
Time Series Analysis
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The historian is a prophet in reverse.

— Friedrich von Schlegel (1772–1829)

Even in my tape reading something enters

that is more than mere arithmetic.

— Edwin Lefèvre (1971–1943),

Reminiscences of a Stock Operator (1923)
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GARCH Option Pricing

• Options can be priced when the underlying asset’s

return follows a GARCH (generalized autoregressive

conditional heteroskedastic) process.a

• Let St denote the asset price at date t.

• Let h2
t be the conditional variance of the return over

the period [ t, t+ 1) given the information at date t.

– “One day” is merely a convenient term for any

elapsed time Δt.

aBollerslev (1986) and Taylor (1986). They are the “most popular

models for time-varying volatility” (Alexander, 2001). A Bloomberg

quant said to me on Feb 29, 2008, that GARCH is seldom used in trading.
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GARCH Option Pricing (continued)

• Adopt the following risk-neutral process for price:a

ln
St+1

St
= r − h2

t

2
+ htεt+1, (127)

where

h2
t+1 = β0 + β1h

2
t + β2h

2
t (εt+1 − c)2, (128)

εt+1 ∼ N(0, 1) given information at date t,

r = daily riskless return,

c ≥ 0.

• This is called the nonlinear asymmetric GARCH (or

NGARCH) model.
aDuan (1995).
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GARCH Option Pricing (continued)

• The five unknown parameters of the model are c, h0, β0,

β1, and β2.

• It is postulated that β0, β1, β2 ≥ 0 to make the

conditional variance positive.

• There are other inequalities to satisfy such as

β1 + β2 < 1 (see text).

• It can be shown that h2
t ≥ min

[
h2
0, β0/(1− β1)

]
.a

aLyuu & C. Wu (R90723065) (2005).
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GARCH Option Pricing (continued)

• It captures the volatility clustering in asset returns first

noted by Mandelbrot (1963).a

– When c = 0, a large εt+1 results in a large ht+1,

which in turns tends to yield a large ht+2, and so on.

• It also captures the negative correlation between the

asset return and changes in its (conditional) volatility.b

– For c > 0, a positive εt+1 (good news) tends to

decrease ht+1, whereas a negative εt+1 (bad news)

tends to do the opposite.
a“. . . large changes tend to be followed by large changes—of either

sign—and small changes tend to be followed by small changes . . . ”
bNoted by Black (1976): Volatility tends to rise in response to “bad

news” and fall in response to “good news.”
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GARCH Option Pricing (continued)

• This is called the leverage effect.

– A falling stock price raises the fixed costs, relatively

speaking.a

– Thus c is called the leverage effect parameter.

• With yt
Δ
= lnSt denoting the logarithmic price, the

model becomes

yt+1 = yt + r − h2
t

2
+ htεt+1. (129)

• The pair (yt, h
2
t ) completely describes the current state.

aBlack (1992).

c©2024 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 959



GARCH Option Pricing (concluded)

• The conditional mean and variance of yt+1 are clearly

E[ yt+1 | yt, h2
t ] = yt + r − h2

t

2
, (130)

Var[ yt+1 | yt, h2
t ] = h2

t . (131)

• Finally, given (yt, h
2
t ), the correlation between yt+1 and

ht+1 equals

− 2c√
2 + 4c2

,

which is negative for c > 0.
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GARCH Model: Inferences

• Suppose the parameters c, h0, β0, β1, and β2 are given.

• Then we can recover h1, h2, . . . , hn and ε1, ε2, . . . , εn

from the prices

S0, S1, . . . , Sn

under the GARCH model (127) on p. 956.

• This is useful in statistical inferences.
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The Ritchken-Trevor (RT) Algorithma

• The GARCH model is a continuous-state model.

• To approximate it, we turn to trees with discrete states.

• Path dependence in GARCH makes the tree for asset

prices explode exponentially.b

• We need to mitigate this combinatorial explosion.

aRitchken & Trevor (1999).
bWhy?
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The RT Algorithm (continued)

• Partition a day into n periods.

• Three states follow each state (yt, h
2
t ) after a period.

• As the trinomial model combines, each state at date t is

followed by 2n+ 1 states at date t+ 1.a

• These 2n+ 1 values must approximate the distribution

of (yt+1, h
2
t+1) to guarantee convergence.

• So the conditional moments (130)–(131) at date t+ 1

on p. 960 must be matched by the trinomial model.

aRecall p. 741.
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The RT Algorithm (continued)

• It remains to pick the jump size and the three branching

probabilities.

• The role of σ in the Black-Scholes option pricing model

is played by ht in the GARCH model.

• As a jump size proportional to σ/
√
n is picked in the

BOPM, a comparable magnitude will be chosen here.

• Define γ
Δ
= h0, though other multiples of h0 are

possible.

• Let

γn
Δ
=

γ√
n
.
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The RT Algorithm (continued)

• The jump size will be some integer multiple η of γn.

• We call η the jump parameter (see next page).

• Clearly, the magnitude of η tends to grow with ht.

• The middle branch does not change the underlying

asset’s price.
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(0, 0)
yt

(1, 1)

(1, 0)

(1,−1)

�
�
ηγn

�� 1 day

The seven values on the right approximate the distribution

of logarithmic price yt+1.
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The RT Algorithm (continued)

• The probabilities for the up, middle, and down branches

are

pu =
h2
t

2η2γ2
+

r − (h2
t/2)

2ηγ
√
n

, (132)

pm = 1− h2
t

η2γ2
, (133)

pd =
h2
t

2η2γ2
− r − (h2

t/2)

2ηγ
√
n

. (134)
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The RT Algorithm (continued)

• It can be shown that:

– The trinomial model takes on 2n+ 1 values at date

t+ 1 for yt+1 .

– These values match yt+1’s mean.

– These values match yt+1’s variance asymptotically.

• The central limit theorem guarantees convergence to the

continuous-space model as n increases.a

aAssume the probabilities are valid.
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The RT Algorithm (continued)

• We can dispense with the intermediate nodes between

dates to create a (2n+ 1)-nomial tree.a

• The resulting model is multinomial with 2n+ 1

branches from any state (yt, h
2
t ).

• There are two reasons behind this manipulation.

– Interdate nodes are created merely to approximate

the continuous-state model after one day.

– Keeping the interdate nodes results in a tree that is

n times larger.b

aSee p. 970.
bContrast it with the case on p. 412.
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yt

�
�
ηγn

�� 1 day

This heptanomial model is the outcome of the trinomial tree

on p. 966 after the intermediate nodes are removed.
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The RT Algorithm (continued)

• A node with logarithmic price yt + �ηγn at date t+ 1

follows the current node at date t with price yt, where

−n ≤ � ≤ n.

• To reach that price in n periods, the number of up

moves must exceed that of down moves by exactly �.

• The probability this happens is

P (�)
Δ
=

∑
ju,jm,jd

n!

ju! jm! jd!
pjuu pjmm pjdd ,

with ju, jm, jd ≥ 0, n = ju + jm + jd, and � = ju − jd.

c©2024 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 971



The RT Algorithm (continued)

• A simple way to calculate the P (�)s starts by notinga

(
pux+ pm + pdx

−1
)n

=

n∑
�=−n

P (�)x�.

(135)

– Convince yourself that the “accounting” is done

correctly.

• So we expand (pux+ pm + pdx
−1)n and retrieve the

probabilities by reading off the coefficients.

• It can be computed in O(n2) time, if not less.

aC. Wu (R90723065) (2003); Lyuu & C. Wu (R90723065) (2003, 2005).
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The RT Algorithm (continued)

• The updating rule (128) on p. 956 must be modified to

account for the adoption of the discrete-state model.

• The logarithmic price yt + �ηγn at date t+ 1 following

state (yt, h
2
t ) is associated with this variance:

h2
t+1 = β0 + β1h

2
t + β2h

2
t (ε

′
t+1 − c)2, (136)

– Above, the z-scorea

ε′t+1 =
�ηγn − (r − h2

t /2)

ht
, � = 0,±1,±2, . . . ,±n,

is a discrete random variable with 2n+ 1 values.

aNote that the mean of ε′t+1 is r − (h2
t /2).
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The RT Algorithm (continued)

• Different h2
t may require different η so that the

probabilities (132)–(134) on p. 967 lie between 0 and 1.

• This implies varying jump sizes ηγn.

• The necessary requirement pm ≥ 0 implies η ≥ ht/γ.

• Hence we try

η = �ht/γ �, �ht/γ �+ 1, �ht/γ �+ 2, . . .

until valid probabilities are obtained or until their

nonexistence is confirmed.
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The RT Algorithm (continued)

• The sufficient and necessary condition for valid

probabilities to exist isa

| r − (h2
t /2) |

2ηγ
√
n

≤ h2
t

2η2γ2
≤ min

(
1− | r − (h2

t/2) |
2ηγ

√
n

,
1

2

)
.

• The plot on p. 976 uses n = 1 to illustrate our points

for a 3-day model.

• For example, node (1, 1) of date 1 and node (2, 3) of

date 2 pick η = 2.

aC. Wu (R90723065) (2003); Lyuu & C. Wu (R90723065) (2003, 2005).
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y0

(1, 1)

(2, 3)

(2, 0)

(2,−1)

�
�
γn = γ1

�� 3 days
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The RT Algorithm (continued)

• The topology of the tree is not a standard combining

multinomial tree.

• For example, a few nodes on p. 976 such as nodes (2, 0)

and (2,−1) have multiple jump sizes.

• The reason is path dependency of the model.

– Two paths can reach node (2, 0) from the root node,

each with a different variance h2
t for the node.

– One variance results in η = 1.

– The other results in η = 2.

c©2024 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 977



The RT Algorithm (concluded)

• The number of possible values of h2
t at a node can be

exponential.

– Because each path may result in a different h2
t .

• To address this problem, we record only the maximum

and minimum h2
t at each node.a

• Therefore, each node on the tree contains only two

states (yt, h
2
max) and (yt, h

2
min).

• Each of (yt, h
2
max) and (yt, h

2
min) carries its own η and

set of 2n+ 1 branching probabilities.

aCakici & Topyan (2000). But see p. 1013 for a potential problem.
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Negative Aspects of the Ritchken-Trevor Algorithma

• A small n may yield inaccurate option prices.

• But the tree will grow exponentially if n is large enough.

– Specifically, n > (1− β1)/β2 when r = c = 0.

• A large n has another serious problem: The tree cannot

grow beyond a certain date.

• Thus the choice of n may be quite limited in practice.

• The RT algorithm can be modified to be free of

shortened maturity and exponential complexity.b

aLyuu & C. Wu (R90723065) (2003, 2005).
bIts size is only O(T 2) if n ≤ (

√
(1− β1)/β2 − c)2, where T is the

number of days to maturity!
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Numerical Examples

• Assume

– S0 = 100, y0 = lnS0 = 4.60517.

– r = 0.

– n = 1.

– h2
0 = 0.0001096, γ = h0 = 0.010469.

– γn = γ/
√
n = 0.010469.

– β0 = 0.000006575, β1 = 0.9, β2 = 0.04, and c = 0.
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Numerical Examples (continued)

• A daily variance of 0.0001096 corresponds to an annual

volatility of

√
365× 0.0001096 ≈ 20%.

• Let h2(i, j) denote the variance at node (i, j).

• Initially, h2(0, 0) = h2
0 = 0.0001096.
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Numerical Examples (continued)

• Let h2
max(i, j) denote the maximum variance at node

(i, j).

• Let h2
min(i, j) denote the minimum variance at node

(i, j).

• Initially, h2
max(0, 0) = h2

min(0, 0) = h2
0.

• The resulting 3-day tree is depicted on p. 983.
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Numerical Examples (continued)

• A top number inside a gray box refers to the minimum

variance h2
min for the node.

• A bottom number inside a gray box refers to the

maximum variance h2
max for the node.

• Variances are multiplied by 100,000 for readability.

• The top number inside a white box refers to the η for

h2
min.

• The bottom number inside a white box refers to the η

for h2
max.
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Numerical Examples (continued)

• Let us see how the numbers are calculated.

• Start with the root node, node (0, 0).

• Try η = 1 in Eqs. (132)–(134) on p. 967 first to obtain

pu = 0.4974,

pm = 0,

pd = 0.5026.

• As they are valid, the three branches from the root node

take single jumps.
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Numerical Examples (continued)

• Move on to node (1, 1).

• It has one predecessor node—node (0, 0)—and it takes

an up move to reach node (1, 1).

• So apply updating rule (136) on p. 973 with � = 1 and

h2
t = h2(0, 0).

• The result is h2(1, 1) = 0.000109645.
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Numerical Examples (continued)

• Because �h(1, 1)/γ � = 2, we try η = 2 in

Eqs. (132)–(134) on p. 967 first to obtain

pu = 0.1237,

pm = 0.7499,

pd = 0.1264.

• As they are valid, the three branches from node (1, 1)

take double jumps.
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Numerical Examples (continued)

• Carry out similar calculations for node (1, 0) with

� = 0 in updating rule (136) on p. 973.

• Carry out similar calculations for node (1,−1) with

� = −1 in updating rule (136).

• Single jump η = 1 works for both nodes.

• The resulting variances are

h2(1, 0) = 0.000105215,

h2(1,−1) = 0.000109553.
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Numerical Examples (continued)

• Node (2, 0) has 2 predecessor nodes, (1, 0) and (1,−1).

• Both have to be considered in deriving the variances.

• Let us start with node (1, 0).

• Because it takes a middle move to reach node (2, 0), we

apply updating rule (136) on p. 973 with � = 0 and

h2
t = h2(1, 0).

• The result is h2
t+1 = 0.000101269.
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Numerical Examples (continued)

• Now move on to the other predecessor node (1,−1).

• Because it takes an up move to reach node (2, 0), apply

updating rule (136) on p. 973 with � = 1 and

h2
t = h2(1,−1).

• The result is h2
t+1 = 0.000109603.

• We hence record

h2
min(2, 0) = 0.000101269,

h2
max(2, 0) = 0.000109603.
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Numerical Examples (continued)

• Consider state h2
max(2, 0) first.

• Because �hmax(2, 0)/γ � = 2, we first try η = 2 in

Eqs. (132)–(134) on p. 967 to obtain

pu = 0.1237,

pm = 0.7500,

pd = 0.1263.

• As they are valid, the three branches from node (2, 0)

with the maximum variance take double jumps.
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Numerical Examples (continued)

• Now consider state h2
min(2, 0).

• Because �hmin(2, 0)/γ � = 1, we first try η = 1 in

Eqs. (132)–(134) on p. 967 to obtain

pu = 0.4596,

pm = 0.0760,

pd = 0.4644.

• As they are valid, the three branches from node (2, 0)

with the minimum variance take single jumps.
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Numerical Examples (continued)

• Node (2,−1) has 3 predecessor nodes.

• Start with node (1, 1).

• Because it takes one down move to reach node (2,−1),

we apply updating rule (136) on p. 973 with � = −1

and h2
t = h2(1, 1).a

• The result is h2
t+1 = 0.0001227.

aNote that it is not � = −2. The reason is that h(1, 1) has η = 2 (p.

987).
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Numerical Examples (continued)

• Now move on to predecessor node (1, 0).

• Because it also takes a down move to reach node

(2,−1), we apply updating rule (136) on p. 973 with

� = −1 and h2
t = h2(1, 0).

• The result is h2
t+1 = 0.000105609.
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Numerical Examples (continued)

• Finally, consider predecessor node (1,−1).

• Because it takes a middle move to reach node (2,−1),

we apply updating rule (136) on p. 973 with � = 0 and

h2
t = h2(1,−1).

• The result is h2
t+1 = 0.000105173.

• We hence record

h2
min(2,−1) = 0.000105173,

h2
max(2,−1) = 0.0001227.
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Numerical Examples (continued)

• Consider state h2
max(2,−1).

• Because �hmax(2,−1)/γ � = 2, we first try η = 2 in

Eqs. (132)–(134) on p. 967 to obtain

pu = 0.1385,

pm = 0.7201,

pd = 0.1414.

• As they are valid, the three branches from node (2,−1)

with the maximum variance take double jumps.
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Numerical Examples (continued)

• Next, consider state h2
min(2,−1).

• Because �hmin(2,−1)/γ � = 1, we first try η = 1 in

Eqs. (132)–(134) on p. 967 to obtain

pu = 0.4773,

pm = 0.0404,

pd = 0.4823.

• As they are valid , the three branches from node (2,−1)

with the minimum variance take single jumps.
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Numerical Examples (concluded)

• Other nodes at dates 2 and 3 can be handled similarly.

• In general, if a node has k predecessor nodes, then up to

2k variances will be calculated using the updating rule.

– This is because each predecessor node keeps two

variance numbers.

• But only the maximum and minimum variances will be

kept.
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Negative Aspects of the RT Algorithm Revisiteda

• Recall the problems mentioned on p. 979.

• In our case, combinatorial explosion occurs when

n >
1− β1

β2
=

1− 0.9

0.04
= 2.5

(see the next plot).

• Suppose we are willing to accept the exponential

running time and pick n = 100 to seek accuracy.

• But the problem of shortened maturity forces the tree to

stop at date 9!

aLyuu & C. Wu (R90723065) (2003, 2005).
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Dotted line: n = 3; dashed line: n = 4; solid line: n = 5.
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Backward Induction on the RT Tree

• After the RT tree is constructed, it can be used to price

options by backward induction.

• Recall that each node keeps two variances h2
max and

h2
min.

• We now increase that number to K equally spaced

variances between h2
max and h2

min at each node.

• Besides the minimum and maximum variances, the other

K − 2 variances in between are linearly interpolated.a

aLog-linear interpolation works better in practice (Lyuu & C. Wu

(R90723065), 2005). Log-cubic interpolation works even better (C. Liu

(R92922123), 2005).
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Backward Induction on the RT Tree (continued)

• For example, if K = 3, then a variance of

10.5436× 10−6

will be added between the maximum and minimum

variances at node (2, 0) on p. 983.a

• In general, the kth variance at node (i, j) is

h2
min(i, j)+k

h2
max(i, j)− h2

min(i, j)

K − 1
, k = 0, 1, . . . , K−1.

• Each interpolated variance’s jump parameter and

branching probabilities can be computed as before.

aRepeated on p. 1003.
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Backward Induction on the RT Tree (concluded)

• Suppose a variance falls between two of the K variances

during backward induction.

• Linear interpolation of the option prices corresponding

to the two bracketing variances will be used as the

approximate option price.

• The above idea is reminiscent of the one in dealing with

Asian options.a

aRecall p. 454.
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Numerical Examples

• We next use the tree on p. 1003 to price a European call

option with a strike price of 100 and expiring at date 3.

• Recall that the riskless interest rate is zero.

• Assume K = 2; hence there are no interpolated

variances.

• The pricing tree is shown on p. 1006 with a call price of

0.66346.

– The branching probabilities needed in backward

induction can be found on p. 1007.
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5.37392

5.37392

3.19054

3.19054

3.19054

3.19054

2.11587

2.11587
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1.05240

1.05240

1.05240

0.66346

0.66346
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0.52360

0.26172

0.48366

0.00000

0.00000

0.13012

0.13012

0.14573

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000
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100.00000

101.05240

102.11587

103.19054

104.27652
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97.92797
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1

1

2

2

1

1

1

1

2

2

1

1

2

1

2

1

1

1
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h2[i][j][0]

η[i][j][0]
rb[i][0]

10.9600

10.9600

10.9553

10.9553

10.5215

10.5215

10.9645

10.9645

10.9511

10.9511

12.2700

10.5173

10.9603

10.1269

10.5697

10.5256

12.2883

12.2883

13.4438

10.9473

12.2662

10.5135

11.7005

10.1231

10.6042

09.7717

13.4644

10.1305

12.2846

10.5733

11.7170

11.7170

13.4809

13.4809

h2[0][ ][ ]

1

1

1

1

1

1

2

2

1

1

2

1

2

1

1

1

2

2

η[0][ ][ ]

p[0][ ][ ][ ]

0

0

1

−1

3

−2

5

−3

rb[0][ ]

0.4974    0.4974
0.0000    0.0000
0.5026    0.5026

0.4972    0.4972
0.0004    0.0004
0.5024    0.5024

0.4775    0.4775
0.0400    0.0400
0.4825    0.4825

0.1237    0.1237
0.7499    0.7499
0.1264    0.1264

0.4970    0.4970
0.0008    0.0008
0.5022    0.5022

0.4773    0.1385
0.0404    0.7201
0.4823    0.1414

0.4596    0.1237
0.0760    0.7500
0.4644    0.1263

0.4777    0.4797
0.0396    0.0356
0.4827    0.4847

0.1387    0.1387
0.7197    0.7197
0.1416    0.1416h2[1][ ][ ]

h2[2][ ][ ]

h2[3][ ][ ]

η[1][ ][ ]

η[2][ ][ ]

p[1][ ][ ][ ]

p[2][ ][ ][ ]

rb[i][1]

h2[i][j][1]

η[i][j][1]

 p[i][j][0][1]          p[i][j][1][1]
 p[i][j][0][0]          p[i][j][1][0]
 p[i][j][0][−1]        p[i][j][1][−1]

rb[1][ ] rb[2][ ] rb[3][ ]

j

3

2

1

0

−1

−2

3

2

1

0

−1

−2

j

5

4

3

2

0

j

−3

−2

−1

1
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Numerical Examples (continued)

• Let us derive some of the numbers on p. 1006.

• A gray line means the updated variance falls strictly

between h2
max and h2

min.

• The option price for a terminal node at date 3 equals

max(S3 − 100, 0), independent of the variance level.

• Now move on to nodes at date 2.

• The option price at node (2, 3) depends on those at

nodes (3, 5), (3, 3), and (3, 1).

• It therefore equals

0.1387× 5.37392 + 0.7197 × 3.19054 + 0.1416× 1.05240 = 3.19054.
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Numerical Examples (continued)

• Option prices for other nodes at date 2 can be computed

similarly.

• For node (1, 1), the option price for both variances is

0.1237× 3.19054 + 0.7499 × 1.05240 + 0.1264× 0.14573 = 1.20241.

• Node (1, 0) is most interesting.

• We knew that a down move from it gives a variance of

0.000105609.

• This number falls between the minimum variance

0.000105173 and the maximum variance 0.0001227 at

node (2,−1) on p. 1003.
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Numerical Examples (continued)

• The option price corresponding to the minimum

variance is 0 (p. 1006).

• The option price corresponding to the maximum

variance is 0.14573.

• The equation

x× 0.000105173 + (1− x)× 0.0001227 = 0.000105609

is satisfied by x = 0.9751.

• So the option for the down state is approximated by

x× 0 + (1− x)× 0.14573 = 0.00362.

c©2024 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 1010



Numerical Examples (continued)

• The up move leads to the state with option price

1.05240.

• The middle move leads to the state with option price

0.48366.

• The option price at node (1, 0) is finally calculated as

0.4775× 1.05240 + 0.0400 × 0.48366 + 0.4825× 0.00362 = 0.52360.
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Numerical Examples (continued)

• A variance following an interpolated variance may

exceed the maximum variance or be lower than the

minimum variance.

• When this happens, the option price corresponding to

the maximum or minimum variance will be used during

backward induction.a

• This act tends to reduce the dynamic range of the

variance, however.

aCakici & Topyan (2000).
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Numerical Examples (concluded)

• Worse, an interpolated variance may choose a branch

that goes into a node that is not reached in forward

induction.a

• In this case, the algorithm fails.

• The RT algorithm does not have this problem.

– This is because all interpolated variances are involved

in the forward-induction phase.

• It may be hard to calculate the implied β1 and β2 from

option prices.b

aLyuu & C. Wu (R90723065) (2005).
bY. Chang (B89704039, R93922034) (2006).
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Complexities of GARCH Modelsa

• The RT algorithm explodes exponentially even for

moderate n.b

• The mean-tracking tree of Lyuu and Wu (2005)

guarantees explosion not to happen for n not too large.

– That tree is similar to, but earlier than, the

binomial-trinomial tree.c

– In fact, we can use the binomial-trinomial tree here,

and everything goes through.d

aLyuu & C. Wu (R90723065) (2003, 2005).
bRecall p. 979.
cRecall pp. 764ff.
dContributed by Mr. Lu, Zheng-Liang (D00922011) on August 12,

2021.
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Complexities of GARCH Models (continued)

• The next page summarizes the situations for many

GARCH option pricing models other than NGARCH.
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Complexities of GARCH Models (concluded)a

Model Explosion Non-explosion

NGARCH β1 + β2n > 1 β1 + β2(
√
n+ λ+ c)2 ≤ 1

LGARCH β1 + β2n > 1 β1 + β2(
√
n+ λ)2 ≤ 1

AGARCH β1 + β2n > 1 β1 + β2(
√
n+ λ)2 ≤ 1

GJR-GARCH β1 + β2n > 1 β1 + (β2 + β3)(
√
n+ λ)2 ≤ 1

TS-GARCH β1 + β2
√
n > 1 β1 + β2(λ+

√
n) ≤ 1

TGARCH β1 + β2
√
n > 1 β1 + (β2 + β3)(λ+

√
n) ≤ 1

Heston-Nandi β1 + β2(c− 1
2
)2 > 1 β1 + β2c2 ≤ 1

& c ≤ 1
2

VGARCH β1 + (β2/4) > 1 β1 ≤ 1

aY. C. Chen (R95723051) (2008); Y. C. Chen (R95723051), Lyuu, &

Wen (D94922003) (2012).
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Obtaining Profit and Loss of Delta Hedge

• Profit and loss of any hedging strategy should be

calculated under the real-world probability measure.a

• But hedging parameters such as delta should be

computed under the risk-neutral measure.

• Say we want the distribution of profit and loss for the

delta hedge under the GARCH model.

• If a tree is built for each sampled stock price to obtain

the delta, the complexity will be astronomical.b

• How to do it efficiently?c

aRecall p. 713.
bAugustyniak, Badescu, & Guo (2021).
cLu (D00922011), Lyuu, & Yang (D09922005) (2021).
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Introduction to Term Structure Modeling
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The fox often ran to the hole

by which they had come in,

to find out if his body was still thin enough

to slip through it.

— Grimm’s Fairy Tales
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And the worst thing you can have

is models and spreadsheets.

— Warren Buffet (2008, May 3)

Renaissance is 100% model driven.a

James Simons (2015, May 13, 37:09)

ahttps://www.youtube.com/watch?v=QNznD9hMEh0
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Outline

• Use the binomial interest rate tree to model stochastic

term structure.

– Illustrates the basic ideas underlying future models.

– Applications are generic in that pricing and hedging

methodologies can be easily adapted to other models.

• Although the idea is similar to the earlier one used in

option pricing, the current task is more complicated.

– The evolution of an entire term structure, not just a

single stock price, is to be modeled.

– Interest rates of various maturities cannot evolve

arbitrarily, or arbitrage profits may occur.
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Goals

• A stochastic interest rate model performs two tasks.

– Provides a stochastic process that defines future term

structures without arbitrage profits.

– “Consistent” with the observed term structures.
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History

• The methodology was founded by Merton (1970).

• Modern interest rate modeling is often traced to 1977

when Vasicek and Cox, Ingersoll, and Ross developed

simultaneously their influential models.

• Early models have fitting problems because they may

not price today’s benchmark bonds correctly.

• An alternative approach pioneered by Ho and Lee (1986)

makes fitting the market yield curve mandatory.

• Models based on such a paradigm are called

arbitrage-free or no-arbitrage models.a

aSomewhat misleadingly.
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Binomial Interest Rate Tree

• Goal is to construct a no-arbitrage interest rate tree

consistent with the yields — and sometimes yield

volatilities — of zero-coupon bonds of all maturities.

– This procedure is called calibration.a

• Pick a binomial tree model in which the logarithm of the

future short rate obeys the binomial distribution.

– Like the CRR tree for pricing options.

• The limiting distribution of the short rate at any future

time is hence lognormal.

aDerman (2004), “complexity without calibration is pointless.”
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Binomial Interest Rate Tree (continued)

• A binomial tree of future short rates is constructed.

• Every short rate is followed by two short rates in the

following period.

• In the figure on p. 1026, node A coincides with the start

of period j during which the short rate r is in effect.

• At the conclusion of period j, a new short rate goes into

effect for period j + 1.
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r

� r�0.5

� rh0.5

A

B

C

period j − 1 period j period j + 1

time j − 1 time j
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Binomial Interest Rate Tree (continued)

• This may take one of two possible values:

– r�: the “low” short-rate outcome at node B.

– rh: the “high” short-rate outcome at node C.

• Each branch has a 50% chance of occurring in a

risk-neutral economy.

• We require that the paths combine as the binomial

process unfolds.

• Tuckman (2002) attributes this model to Salomon

Brothers.
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Binomial Interest Rate Tree (continued)

• The short rate r can go to rh and r� with equal

risk-neutral probability 1/2 in a period of length Δt.

• Hence the volatility of ln r after Δt time isa

σ =
1

2

1√
Δt

ln

(
rh
r�

)
. (137)

• Above, σ is annualized,b whereas r� and rh are period

based.

aSee Exercise 23.2.3 in text.
bYou may remove the 1/

√
Δt term to return it to being period based.
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Binomial Interest Rate Tree (continued)

• Note that
rh
r�

= e2σ
√
Δt.

• Thus greater volatility, hence uncertainty, leads to larger

rh/r� and wider ranges of possible short rates.

• The ratio rh/r� may depend on time if the volatility is a

function of time.

• Note that rh/r� has nothing to do with the current

short rate r if σ is independent of r.
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Binomial Interest Rate Tree (continued)

• In general there are j possible rates for period j,a

rj , rjvj , rjv
2
j , . . . , rjv

j−1
j ,

where

vj
Δ
= e2σj

√
Δt = 1 +O

(√
Δt

)
(138)

is the multiplicative ratio for the rates in period j (see

figure on next page).

• We shall call rj the baseline rates.

• The subscript j in σj means to emphasize that the

short rate volatility may be time dependent.

aNot j + 1.
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Binomial Interest Rate Tree (concluded)

• In the limit, the short rate follows

r(t) = μ(t) eσ(t)W (t). (139)

– The (percent) short rate volatility σ(t) is a

deterministic function of time.

• The expected value of r(t) equals μ(t) eσ(t)
2(t/2).

• Hence a declining short rate volatility is needed to

preclude the short rate from assuming implausibly high

values.

• This is how the binomial interest rate tree achieves

mean reversion to some long-term mean.
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Memory Issues

• Path independency: The term structure at any node is

independent of the path taken to reach it.

• So only the baseline rates ri and the multiplicative

ratios vi need to be stored in computer memory.

• This takes up only O(n) space.a

• Storing the whole tree would take up O(n2) space.

– Daily interest rate movements for 30 years require

roughly (30× 365)2/2 ≈ 6× 107 double-precision

floating-point numbers (half a gigabyte!).

aThroughout, n denotes the depth of the tree.
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Set Things in Motion

• The abstract process is now in place.

• We need the yields to maturities of the riskless bonds

that make up the benchmark yield curve and their

volatilities.

• In the U.S., for example, the on-the-run yield curve

obtained by the most recently issued Treasury securities

may be used as the benchmark curve.
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Set Things in Motion (concluded)

• The term structure of (yield) volatilitiesa can be

estimated from:

– Historical data (historical volatility).

– Or interest rate option prices such as cap prices

(implied volatility).

• The binomial tree should be found that is consistent

with both term structures.

• Here we focus on the term structure of interest rates.

aOr simply the volatility (term) structure.
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Model Term Structures

• The model price is computed by backward induction.

• Refer back to the figure on p. 1026.

• Given that the values at nodes B and C are PB and PC,

respectively, the value at node A is then

PB + PC

2(1 + r)
+ cash flow at node A.

• We compute the values column by column (see next

page).

• This takes O(n2) time and O(n) space.
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Term Structure Dynamics

• An n-period zero-coupon bond’s price can be computed

by assigning $1 to every node at time n and then

applying backward induction.

• Repeat this step for n = 1, 2, . . . to obtain the market

discount function implied by the tree.

• The tree therefore determines a term structure.

• It also contains a term structure dynamics.

– Every node in the tree induces a binomial interest

rate tree and a term structure.
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Sample Term Structure

• We shall construct interest rate trees consistent with the

sample term structure in the table below.

– This is calibration (the reverse of pricing).

• Assume the short rate volatility is such that

v
Δ
=

rh
r�

= 1.5,

independent of time.

Period 1 2 3

Spot rate (%) 4 4.2 4.3

One-period forward rate (%) 4 4.4 4.5

Discount factor 0.96154 0.92101 0.88135
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An Approximate Calibration Scheme

• Start with the implied one-period forward rates.

• Equate the expected short rate with the forward rate.a

• For the first period, the forward rate is today’s

one-period spot rate.

• In general, let fj denote the forward rate in period j.

• This forward rate can be derived from the market

discount function viab

fj =
d(j)

d(j + 1)
− 1.

aSee Exercise 5.6.6 in text for the motivation.
bSee Exercise 5.6.3 in text.
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An Approximate Calibration Scheme (continued)

• As the ith short rate rjv
i−1
j , 1 ≤ i ≤ j, occurs with

probability 2−(j−1)
(
j−1
i−1

)
, we set up

j∑
i=1

2−(j−1)

(
j − 1

i− 1

)
rjv

i−1
j = fj .

• Thus

rj =

(
2

1 + vj

)j−1

fj . (140)

• This binomial interest rate tree is trivial to set up

(implicitly), in O(n) time.
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An Approximate Calibration Scheme (continued)

• The ensuing tree for the sample term structure appears

in figure on the next page.

• For example, the price of the zero-coupon bond paying
$1 at the end of the third period is

1

4
×

1

1.04
×

( 1

1.0352
×

( 1

1.0288
+

1

1.0432

)
+

1

1.0528
×

( 1

1.0432
+

1

1.0648

))

or 0.88155, which exceeds discount factor 0.88135.

• The tree is not calibrated.
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An Approximate Calibration Scheme (concluded)

• This bias is inherent: The tree overprices the bonds.a

• Suppose we replace the baseline rates rj by rjvj .

• Then the resulting tree underprices the bonds.b

• The true baseline rates are thus bounded between rj

and rjvj .

aSee Exercise 23.2.4 in text.
bLyuu & C. Wang (F95922018) (2009, 2011).
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