

The Binomial-Trinomial Tree

- Replace the first step of the binomial tree with a trinomial structure for convergence and efficiency.^a
- The resulting tree is called the binomial-trinomial tree.^b
- Suppose a *binomial* tree will be built with Δt as the duration of one period.
- Node X at time t needs to pick three nodes on the binomial tree at time $t + \Delta t'$ as its successor nodes.

- Later, $\Delta t \leq \Delta t' < 2\Delta t$.

^aT. Dai (B82506025, R86526008, D8852600) & Lyuu (2006, 2008, 2010).

^bThe idea first emerged in a hotel in Muroran, Hokkaido, Japan, in May of 2005.

- These three nodes should guarantee:
 - 1. The mean and variance of the stock price are matched.
 - 2. The branching probabilities are between 0 and 1.
- Let S be the stock price at node X.
- Use s(z) to denote the stock price at node z.

• Recall that the expected value of the logarithmic return $\ln(S_{t+\Delta t'}/S)$ at time $t + \Delta t'$ equals^a

$$\mu \stackrel{\Delta}{=} \left(r - \frac{\sigma^2}{2} \right) \Delta t'. \tag{103}$$

• Its variance equals

$$\operatorname{Var} \stackrel{\Delta}{=} \sigma^2 \Delta t'. \tag{104}$$

• Let node B be the node whose logarithmic return $\hat{\mu} \stackrel{\Delta}{=} \ln(s(B)/S)$ is closest to μ among all the nodes at time $t + \Delta t'$.

^aRecall p. 304.

- The middle branch from node X will end at node B.
- The two nodes A and C, which bracket node B, are the destinations of the other two branches from node X.
- Recall that adjacent nodes on the binomial tree are spaced at $2\sigma\sqrt{\Delta t}$ apart.
- Review the illustration on p. 765.

- The three branching probabilities from node X are obtained through matching the mean and variance of the logarithmic return $\ln(S_{t+\Delta t'}/S)$.
- Recall that

 $\hat{\mu} \stackrel{\Delta}{=} \ln\left(s(B)/S\right)$

is the logarithmic return of the middle node B.

• Let α , β , and γ be the differences between μ and the three logarithmic returns

$$\ln(s(\mathbf{A})/S), \ln(s(\mathbf{B})/S), \ln(s(\mathbf{C})/S),$$

in that order.

• In other words,

$$\alpha \stackrel{\Delta}{=} \hat{\mu} + 2\sigma\sqrt{\Delta t} - \mu = \beta + 2\sigma\sqrt{\Delta t} , \quad (105)$$

$$\beta \stackrel{\Delta}{=} \hat{\mu} - \mu, \tag{106}$$

$$\gamma \stackrel{\Delta}{=} \hat{\mu} - 2\sigma\sqrt{\Delta t} - \mu = \beta - 2\sigma\sqrt{\Delta t} \,.$$
 (107)

• The three branching probabilities p_u, p_m, p_d then satisfy

$$p_u \alpha + p_m \beta + p_d \gamma = 0, \qquad (108)$$

$$p_u \alpha^2 + p_m \beta^2 + p_d \gamma^2 = \text{Var}, \qquad (109)$$

$$p_u + p_m + p_d = 1. (110)$$

- Equation (108) matches the mean (103) of the logarithmic return $\ln(S_{t+\Delta t'}/S)$ on p. 767.
- Equation (109) matches its variance (104) on p. 767.
- The three probabilities can be proved to lie between 0 and 1 by Cramer's rule.

Pricing Double-Barrier Options

- Consider a double-barrier option with two barriers Land H, where L < S < H.
- We need to make each barrier coincide with a layer of the binomial tree for better convergence.
- The idea is to choose a Δt such that

$$\frac{\mathrm{n}(H/L)}{2\sigma\sqrt{\Delta t}}\tag{111}$$

is a positive integer.

- The distance between two adjacent nodes such as nodes Y and Z in the figure on p. 773 is $2\sigma\sqrt{\Delta t}$.

- Suppose that the goal is a tree with $\sim m$ periods.
- Suppose we pick $\Delta \tau \stackrel{\Delta}{=} T/m$ for the length of each period.
- There is no guarantee that $\frac{\ln(H/L)}{2\sigma\sqrt{\Delta\tau}}$ is an integer.
- Pick the largest $\Delta t \leq \Delta \tau$ which makes $\frac{\ln(H/L)}{2\sigma\sqrt{\Delta t}}$ some integer κ .
- In other words, we select

$$\Delta t = \left(\frac{\ln(H/L)}{2\kappa\sigma}\right)^2,$$

where
$$\kappa = \left\lceil \frac{\ln(H/L)}{2\sigma\sqrt{\Delta\tau}} \right\rceil$$
.

- We now proceed to build the binomial-trinomial tree.
- Start with the binomial part.
- Lay out the nodes from the low barrier L upward.
- Automatically, a layer coincides with the high barrier H.
- It is unlikely that Δt divides T.
- The initial stock price is also unlikely to be on a layer of the binomial tree.^a

^aRecall p. 773.

- The binomial-trinomial structure can address this problem as follows.
- Between time 0 and time T, the binomial tree spans $\lfloor T/\Delta t \rfloor 1$ periods.
- Let the first period have a duration equal to

$$\Delta t' \stackrel{\Delta}{=} T - \left(\left\lfloor \frac{T}{\Delta t} \right\rfloor - 1 \right) \Delta t.$$

- Then these $\lfloor T/\Delta t \rfloor$ periods span T years.
- It is easy to verify that $\Delta t \leq \Delta t' < 2\Delta t$.

- Start with the root node at time 0 and at a price with logarithmic return $\ln(S/S) = 0$.
- Find the three nodes on the binomial tree at time $\Delta t'$ as described earlier.
- Calculate the three branching probabilities to them.
- Grow the binomial tree from these three nodes until time T to obtain a binomial-trinomial tree with $\lfloor T/\Delta t \rfloor$ periods.
- Review the illustration on p. 773.

- Now the binomial-trinomial tree can be used to price double-barrier options by backward induction.
- That takes quadratic time.
- But a linear-time algorithm exists for double-barrier options on the *binomial* tree.^a
- Apply that algorithm to price the double-barrier option's prices at the three nodes at time $\Delta t'$.

- That is, nodes A, B, and C on p. 773.

• Then calculate their expected discounted value at the root node.

^aSee p. 241 of the textbook; Chao (**R86526053**) (1999); T. Dai (**B82506025**, **R86526008**, **D8852600**) & Lyuu (2008).

- The overall running time is only linear!
- Binomial trees have troubles pricing barrier options.^a
- Even pit against the trinomial tree, the binomial-trinomial tree converges faster and smoother.^b
- In fact, the binomial-trinomial tree has an error of O(1/n) for single-barrier options.^c
- Binomial trees with interpolation have an error of $O(1/n^{1-a})$ for any 0 < a < 1 for double-barrier options.^d

^aSee p. 410, p. 756, and p. 762.

^bSee p. 780 and p. 781.

^cLyuu & Palmer (2010); Y. Lu (R06723032, D08922008) & Lyuu (2023).

^dAppolloni, Gaudenziy, & Zanette (2014).

The thin line denotes the double-barrier option prices computed by the trinomial tree against the running time in seconds (such as point A). The thick line denotes those computed by the binomial-trinomial tree (such as point B).

The Barrier-Too-Close Problem (p. 738) Revisited

- Our idea solves it even if one barrier is very close to S.
 - It runs in linear time, unlike an earlier quadratic-time solution with trinomial trees (pp. 746ff).
 - Unlike an earlier solution using combinatorics (p. 729), now the choice of n is not that restricted.
- So it combines the strengths of binomial and trinomial trees.
- This holds for single-barrier options too.
- Here is how.

The Barrier-Too-Close Problem Revisited (continued)

- We can build the tree treating S as if it were a second barrier.
- So both H and S are matched.
- Alternatively, we can pick $\Delta \tau \stackrel{\Delta}{=} T/m$ as our length of a period Δt without the subsequent adjustment.^a
- Then build the tree from the price H down.
- So H is matched.
- The initial price S is matched by the *trinomial* structure.

^aThere is no second barrier to match!

The Barrier-Too-Close Problem Revisited (concluded)

- The earlier trinomial tree is impractical as it needs a very large n when the barrier H is very close to S.^a
 - It needs at least one up move to connect S to H as its middle branch is flat.
 - But when $S \approx H$, that up move must take a very small step, necessitating a small Δt .
- Our trinomial structure's middle branch is *not* required to be flat.
- So S can be connected to H via the middle branch, and the need of a very large n disappears completely!

^aRecall the table on p. 739.

Pricing Discrete and Moving Barrier Options

- Barrier options whose barrier is monitored only at discrete times are called discrete barrier options.
- They are less common than the continuously monitored versions for single stocks.^a
- The main difficulty with pricing discrete barrier options lies in matching the monitored *times*.
- Here is why.

^aBennett (2014).

Pricing Discrete and Moving Barrier Options (continued)

• Suppose each period has a duration of Δt and the $\ell > 1$ monitored times are

$$t_0 = 0, t_1, t_2, \dots, t_\ell = T.$$

- It is unlikely that *all* monitored times coincide with the end of a period on the tree, or Δt divides t_i for all *i*.
- The binomial-trinomial tree can handle discrete options with ease, however.
- Simply build a binomial-trinomial tree from time 0 to time t₁, followed by one from time t₁ to time t₂, and so on until time t_ℓ.

Pricing Discrete and Moving Barrier Options (concluded)

- This procedure works even if each t_i is associated with a distinct barrier or if each window $[t_i, t_{i+1})$ has its own continuously monitored barrier or double barriers.
- Pricing in both scenarios can actually be done in time $O[\ell n \ln(n/\ell)]$.^a
- For typical discrete barriers, placing barriers midway between two price levels on the tree may increase accuracy.^b

^aY. Lu (R06723032, D08922008) & Lyuu (2021). ^bSteiner & Wallmeier (1999); Tavella & Randall (2000).

Options on a Stock That Pays Known Dividends

- Many ad hoc assumptions have been postulated for option pricing with known dividends.^a
 - The one we saw earlier^b models the stock price minus the present value of the anticipated dividends as following geometric Brownian motion.
 - One can also model the stock price plus the forward values of the dividends as following geometric Brownian motion.

^aFrishling (2002). ^bOn p. 329.

- Realistic models assume:
 - The stock price decreases by the amount of the dividend paid at the ex-dividend date.
 - The dividend is part cash and part yield (i.e., $\alpha(t)S_0 + \beta(t)S_t$), for practitioners.^a
- The stock price follows geometric Brownian motion between adjacent ex-dividend dates.
- But they result in exponential-sized binomial trees.^b
- The binomial-trinomial tree can avoid this problem in most cases.

```
<sup>a</sup>Henry-Labordère (2009).
<sup>b</sup>Recall p. 328.
```

- Suppose that the known dividend is D dollars and the ex-dividend date is at time t.
- So there are $m \stackrel{\Delta}{=} t/\Delta t$ periods between time 0 and the ex-dividend date.^a
- To avoid negative stock prices, we need to make sure the lowest stock price at time t is at least D, i.e.,

$$Se^{-(t/\Delta t)\sigma\sqrt{\Delta t}} \ge D.$$

$$- \text{ Or},$$

$$\Delta t \ge \left[\frac{t\sigma}{\ln(S/D)}\right]^2.$$

^aThat is, m is an integer input and $\Delta t \stackrel{\Delta}{=} t/m$.

- Build a CRR tree from time 0 to time t as before.
- Subtract *D* from all the stock prices on the tree at time *t* to represent the price drop on the ex-dividend date.
- Assume the top node's price equals S'.
 - As usual, its two successor nodes will have prices S'u and $S'u^{-1}$.
- The remaining nodes' successor nodes at time $t + \Delta t$ will choose from prices

$$S'u, S', S'u^{-1}, S'u^{-2}, S'u^{-3}, \dots,$$

same as the CRR tree.

- For each node at time t below the top node, we build the trinomial connection.
- Note that the binomial-trinomial structure remains valid in the special case when $\Delta t' = \Delta t$ on p. 765.

- Hence the construction can be completed.
- From time $t + \Delta t$ onward, the standard binomial tree will be used until the maturity date or the next ex-dividend date when the procedure can be repeated.
- The resulting tree is called the stair tree.^a

^aT. Dai (B82506025, R86526008, D8852600) & Lyuu (2004); T. Dai (B82506025, R86526008, D8852600) (2009).

Other Applications of Binomial-Trinomial Trees

- Pricing guaranteed minimum withdrawal benefits.^a
- Option pricing with stochastic volatilities.^b
- Efficient Parisian option pricing.^c
- Defaultable bond pricing.^d
- Implied barrier.^e

```
<sup>a</sup>H. Wu (R96723058) (2009).
```

^bC. Huang (**R97922073**) (2010).

^cY. Huang (**R97922081**) (2010).

^dT. Dai (B82506025, R86526008, D8852600), Lyuu, & C. Wang (F95922018) (2009, 2010, 2014).

^eY. Lu (R06723032, D08922008) (2019); Y. Lu (R06723032, D08922008) & Lyuu (2021, 2023).

$Mean\ Tracking^{\rm a}$

- The general idea behind the binomial-trinomial tree on pp. 764ff is very powerful.
- One finds the successor middle node as the one closest to the mean.
- The two flanking successor nodes are then spaced at $c\sigma\sqrt{\Delta t}$ from the middle node for a suitably large c > 0.
- The resulting trinomial structure are then guaranteed to have valid branching probabilities.

^aLyuu & C. Wu (R90723065) (2003, 2005).
Default Boundary as Implied Barrier

- Under the structural model,^a the default boundary is modeled as a barrier.^b
- The constant barrier can be inferred from the closed-form formula given the firm's market capitalization, etc.^c
- More generally, the moving barrier can be inferred from the term structure of default probabilities with the binomial-trinomial tree.^d

^aRecall p. 375.
^bBlack & Cox (1976).
^cBrockman & Turtle (2003).
^dY. Lu (R06723032, D08922008) (2019); Y. Lu (R06723032, D08922008)
& Lyuu (2021, 2023).

Default Boundary as Implied Barrier (continued)

- This barrier is called the implied barrier.^a
- If the barrier is a step function, the implied barrier can be obtained in $O(n \ln n)$ time.^b
- The next plot shows the convergence of the implied barrier (as a percentage of the initial stock price).^c
 - The implied barrier is already very good with n = 1!

^aBrockman & Turtle (2003).

^bY. Lu (R06723032, D08922008) & Lyuu (2021, 2023). The error is O(1/n): This is linear convergence.

^cPlot supplied by Mr. Lu, Yu-Ming (R06723032, D08922008) on November 20. 2021.

Default Boundary as Implied Barrier (concluded)

• The next plot shows the implied barriers of Freddie Mac and Fannie Mae as of February 2008 (as percentages of the initial asset values).^a

^aPlot supplied by Mr. Lu, Yu-Ming (R06723032, D08922008) on February 26. 2021.

Time-Varying Double Barriers under Time-Dependent Volatility^a

- More general models allow a time-varying $\sigma(t)$ (p. 320).
- Let the two barriers L(t) and H(t) be functions of time.^b
 - Exponential functions are popular. $^{\rm c}$
- Still, we can price double-barrier options in $O(n^2)$ time or less with trinomial trees.
- Continuously monitored double-barrier knock-out options with time-varying barriers are called hot dog options.^d

^aY. Zhang (R05922052) (2019).

^bSo the barriers are continuously monitored. ^cC. Chou (R97944012) (2010); C. I. Chen (R98922127) (2011). ^dEl Babsiri & Noel (1998).

General Local-Volatility Models and Their Trees

• Consider the general local-volatility model

$$\frac{dS}{S} = (r_t - q_t) dt + \sigma(S, t) dW,$$

where $L \leq \sigma(S, t) \leq U$ for some positive L and U.

- This model has a unique (weak) solution.^a
- The positive lower bound is justifiable because prices fluctuate.

^aAchdou & Pironneau (2005).

General Local-Volatility Models and Their Trees (continued)

- The upper-bound assumption is also reasonable.
- Even on October 19, 1987, the CBOE S&P 100 Volatility Index (VXO) was about 150%, the highest ever.^a
- An efficient quadratic-sized tree for this range-bounded model is easy.^b
- Pick any $\sigma' \geq U$.
- Grow the trinomial tree with the node spacing $\sigma' \sqrt{\Delta t}$.^c
- The branching probabilities are valid for small Δt .

```
<sup>a</sup>Caprio (2012).

<sup>b</sup>Lok (D99922028) & Lyuu (2016, 2017, 2020).

<sup>c</sup>Haahtela (2010).
```

General Local-Volatility Models and Their Trees (continued)

• They are

$$p_{u} = \frac{\sigma^{2}(S,t)}{2{\sigma'}^{2}} + \frac{r-q-\sigma^{2}(S,t)/2}{2{\sigma'}}\sqrt{\Delta t} + \frac{\left[r-q-\sigma^{2}(S,t)/2\right]^{2}}{2{\sigma'}^{2}}\Delta t,$$

$$p_{d} = \frac{\sigma^{2}(S,t)}{2{\sigma'}^{2}} - \frac{r-q-\sigma^{2}(S,t)/2}{2{\sigma'}}\sqrt{\Delta t} + \frac{\left[r-q-\sigma^{2}(S,t)/2\right]^{2}}{2{\sigma'}^{2}}\Delta t,$$

$$p_{m} = 1 - \frac{\sigma^{2}(S,t)}{{\sigma'}^{2}} - \frac{\left[r-q-\sigma^{2}(S,t)/2\right]^{2}}{{\sigma'}^{2}}\Delta t.$$

General Local-Volatility Models and Their Trees (concluded)

- The same idea can be applied to price double-barrier options.
- Pick any

$$\sigma' \ge \max\left[\max_{S,0 \le t \le T} \sigma(S,t), \sqrt{2}\,\sigma(S_0,0)\right].$$

- Grow the trinomial tree with the node spacing $\sigma' \sqrt{\Delta t}$.
- Apply the mean-tracking idea to the first period and Eqs. (105)–(110) on p. 770 to obtain the probabilities

Merton's Jump-Diffusion Model

- Empirically, stock returns tend to have fat tails, inconsistent with the Black-Scholes model's assumptions.
- Stochastic volatility and jump processes have been proposed to address this problem.
- Merton's (1976) jump-diffusion model is our focus here.

- This model superimposes a jump component on a diffusion component.
- The diffusion component is the familiar geometric Brownian motion.
- The jump component is composed of lognormal jumps driven by a Poisson process.
 - It models the *rare* but *large* changes in the stock price because of the arrival of important news.^a

^aDerman & M. B. Miller (2016), "There is no precise, universally accepted definition of a jump, but it usually comes down to magnitude, duration, and frequency."

- Let S_t be the stock price at time t.
- The risk-neutral jump-diffusion process for the stock price follows^a

$$\frac{dS_t}{S_t} = (r - \lambda \bar{k}) dt + \sigma dW_t + k dq_t.$$
(112)

• Above, σ denotes the volatility of the diffusion component.

^aDerman & M. B. Miller (2016), "[M]ost jump-diffusion models simply assume risk-neutral pricing without convincing justification."

- The jump event is governed by a compound Poisson process q_t with intensity λ , where k denotes the magnitude of the *random* jump.
 - The distribution of k obeys

 $\ln(1+k) \sim N\left(\gamma, \delta^2\right)$

with mean $\bar{k} \stackrel{\Delta}{=} E(k) = e^{\gamma + \delta^2/2} - 1.$

- Note that k > -1.
- Note also that k is not related to dt.
- The model with $\lambda = 0$ reduces to the Black-Scholes model.

• The solution to Eq. (112) on p. 811 is

$$S_t = S_0 e^{(r - \lambda \bar{k} - \sigma^2/2)t + \sigma W_t} U(n(t)), \qquad (113)$$

where

$$U(n(t)) = \prod_{i=0}^{n(t)} (1+k_i).$$

-
$$k_i$$
 is the magnitude of the *i*th jump with
 $\ln(1+k_i) \sim N(\gamma, \delta^2).$
- $k_0 = 0.$

-n(t) is a Poisson process with intensity λ .

- Recall that n(t) denotes the number of jumps that occur up to time t.
- It is known that $E[n(t)] = \operatorname{Var}[n(t)] = \lambda t$.
- As $k_i > -1$, stock prices will stay positive.
- The geometric Brownian motion, the lognormal jumps, and the Poisson process are assumed to be independent.

Tree for Merton's Jump-Diffusion $\mathsf{Model}^{\mathrm{a}}$

- Define the S-logarithmic return of the stock price S' as $\ln(S'/S)$.
- Define the logarithmic distance between stock prices S'and S as

$$|\ln(S') - \ln(S)| = |\ln(S'/S)|.$$

^aT. Dai (B82506025, R86526008, D8852600), C. Wang (F95922018), Lyuu, & Y. Liu (2010).

• Take the logarithm of Eq. (113) on p. 813:

$$M_t \stackrel{\Delta}{=} \ln\left(\frac{S_t}{S_0}\right) = X_t + Y_t,\tag{114}$$

where

$$X_{t} \stackrel{\Delta}{=} \left(r - \lambda \bar{k} - \frac{\sigma^{2}}{2}\right) t + \sigma W_{t}, \quad (115)$$
$$Y_{t} \stackrel{\Delta}{=} \sum_{i=0}^{n(t)} \ln\left(1 + k_{i}\right). \quad (116)$$

• It decomposes the S_0 -logarithmic return of S_t into the diffusion component X_t and the jump component Y_t .

- Motivated by decomposition (114) on p. 816, the tree construction divides each period into a diffusion phase followed by a jump phase.
- In the diffusion phase, X_t is approximated by the BOPM.
- So X_t moves up to $X_t + \sigma \sqrt{\Delta t}$ with probability p_u and down to $X_t - \sigma \sqrt{\Delta t}$ with probability p_d .

• According to BOPM,

$$p_u = \frac{e^{\mu\Delta t} - d}{u - d},$$

$$p_d = 1 - p_u,$$

except that $\mu = r - \lambda \bar{k}$ here.

- The diffusion component gives rise to diffusion nodes.
- They are spaced at $2\sigma\sqrt{\Delta t}$ apart such as the white nodes A, B, C, D, E, F, and G on p. 819.

White nodes are *diffusion nodes*. Gray nodes are *jump nodes*. In the diffusion phase, the solid black lines denote the binomial structure of BOPM; the dashed lines denote the trinomial structure. Only the double-circled nodes will remain after the construction. Note that a and b are diffusion nodes because no jump occurs in the jump phase.

- In the jump phase, $Y_{t+\Delta t}$ is approximated by moves from *each* diffusion node to 2m jump nodes that match the first 2m moments of the lognormal jump.
- The *m* jump nodes above the diffusion node are spaced at $h \stackrel{\Delta}{=} \sqrt{\gamma^2 + \delta^2}$ apart.
- Note that h is independent of Δt .

- The same holds for the *m* jump nodes below the diffusion node.
- The gray nodes at time $\ell \Delta t$ on p. 819 are jump nodes. - We set m = 1 on p. 819.
- The size of the tree is $O(n^{2.5})$.

Multivariate Contingent Claims

- They depend on two or more underlying assets.
- The basket call on m assets has the terminal payoff

$$\max\left(\sum_{i=1}^{m} \alpha_i S_i(\tau) - X, 0\right),\,$$

where α_i is the percentage of asset *i*.

- Basket options are essentially options on a portfolio of stocks (or index options).^a
- Option on the best of two risky assets and cash has a terminal payoff of $\max(S_1(\tau), S_2(\tau), X)$.

^aExcept that membership and weights do *not* change for basket options (Bennett, 2014).

Name	Payoff
Exchange option	$\max(S_1(\tau) - S_2(\tau), 0)$
Better-off option	$\max(S_1(\tau),\ldots,S_k(\tau),0)$
Worst-off option	$\min(S_1(\tau),\ldots,S_k(\tau),0)$
Binary maximum option	$I\{\max(S_1(\tau),\ldots,S_k(\tau))>X\}$
Maximum option	$\max(\max(S_1(\tau),\ldots,S_k(\tau))-X,0)$
Minimum option	$\max(\min(S_1(\tau),\ldots,S_k(\tau))-X,0)$
Spread option	$\max(S_1(\tau) - S_2(\tau) - X, 0)$
Basket average option	$\max((S_1(\tau) + \dots + S_k(\tau))/k - X, 0)$
Multi-strike option	$\max(S_1(\tau) - X_1, \dots, S_k(\tau) - X_k, 0)$
Pyramid rainbow option	$\max(S_1(\tau) - X_1 + \dots + S_k(\tau) - X_k - X, 0)$
Madonna option	$\max(\sqrt{(S_1(\tau) - X_1)^2 + \dots + (S_k(\tau) - X_k)^2} - X$

^aLyuu & Teng (**R91723054**) (2011).

Correlated Trinomial Model^{\rm a}

• Two risky assets S_1 and S_2 follow

$$\frac{dS_i}{S_i} = r \, dt + \sigma_i \, dW_i$$

in a risk-neutral economy, i = 1, 2.

• Let

$$M_i \stackrel{\Delta}{=} e^{r\Delta t},$$
$$V_i \stackrel{\Delta}{=} M_i^2 (e^{\sigma_i^2 \Delta t} - 1).$$

 $-S_iM_i$ is the mean of S_i at time Δt .

 $-S_i^2 V_i$ the variance of S_i at time Δt .

^aBoyle, Evnine, & Gibbs (1989).

Correlated Trinomial Model (continued)

- The value of S_1S_2 at time Δt has a joint lognormal distribution with mean $S_1S_2M_1M_2e^{\rho\sigma_1\sigma_2\Delta t}$, where ρ is the correlation between dW_1 and dW_2 .
- Next match the 1st and 2nd moments of the approximating discrete distribution to those of the continuous counterpart.
- At time Δt from now, there are 5 distinct outcomes.

Correlated Trinomial Model (continued)

• The five-point probability distribution of the asset prices is

Probability	Asset 1	Asset 2
p_1	S_1u_1	S_2u_2
p_2	S_1u_1	$S_2 d_2$
p_3	S_1d_1	$S_2 d_2$
p_4	S_1d_1	$S_2 u_2$
p_5	S_1	S_2

• As usual, impose $u_i d_i = 1$.

Correlated Trinomial Model (continued)

• The probabilities must sum to one, and the means must be matched:

$$1 = p_1 + p_2 + p_3 + p_4 + p_5,$$

$$S_1 M_1 = (p_1 + p_2) S_1 u_1 + p_5 S_1 + (p_3 + p_4) S_1 d_1,$$

$$S_2 M_2 = (p_1 + p_4) S_2 u_2 + p_5 S_2 + (p_2 + p_3) S_2 d_2.$$

Correlated Trinomial Model (concluded)

- Let $R \stackrel{\Delta}{=} M_1 M_2 e^{\rho \sigma_1 \sigma_2 \Delta t}$.
- Match the variances and covariance:

$$S_{1}^{2}V_{1} = (p_{1} + p_{2}) \left[(S_{1}u_{1})^{2} - (S_{1}M_{1})^{2} \right] + p_{5} \left[S_{1}^{2} - (S_{1}M_{1})^{2} \right] + (p_{3} + p_{4}) \left[(S_{1}d_{1})^{2} - (S_{1}M_{1})^{2} \right] ,$$

$$S_{2}^{2}V_{2} = (p_{1} + p_{4}) \left[(S_{2}u_{2})^{2} - (S_{2}M_{2})^{2} \right] + p_{5} \left[S_{2}^{2} - (S_{2}M_{2})^{2} \right] + (p_{2} + p_{3}) \left[(S_{2}d_{2})^{2} - (S_{2}M_{2})^{2} \right] ,$$

$$S_{1}S_{2}R = (p_{1}u_{1}u_{2} + p_{2}u_{1}d_{2} + p_{3}d_{1}d_{2} + p_{4}d_{1}u_{2} + p_{5}) S_{1}S_{2} .$$

• The solutions appear on p. 246 of the textbook.

$$p_{3} = \frac{1}{4} \left[\frac{1}{\lambda^{2}} + \frac{1}{\lambda} \left(-\frac{1}{\sigma_{1}} - \frac{1}{\sigma_{2}} \right) + \frac{1}{\lambda^{2}} \right]$$

$$p_{4} = \frac{1}{4} \left[\frac{1}{\lambda^{2}} + \frac{\sqrt{\Delta t}}{\lambda} \left(-\frac{\mu_{1}'}{\sigma_{1}} + \frac{\mu_{2}'}{\sigma_{2}} \right) - \frac{\rho}{\lambda^{2}} \right]$$

$$p_{5} = 1 - \frac{1}{\lambda^{2}}.$$

^aMadan, Milne, & Shefrin (1989).

Correlated Trinomial Model Simplified (continued)

• All of the probabilities lie between 0 and 1 if and only if

$$-1 + \lambda \sqrt{\Delta t} \left| \frac{\mu_1'}{\sigma_1} + \frac{\mu_2'}{\sigma_2} \right| \leq \rho \leq 1 - \lambda \sqrt{\Delta t} \left| \frac{\mu_1'}{\sigma_1} - \frac{\mu_2'}{\sigma_2} \right| (117)$$

$$1 \leq \lambda. \qquad (118)$$

• We call a multivariate tree (correlation-) optimal if it guarantees valid probabilities as long as

$$-1 + O(\sqrt{\Delta t}) < \rho < 1 - O(\sqrt{\Delta t}),$$

such as the above one.^a

^aW. Kao (**R98922093**) (2011); W. Kao (**R98922093**), Lyuu, & Wen (**D94922003**) (2014).

Correlated Trinomial Model Simplified (continued)

- But this model cannot price 2-asset 2-barrier options accurately.^a
- Few multivariate trees are both optimal and able to handle multiple barriers.^b
- An alternative is to use orthogonalization.^c

^aSee Y. Chang (B89704039, R93922034), Hsu (R7526001, D89922012), & Lyuu (2006); W. Kao (R98922093), Lyuu, & Wen (D94922003) (2014) for solutions.

^bSee W. Kao (R98922093), Lyuu, & Wen (D94922003) (2014) for an exception.

^cHull & White (1990); T. Dai (B82506025, R86526008, D8852600), C. Wang (F95922018), & Lyuu (2013).

Correlated Trinomial Model Simplified (concluded)

- Suppose we allow each asset's volatility to be a function of time.^a
- There are k assets.
- One can build an optimal multivariate tree that handles two barriers on each asset in time $O(n^{k+1})$.^b

^aRecall p. 319.

^bY. Zhang (R05922052) (2019); Y. Zhang (R05922052) & Lyuu (2023).

Numerical Methods

All science is dominated by the idea of approximation. — Bertrand Russell
Finite-Difference Methods

- Place a grid of points on the space over which the desired function takes value.
- Then approximate the function value at each of these points (p. 836).
- Solve the equation numerically by introducing difference equations in place of derivatives.

Example: Poisson's Equation

- It is $\partial^2 \theta / \partial x^2 + \partial^2 \theta / \partial y^2 = -\rho(x, y)$, which describes the electrostatic field.
- Replace second derivatives with finite differences through central difference.
- Introduce evenly spaced grid points with distance of Δx along the x axis and Δy along the y axis.
- The finite-difference form is

$$-\rho(x_i, y_j) = \frac{\theta(x_{i+1}, y_j) - 2\theta(x_i, y_j) + \theta(x_{i-1}, y_j)}{(\Delta x)^2} + \frac{\theta(x_i, y_{j+1}) - 2\theta(x_i, y_j) + \theta(x_i, y_{j-1})}{(\Delta y)^2}.$$

Example: Poisson's Equation (concluded)

- In the above, $\Delta x \stackrel{\Delta}{=} x_i x_{i-1}$ and $\Delta y \stackrel{\Delta}{=} y_j y_{j-1}$ for $i, j = 1, 2, \dots$
- When the grid points are evenly spaced in both axes so that $\Delta x = \Delta y = h$, the difference equation becomes

$$-h^{2}\rho(x_{i}, y_{j}) = \theta(x_{i+1}, y_{j}) + \theta(x_{i-1}, y_{j}) + \theta(x_{i}, y_{j+1}) + \theta(x_{i}, y_{j-1}) - 4\theta(x_{i}, y_{j}).$$

- Given boundary values, we can solve for the x_i s and the y_j s within the square $[\pm L, \pm L]$.
- From now on, $\theta_{i,j}$ will denote the finite-difference approximation to the exact $\theta(x_i, y_j)$.

Explicit Methods

- Consider the diffusion equation^a $D(\partial^2 \theta / \partial x^2) - (\partial \theta / \partial t) = 0, D > 0.$
- Use evenly spaced grid points (x_i, t_j) with distances Δx and Δt , where $\Delta x \stackrel{\Delta}{=} x_{i+1} x_i$ and $\Delta t \stackrel{\Delta}{=} t_{j+1} t_j$.
- Employ central difference for the second derivative and forward difference for the time derivative to obtain

$$\frac{\partial \theta(x,t)}{\partial t}\Big|_{t=t_j} = \frac{\theta(x, \overline{t_{j+1}}) - \theta(x, \overline{t_j})}{\Delta t} + \cdots, \qquad (119)$$

$$\frac{\partial^2 \theta(x,t)}{\partial x^2}\Big|_{x=x_i} = \frac{\theta(x_{i+1},t) - 2\theta(x_i,t) + \theta(x_{i-1},t)}{(\Delta x)^2} + \cdot (120)$$

^aIt is a parabolic partial differential equation.

Explicit Methods (continued)

- Next, assemble Eqs. (119) and (120) into a single equation at (x_i, t_j) .
- But we need to decide how to evaluate x in the first equation and t in the second.
- Since central difference around x_i is used in Eq. (120), we might as well use x_i for x in Eq. (119).
- Two choices are possible for t in Eq. (120).
- The first choice uses $t = t_j$ to yield the following finite-difference equation,

$$\frac{\theta_{i,j+1} - \theta_{i,j}}{\Delta t} = D \frac{\theta_{i+1,j} - 2\theta_{i,j} + \theta_{i-1,j}}{(\Delta x)^2}.$$
(121)

Explicit Methods (continued)

- The stencil of grid points involves four values, $\theta_{i,j+1}$, $\theta_{i,j}$, $\theta_{i+1,j}$, and $\theta_{i-1,j}$.
- Rearrange Eq. (121) on p. 840 as

$$\theta_{i,j+1} = \frac{D\Delta t}{(\Delta x)^2} \,\theta_{i+1,j} + \left(1 - \frac{2D\Delta t}{(\Delta x)^2}\right) \theta_{i,j} + \frac{D\Delta t}{(\Delta x)^2} \,\theta_{i-1,j}. \tag{122}$$

• We can calculate $\theta_{i,j+1}$ from $\theta_{i,j}, \theta_{i+1,j}, \theta_{i-1,j}$, at the previous time t_j (see exhibit (a) on next page).

Explicit Methods (concluded)

• Starting from the initial conditions at t_0 , that is, $\theta_{i,0} = \theta(x_i, t_0), i = 1, 2, \dots$, we calculate

$$\theta_{i,1}, \quad i=1,2,\ldots$$

• And then

$$\theta_{i,2}, \quad i=1,2,\ldots$$

• And so on.

Stability

• The explicit method is numerically unstable unless

 $\Delta t \le (\Delta x)^2 / (2D).$

- A numerical method is unstable if the solution is highly sensitive to changes in initial conditions.
- The stability condition may lead to high running times and memory requirements.
- For instance, halving Δx would imply quadrupling $(\Delta t)^{-1}$, resulting in a running time 8 times as much.

Explicit Method and Trinomial Tree

• Recall Eq. (122) on p. 841:

$$\theta_{i,j+1} = \frac{D\Delta t}{(\Delta x)^2} \,\theta_{i+1,j} + \left(1 - \frac{2D\Delta t}{(\Delta x)^2}\right) \theta_{i,j} + \frac{D\Delta t}{(\Delta x)^2} \,\theta_{i-1,j}.$$

- When the stability condition is satisfied, the three coefficients for $\theta_{i+1,j}$, $\theta_{i,j}$, and $\theta_{i-1,j}$ all lie between zero and one and sum to one.
- They can be interpreted as probabilities.
- So the finite-difference equation becomes identical to backward induction on trinomial trees!

Explicit Method and Trinomial Tree (concluded)

- The freedom in choosing Δx corresponds to similar freedom in the construction of trinomial trees.
- The explicit finite-difference equation is also identical to backward induction on a binomial tree.^a
 - Let the binomial tree take 2 steps each of length $\Delta t/2.$
 - It is now a trinomial tree.

^aHilliard (2014).

Implicit Methods

- Suppose we use $t = t_{j+1}$ in Eq. (120) on p. 839 instead.
- The finite-difference equation becomes

$$\frac{\theta_{i,j+1} - \theta_{i,j}}{\Delta t} = D \, \frac{\theta_{i+1,j+1} - 2\theta_{i,j+1} + \theta_{i-1,j+1}}{(\Delta x)^2}.$$
(123)

- The stencil involves $\theta_{i,j}$, $\theta_{i,j+1}$, $\theta_{i+1,j+1}$, and $\theta_{i-1,j+1}$.
- This method is now implicit:
 - The value of any one of the three quantities at t_{j+1} cannot be calculated unless the other two are known.
 - See exhibit (b) on p. 842.

Implicit Methods (continued)

• Equation (123) can be rearranged as

$$\theta_{i-1,j+1} - (2+\gamma) \theta_{i,j+1} + \theta_{i+1,j+1} = -\gamma \theta_{i,j},$$

where $\gamma \stackrel{\Delta}{=} (\Delta x)^2 / (D\Delta t)$.

- This equation is unconditionally stable.
- Suppose the boundary conditions are given at $x = x_0$ and $x = x_{N+1}$.
- After $\theta_{i,j}$ has been calculated for i = 1, 2, ..., N, the values of $\theta_{i,j+1}$ at time t_{j+1} can be computed as the solution to the following tridiagonal linear system,

Implicit Methods (concluded)

• Tridiagonal systems can be solved in O(N) time and O(N) space.

- Never invert a matrix to solve a tridiagonal system.

- The matrix above is nonsingular when $\gamma \geq 0$.
 - A square matrix is nonsingular if its inverse exists.

Crank-Nicolson Method

• Take the average of explicit method (121) on p. 840 and implicit method (123) on p. 847:

$$= \frac{\frac{\theta_{i,j+1} - \theta_{i,j}}{\Delta t}}{\left(D \frac{\theta_{i+1,j} - 2\theta_{i,j} + \theta_{i-1,j}}{(\Delta x)^2} + D \frac{\theta_{i+1,j+1} - 2\theta_{i,j+1} + \theta_{i-1,j+1}}{(\Delta x)^2}\right)$$

• After rearrangement,

$$\gamma \theta_{i,j+1} - \frac{\theta_{i+1,j+1} - 2\theta_{i,j+1} + \theta_{i-1,j+1}}{2} = \gamma \theta_{i,j} + \frac{\theta_{i+1,j} - 2\theta_{i,j} + \theta_{i-1,j}}{2}.$$

• This is an unconditionally stable implicit method with excellent rates of convergence.

Numerically Solving the Black-Scholes PDE (94) on p. 687

- See text.
- Brennan and Schwartz (1978) analyze the stability of the implicit method.