- Concerned with how interest rates change with maturity.
- The set of yields to maturity for bonds form the term structure.
 - The bonds must be of equal quality.
 - They differ solely in their terms to maturity.
- The term structure is fundamental to the valuation of fixed-income securities.

Term Structure of Interest Rates (concluded)

- The term "term structure" often refers exclusively to the yields of zero-coupon bonds.
- A yield curve plots the yields to maturity of coupon bonds against maturity.
- A par yield curve is constructed from bonds trading near par.

Four Typical Shapes

- A normal yield curve is upward sloping.
- An inverted yield curve is downward sloping.
- A flat yield curve is flat.
- A humped yield curve is upward sloping at first but then turns downward sloping.

Spot Rates

- The *i*-period spot rate S(i) is the yield to maturity of an *i*-period zero-coupon bond.
- The PV of one dollar i periods from now is by definition

$$[1+S(i)]^{-i}.$$

- It is the price of an *i*-period zero-coupon bond.^a
- The one-period spot rate is called the short rate.
- Spot rate curve: b Plot of spot rates against maturity:

$$S(1), S(2), \ldots, S(n).$$

^aRecall Eq. (9) on p. 70.

^bThat is, term structure, per our convention.

Problems with the PV Formula

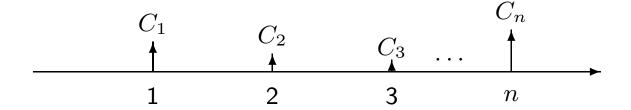
• In the bond price formula (4) on p. 41,

$$\sum_{i=1}^{n} \frac{C}{(1+y)^i} + \frac{F}{(1+y)^n},$$

every cash flow is discounted at the same yield y.

• Consider two riskless bonds with different yields to maturity because of their different cash flows:

$$PV_1 = \sum_{i=1}^{n_1} \frac{C}{(1+y_1)^i} + \frac{F}{(1+y_1)^{n_1}},$$


$$PV_2 = \sum_{i=1}^{n_2} \frac{C}{(1+y_2)^i} + \frac{F}{(1+y_2)^{n_2}}.$$

Problems with the PV Formula (concluded)

- The yield-to-maturity methodology discounts their contemporaneous cash flows with different rates.
- But shouldn't they be discounted at the *same* rate?

Spot Rate Discount Methodology

• A cash flow C_1, C_2, \ldots, C_n is equivalent to a package of zero-coupon bonds with the *i*th bond paying C_i dollars at time *i*.

Spot Rate Discount Methodology (concluded)

• So a level-coupon bond has the price

$$P = \sum_{i=1}^{n} \frac{C}{[1+S(i)]^{i}} + \frac{F}{[1+S(n)]^{n}}.$$
 (18)

- This pricing method incorporates information from the term structure.
- It discounts each cash flow at the matching spot rate.

Discount Factors

• In general, any riskless security having a cash flow C_1, C_2, \ldots, C_n should have a market price of

$$P = \sum_{i=1}^{n} C_i d(i).$$

- Above, $d(i) \stackrel{\Delta}{=} [1 + S(i)]^{-i}$, i = 1, 2, ..., n, are called the discount factors.
- -d(i) is the PV of one dollar i periods from now.
- The above formula will be justified on p. 224.
- The discount factors are often interpolated to form a continuous function called the discount function.

Extracting Spot Rates from Yield Curve

- Start with the short rate S(1).
 - Note that short-term Treasuries are zero-coupon bonds.
- Compute S(2) from the two-period coupon bond price P by solving

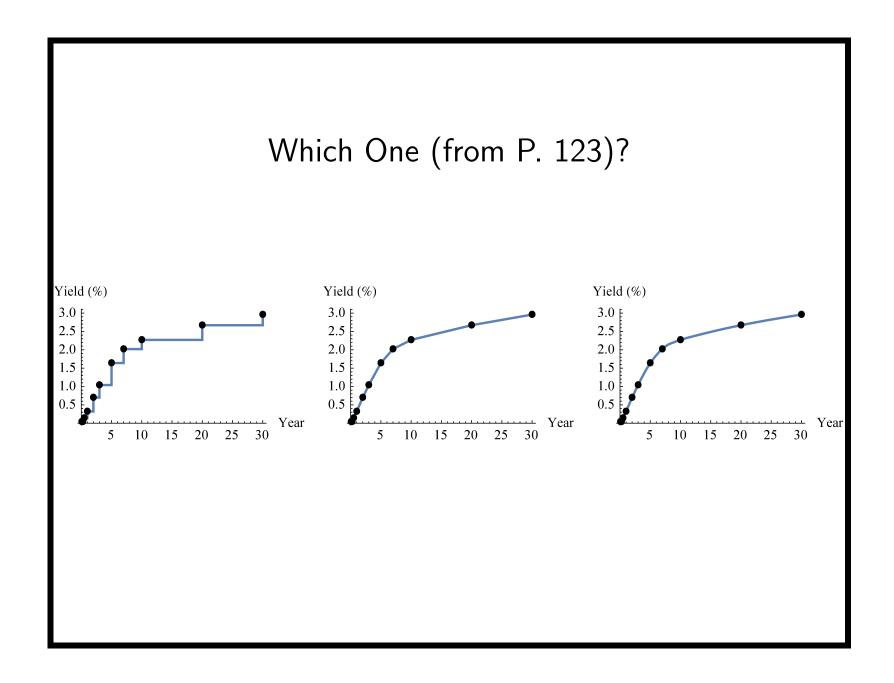
$$P = \frac{C}{1 + S(1)} + \frac{C + 100}{[1 + S(2)]^2}.$$

Extracting Spot Rates from Yield Curve (concluded)

• Inductively, we are given the market price P of the n-period coupon bond and

$$S(1), S(2), \ldots, S(n-1).$$

• Then S(n) can be computed from Eq. (18) on p. 129, repeated below,


$$P = \sum_{i=1}^{n} \frac{C}{[1+S(i)]^{i}} + \frac{F}{[1+S(n)]^{n}}.$$

- The running time can be made to be O(n) (see text).
- The procedure is called bootstrapping.

Some Problems

- Treasuries of the same maturity might be selling at different yields (the multiple cash flow problem).
- Some maturities might be missing from the data points (the incompleteness problem).
- Treasuries might not be of the same quality.
- Interpolation and fitting techniques are needed in practice to create a smooth spot rate curve.^a

^aOften without economic justifications.

Yield Spread

- Consider a *risky* bond with the cash flow C_1, C_2, \ldots, C_n and selling for P.
- Calculate the IRR of the risky bond.
- Calculate the IRR of a riskless bond with comparable maturity.
- Yield spread is their difference.

Static Spread

• Were the risky bond riskless, it would fetch

$$P^* = \sum_{t=1}^{n} \frac{C_t}{[1+S(t)]^t}.$$

- But as risk must be compensated, in reality $P < P^*$.
- The static spread is the amount s by which the spot rate curve has to shift in parallel to price the risky bond:

$$P = \sum_{t=1}^{n} \frac{C_t}{[1+s+S(t)]^t}.$$

• Unlike the yield spread, the static spread explicitly incorporates information from the term structure.

Of Spot Rate Curve and Yield Curve

- y_i : yield to maturity for the *i*-period coupon bond.
- $S(k) \ge y_k$ if $y_1 < y_2 < \cdots$ (yield curve is normal).
- $S(k) \le y_k$ if $y_1 > y_2 > \cdots$ (yield curve is inverted).
- $S(k) \ge y_k$ if $S(1) < S(2) < \cdots$ (spot rate curve is normal).
- $S(k) \le y_k$ if $S(1) > S(2) > \cdots$ (spot rate curve is inverted).
- If the yield curve is flat, the spot rate curve coincides with the yield curve.

Shapes

- The spot rate curve often has the same shape as the yield curve.
 - If the spot rate curve is inverted (normal, resp.), then the yield curve is inverted (normal, resp.).
- But this is only a trend not a mathematical truth.^a

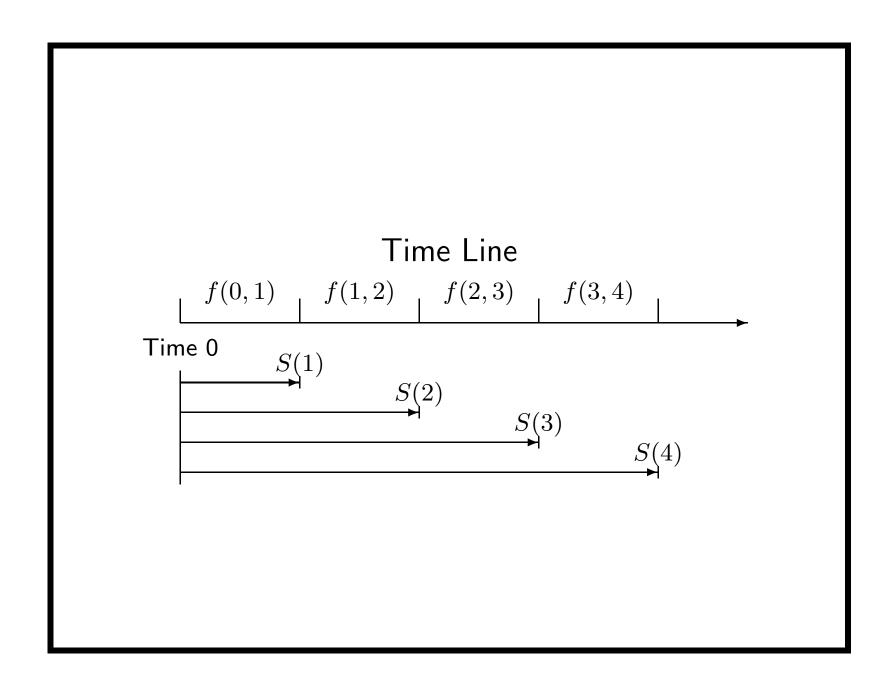
^aSee a counterexample in the text.

Forward Rates

- The yield curve contains information regarding future interest rates currently "expected" by the market.
- Invest \$1 for j periods to end up with $[1 + S(j)]^j$ dollars at time j.
 - The maturity strategy.
- Invest \$1 in bonds for i periods and at time i invest the proceeds in bonds for another j-i periods where j>i.
- Will have $[1 + S(i)]^i [1 + S(i,j)]^{j-i}$ dollars at time j.
 - -S(i,j): (j-i)-period spot rate i periods from now.
 - The rollover strategy.

Forward Rates (concluded)

• When S(i,j) equals


$$f(i,j) \stackrel{\Delta}{=} \left[\frac{(1+S(j))^j}{(1+S(i))^i} \right]^{1/(j-i)} - 1, \tag{19}$$

we will end up with the same $[1 + S(j)]^j$ dollars.

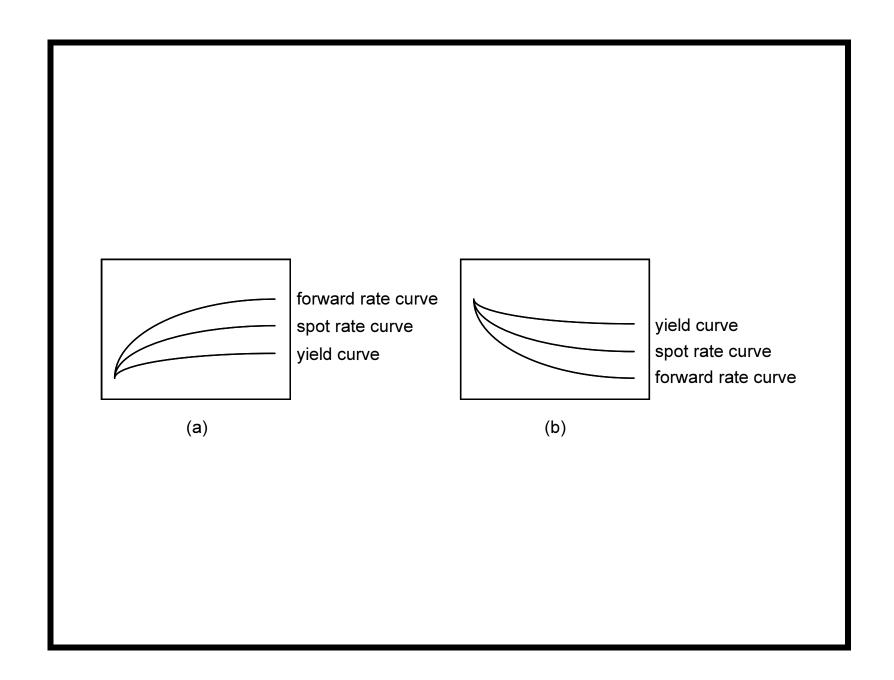
• As expected,

$$f(0,j) = S(j).$$

- The f(i,j) are the (implied) forward (interest) rates.
 - More precisely, the (j-i)-period forward rate i periods from now.

Forward Rates and Future Spot Rates

- We did not assume any a priori relation between f(i,j) and future spot rate S(i,j).
 - This is the subject of the term structure theories.
- We merely looked for the future spot rate that, if realized, will equate the two investment strategies.
- The f(i, i + 1) are the *instantaneous* forward rates or one-period forward rates.


Spot Rates and Forward Rates

• When the spot rate curve is normal, the forward rate dominates the spot rates,

$$f(i,j) > S(j) > \cdots > S(i)$$
.

• When the spot rate curve is inverted, the forward rate is dominated by the spot rates,

$$f(i,j) < S(j) < \dots < S(i).$$

Forward Rates \equiv Spot Rates \equiv Yield Curve

- The FV of \$1 at time n can be derived in two ways.
- Buy n-period zero-coupon bonds and receive

$$[1+S(n)]^n$$
.

- Buy one-period zero-coupon bonds today and a series of such bonds at the forward rates as they mature.
- The FV is

$$[1+S(1)][1+f(1,2)]\cdots[1+f(n-1,n)].$$

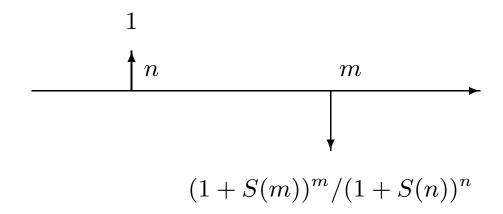
Forward Rates \equiv Spot Rates \equiv Yield Curves (concluded)

• Since they are identical,

$$S(n) = \{ [1 + S(1)][1 + f(1,2)]$$

$$\cdots [1 + f(n-1,n)] \}^{1/n} - 1.$$
(20)

- Hence, the forward rates (specifically the one-period forward rates) determine the spot rate curve.
- Other equivalencies can be derived similarly, such as


$$f(T, T+1) = \frac{d(T)}{d(T+1)} - 1.$$
 (21)

Locking in the Forward Rate f(n,m)

- Buy one *n*-period zero-coupon bond for $1/(1+S(n))^n$ dollars.
- Sell $(1 + S(m))^m/(1 + S(n))^n$ m-period zero-coupon bonds.
- No net initial investment because the cash inflow equals the cash outflow: $1/(1+S(n))^n$.
- At time n there will be a cash inflow of \$1.
- At time m there will be a cash outflow of $(1+S(m))^m/(1+S(n))^n$ dollars.

Locking in the Forward Rate f(n,m) (concluded)

• This implies the interest rate between times n and m equals f(n,m) by formula (19) on p. 140.^a

a Note that $(1 + S(m))^m / (1 + S(n))^n = (1 + f(n, m))^{m-n}$ by that formula.

Forward Loans

- We had generated the cash flow of a type of forward contract called the forward loan.
- Agreed upon today, it enables one to
 - Borrow money at time n in the future, and
 - Repay the loan at time m > n with an interest rate equal to the known forward rate

$$f(n,m)$$
.

• Can the spot rate curve be arbitrarily drawn?^a

^aContributed by Mr. Dai, Tian-Shyr (B82506025, R86526008, D88526006) in 1998.

Synthetic Bonds

• We had seen that

forward loan

- = n-period zero $[1 + f(n, m)]^{m-n} \times m$ -period zero.
- Thus

n-period zero

- = forward loan + $[1 + f(n, m)]^{m-n} \times m$ -period zero.
- We have created a *synthetic* zero-coupon bond with forward loans and other zero-coupon bonds.
- Useful if the *n*-period zero is unavailable or illiquid.

Spot and Forward Rates under Continuous Compounding

• The pricing formula:

$$P = \sum_{i=1}^{n} Ce^{-iS(i)} + Fe^{-nS(n)}.$$

• The market discount function:

$$d(n) = e^{-nS(n)}.$$

• The spot rate is an arithmetic average of forward rates,^a

$$S(n) = \frac{f(0,1) + f(1,2) + \dots + f(n-1,n)}{n}.$$

^aCompare it with formula (20) on p. 146.

Spot and Forward Rates under Continuous Compounding (continued)

• The formula for the forward rate:^a

$$f(i,j) = \frac{jS(j) - iS(i)}{j - i}.$$
(22)

• The one-period forward rate:^b

$$f(j, j + 1) = -\ln \frac{d(j+1)}{d(j)}.$$

^aCompare it with formula (19) on p. 140.

^bCompare it with formula (21) on p. 146.

Spot and Forward Rates under Continuous Compounding (concluded)

• Now, the (instantaneous) forward rate curve is:

$$f(T) \stackrel{\Delta}{=} \lim_{\Delta T \to 0} f(T, T + \Delta T)$$

$$= S(T) + T \frac{\partial S}{\partial T}.$$
(23)

- So f(T) > S(T) if and only if $\partial S/\partial T > 0$ (i.e., a normal spot rate curve).
- If $S(T) < -T(\partial S/\partial T)$, then f(T) < 0.^a

^aConsistent with the plot on p. 144. Contributed by Mr. Huang, Hsien-Chun (R03922103) on March 11, 2015.

An Example

- Let the interest rates be continuously compounded.
- Suppose the spot rate curve is^a

$$S(T) \stackrel{\Delta}{=} 0.08 - 0.05 e^{-0.18T}$$
.

• Then by Eq. (23) on p. 153, the forward rate curve is

$$f(T)$$
= $S(T) + TS'(T)$
= $0.08 - 0.05 e^{-0.18T} + 0.009T e^{-0.18T}$.

^aHull & White (1994).

Unbiased Expectations Theory

• Forward rate equals the average future spot rate,

$$f(a,b) = E[S(a,b)].$$
 (24)

- It does not imply that the forward rate is an accurate predictor for the future spot rate.
- It implies the maturity strategy and the rollover strategy produce the same result at the horizon "on average."

Unbiased Expectations Theory and Spot Rate Curve

- It implies that a normal spot rate curve is due to the fact that the market expects the future spot rate to rise.
 - -f(j, j+1) > S(j+1) if and only if S(j+1) > S(j) from formula (19) on p. 140.
 - So $E[S(j, j+1)] > S(j+1) > \dots > S(1)$ if and only if $S(j+1) > \dots > S(1)$.
- Conversely, the spot rate is expected to fall if and only if the spot rate curve is inverted.

A "Bad" Expectations Theory

- The expected returns^a on all possible riskless bond strategies are equal for *all* holding periods.
- So

$$(1+S(2))^2 = (1+S(1)) E[1+S(1,2)]$$
 (25)

because of the equivalency between buying a two-period bond and rolling over one-period bonds.

• After rearrangement,

$$\frac{1}{E[1+S(1,2)]} = \frac{1+S(1)}{(1+S(2))^2}.$$

^aMore precisely, the one-plus returns.

A "Bad" Expectations Theory (continued)

- Now consider two one-period strategies.
 - Strategy one buys a two-period bond for $(1 + S(2))^{-2}$ dollars and sells it after one period.
 - The expected return is

$$E[(1+S(1,2))^{-1}]/(1+S(2))^{-2}.$$

- Strategy two buys a one-period bond with a return of 1 + S(1).

A "Bad" Expectations Theory (continued)

• The theory says the returns are equal:

$$\frac{1+S(1)}{(1+S(2))^2} = E\left[\frac{1}{1+S(1,2)}\right].$$

• Combine this with Eq. (25) on p. 157 to obtain

$$E\left[\frac{1}{1+S(1,2)}\right] = \frac{1}{E[1+S(1,2)]}.$$

A "Bad" Expectations Theory (concluded)

- But this is impossible save for a certain economy.
 - Jensen's inequality states that E[g(X)] > g(E[X])for any nondegenerate random variable X and strictly convex function g (i.e., g''(x) > 0).
 - Use

$$g(x) \stackrel{\Delta}{=} (1+x)^{-1}$$

to prove our point.

Local Expectations Theory

• The expected rate of return of any bond over a single period equals the prevailing one-period spot rate:

$$\frac{E\left[(1+S(1,n))^{-(n-1)}\right]}{(1+S(n))^{-n}} = 1 + S(1) \text{ for all } n > 1.$$

• This theory is the basis of many interest rate models.

Duration, in Practice

- We had assumed parallel shifts in the spot rate curve.
- To handle more general shifts, define a vector $[c_1, c_2, \ldots, c_n]$ that characterizes the shift.
 - Parallel shift: $[1, 1, \ldots, 1]$.
 - Twist: $[1,1,\ldots,1,-1,\ldots,-1]$, $[1.8,1.6,1.4,1,0,-1,-1.4,\ldots]$, etc.
 - **—**
- At least one c_i should be 1 as the reference point.

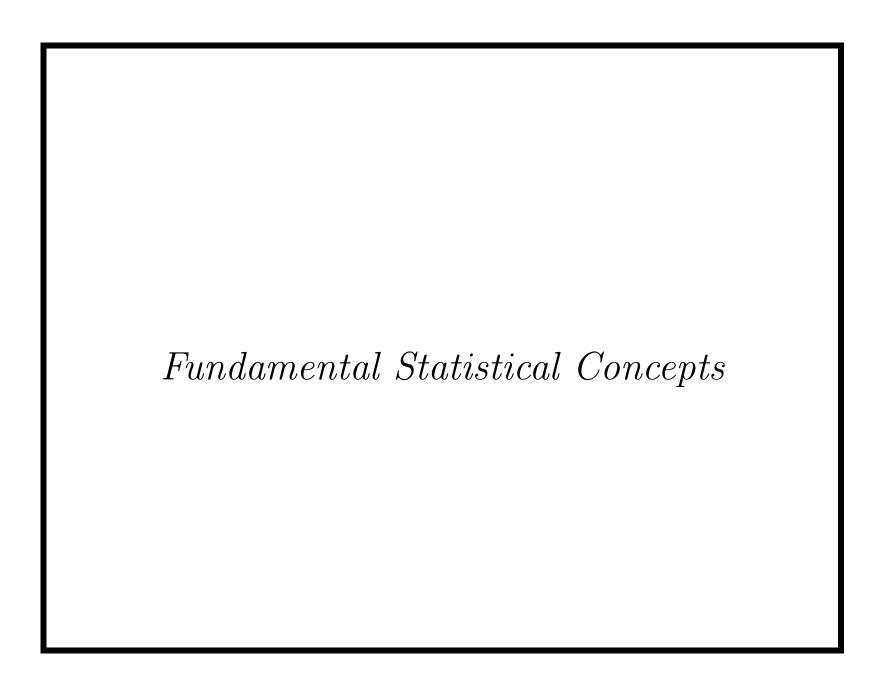
Duration in Practice (concluded)

• Let

$$P(y) \stackrel{\Delta}{=} \sum_{i} C_i / (1 + S(i) + yc_i)^i$$

be the price associated with the cash flow C_1, C_2, \ldots

• Define duration as


$$-\frac{\partial P(y)/P(0)}{\partial y}\Big|_{y=0}$$
 or $-\frac{P(\Delta y) - P(-\Delta y)}{2P(0)\Delta y}$.

• Modified duration equals the above when

$$[c_1, c_2, \dots, c_n] = [1, 1, \dots, 1],$$

 $S(1) = S(2) = \dots = S(n).$

Some Loose Ends on Dates

- Holidays.
- Weekends.
- Business days (T + 2, etc.).
- Shall we treat a year as 1 year whether it has 365 or 366 days?

There are three kinds of lies:
lies, damn lies, and statistics.

— Misattributed to Benjamin Disraeli
(1804–1881)

If 50 million people believe a foolish thing, it's still a foolish thing.

— George Bernard Shaw (1856–1950)

One death is a tragedy, but a million deaths are a statistic.

— Josef Stalin (1879–1953)

Moments

 \bullet The variance of a random variable X is defined as

$$\operatorname{Var}[X] \stackrel{\Delta}{=} E[(X - E[X])^2].$$

 \bullet The covariance between random variables X and Y is

$$\operatorname{Cov}[X,Y] \stackrel{\Delta}{=} E[(X - \mu_X)(Y - \mu_Y)],$$

where μ_X and μ_Y are the means of X and Y, respectively.

 \bullet Random variables X and Y are uncorrelated if

$$\operatorname{Cov}[X,Y] = 0.$$

Correlation

• The standard deviation of X is the square root of the variance,

$$\sigma_X \stackrel{\Delta}{=} \sqrt{\operatorname{Var}[X]}$$
.

• The correlation (or correlation coefficient) between X and Y is

$$\rho_{X,Y} \stackrel{\Delta}{=} \frac{\operatorname{Cov}[X,Y]}{\sigma_X \sigma_Y},$$

provided both have nonzero standard deviations.^a

^aWilmott (2009), "the correlations between financial quantities are notoriously unstable." It may even break down "at high-frequency time intervals" (Budish, Cramton, & Shim, 2015).

Variance of Sum

• Variance of a weighted sum of random variables equals

$$\operatorname{Var}\left[\sum_{i=1}^{n} a_i X_i\right] = \sum_{i=1}^{n} \sum_{j=1}^{n} a_i a_j \operatorname{Cov}[X_i, X_j].$$

• It becomes

$$\sum_{i=1}^{n} a_i^2 \operatorname{Var}[X_i]$$

when X_i are uncorrelated.^a

^aBienaymé (1853).

Conditional Expectation

- " $X \mid I$ " denotes X conditional on the information set I.
- The information set can be another random variable's value or the past values of X, say.
- The conditional expectation

is the expected value of X conditional on I.

- It is a random variable.
- The law of iterated conditional expectations^a says

$$E[X] = E[E[X|I]].$$

^aOr the tower law.

Conditional Expectation (concluded)

• If I_2 contains at least as much information as I_1 , then

$$E[X | I_1] = E[E[X | I_2] | I_1].$$
 (26)

- I_1 contains price information up to time t_1 , and I_2 contains price information up to a later time $t_2 > t_1$.
- In general,

$$I_1 \subseteq I_2 \subseteq \cdots$$

means the players never forget past data so the information sets are increasing over time.^a

^aHirsa & Neftci (2014). This idea is used in sigma fields and filtration in probability theory.

The Normal Distribution

• A random variable X has the normal distribution with mean μ and variance σ^2 if its probability density function is

$$\frac{1}{\sigma\sqrt{2\pi}}e^{-(x-\mu)^2/(2\sigma^2)}.$$

- This is expressed by $X \sim N(\mu, \sigma^2)$.
- The standard normal distribution has zero mean, unit variance, and the following distribution function

$$\operatorname{Prob}[X \le z] = N(z) \stackrel{\Delta}{=} \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z} e^{-x^{2}/2} dx.$$

Moment Generating Function

• The moment generating function of random variable X is defined as

$$\theta_X(t) \stackrel{\Delta}{=} E[e^{tX}].$$

• The moment generating function of $X \sim N(\mu, \sigma^2)$ is

$$\theta_X(t) = \exp\left[\mu t + \frac{\sigma^2 t^2}{2}\right]. \tag{27}$$

The Multivariate Normal Distribution

• If $X_i \sim N(\mu_i, \sigma_i^2)$ are independent, then

$$\sum_{i} X_{i} \sim N\left(\sum_{i} \mu_{i}, \sum_{i} \sigma_{i}^{2}\right).$$

- Let $X_i \sim N(\mu_i, \sigma_i^2)$, which may not be independent.
- Suppose

$$\sum_{i=1}^{n} t_i X_i \sim N \left(\sum_{i=1}^{n} t_i \, \mu_i, \sum_{i=1}^{n} \sum_{j=1}^{n} t_i t_j \, \text{Cov}[X_i, X_j] \right)$$

for every linear combination $\sum_{i=1}^{n} t_i X_i$ with $\sum_{i=1}^{n} \sum_{j=1}^{n} t_i t_j \operatorname{Cov}[X_i, X_j] \neq 0$.

The Multivariate Normal Distribution (concluded)

- Then X_i are said to have a multivariate normal distribution.^a
- With $M \equiv C^{-1}$ and the (i, j)th entry of the matrix M being $M_{i,j}$, the probability density function for the X_i is

$$\frac{1}{\sqrt{(2\pi)^n \det(C)}} \exp \left[-\frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n (X_i - \mu_i) M_{ij} (X_j - \mu_j) \right],$$

with a positive-definite covariance matrix

$$C \stackrel{\Delta}{=} [\operatorname{Cov}[X_i, X_j]]_{1 \le i, j \le n}.$$

^aCorrected by Mr. Huang, Guo-Hua (R98922107) on March 10, 2010.

Generation of Univariate Normal Distributions

• Let X be uniformly distributed over (0,1] so that

$$Prob[X \le x] = x, \quad 0 < x \le 1.$$

• Repeatedly draw two samples x_1 and x_2 from X until

$$\omega \stackrel{\Delta}{=} (2x_1 - 1)^2 + (2x_2 - 1)^2 < 1.$$

• Then $c(2x_1 - 1)$ and $c(2x_2 - 1)$ are independent standard normal variables where^a

$$c \stackrel{\Delta}{=} \sqrt{-2(\ln \omega)/\omega}$$
.

^aAs they are normally distributed, to prove independence, it suffices to prove that they are uncorrelated, which is easy. Thanks to a lively class discussion on March 5, 2014.

A Dirty Trick and a Right Attitude

- Let ξ_i are independent and uniformly distributed over (0,1).
- A simple method to generate the standard normal variable is to calculate^a

$$\left(\sum_{i=1}^{12} \xi_i\right) - 6.$$

- But why use 12?
- Recall the mean and variance of ξ_i are 1/2 and 1/12, respectively.

^aJäckel (2002), "this is not a highly accurate approximation and should only be used to establish ballpark estimates."

A Dirty Trick and a Right Attitude (concluded)

• The general formula is

$$\frac{(\sum_{i=1}^{n} \xi_i) - (n/2)}{\sqrt{n/12}}.$$

- Choosing n = 12 yields a formula without the need of division and square-root operations.^a
- Always blame your random number generator last.^b
- Instead, check your programs first.

^aContributed by Mr. Chen, Shih-Hang (R02723031) on March 5, 2014. ^b "The fault, dear Brutus, lies not in the stars but in ourselves that we are underlings." William Shakespeare (1564–1616), *Julius Caesar*.

Generation of Bivariate Normal Distributions

- Pairs of normally distributed variables with correlation ρ can be generated as follows.
- Let X_1 and X_2 be independent standard normal variables.
- Set

$$U \stackrel{\Delta}{=} aX_1,$$

$$V \stackrel{\Delta}{=} a\rho X_1 + a\sqrt{1-\rho^2} X_2.$$

Generation of Bivariate Normal Distributions (continued)

• U and V are the desired random variables with

$$Var[U] = Var[V] = a^{2},$$

$$Cov[U, V] = \rho a^{2}.$$

• Note that the mapping from (X_1, X_2) to (U, V) is a one-to-one correspondence for $a \neq 0$.

Generation of Bivariate Normal Distributions (concluded)

• The mapping in matrix form is

$$\begin{bmatrix} U \\ V \end{bmatrix} = a \begin{bmatrix} 1 & 0 \\ \rho & \sqrt{1 - \rho^2} \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}. \tag{28}$$

The Lognormal Distribution

- A random variable Y is said to have a lognormal distribution if $\ln Y$ has a normal distribution.
- Let $X \sim N(\mu, \sigma^2)$ and $Y \stackrel{\Delta}{=} e^X$.
- ullet The mean and variance of Y are

$$\mu_Y = e^{\mu + \sigma^2/2},
\sigma_Y^2 = e^{2\mu + \sigma^2} \left(e^{\sigma^2} - 1 \right),$$
(29)

respectively.^a

^aThey follow from $E[Y^n] = e^{n\mu + n^2\sigma^2/2}$.

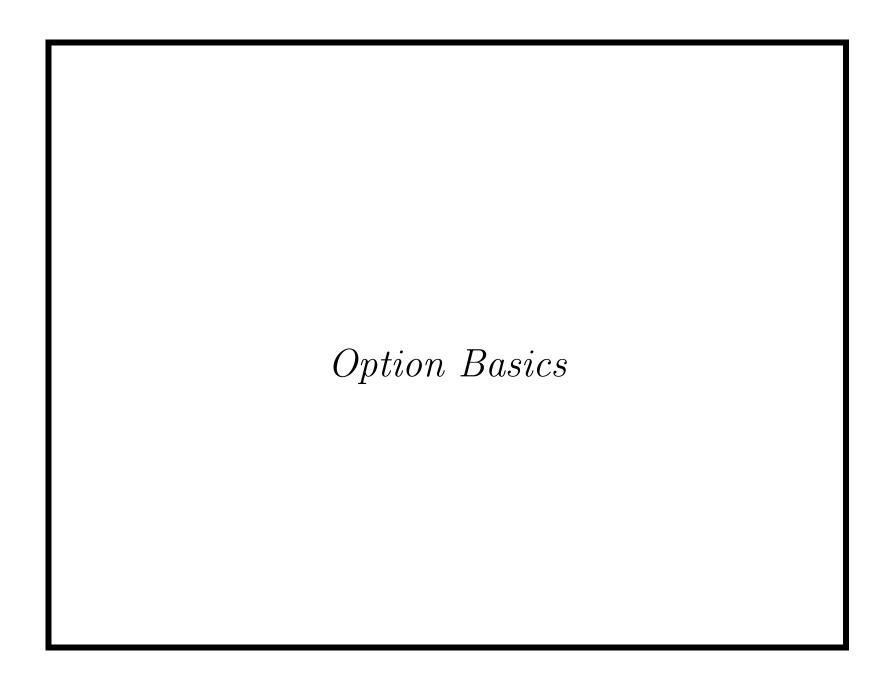
The Lognormal Distribution (continued)

- Conversely, suppose Y is lognormally distributed with mean μ and variance σ^2 .
- Then ln Y has a normal distribution with

$$E[\ln Y] = \ln \left[\mu / \sqrt{1 + (\sigma/\mu)^2} \right],$$

$$Var[\ln Y] = \ln \left[1 + (\sigma/\mu)^2 \right].$$

 \bullet If X and Y are joint-lognormally distributed, then


$$E[XY] = E[X] E[Y] e^{\operatorname{Cov}[\ln X, \ln Y]},$$

$$\operatorname{Cov}[X, Y] = E[X] E[Y] \left(e^{\operatorname{Cov}[\ln X, \ln Y]} - 1 \right).$$

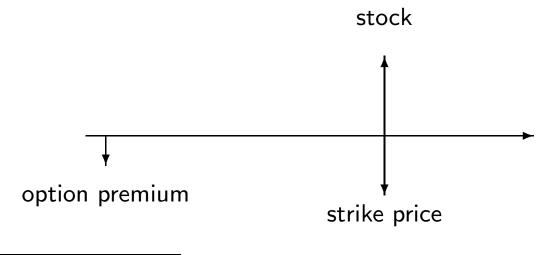
The Lognormal Distribution (concluded)

- Let Y be lognormally distributed such that $\ln Y \sim N(\mu, \sigma^2)$.
- Then

$$\int_{a}^{\infty} y f(y) \, dy = e^{\mu + \sigma^2/2} N \left(\frac{\mu - \ln a}{\sigma} + \sigma \right). \tag{30}$$

The shift toward options as the center of gravity of finance [...]

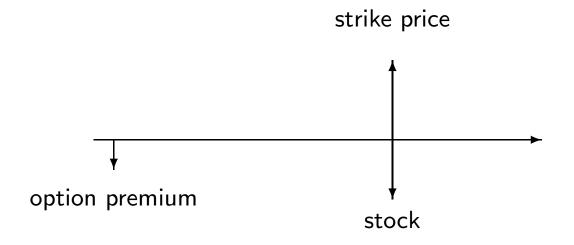
— Merton H. Miller^a (1923–2000)


Too many potential physicists and engineers spend their careers shifting money around in the financial sector, instead of applying their talents to innovating in the real economy.

— Barack Obama (2016)

^aCo-winner of the 1990 Nobel Prize in Economic Sciences.

Calls and Puts


• A call gives its holder the right to *buy* a unit of the underlying asset by paying a strike price.^a

^aThe cash flow at expiration is contingent.

Calls and Puts (continued)

• A put gives its holder the right to *sell* a unit of the underlying asset for the strike price.

Calls and Puts (concluded)

- An embedded option has to be traded along with the underlying asset.
- How to price options?
 - It can be traced to Aristotle's (384 B.C.-322 B.C.) Politics, if not earlier.

Exercise

- When a call is exercised, the holder pays the strike price in exchange for the stock.
- When a put is exercised, the holder receives from the writer the strike price in exchange for the stock.
- Some options can be exercised prior to the expiration date.
 - This is called early exercise.

American and European

- American options can be exercised at any time up to the expiration date.
- European options can only be exercised at expiration.
- An American option is worth at least as much as an otherwise identical European option.

Convenient Conventions

• C: call value.

• P: put value.

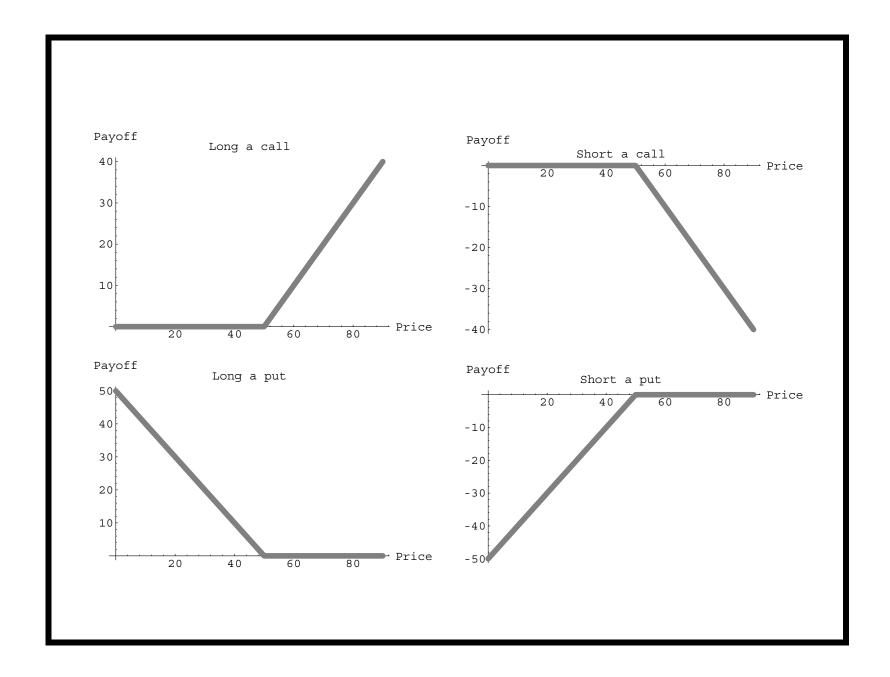
• X: strike price.

• S: stock price.^a

• D: dividend.

^aAssume $S \geq 0$. Contributed by Mr. Tang, Bert (B08902102) on March 10, 2021.

Payoff, Mathematically Speaking


• The payoff of a call at expiration is

$$C = \max(0, S - X).$$

• The payoff of a put at expiration is

$$P = \max(0, X - S).$$

- A call will be exercised only if the stock price is higher than the strike price.
- A put will be exercised only if the stock price is less than the strike price.

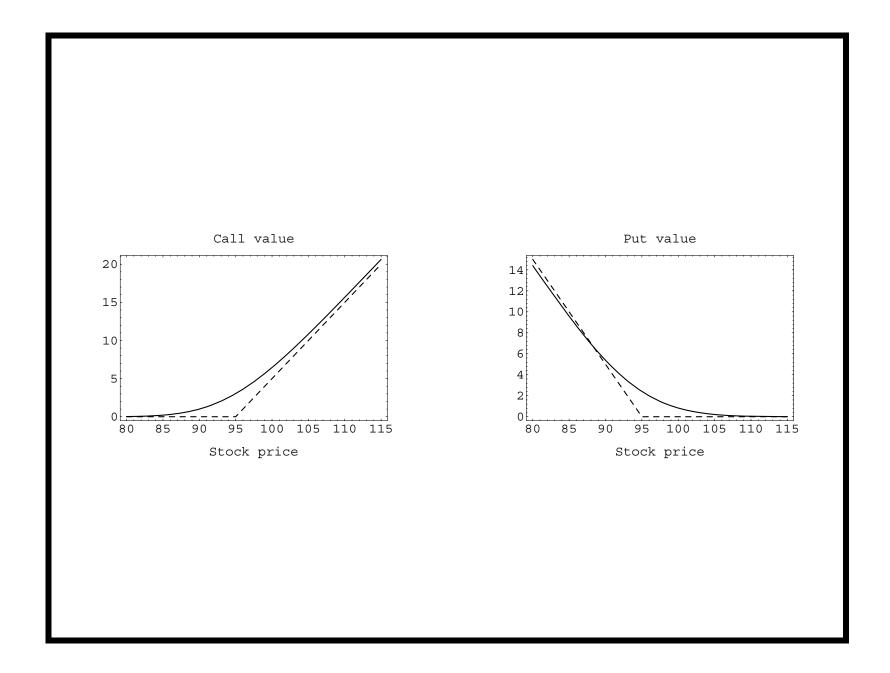
Payoff, Mathematically Speaking (continued)

 \bullet At any time t before the expiration date, we call

$$\max(0, S_t - X)$$

the intrinsic value of a call.

 \bullet At any time t before the expiration date, we call


$$\max(0, X - S_t)$$

the intrinsic value of a put.

Payoff, Mathematically Speaking (concluded)

- A call is in the money if S > X, at the money if S = X, and out of the money if S < X.
- A put is in the money if S < X, at the money if S = X, and out of the money if S > X.
- Options that are in the money at expiration should be exercised.^a
- Finding an option's value at any time *before* expiration is a major intellectual breakthrough.

^aAbout 11% of option holders let in-the-money options expire worthless.

