
Continuous-Time Derivatives Pricing
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I have hardly met a mathematician

who was capable of reasoning.

— Plato (428 B.C.–347 B.C.)

Fischer [Black] is the only real genius

I’ve ever met in finance. Other people,

like Robert Merton or Stephen Ross,

are just very smart and quick,

but they think like me.

Fischer came from someplace else entirely.

— John C. Cox, quoted in Mehrling (2005)
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Toward the Black-Scholes Differential Equation

• The price of any derivative on a non-dividend-paying

stock must satisfy a partial differential equation (PDE).

• The key step is recognizing that the same random

process drives both securities.

– Their prices are perfectly correlated.

• We then figure out the amount of stock such that the

gain from it offsets exactly the loss from the derivative.

• The removal of uncertainty forces the portfolio’s return

to be the riskless rate.

• PDEs make many numerical methods applicable.
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Assumptionsa and Notations

• The stock price follows dS = μS dt+ σS dW .

• There are no dividends.

• Trading is continuous, and short selling is allowed.

• There are no transactions costs or taxes.

• All securities are infinitely divisible.

• The term structure of riskless rates is flat at r.

• There is unlimited riskless borrowing and lending.

• t is the current time, T is the expiration time, and

τ
Δ
= T − t.

aDerman & Taleb (2005) summarizes criticisms on these assumptions

and the replication argument.
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Black-Scholes Differential Equation

• Let C be the price of a simple derivativea on S.

• From Ito’s lemma (p. 613),

dC =

(
μS

∂C

∂S
+

∂C

∂t
+

1

2
σ2S2 ∂2C

∂S2

)
dt+ σS

∂C

∂S
dW.

– The same W drives both C and S.

– Unlike dS/S, the diffusion of dC/C is stochastic!

• Short one derivative and long ∂C/∂S shares of stock

(call it Π).

• By construction,

Π = −C + S(∂C/∂S).

aRecall p. 437.
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Black-Scholes Differential Equation (continued)

• The change in the value of the portfolio at time dt isa

dΠ = −dC +
∂C

∂S
dS. (93)

• Substitute the formulas for dC and dS into the above

to yield

dΠ =

(
−∂C

∂t
− 1

2
σ2S2 ∂2C

∂S2

)
dt.

• As this equation does not involve dW , the portfolio is

riskless during dt time: dΠ = rΠ dt.

aBergman (1982) and Bartels (1995) argue this is not quite right. But

see Macdonald (1997). Mathematically, it is wrong (Bingham & Kiesel,

2004).

c©2024 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 685



Black-Scholes Differential Equation (continued)

• So (
∂C

∂t
+

1

2
σ2S2 ∂2C

∂S2

)
dt = r

(
C − S

∂C

∂S

)
dt.

• Equate the terms to finally obtaina

∂C

∂t
+ rS

∂C

∂S
+

1

2
σ2S2 ∂2C

∂S2
= rC.

• This is a backward equation, which describes the

dynamics of a derivative’s price forward in physical time.

aKnown as the Feynman-Kac stochastic representation formula.
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Black-Scholes Differential Equation (concluded)

• When there is a dividend yield q,

∂C

∂t
+ (r − q)S

∂C

∂S
+

1

2
σ2S2 ∂2C

∂S2
= rC. (94)

• Dupire’s formulaa (90) for the local-volatility model is

simply its dual:b

∂C

∂T
+ (rT − qT )X

∂C

∂X
− 1

2
σ(X,T )2X2 ∂

2C

∂X2
= −qTC.

• This is a forward equation, which describes the dynamics

of a derivative’s price backward in maturity time.

aRecall p. 643.
bDerman & Kani (1997).
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Rephrase

• The Black-Scholes differential equation can be expressed

in terms of sensitivity numbers,

Θ + rSΔ+
1

2
σ2S2Γ = rC. (95)

• Identity (95) leads to an alternative way of computing

Θ numerically from Δ and Γ.

• When a portfolio is delta-neutral,

Θ +
1

2
σ2S2Γ = rC.

– A definite relation thus exists between Γ and Θ.
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[ Black ] got the equation [ in 1969 ] but then

was unable to solve it. Had he been a better

physicist he would have recognized it as a form

of the familiar heat exchange equation,

and applied the known solution. Had he been

a better mathematician, he could have

solved the equation from first principles.

Certainly Merton would have known exactly

what to do with the equation

had he ever seen it.

— Perry Mehrling (2005)
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Black-Scholes Differential Equation: An Alternative

• Perform the change of variable V
Δ
= lnS.

• The option value becomes U(V, t)
Δ
= C(eV , t).

• Furthermore,

∂C

∂t
=

∂U

∂t
,

∂C

∂S
=

1

S

∂U

∂V
, (96)

∂2C

∂2S
=

1

S2

∂2U

∂V 2
− 1

S2

∂U

∂V
. (97)
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Black-Scholes Differential Equation: An Alternative
(concluded)

• Equations (96) and (97) are alternative ways to

calculate delta and gamma.a

• They are very useful for trees of logarithmic prices.

• The Black-Scholes differential equation (94) on p. 687

becomes

1

2
σ2 ∂2U

∂V 2
+

(
r − q − σ2

2

)
∂U

∂V
− rU +

∂U

∂t
= 0

subject to U(V, T ) being the payoff such as

max(X − eV , 0).

aRecall Eqs. (52) on p. 367 and (53) on p. 369.
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PDEs for Asian Options

• Add the new variable A(t)
Δ
=

∫ t

0
S(u) du.

• Then the value V of the Asian option satisfies this

two-dimensional PDE:a

∂V

∂t
+ rS

∂V

∂S
+

1

2
σ2S2 ∂2V

∂S2
+ S

∂V

∂A
= rV.

• The terminal conditions are

V (T, S,A) = max

(
A

T
−X, 0

)
for call,

V (T, S,A) = max

(
X − A

T
, 0

)
for put.

aKemna & Vorst (1990).
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PDEs for Asian Options (continued)

• The two-dimensional PDE produces algorithms similar

to that on pp. 449ff.a

• But one-dimensional PDEs are available for Asian

options.b

• For example, Večeř (2001) derives the following PDE for

Asian calls:

∂u

∂t
+ r

(
1− t

T
− z

)
∂u

∂z
+

(
1− t

T − z
)2

σ2

2

∂2u

∂z2
= 0

with the terminal condition u(T, z) = max(z, 0).

aBarraquand & Pudet (1996).
bRogers & Shi (1995); Večeř (2001); Dubois & Lelièvre (2005).
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PDEs for Asian Options (concluded)

• For Asian puts:

∂u

∂t
+ r

(
t

T
− 1− z

)
∂u

∂z
+

(
t
T − 1− z

)2
σ2

2

∂2u

∂z2
= 0

with the same terminal condition.

• One-dimensional PDEs yield highly efficient numerical

algorithms.
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Hedging
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When Professors Scholes and Merton and I

invested in warrants,

Professor Merton lost the most money.

And I lost the least.

— Fischer Black (1938–1995)
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Delta Hedge

• Recall the delta (hedge ratio) of a derivative f :

Δ
Δ
=

∂f

∂S
.

• Thus

Δf ≈ Δ×ΔS

for relatively small changes in the stock price, ΔS.

• A delta-neutral portfolio is hedged as it is immunized

against small changes in the stock price.
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Delta Hedge (concluded)

• A trading strategy that dynamically maintains a

delta-neutral portfolio is called delta hedge.

– Trading strategies can also be static (or constant).a

• Delta changes with the stock price.

• A delta hedge needs to be rebalanced periodically in

order to maintain delta neutrality.

• In the limit where the portfolio is adjusted continuously,

“perfect” hedge is achieved and the strategy becomes

“self-financing.”

aRecall p. 496 for one in hedging the short forward contract with the

underlying asset and loans.
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Implementing Delta Hedge

• We want to hedge N short derivatives.

• Assume the stock pays no dividends.

• The delta-neutral portfolio maintains N ×Δ shares of

stock plus B borrowed dollars such that

−N × f +N ×Δ× S − B = 0.

• At next rebalancing point when the delta is Δ′, buy
N × (Δ′ −Δ) shares to maintain N ×Δ′ shares.

• Delta hedge is the discrete-time analog of the

continuous-time limit.

• It will rarely be self-financing however small Δt is.
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Example

• A hedger is short 10,000 European calls.

• S = 50, σ = 30%, and r = 6%.

• This call’s expiration is four weeks away, its strike price

is $50, and each call has a current value of f = 1.76791.

• As an option covers 100 shares of stock, N = 1,000,000.

• The trader adjusts the portfolio weekly.

• The calls are replicated well if the cumulative cost of

trading stock is close to the call premium’s FV.a

aThis takes the replication viewpoint: One starts with zero dollar.
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Example (continued)

• As Δ = 0.538560

N ×Δ = 538, 560

shares are purchased for a total cost of

538,560× 50 = 26,928,000

dollars to make the portfolio delta-neutral.

• The trader finances the purchase by borrowing

B = N ×Δ× S −N × f = 25,160,090

dollars net.a
aThis takes the hedging viewpoint: One starts with the option pre-

mium. The two viewpoints are equivalent. See Exercise 16.3.2 of the

text.
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Example (continued)

• At 3 weeks to expiration, the stock price rises to $51.

• The new call value is f ′ = 2.10580.

• So before rebalancing, the portfolio is worth

−N × f ′ + 538,560× 51−Be0.06/52 = 171, 622. (98)

• The delta hedge is not self-financing as $171,622 can be

withdrawn.

– It does not replicate the calls perfectly.
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Example (continued)

• The magnitude of the tracking errora can be mitigated if

adjustments are made more frequently.

• The tracking error over one rebalancing act is positive

about 68% of the time.

• Its expected value is ∼ 0 under the risk-neutral

probability measure.b

– But the stock price should be sampled under the

real-world probability measure.c

aThe variation in the net portfolio value.
bBoyle & Emanuel (1980).
cRecall Eq. (93) on p. 685 or see p. 713.
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Example (continued)

• The tracking error at maturity is proportional to vega.a

• In practice tracking errors will cease to decrease beyond

a certain rebalancing frequency.

• With a higher delta Δ′ = 0.640355, the trader buys

N × (Δ′ −Δ) = 101, 795

shares for $5,191,545.

• The number of shares is increased to N ×Δ′ = 640, 355.

aKamal & Derman (1999).
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Example (continued)

• The cumulative cost isa

26,928,000× e0.06/52 + 5,191,545 = 32,150,634.

• The portfolio is again delta-neutral.

aWe take the replication viewpoint again. Under the BOPM, the

replicating strategy is self-financing and matches the payoff perfectly.
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Option Change in No. shares Cost of Cumulative

value Delta delta bought shares cost

τ S f Δ N×(5) (1)×(6) FV(8’)+(7)

(1) (2) (3) (5) (6) (7) (8)

4 50 1.7679 0.53856 — 538,560 26,928,000 26,928,000

3 51 2.1058 0.64036 0.10180 101,795 5,191,545 32,150,634

2 53 3.3509 0.85578 0.21542 215,425 11,417,525 43,605,277

1 52 2.2427 0.83983 −0.01595 −15,955 −829,660 42,825,960

0 54 4.0000 1.00000 0.16017 160,175 8,649,450 51,524,853

• We take the replication viewpoint.

• The total number of shares is 1,000,000 at expiration

(trading takes place at expiration, too).
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Example (continued)

• At expiration, the trader has 1,000,000 shares.

• They are exercised against by the in-the-money calls for

$50,000,000.

• The trader is left with an obligation of

51,524,853− 50,000,000 = 1,524,853,

which represents the replication cost.

• So if we had started with the PV of $1,524,853, we

would have replicated 10,000 such calls in this scenario.
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Example (concluded)

• The FV of the call premium equals

1,767,910× e0.06×4/52 = 1,776,088.

• That means the net gain in this scenario is

1,776,088− 1,524,853 = 251,235

if we are hedging 10,000 short European calls.
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Tracking Error Revisited

• Define the dollar gamma as S2Γ.

• The change in value of a delta-hedged long option

position after a duration of Δt is proportional to the

dollar gamma.

• It is about

(1/2)S2Γ[ (ΔS/S)2 − σ2Δt ].

– (ΔS/S)2 is called the daily realized variance.

c©2024 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 709



Tracking Error Revisited (continued)

• In our particular case,

S = 50,Γ = 0.0957074,ΔS = 1, σ = 0.3,Δt = 1/52.

• The estimated tracking error is

−(1/2)×502×0.0957074×[
(1/50)2 − (0.09/52)

]
= 159, 205.

• It is very close to our earlier number of 171,622.a

• Delta hedge is also called gamma scalping.b

aRecall Eq. (98) on p. 702.
bBennett (2014).
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Tracking Error Revisited (continued)

• Let the rebalancing times be t1, t2, . . . , tn.

• Let ΔSi = Si+1 − Si.

• The total tracking error at expiration is about

n−1∑
i=0

er(T−ti)
S2
i Γi

2

[(
ΔSi

Si

)2

− σ2Δt

]
.

• The tracking error is clearly path dependent.

• Mathematically,a

n−1∑
i=0

(
ΔSi

Si

)2

→ σ2T.

aProtter (2005).
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Tracking Error Revisited (concluded)a

• The tracking errorb εn over n rebalancing acts has

about the same probability of being positive as being

negative.

• Subject to certain regularity conditions, the

root-mean-square tracking error
√
E[ ε2n ] is O(1/

√
n ).c

• The root-mean-square tracking error increases with σ at

first and then decreases.

aBertsimas, Kogan, & Lo (2000).
bSuch as 251,235 on p. 708.
cGrannan & Swindle (1996).
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Which Probability Measure?a

• The profit and loss (i.e., tracking error) of a hedging

strategy should be calculated under the real-world

probability measure.

• But the deltas and option prices should be calculated

under the risk-neutral probability measure.

• If whenever we sample the next stock price, backward

induction is performed for the delta, it will take a long

time to obtain the distribution of the profit and loss.

• How to do it efficiently?

aContributed by Mr. Chiu, Tzu-Hsuan (R08723061) on April 9, 2021.
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Delta-Gamma Hedge

• Delta hedge is based on the first-order approximation to

changes in the derivative price, Δf , due to changes in

the stock price, ΔS.

• When ΔS is not small, the second-order term, gamma

Γ
Δ
= ∂2f/∂S2, helps.

• A delta-gamma hedge is a delta hedge that maintains

zero portfolio gamma; it is gamma neutral.

• To meet this extra condition, one more security needs to

be brought in.
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Delta-Gamma Hedge (concluded)

• Suppose we want to hedge short calls as before.

• A hedging call f2 is brought in.

• To set up a delta-gamma hedge, we solve

−N × f + n1 × S + n2 × f2 − B = 0 (self-financing),

−N ×Δ+ n1 + n2 ×Δ2 − 0 = 0 (delta neutrality),

−N × Γ + 0 + n2 × Γ2 − 0 = 0 (gamma neutrality),

for n1, n2, and B.

– The gammas of the stock and bond are 0.

• See the numerical example on pp. 231–232 of the text.
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Other Hedges

• If volatility changes, delta-gamma hedge may not work

well.

• An enhancement is the delta-gamma-vega hedge, which

also maintains vega zero portfolio vega.

• To accomplish this, still one more security has to be

brought into the process.

• In practice, delta-vega hedge, which may not maintain

gamma neutrality, performs better than delta hedge.
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Trees
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I love a tree more than a man.

— Ludwig van Beethoven (1770–1827)

All those holes and pebbles.

Who could count them?

— James Joyce, Ulysses (1922)

And though the holes were rather small,

they had to count them all.

— The Beatles, A Day in the Life (1967)
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The Combinatorial Method

• The combinatorial method can often cut the running

time by an order of magnitude.

• The basic paradigm is to count the number of admissible

paths that lead from the root to any terminal node.

• We first used this method in the linear-time algorithm

for standard European option pricing.a

• We will now apply it to price barrier options.

aRecall p. 289.

c©2024 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 719



The Reflection Principlea

• Imagine a particle at position (0,−a) on the integral

lattice that is to reach (n,−b).

• Without loss of generality, assume a > 0 and b ≥ 0.

• This particle’s movement:

(i, j)
�(i+ 1, j + 1) up move S → Su

�(i+ 1, j − 1) down move S → Sd

• How many paths touch the x axis?

aAndré (1887).
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The Reflection Principle (continued)

• For a path from (0,−a) to (n,−b) that touches the x

axis, let J denote the first point this happens.

• Reflect the portion of the path from (0,−a) to J .

• A path from (0,a) to (n,−b) is constructed.

• It also hits the x axis at J for the first time.

• The one-to-one mapping shows the number of paths

from (0,−a) to (n,−b) that touch the x axis equals

the number of paths from (0,a) to (n,−b).
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The Reflection Principle (concluded)

• A path of this kind has (n+ b+ a)/2 down moves and

(n− b− a)/2 up moves.a

• Hence there are (
n

n+a+b
2

)
=

(
n

n−a−b
2

)
(99)

such paths for even n+ a+ b.

– Convention:
(
n
k

)
= 0 for k < 0 or k > n.

aVerify it!
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Pricing Barrier Options (Lyuu, 1998)

• Focus on the down-and-in call with barrier H < X .

• So H < S.

• Define

a
Δ
=

⌈
ln (X/ (Sdn))

ln(u/d)

⌉
=

⌈
ln(X/S)

2σ
√
Δt

+
n

2

⌉
,

h
Δ
=

⌊
ln (H/ (Sdn))

ln(u/d)

⌋
=

⌊
ln(H/S)

2σ
√
Δt

+
n

2

⌋
.

– a is such that X̃
Δ
= Suadn−a is the terminal price

that is closest to X from above.

– h is such that H̃
Δ
= Suhdn−h is the terminal price

that is closest to H from below.a

aSo we underestimate the option price.
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Pricing Barrier Options (continued)

• The true barrier is replaced by the effective barrier H̃

in the binomial model.

• A process with n moves hence ends up in the money if

and only if the number of up moves is at least a.

• The price Sukdn−k is at a distance of 2k from the

lowest possible price Sdn on the binomial tree as

Sukdn−k = Sd−kdn−k = Sdn− 2k . (100)
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Pricing Barrier Options (continued)

• A path from S to the terminal price Sujdn−j has

probability pj(1− p)n−j of being taken.

• With reference to p. 726, the reflection principle (p. 721)

can be applied with

a = n− 2h,

b = 2j − 2h,

in Eq. (99) on p. 723 by treating the H̃ line as the x

axis.
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Pricing Barrier Options (continued)

• Therefore,(
n

n+(n−2h)+(2j−2h)
2

)
=

(
n

n− 2h+ j

)

paths hit H̃ in the process for h ≤ n/2.

• The terminal price Sujdn−j is reached by a path that

hits the effective barrier with probability(
n

n− 2h+ j

)
pj(1− p)n−j , j ≤ 2h.
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Pricing Barrier Options (concluded)

• The option value equals
∑2h

j=a

(
n

n−2h+j

)
pj(1− p)n−j

(
Sujdn−j −X

)
Rn

.

(101)

– R
Δ
= erτ/n is the riskless return per period.

• It yields a linear-time algorithm.a

aLyuu (1998).
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Convergence of BOPM

• Equation (101) results in the same sawtooth-like

convergence shown on p. 410 (repeated on next page).

• The reasons are not hard to see.

• The effective barrier H̃ rarely equals the true barrier H.

c©2024 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 730



Convergence of BOPM (continued)
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Convergence of BOPM (continued)

• Convergence is actually good if we limit n to certain

values—191, for example.

• These values make the true barrier coincide with or just

above one of the stock price levels, that is,

H ≈ Sdj = Se−jσ
√

τ/n

for some integer j.

• The preferred n’s are thus

n =

⌊
τ

(ln(S/H)/(jσ))2

⌋
, j = 1, 2, 3, . . .

c©2024 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 732



Convergence of BOPM (continued)

• There is only one minor technicality left.

• We picked the effective barrier to be one of the n+ 1

possible terminal stock prices.

• However, the effective barrier above, Sdj , corresponds to

a terminal stock price only when n− j is even.a

• To close this gap, we decrement n by one, if necessary,

to make n− j an even number.

aThis is because j = n − 2k for some k by Eq. (100) on p. 725. Of

course we could have adopted the more general form Sdj (−n ≤ j ≤ n)

for the effective barrier. It makes a good exercise.
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Convergence of BOPM (concluded)

• The preferred n’s are now

n =

⎧⎨
⎩ �, if �− j is even,

�− 1, otherwise,
(102)

j = 1, 2, 3, . . . , where

�
Δ
=

⌊
τ

(ln(S/H)/(jσ))
2

⌋
.

• Evaluate pricing formula (101) on p. 729 only with the

n above.

c©2024 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 734



0 500 1000 1500 2000 2500 3000 3500

#Periods

5.5

5.55

5.6

5.65

5.7
 
Down-and-in call value

 

c©2024 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 735



Practical Implicationsa

• This binomial model is O(1/
√
n) convergent in general

but O(1/n) convergent when the barrier is matched.b

• Now that barrier options can be efficiently priced, we

can afford to pick very large n (see next page).

• This has profound consequences.c

aLyuu (1998).
bJ. Lin (R95221010) (2008); J. Lin (R95221010) & Palmer (2013).
cSee pp. 751ff.
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n Combinatorial method

Value Time (milliseconds)

21 5.507548 0.30

84 5.597597 0.90

191 5.635415 2.00

342 5.655812 3.60

533 5.652253 5.60

768 5.654609 8.00

1047 5.658622 11.10

1368 5.659711 15.00

1731 5.659416 19.40

2138 5.660511 24.70

2587 5.660592 30.20

3078 5.660099 36.70

3613 5.660498 43.70

4190 5.660388 44.10

4809 5.659955 51.60

5472 5.660122 68.70

6177 5.659981 76.70

6926 5.660263 86.90

7717 5.660272 97.20
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Practical Implications (concluded)

• Pricing is prohibitively time consuming when S ≈ H

because

n ∼ 1/ ln2(S/H)

by formula (102) on 734.

– This is called the barrier-too-close problem.

• This observation is indeed true of standard

quadratic-time binomial tree algorithms.

• But it no longer applies to linear-time algorithms (see

next page).
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Barrier at 95.0 Barrier at 99.5 Barrier at 99.9

n Value Time n Value Time n Value Time

.

.

. 795 7.47761 8 19979 8.11304 253

2743 2.56095 31.1 3184 7.47626 38 79920 8.11297 1013

3040 2.56065 35.5 7163 7.47682 88 179819 8.11300 2200

3351 2.56098 40.1 12736 7.47661 166 319680 8.11299 4100

3678 2.56055 43.8 19899 7.47676 253 499499 8.11299 6300

4021 2.56152 48.1 28656 7.47667 368 719280 8.11299 8500

True 2.5615 7.4767 8.1130

(All times in milliseconds.)

c©2024 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 739



Trinomial Tree

• Set up a trinomial approximation to the geometric

Brownian motiona

dS

S
= r dt+ σ dW.

• The three stock prices at time Δt are S, Su, and Sd,

where ud = 1.

• Let the mean and variance of the stock price be SM and

S2V , respectively.

aParkinson (1977); Boyle (1986).
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Trinomial Tree (continued)

• By Eqs. (29) on p. 181,

M
Δ
= erΔt,

V
Δ
= M2(eσ

2Δt − 1).

• Impose the matching of mean and that of variance:

1 = pu + pm + pd,

SM = [ puu+ pm + (pd/u) ]S,

S2V = pu(Su− SM)2 + pm(S − SM)2 + pd(Sd− SM)2.
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Trinomial Tree (continued)

• Use linear algebra to verify that

pu =
u
(
V +M2 −M

)− (M − 1)

(u− 1) (u2 − 1)
,

pd =
u2

(
V +M2 −M

)− u3(M − 1)

(u− 1) (u2 − 1)
.

• We must also make sure the probabilities lie between 0

and 1.
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Trinomial Tree (concluded)

• There are countless variations.

• But all converge to the Black-Scholes option pricing

model.a

• Like the binomial model,b the trinomial model has a

linear-time algorithm for European options.c

aMadan, Milne, & Shefrin (1989).
bRecall p. 289 and p. 729.
cT. Chen (R94922003) (2007); J. Wang (R85526003), C. Wang

(F95922018), T. Dai (B82506025, R86526008, D8852600), T. Chen

(R94922003), L. Liu, & Zhou (2022).
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A Trinomial Tree

• Use u = eλσ
√
Δt, where λ ≥ 1 is a tunable parameter.

• Then

pu → 1

2λ2
+

(
r + σ2

)√
Δt

2λσ
,

pd → 1

2λ2
−

(
r − 2σ2

)√
Δt

2λσ
.

• A nice choice for λ is
√
π/2 .a

aOmberg (1988).
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Barrier Options Revisited

• BOPM introduces a specification error by replacing the

barrier with a nonidentical effective barrier.

• The trinomial model solves the problem by adjusting λ

so that the barrier is hit exactly.a

• When

Se−hλσ
√
Δt = H,

it takes h down moves to go from S to H, if h is an

integer.

• Then

h =
ln(S/H)

λσ
√
Δt

.

aRitchken (1995).
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Barrier Options Revisited (continued)

• This is easy to achieve by adjusting λ.

• Typically, we find the smallest λ ≥ 1 such that h is an

integer.a

– Such a λ may not exist for very small n’s.b

• Toward that end, we find the largest integer j ≥ 1 that

satisfies ln(S/H)

jσ
√
Δt

≥ 1 to be the h.

• Then let

λ =
ln(S/H)

hσ
√
Δt

.

aWhy must λ ≥ 1?
bThis is not hard to check.

c©2024 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 747



Barrier Options Revisited (continued)

• Alternatively, simply pick

h =

⌊
ln(S/H)

σ
√
Δt

⌋
.

• Make sure h ≥ 1.

• Then let

λ =
ln(S/H)

hσ
√
Δt

.
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Barrier Options Revisited (concluded)

• This done, one of the layers of the trinomial tree

coincides with the barrier.

• The following probabilities may be used,

pu =
1

2λ2
+

μ′√Δt

2λσ
,

pm = 1− 1

λ2
,

pd =
1

2λ2
− μ′√Δt

2λσ
.

– μ′ Δ
= r − (σ2/2).
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Algorithms Comparisona

• So which algorithm is better, binomial or trinomial?

• Algorithms are often compared based on the n value at

which they “converge.”

– The one with the smallest n wins.

• So giraffes are faster than cheetahs because they take

fewer strides to travel the same distance!

• Performance must be based on actual running times, not

n.b

aLyuu (1998).
bPatterson & Hennessy (1994).
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Algorithms Comparison (continued)

• Pages 731 and 750 seem to show the trinomial model

converges at a smaller n than BOPM.

• It is in this sense when people say trinomial models

converge faster than binomial ones.

• But does it make the trinomial model better then?
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Algorithms Comparison (concluded)

• The linear-time binomial tree algorithm actually

performs better than the trinomial one.

• See the next page, expanded from p. 737.

• The barrier-too-close problem is also too hard for a

quadratic-time trinomial tree algorithm.a

– See pp. 764ff for an alternative solution.

aLyuu (1998).
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n Combinatorial method Trinomial tree algorithm

Value Time Value Time

21 5.507548 0.30

84 5.597597 0.90 5.634936 35.0

191 5.635415 2.00 5.655082 185.0

342 5.655812 3.60 5.658590 590.0

533 5.652253 5.60 5.659692 1440.0

768 5.654609 8.00 5.660137 3080.0

1047 5.658622 11.10 5.660338 5700.0

1368 5.659711 15.00 5.660432 9500.0

1731 5.659416 19.40 5.660474 15400.0

2138 5.660511 24.70 5.660491 23400.0

2587 5.660592 30.20 5.660493 34800.0

3078 5.660099 36.70 5.660488 48800.0

3613 5.660498 43.70 5.660478 67500.0

4190 5.660388 44.10 5.660466 92000.0

4809 5.659955 51.60 5.660454 130000.0

5472 5.660122 68.70

6177 5.659981 76.70

(All times in milliseconds.)
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Double-Barrier Options

• Double-barrier options are barrier options with two

barriers L < H.

– They make up “less than 5% of the light exotic

market.”a

• Assume L < S < H.

• The binomial model produces oscillating option values

(see plot on next page).b

aBennett (2014).
bChao (R86526053) (1999); T. Dai (B82506025, R86526008, D8852600)

& Lyuu (2005).
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Double-Barrier Options (concluded)

• The combinatorial method yields a linear-time

algorithm.a

• This binomial model is O(1/
√
n) convergent in general.b

• If the barriers L and H depend on time, we have

moving-barrier options.c

aSee p. 241 of the textbook.
bGobet (1999).
cRogers & Zane (1998).
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Double-Barrier Knock-Out Options

• We knew how to pick the λ so that one of the layers of

the trinomial tree coincides with one barrier, say H.

• This choice, however, does not guarantee that the other

barrier, L, is also hit.

• One way to handle this problem is to lower the layer of

the tree just above L to coincide with L.a

– More general ways to make the trinomial model hit

both barriers are available.b

aRitchken (1995); Hull (1999).
bHsu (R7526001, D89922012) & Lyuu (2006). T. Dai (B82506025,

R86526008, D8852600) & Lyuu (2006) combine binomial and trinomial

trees to derive an O(n)-time algorithm for double-barrier options (see

pp. 764ff).
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Double-Barrier Knock-Out Options (continued)

• The probabilities of the nodes on the layer above L

must be adjusted.

• Let � be the positive integer such that

Sd�+1 < L < Sd�.

• Hence the layer of the tree just above L has price Sd�.a

aYou probably cannot do the same thing for binomial models (why?).

Thanks to a lively discussion on April 25, 2012.
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Double-Barrier Knock-Out Options (concluded)

• Define γ > 1 as the number satisfying

L = Sd�−1e−γλσ
√
Δt.

– The prices between the barriers are (from low to

high)

L, Sd�−1, . . . , Sd2, Sd, S, Su, Su2, . . . , Suh−1, Suh = H.

• The probabilities for the nodes with price equal to

Sd�−1 are

p′u =
b+ aγ

1 + γ
, p′d =

b− a

γ + γ2
, and p′m = 1− p′u − p′d,

where a
Δ
= μ′√Δt/(λσ) and b

Δ
= 1/λ2.
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Convergence: Binomial vs. Trinomial
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