
Numerical Examples: Futures and Forward Prices

• A one-year futures contract on the one-year rate has a

payoff of 100− r, where r is the one-year rate at

maturity:

F
� 92 (= 100− 8)

� 98 (= 100− 2)

• As the futures price F is the expected future payoff,a

F = (1− p)× 92 + p× 98 = 93.914.

aSee Exercise 13.2.11 of the textbook or p. 568.
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Numerical Examples: Futures and Forward Prices
(concluded)

• The forward price for a one-year forward contract on a

one-year zero-coupon bond isa

90.703/96.154 = 94.331%.

• The forward price exceeds the futures price.b

aBy Eq. (145) on p. 1090.
bUnlike the nonstochastic case on p. 510.
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Equilibrium Term Structure Models
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The nature of modern trade

is to give to those who have much

and take from those who have little.

— Walter Bagehot (1867),

The English Constitution

8. What’s your problem? Any moron

can understand bond pricing models.

— Top Ten Lies Finance Professors

Tell Their Students
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Introduction

• We now survey equilibrium models.

• Recall that the spot rates satisfy

r(t, T ) = − lnP (t, T )

T − t

by Eq. (144) on p. 1089.

• Hence the discount function P (t, T ) suffices to establish

the spot rate curve.

• All models to follow are short rate models.

• Unless stated otherwise, the processes are risk-neutral.
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The Vasicek Modela

• The short rate follows

dr = β(μ− r) dt+ σ dW.

• The short rate is pulled to the long-term mean level μ

at rate β.

• Superimposed on this “pull” is a normally distributed

stochastic term σ dW .

• Since the process is an Ornstein-Uhlenbeck process,

E[ r(T ) | r(t) = r ] = μ+ (r − μ) e−β(T−t)

from Eq. (89) on p. 635.

aVasicek (1977).
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The Vasicek Model (continued)

• The price of a zero-coupon bond paying one dollar at

maturity can be shown to be

P (t, T ) = A(t, T ) e−B(t,T ) r(t), (158)

where

A(t, T ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

exp

[
(B(t,T )−T+t)(β2μ−σ2/2)

β2 − σ2B(t,T )2

4β

]
, if β �= 0,

exp

[
σ2(T−t)3

6

]
, if β = 0,

and

B(t, T ) =

⎧⎨
⎩

1−e−β(T−t)

β , if β �= 0,

T − t, if β = 0.
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The Vasicek Model (continued)

• If β = 0, then P goes to infinity as T → ∞.

• Sensibly, P goes to zero as T → ∞ if β �= 0.

• But even if β �= 0, P may exceed one for a finite T .

• The long rate r(t,∞) is the constant

μ− σ2

2β2
,

independent of the current short rate.
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The Vasicek Model (concluded)

• The spot rate volatility structure is the curve

σ
∂r(t, T )

∂r
=

σB(t, T )

T − t
.

• As it depends only on T − t not on t by itself, the same

curve is maintained for any future time t.

• When β > 0, the curve tends to decline with maturity.

– The long rate’s volatility is zero unless β = 0.

• The speed of mean reversion, β, controls the shape of

the curve.

• Higher β leads to greater attenuation of volatility with

maturity.
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The Vasicek Model: Options on Zerosa

• Consider a European call with strike price X expiring

at time T on a zero-coupon bond with par value $1 and

maturing at time s > T .

• Its price is given by

P (t, s)N(x)−XP (t, T )N(x− σv).

aJamshidian (1989).
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The Vasicek Model: Options on Zeros (concluded)

• Above

x
Δ
=

1

σv
ln

(
P (t, s)

P (t, T )X

)
+

σv

2
,

σv ≡ v(t, T )B(T, s),

v(t, T )2
Δ
=

⎧⎨
⎩

σ2[1−e−2β(T−t)]
2β , if β �= 0

σ2(T − t), if β = 0
.

• By the put-call parity, the price of a European put is

XP (t, T )N(−x+ σv)− P (t, s)N(−x).
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Binomial Vasiceka

• Consider a binomial model for the short rate in the time

interval [ 0, T ] divided into n identical pieces.

• Let Δt
Δ
= T/n andb

p(r)
Δ
=

1

2
+

β(μ− r)
√
Δt

2σ
.

• The following binomial model converges to the Vasicek

model,c

r(k + 1) = r(k) + σ
√
Δt ξ(k), 0 ≤ k < n.

aNelson & Ramaswamy (1990).
bThe same form as Eq. (42) on p. 299 for the BOPM.
cSame as the CRR tree except that the probabilities vary here.
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Binomial Vasicek (continued)

• Above, ξ(k) = ±1 with

Prob[ ξ(k) = 1 ] =

⎧⎪⎪⎨
⎪⎪⎩

p(r(k)), if 0 ≤ p(r(k)) ≤ 1

0, if p(r(k)) < 0,

1, if 1 < p(r(k)).

• Observe that the probability of an up move, p, is a

decreasing function of the interest rate r.

• This is consistent with mean reversion.
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Binomial Vasicek (concluded)

• The rate is the same whether it is the result of an up

move followed by a down move or a down move followed

by an up move.

• The binomial tree combines.

• The key feature of the model that makes it happen is its

constant volatility, σ.
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The Cox-Ingersoll-Ross Modela

• It is the following square-root short rate model:

dr = β(μ− r) dt+ σ
√
r dW. (159)

• The diffusion differs from the Vasicek model by a

multiplicative factor
√
r .

• The parameter β determines the speed of adjustment.

• If r(0) > 0, then the short rate can reach zero only if

2βμ < σ2.

– This is called the Feller (1951) condition.

• See text for the bond pricing formula.
aCox, Ingersoll, & Ross (1985).
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Binomial CIR

• We want to approximate the short rate process in the

time interval [ 0, T ].

• Divide it into n periods of duration Δt
Δ
= T/n.

• Assume μ, β ≥ 0.

• A direct discretization of the process is problematic

because the resulting binomial tree will not combine.
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Binomial CIR (continued)

• Instead, consider the transformed processa

x(r)
Δ
= 2

√
r/σ.

• By Ito’s lemma (p. 610),

dx = m(x) dt+ dW,

where

m(x)
Δ
= 2βμ/(σ2x)− (βx/2)− 1/(2x).

• This new process has a constant volatility.

• Thus its binomial tree combines.
aSee pp. 1147ff for justification.
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Binomial CIR (continued)

• Construct the combining tree for r as follows.

• First, construct a tree for x.

• Then transform each node of the tree into one for r via

the inverse transformation (see next page)

r = f(x)
Δ
=

x2σ2

4
.

• But when x ≈ 0 (so r ≈ 0), the moments may not be

matched well.a

aNawalkha & Beliaeva (2007).
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x + 2
√

Δt f(x + 2
√

Δt)

↗ ↗
x +

√
Δt f(x +

√
Δt)

↗ ↘ ↗ ↘
x x f(x) f(x)

↘ ↗ ↘ ↗
x − √

Δt f(x − √
Δt)

↘ ↘
x − 2

√
Δt f(x − 2

√
Δt)
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Binomial CIR (concluded)

• The probability of an up move at each node r is

p(r)
Δ
=

β(μ− r)Δt+ r − r−

r+ − r−
.

– r+
Δ
= f(x+

√
Δt) denotes the result of an up move

from r.

– r− Δ
= f(x−√

Δt) the result of a down move.

• Finally, set the probability p(r) to one as r goes to zero

to make the probability stay between zero and one.
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Numerical Examples

• Consider the process,

0.2 (0.04− r) dt+ 0.1
√
r dW,

for the time interval [ 0, 1 ] given the initial rate

r(0) = 0.04.

• We shall use Δt = 0.2 (year) for the binomial

approximation.

• See p. 1143(a) for the resulting binomial short rate tree

with the up-move probabilities in parentheses.
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Numerical Examples (concluded)

• Consider the node which is the result of an up move

from the root.

• Since the root has x = 2
√
r(0)/σ = 4, this particular

node’s x value equals 4 +
√
Δt = 4.4472135955.

• Use the inverse transformation to obtain the short rate

x2 × (0.1)2

4
≈ 0.0494442719102.

• Once the short rates are in place, computing the

probabilities is easy.

• Convergence is quite good.a

aSee p. 369 of the textbook.
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Trinomial CIR

• The binomial CIR tree does not have the degree of

freedom to match the mean and variance exactly.

• It actually fails to match them at very low x.

• A trinomial tree for the CIR model with O(n1.5) nodes

that matches the mean and variance exactly is

available.a

aZ. Lu (D00922011) & Lyuu (2018); H. Huang (R03922103) (2019).
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A Comparisona

r(0) = 0.01, μ = 0.05, σ = 0.2, β = 1.2, T = 5, principal is

10,000.
aPlot from H. Huang (R03922103) (2019).
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A General Method for Constructing Binomial Modelsa

• We are given a continuous-time process,

dy = α(y, t) dt+ σ(y, t) dW.

• Need to make sure the binomial model’s drift and

diffusion converge to the above process.

• Set the probability of an up move to

α(y, t)Δt+ y − yd
yu − yd

.

• Here yu
Δ
= y + σ(y, t)

√
Δt and yd

Δ
= y − σ(y, t)

√
Δt

represent the two rates that follow the current rate y.

aNelson & Ramaswamy (1990).
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A General Method (continued)

• The displacements are identical, at σ(y, t)
√
Δt .

• But the binomial tree may not combine as

σ(y, t)
√
Δt− σ(yu, t+Δt)

√
Δt

�= −σ(y, t)
√
Δt+ σ(yd, t+Δt)

√
Δt

in general.

• When σ(y, t) is a constant independent of y, equality

holds and the tree combines.
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A General Method (continued)

• To achieve this, define the transformation

x(y, t)
Δ
=

∫ y

σ(z, t)−1 dz.

• Then x follows

dx = m(y, t) dt+ dW

for some m(y, t).a

• The diffusion term is now a constant, and the binomial

tree for x combines.

aSee Exercise 25.2.13 of the textbook.
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A General Method (concluded)

• The transformation is unique.a

• The probability of an up move remains

α(y(x, t), t)Δt+ y(x, t)− yd(x, t)

yu(x, t)− yd(x, t)
,

where y(x, t) is the inverse transformation of x(y, t)

from x back to y.

• Note that

yu(x, t)
Δ
= y(x+

√
Δt, t+Δt),

yd(x, t)
Δ
= y(x−

√
Δt, t+Δt).

aH. Chiu (R98723059) (2012).
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Examples

• The transformation is∫ r

(σ
√
z)−1 dz =

2
√
r

σ

for the CIR model.

• The transformation is∫ S

(σz)−1 dz =
lnS

σ

for the Black-Scholes model dS = μS dt+ σS dW .

• The familiar BOPM and CRR discretize lnS not S.
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No-Arbitrage Term Structure Models
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How much of the structure of our theories

really tells us about things in nature,

and how much do we contribute ourselves?

— Arthur Eddington (1882–1944)

How can I apply this model

if I don’t understand it?

— Edward I. Altman (2019)
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Motivations

• Recall the difficulties facing equilibrium models

mentioned earlier.

– They usually require the estimation of the market

price of risk.a

– They cannot fit the market term structure.

– But consistency with the market is often mandatory

in practice.

aRecall p. 1109.
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No-Arbitrage Models

• No-arbitrage models utilize the full information of the

term structure.

• They accept the observed term structure as consistent

with an unobserved and unspecified equilibrium.

• From there, arbitrage-free movements of interest rates or

bond prices over time are modeled.

• By definition, the market price of risk must be reflected

in the current term structure; hence the resulting

interest rate process is risk-neutral.
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No-Arbitrage Models (concluded)

• No-arbitrage models can specify the dynamics of

zero-coupon bond prices, forward rates, or the short rate.

• Bond price and forward rate models are usually

non-Markovian (path dependent).

• In contrast, short rate models are generally constructed

to be explicitly Markovian (path independent).

• Markovian models are easier to handle computationally.
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The Ho-Lee Modela

• The short rates at any given time are evenly spaced.

• Let p denote the risk-neutral probability that the short

rate makes an up move.

• We shall adopt continuous compounding.

aT. Ho & S. B. Lee (1986).
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↗
r3

↗ ↘
r2

↗ ↘ ↗
r1 r3 + v3

↘ ↗ ↘
r2 + v2

↘ ↗
r3 + 2v3

↘
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The Ho-Lee Model (continued)

• The Ho-Lee model starts with zero-coupon bond prices

P (t, t+ 1), P (t, t+ 2), . . . at time t identified with the

root of the tree.

• Let the discount factors in the next period be

Pd(t+ 1, t+ 2), Pd(t+ 1, t+ 3), . . . , if short rate moves down,

Pu(t+ 1, t+ 2), Pu(t+ 1, t+ 3), . . . , if short rate moves up.

• By backward induction, it is not hard to see that for

n ≥ 2,a

Pu(t+ 1, t+ n) = Pd(t+ 1, t+ n) e−(v2+···+vn). (160)

aSee p. 376 of the textbook.

c©2024 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 1159



The Ho-Lee Model (continued)

• It is also not hard to check that the n-period

zero-coupon bond has yields

yd(n)
Δ
= − lnPd(t+ 1, t+ n)

n− 1

yu(n)
Δ
= − lnPu(t+ 1, t+ n)

n− 1
= yd(n) +

v2 + · · ·+ vn
n− 1

• The volatility of the yield to maturity for this bond is

therefore

κn
Δ
=

√
pyu(n)2 + (1− p) yd(n)2 − [ pyu(n) + (1− p) yd(n) ]2

=
√

p(1− p) (yu(n)− yd(n))

=
√

p(1− p)
v2 + · · ·+ vn

n− 1
.
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The Ho-Lee Model (concluded)

• In particular, the short rate volatility is determined by

taking n = 2:

σ =
√
p(1− p) v2. (161)

• The volatility of the short rate therefore equals√
p(1− p) (ru − rd),

where ru and rd are the two successor rates.a

aContrast this with the lognormal model (137) of the binomial interest

rate tree on p. 1028.
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The Ho-Lee Model: Volatility Term Structure

• The volatility term structure is composed of

κ2, κ3, . . . .

– The volatility structure is supplied by the market.

– For the Ho-Lee model, it is independent of

r2, r3, . . . .

• It is easy to compute the vis from the volatility

structure, and vice versa.a

• The ris can be computed by forward induction.

aReview p. 1160.

c©2024 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 1162



The Ho-Lee Model: Bond Price Process

• In a risk-neutral economy, the initial discount factors

satisfya

P (t, t+n) = [ pPu(t+1, t+n)+(1−p)Pd(t+1, t+n) ]P (t, t+1).

• Combine the above with Eq. (160) on p. 1159 and

assume p = 1/2 to obtainb

Pd(t+ 1, t+ n) =
P (t, t+ n)

P (t, t+ 1)

2× exp[ v2 + · · ·+ vn ]

1 + exp[ v2 + · · ·+ vn ]
,

Pu(t+ 1, t+ n) =
P (t, t+ n)

P (t, t+ 1)

2

1 + exp[ v2 + · · ·+ vn ]
.

aRecall Eq. (151) on p. 1097.
bIn the limit, only the volatility matters; the first formula is similar

to multiple logistic regression.
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The Ho-Lee Model: Bond Price Process (concluded)

• The bond price tree combines.a

• Suppose all vi equal some constant v and δ
Δ
= ev > 0.

• Then

Pd(t+ 1, t+ n) =
P (t, t+ n)

P (t, t+ 1)

2δn−1

1 + δn−1
,

Pu(t+ 1, t+ n) =
P (t, t+ n)

P (t, t+ 1)

2

1 + δn−1
.

• Short rate volatility σ = v/2 by Eq. (161) on p. 1161.

• Price derivatives by taking expectations under the

risk-neutral probability.

aSee Exercise 26.2.3 of the textbook.
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Calibration

• The Ho-Lee model can be calibrated in O(n2) time using

state prices.

• But it can actually be calibrated in O(n) time.a

– Derive the vi’s in linear time.

– Derive the ri’s in linear time.

aSee Programming Assignment 26.2.6 of the textbook.
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The Ho-Lee Model: Yields and Their Covariances

• The one-period rate of return of an n-period

zero-coupon bond isa

r(t, t+ n)
Δ
= ln

(
P (t+ 1, t+ n)

P (t, t+ n)

)
.

• Its two possible value are

ln
Pd(t+ 1, t+ n)

P (t, t+ n)
and ln

Pu(t+ 1, t+ n)

P (t, t+ n)
.

• Thus the variance of return isb

Var[ r(t, t+ n) ] = p(1− p) [ (n− 1) v ]2 = (n− 1)2σ2.

aSo r(t, t+ n) does not mean the n-period spot rate at time t here.
bRecall that σ is the short rate volatility by Eq. (161) on p. 1161.
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The Ho-Lee Model: Yields and Their Covariances
(concluded)

• The covariance between r(t, t+ n) and r(t, t+m) isa

(n− 1)(m− 1)σ2.

• As a result, the correlation between any two one-period

rates of return is one.

• Strong correlation between rates is inherent in all

one-factor Markovian models.

aSee Exercise 26.2.7 of the textbook.
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The Ho-Lee Model: Short Rate Process

• The continuous-time limit of the Ho-Lee model isa

dr = θ(t) dt+ σ dW. (162)

• This is Vasicek’s model with the mean-reverting drift

replaced by a deterministic, time-dependent drift.

• A nonflat term structure of volatilities can be achieved if

the short rate volatility is also made time varying,

dr = θ(t) dt+ σ(t) dW.

• This corresponds to the discrete-time model in which vi

are not all identical.
aSee Exercise 26.2.10 of the textbook.
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The Ho-Lee Model: Some Problems

• Future (nominal) interest rates may be negative.

• The short rate volatility is independent of the rate level.

• It has all the problems associated with a one-factor

model.a

aSee T. Ho & S. B. Lee (2004) for a multifactor Ho-Lee model.
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Problems with No-Arbitrage Models in General

• Interest rate movements should reflect shifts in the

model’s state variables (factors) not its parameters.

• Model parameters, such as the drift θ(t) in the

continuous-time Ho-Lee model, should be stable over

time.

• But in practice, no-arbitrage models capture yield curve

shifts through the recalibration of parameters.

– A new model is thus born every day.
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Problems with No-Arbitrage Models in General
(concluded)

• This in effect says the model estimated at some time

does not describe the term structure of interest rates

and their volatilities at future times.

• So a model’s intertemporal behavior is suspect, and

using it for hedging and risk management may be

unreliable.
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The Black-Derman-Toy Modela

• This model is extensively used by practitioners.

• The BDT short rate process is the lognormal binomial

interest rate process described on pp. 1024ff.b

• The volatility structurec is given by the market.

• From it, the short rate volatilities (thus vi) are

determined together with the baseline rates ri.

aBlack, Derman, & Toy (BDT) (1990), but essentially finished in 1986

according to Mehrling (2005).
bRepeated on next page.
cRecall Eq. (143) on p. 1075.
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r4

↗
r3

↗ ↘
r2 r4v4

↗ ↘ ↗
r1 r3v3

↘ ↗ ↘
r2v2 r4v24

↘ ↗
r3v23

↘
r4v34
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The Black-Derman-Toy Model (concluded)

• Our earlier binomial interest rate tree, in contrast,

assumes vi are given a priori.

• Lognormal models preclude negative short rates.
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The BDT Model: Volatility Structure

• The volatility structure defines the yield volatilities of

zero-coupon bonds of various maturities.

• Let the yield volatility of the i-period zero-coupon bond

be denoted by κi.

• Pu is the price of the i-period zero-coupon bond one

period from now if the short rate makes an up move.

• Pd is the price of the i-period zero-coupon bond one

period from now if the short rate makes a down move.
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The BDT Model: Volatility Structure (concluded)

• Corresponding to these two prices are the following

yields to maturity,

yu
Δ
= P−1/(i−1)

u − 1,

yd
Δ
= P

−1/(i−1)
d − 1.

• The yield volatility is defined asa

κi
Δ
=

ln(yu/yd)

2
.

aRecall Eq. (143) on p. 1075.
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The BDT Model: Calibration

• The inputs to the BDT model are riskless zero-coupon

bond yields and their volatilities.

• For economy of expression, all numbers are period based.

• Suppose inductively that we have calculated

(r1, v1), (r2, v2), . . . , (ri−1, vi−1).

– They define the binomial tree up to time i− 2 (thus

period i− 1).a

– Thus the spot rates up to time i− 1 have been

matched.
aRecall that (ri−1, vi−1) defines i−1 short rates at time i−2, which

are applicable to period i− 1: The subscript refers to the period.
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The BDT Model: Calibration (continued)

• We now proceed to calculate ri and vi to extend the

tree to cover period i.

• Assume the price of the i-period zero can move to Pu

or Pd one period from now.

• Let y denote the current i-period spot rate, which is

known.

• In a risk-neutral economy,

Pu + Pd

2(1 + ri)
=

1

(1 + y)i
. (163)

• Obviously, Pu and Pd are functions of the unknown ri

and vi.
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The BDT Model: Calibration (continued)

• Viewed from now, the future (i− 1)-period spot rate at

time 1 is uncertain.

• Recall that yu and yd represent the spot rates at the

up node and the down node, respectively.a

• With κ2
i denoting their variance, we have

κi =
1

2
ln

(
Pu

−1/(i−1) − 1

Pd
−1/(i−1) − 1

)
. (164)

aRecall p. 1176.
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The BDT Model: Calibration (continued)

• Solving Eqs. (163)–(164) for ri and vi with backward

induction takes O(i2) time.

– That leads to a cubic-time algorithm.

• We next employ forward induction to derive a

quadratic-time calibration algorithm.a

• Forward induction figures out, by moving forward in

time, how much $1 at a node contributes to the price.b

• This number is called the state price and is the price of

the claim that pays $1 at that node and zero elsewhere.

aW. J. Chen (R84526007) & Lyuu (1997); Lyuu (1999).
bReview p. 1052(a).
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The BDT Model: Calibration (continued)

• Let the unknown baseline rate for period i be ri = r.

• Let the unknown multiplicative ratio be vi = v.

• Let the state prices at time i− 1 be

P1, P2, . . . , Pi.

• The rates from them are

r, rv, . . . , rvi−1

for period i, respectively.

• One dollar at time i has a present value of

f(r, v)
Δ
=

P1

1 + r
+

P2

1 + rv
+

P3

1 + rv2
+ · · ·+ Pi

1 + rvi−1
.
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The BDT Model: Calibration (continued)

• By Eq. (164) on p. 1179, the yield volatility is

g(r, v)
Δ
=

1

2
ln

⎡
⎢⎣

(
Pu,1

1+rv
+

Pu,2

1+rv2 + · · ·+ Pu,i−1

1+rvi−1

)−1/(i−1) − 1

(
Pd,1

1+r
+

Pd,2

1+rv
+ · · ·+ Pd,i−1

1+rvi−2

)−1/(i−1) − 1

⎤
⎥⎦ .

• Above, Pu,1, Pu,2, . . . denote the state prices at time

i− 1 of the subtree rooted at the up node.a

• And Pd,1, Pd,2, . . . denote the state prices at time i− 1

of the subtree rooted at the down node.b

aLike r2v2 on p. 1173.
bLike r2 on p. 1173.
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The BDT Model: Calibration (concluded)

• Note that every node maintains three state prices:

P∗, Pu,∗, Pd,∗.

• Now solve

f(r, v) =
1

(1 + y)i
,

g(r, v) = κi,

for r = ri and v = vi.

• Finally, calculate the state prices at time i.

• This O(n2)-time algorithm appears on p. 382 of the

textbook.
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Calibrating the BDT Model with the Differential Tree
(in seconds)a

Number Running Number Running Number Running

of years time of years time of years time

3000 398.880 39000 8562.640 75000 26182.080

6000 1697.680 42000 9579.780 78000 28138.140

9000 2539.040 45000 10785.850 81000 30230.260

12000 2803.890 48000 11905.290 84000 32317.050

15000 3149.330 51000 13199.470 87000 34487.320

18000 3549.100 54000 14411.790 90000 36795.430

21000 3990.050 57000 15932.370 120000 63767.690

24000 4470.320 60000 17360.670 150000 98339.710

27000 5211.830 63000 19037.910 180000 140484.180

30000 5944.330 66000 20751.100 210000 190557.420

33000 6639.480 69000 22435.050 240000 249138.210

36000 7611.630 72000 24292.740 270000 313480.390

75MHz Sun SPARCstation 20, one period per year.

aLyuu (1999).
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The BDT Model: Continuous-Time Limit

• The continuous-time limit of the BDT model isa

d ln r =

[
θ(t) +

σ′(t)
σ(t)

ln r

]
dt+ σ(t) dW.

• The short rate volatility σ(t) should be a declining

function of time for the model to display mean reversion.

– That makes σ′(t) < 0.

• In particular, constant σ(t) will not attain mean

reversion.

aJamshidian (1991).
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Problems with Lognormal Models in General

• Lognormal models such as BDT share the problem that

Eπ[M(t) ] = ∞ for any finite t if they model the

continuously compounded rate.a

• So periodically compounded rates should be modeled.b

• Another issue is computational.

• Lognormal models usually do not admit of analytical

solutions to even basic fixed-income securities.

• As a result, to price short-dated derivatives on long-term

bonds, the tree has to be built over the life of the

underlying asset instead of the life of the derivative.
aHogan & Weintraub (1993).
bSandmann & Sondermann (1993).
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Problems with Lognormal Models in General
(concluded)

• This problem can be somewhat mitigated by adopting

variable-duration time steps.a

– Use a fine time step up to the maturity of the

short-dated derivative.

– Use a coarse time step beyond the maturity.

• A down side of this procedure is that it has to be

tailor-made for each derivative.

• Finally, empirically, interest rates do not follow the

lognormal distribution.

aHull & White (1993).
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The Extended Vasicek Modela

• Hull and White proposed models that extend the

Vasicek model and the CIR model.

• They are called the extended Vasicek model and the

extended CIR model.

• The extended Vasicek model adds time dependence to

the original Vasicek model,

dr = [ θ(t)− a(t) r ] dt+ σ(t) dW.

• Like the Ho-Lee model, this is a normal model.

• The inclusion of θ(t) allows for an exact fit to the

current spot rate curve.
aHull & White (1990).
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The Extended Vasicek Model (concluded)

• Function σ(t) defines the short rate volatility, and a(t)

determines the shape of the volatility structure.

• Many European-style securities can be evaluated

analytically.

• Efficient numerical procedures can be developed for

American-style securities.
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The Hull-White Model

• The Hull-White model is the following special case,

dr = (θ(t)− ar) dt+ σ dW. (165)

• When the current term structure is matched,a

θ(t) =
∂f(0, t)

∂t
+ af(0, t) +

σ2

2a

(
1− e−2at

)
.

– Recall that f(0, t) defines the forward rate curve.

aHull & White (1993).
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The Extended CIR Model

• In the extended CIR model the short rate follows

dr = [ θ(t)− a(t) r ] dt+ σ(t)
√
r dW.

• The functions θ(t), a(t), and σ(t) are implied from

market observables.

• With constant parameters, there exist analytical

solutions to a small set of interest rate-sensitive

securities.
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The Hull-White Model: Calibrationa

• We describe a trinomial forward induction scheme to

calibrate the Hull-White model given a and σ.

• As with the Ho-Lee model, the set of achievable short

rates is evenly spaced.

• Let r0 be the annualized, continuously compounded

short rate at time zero.

• Every short rate on the tree takes on a value

r0 + jΔr

for some integer j.

aHull & White (1993).
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The Hull-White Model: Calibration (continued)

• Time increments on the tree are also equally spaced at

Δt apart.

• Hence nodes are located at times iΔt for i = 0, 1, 2, . . . .

• We shall refer to the node on the tree with

ti
Δ
= iΔt,

rj
Δ
= r0 + jΔr, (166)

as the (i, j) node.

• The short rate at node (i, j), which equals rj , is

effective for the time period [ ti, ti+1).

c©2024 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 1193



The Hull-White Model: Calibration (continued)

• Use

μi,j
Δ
= θ(ti)− arj (167)

to denote the drift ratea of the short rate as seen from

node (i, j).

• The three distinct possibilities for node (i, j) with three

branches incident from it are displayed on p. 1195.

• The middle branch may be an increase of Δr, no

change, or a decrease of Δr.

aOr, the annualized expected change.
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The Hull-White Model: Calibration (continued)

(i, j)

�
(i+ 1, j + 2)

�(i+ 1, j + 1)

� (i+ 1, j)

(i, j)

�(i+ 1, j + 1)

� (i+ 1, j)

�(i+ 1, j − 1)

(i, j) � (i+ 1, j)

�(i+ 1, j − 1)

�
(i+ 1, j − 2)
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The Hull-White Model: Calibration (continued)

• The upper and the lower branches bracket the middle

branch.

• Define

p1(i, j)
Δ
= the probability of following the upper branch from node (i, j),

p2(i, j)
Δ
= the probability of following the middle branch from node (i, j),

p3(i, j)
Δ
= the probability of following the lower branch from node (i, j).

• The root of the tree is set to the current short rate r0.

• Inductively, the drift μi,j at node (i, j) is a function of

(the still unknown) θ(ti).
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The Hull-White Model: Calibration (continued)

• Once θ(ti) is available, μi,j can be derived via

Eq. (167) on p. 1194.

• This in turn determines the branching scheme at every

node (i, j) for each j, as we will see shortly.

• The value of θ(ti) must thus be made consistent with

the spot rate r(0, ti+2).
a

aNot r(0, ti+1)!
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The Hull-White Model: Calibration (continued)

• The branches emanating from node (i, j) with their

probabilitiesa must be chosen to be consistent with μi,j

and σ.

• This is done by selecting the middle node to be as

closest to the current short rate rj plus the drift μi,jΔt.b

aThat is, p1(i, j), p2(i, j), and p3(i, j).
bA precursor of Lyuu and C. Wu’s (R90723065) (2003, 2005) mean-

tracking idea, which in turn is the precursor of the binomial-trinomial

tree of T. Dai (B82506025, R86526008, D8852600) & Lyuu (2006, 2008,

2010).
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The Hull-White Model: Calibration (continued)

• Let k be the number among { j − 1, j, j + 1 } that

makes the short rate reached by the middle branch, rk,

closest to

rj + μi,jΔt.

– But note that μi,j is still not computed yet.

• Then the three nodes following node (i, j) are nodes

(i+ 1, k + 1), (i+ 1, k), (i+ 1, k − 1).

• See p. 1200 for a possible geometry.

• The resulting tree “combines.”
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The Hull-White Model: Calibration (continued)

• The probabilities for moving along these branches are

functions of μi,j , σ, j, and k:

p1(i, j) =
σ2Δt+ η2

2(Δr)2
+

η

2Δr
, (168)

p2(i, j) = 1− σ2Δt+ η2

(Δr)2
, (168′)

p3(i, j) =
σ2Δt+ η2

2(Δr)2
− η

2Δr
, (168′′)

where

η
Δ
= μi,jΔt+ (j − k)Δr.
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The Hull-White Model: Calibration (continued)

• As trinomial tree algorithms are but explicit methods in

disguise,a certain relations must hold for Δr and Δt to

guarantee stability.

• It can be shown that their values must satisfy

σ
√
3Δt

2
≤ Δr ≤ 2σ

√
Δt

for the probabilities to lie between zero and one.

– For example, Δr can be set to σ
√
3Δt .b

• Now it only remains to determine θ(ti).

aRecall p. 845.
bHull & White (1988).
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The Hull-White Model: Calibration (continued)

• At this point at time ti,

r(0, t1), r(0, t2), . . . , r(0, ti+1)

have already been matched.

• Let Q(i, j) be the state price at node (i, j).

• By construction, the state prices Q(i, j) for all j are

known by now.

• We begin with state price Q(0, 0) = 1.
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The Hull-White Model: Calibration (continued)

• Let r̂(i) refer to the short rate value at time ti.

• The value at time zero of a zero-coupon bond maturing

at time ti+2 is then

e−r(0,ti+2)(i+2)Δt

=
∑
j

Q(i, j) e−rjΔt Eπ
[
e−r̂(i+1)Δt

∣∣∣ r̂(i) = rj

]
.(169)

• The right-hand side represents the value of $1 at time

ti+2 as seen at node (i, j) at timea ti before being

discounted by Q(i, j).

aThus r̂(i+ 1) is stochastic.
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The Hull-White Model: Calibration (continued)

• The expectation in Eq. (169) can be approximated bya

Eπ
[
e−r̂(i+1)Δt

∣∣∣ r̂(i) = rj

]
≈ e−rjΔt

(
1− μi,j(Δt)2 +

σ2(Δt)3

2

)
. (170)

– This solves the chicken-egg problem!

• Substitute Eq. (170) into Eq. (169) and replace μi,j

with θ(ti)− arj to obtain

θ(ti) ≈
∑

j Q(i, j) e
−2rjΔt (

1 + arj(Δt)2 + σ2(Δt)3/2
)

− e
−r(0,ti+2)(i+2)Δt

(Δt)2
∑

j Q(i, j) e
−2rjΔt

.

aSee Exercise 26.4.2 of the textbook.
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The Hull-White Model: Calibration (continued)

• For the Hull-White model, the expectation in Eq. (170)

is actually known analytically by Eq. (29) on p. 181:

Eπ
[
e−r̂(i+1)Δt

∣∣∣ r̂(i) = rj

]
= e−rjΔt+(−θ(ti)+arj+σ2Δt/2)(Δt)2 .

• Therefore, alternatively,

θ(ti) =
r(0, ti+2)(i+ 2)

Δt
+
σ2Δt

2
+
ln
∑

j Q(i, j) e−2rjΔt+arj(Δt)2

(Δt)2
.

• With θ(ti) in hand, we can compute μi,j .
a

aSee Eq. (167) on p. 1194.
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The Hull-White Model: Calibration (concluded)

• With μi,j available, we compute the probabilities.a

• Finally the state prices at time ti+1:

Q(i+ 1, j)

=
∑

(i, j∗) is connected to (i + 1, j) with probability pj∗

pj∗e
−rj∗ΔtQ(i, j∗).

• There are at most 5 choices for j∗ (why?).

• The total running time is O(n2).

• The space requirement is O(n) (why?).

aSee probabilities (168) on p. 1201.
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Comments on the Hull-White Model

• One can try different values of a and σ for each option.

• Or have an a value common to all options but use a

different σ value for each option.

• Either approach can match all the option prices exactly.

• But suppose the demand is for a single set of parameters

to apply to all option prices.

• Then the Hull-White model can be calibrated to all the

observed option prices by choosing a and σ that

minimize the mean-squared pricing error.a

aHull & White (1995).
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The Hull-White Model: Calibration with Irregular
Trinomial Trees

• The previous calibration algorithm is quite general.

• For example, it can be modified to apply to cases where

the diffusion term has the form σrb.

• But it has at least two shortcomings.

• First, the resulting trinomial tree is irregular.a

– So it is harder to program.

• The second shortcoming is a consequence of the tree’s

irregular shape.

aRecall p. 1200.
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The Hull-White Model: Calibration with Irregular
Trinomial Trees (concluded)

• Recall that the algorithm figured out θ(ti) that matches

the spot rate r(0, ti+2) in order to determine the

branching schemes for the nodes at time ti.

• But without those branches, the tree was not specified,

and backward induction on the tree was not possible.

• To avoid this chicken-egg dilemma, the algorithm turned

to the continuous-time model to evaluate Eq. (169) on

p. 1204 that helps derive θ(ti).

• The resulting θ(ti) might not yield a tree that matches

the spot rates exactly.
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The Hull-White Model: Calibration with Regular
Trinomial Treesa

• The next, simpler algorithm exploits the fact that the

Hull-White model has a constant diffusion term σ.

• The resulting trinomial tree will be regular.

• All the θ(ti) terms can be chosen by backward

induction to match the spot rates exactly.

• The tree is constructed in two phases.

aHull & White (1994).
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The Hull-White Model: Calibration with Regular
Trinomial Trees (continued)

• In the first phase, a tree is built for the θ(t) = 0 case,

which is an Ornstein-Uhlenbeck process:

dr = −ar dt+ σ dW, r(0) = 0.

– The tree is dagger-shaped (see p. 1213).

– The number of nodes above the r0-line is jmax, and

that below the line is jmin.

– They will be picked so that the probabilities (168) on

p. 1201 are positive for all nodes.

c©2024 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 1212



�
�

�

(0, 0)
r0

�
�

�

(1, 1)
�
�

�

(1, 0)
�
�

�
(1,−1)

�
�

�
�
�

�
�
�

�
�
�

�

�
�
�

�

�

�

�
�

�
�
�

�
�
�

�
�
�

�

�
�
�

�

�

�

�
�

�
�
�

�
�
�

�
�
�

�

�
�
�

�

�

�

�
�

�
�
�

�
�
�

�
�
�

�

�
�
�

��
Δt

�
	
Δr

The short rate at node (0, 0) equals r0 = 0; here jmax = 3

and jmin = 2.
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The Hull-White Model: Calibration with Regular
Trinomial Trees (concluded)

• The tree’s branches and probabilities are now in place.

• Phase two fits the term structure.

– Backward induction is applied to calculate the βi to

add to the short rates on the tree at time ti so that

the spot rate r(0, ti+1) is matched exactly.a

aContrast this with the previous algorithm, where it was r(0, ti+2)

that was being matched!

c©2024 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 1214



The Hull-White Model: Calibration

• Assume that a > 0.

• Set Δr = σ
√
3Δt .a

• Node (i, j) is a top node if j = jmax and a bottom node

if j = −jmin.

• Because the root has a short rate of r0 = 0, phase one

sets rj = jΔr.b

• Hence the probabilities (168) on p. 1201 use

η
Δ
= −ajΔrΔt+ (j − k)Δr.

• Recall that k tracks the middle branch.
aRecall p. 1202.
bSimilar to formula (166) on p. 1193.
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The Hull-White Model: Calibration (continued)

• The probabilities become

p1(i, j)

=
1

6
+

a2j2(Δt)2 − 2ajΔt(j − k) + (j − k)2 − ajΔt + (j − k)

2
, (171)

p2(i, j)

=
2

3
−

[
a
2
j
2
(Δt)

2 − 2ajΔt(j − k) + (j − k)
2

]
, (172)

p3(i, j)

=
1

6
+

a2j2(Δt)2 − 2ajΔt(j − k) + (j − k)2 + ajΔt − (j − k)

2
. (173)

• p1: up move; p2: flat move; p3: down move.
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The Hull-White Model: Calibration (continued)

• The dagger shape dictates this:

– Let k = j − 1 if node (i, j) is a top node.

– Let k = j + 1 if node (i, j) is a bottom node.

– Let k = j for the rest of the nodes.

• Note that the probabilities are identical for nodes (i, j)

with the same j.

• Note also the symmetry,

p1(i, j) = p3(i,−j).
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The Hull-White Model: Calibration (continued)

• The inequalities

3−√
6

3
< jaΔt <

√
2

3
(174)

ensure that all the branching probabilities are positive in

the upper half of the tree, that is, j > 0 (verify this).

• The inequalities

−
√

2

3
< jaΔt < −3−√

6

3

ensure that the probabilities are positive in the lower

half of the tree, that is, j < 0.
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The Hull-White Model: Calibration (continued)

• To further make the tree symmetric across the r0-line,

we let jmin = jmax.

• As
3−√

6

3
≈ 0.184,

a good choice is

jmax =

⌈
0.184

aΔt

⌉
= O(n).
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The Hull-White Model: Calibration (continued)

• Phase two computes the βis to fit the spot rates.

• We begin with state price Q(0, 0) = 1.

• Inductively, suppose that spot rates

r(0, t1), r(0, t2), . . . , r(0, ti)

have already been matched.

• By construction, the state prices Q(i, j) for all j are

known by now.
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The Hull-White Model: Calibration (continued)

• The value of a zero-coupon bond maturing at time ti+1

equals

e−r(0,ti+1)(i+1)Δt =
∑
j

Q(i, j) e−(βi+rj)Δt

by risk-neutral valuation.

• Hence

βi =
r(0, ti+1)(i+ 1)Δt+ ln

∑
j Q(i, j) e−rjΔt

Δt
. (175)
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The Hull-White Model: Calibration (concluded)

• The short rate at node (i, j) now equals βi + rj .

• The state prices at time ti+1,

Q(i+ 1, j)

for −min(i+ 1, jmax) ≤ j ≤ min(i+ 1, jmax), can now be

calculated as before.a

• The total running time is O(njmax).

• The space requirement is O(n).

aRecall p. 1207.
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A Numerical Example

• Assume a = 0.1, σ = 0.01, and Δt = 1 (year).

• Immediately, Δr = 1.73205% and jmax = 2.

• The plot on p. 1224 illustrates the 3-period trinomial

tree after phase one.

• For example, the branching probabilities for node E are

calculated by Eqs. (171)–(173) on p. 1216 with j = 2

and k = 1.
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Node A, C, G B, F E D, H I

r (%) 0.00000 1.73205 3.46410 −1.73205 −3.46410

p1 0.16667 0.12167 0.88667 0.22167 0.08667

p2 0.66667 0.65667 0.02667 0.65667 0.02667

p3 0.16667 0.22167 0.08667 0.12167 0.88667
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A Numerical Example (continued)

• Suppose that phase two is to fit the spot rate curve

0.08− 0.05× e−0.18×t.

• The annualized continuously compounded spot rates are

r(0, 1) = 3.82365%, r(0, 2) = 4.51162%, r(0, 3) = 5.08626%.

• Start with state price Q(0, 0) = 1 at node A.
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A Numerical Example (continued)

• Now, by Eq. (175) on p. 1221,

β0 = r(0, 1) + lnQ(0, 0) e−r0 = r(0, 1) = 3.82365%.

• Hence the short rate at node A equals

β0 + r0 = 3.82365%.

• The state prices at year one are calculated as

Q(1, 1) = p1(0, 0) e
−(β0+r0) = 0.160414,

Q(1, 0) = p2(0, 0) e
−(β0+r0) = 0.641657,

Q(1,−1) = p3(0, 0) e
−(β0+r0) = 0.160414.
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A Numerical Example (continued)

• The 2-year rate spot rate r(0, 2) is matched by picking

β1 = r(0, 2)×2+ln
[
Q(1, 1) e−Δr +Q(1, 0) +Q(1,−1) eΔr

]
= 5.20459%.

• Hence the short rates at nodes B, C, and D equal

β1 + rj ,

where j = 1, 0,−1, respectively.

• They are found to be 6.93664%, 5.20459%, and

3.47254%.
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A Numerical Example (continued)

• The state prices at year two are calculated as

Q(2, 2) = p1(1, 1) e
−(β1+r1)Q(1, 1) = 0.018209,

Q(2, 1) = p2(1, 1) e
−(β1+r1)Q(1, 1) + p1(1, 0) e

−(β1+r0)Q(1, 0)

= 0.199799,

Q(2, 0) = p3(1, 1) e
−(β1+r1)Q(1, 1) + p2(1, 0) e

−(β1+r0)Q(1, 0)

+p1(1,−1) e−(β1+r−1)Q(1,−1) = 0.473597,

Q(2,−1) = p3(1, 0) e
−(β1+r0)Q(1, 0) + p2(1,−1) e−(β1+r−1)Q(1,−1)

= 0.203263,

Q(2,−2) = p3(1,−1) e−(β1+r−1)Q(1,−1) = 0.018851.
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A Numerical Example (concluded)

• The 3-year rate spot rate r(0, 3) is matched by picking

β2 = r(0, 3)× 3 + ln
[
Q(2, 2) e−2×Δr +Q(2, 1) e−Δr +Q(2, 0)

+Q(2,−1) eΔr +Q(2,−2) e2×Δr
]
= 6.25359%.

• Hence the short rates at nodes E, F, G, H, and I equal

β2 + rj , where j = 2, 1, 0,−1,−2, respectively.

• They are found to be 9.71769%, 7.98564%, 6.25359%,

4.52154%, and 2.78949%.

• The figure on p. 1230 plots βi for i = 0, 1, . . . , 29.

c©2024 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 1229



� �� �� �� �� ��

���	 �
�

�

�

�




�

�� ���

c©2024 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 1230


