
American Option Pricing by Simulation

• The continuation value of an American option is the

conditional expectation of the payoff from keeping the

option alive now.

• The option holder must compare the immediate exercise

value and the continuation value.

• In standard Monte Carlo simulation, each path is

treated independently of other paths.

• But the exercise decision cannot be reached by looking

at just one path.
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The Least-Squares Monte Carlo Approach

• Estimate the continuation value from the cross-sectional

information in the simulation with least squares.a

• The result is a function of the state for estimating it.

• Use the estimated continuation value for each path to

determine its cash flow.

• This is called least-squares Monte Carlo (LSM).

aLongstaff & Schwartz (2001).
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The Least-Squares Monte Carlo Approach (concluded)

• LSM is provably convergent.a

• LSM can be easily parallelized.b

– Partition the paths into subproblems and perform

LSM on each independently.

– The speedup is close to linear (i.e., proportional to

the number of cores).

• Surprisingly, accuracy is not affected.

aClément, Lamberton, & Protter (2002); Stentoft (2004).
bK. Huang (B96902079, R00922018) (2013); C. W. Chen (B97902046,

R01922005) (2014); C. W. Chen (B97902046, R01922005), K. Huang

(B96902079, R00922018) & Lyuu (2015).
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A Numerical Example

• Consider a 3-year American put on a

non-dividend-paying stock.

• The put is exercisable at years 0, 1, 2, and 3.

• The strike price X = 105.

• The annualized riskless rate is r = 5%.

– The annual discount factor equals 0.951229.

• The current stock price is 101.

• We use 8 price paths to illustrate the algorithm.
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A Numerical Example (continued)

Stock price paths

Path Year 0 Year 1 Year 2 Year 3

1 101 97.6424 92.5815 107.5178

2 101 101.2103 105.1763 102.4524

3 101 105.7802 103.6010 124.5115

4 101 96.4411 98.7120 108.3600

5 101 124.2345 101.0564 104.5315

6 101 95.8375 93.7270 99.3788

7 101 108.9554 102.4177 100.9225

8 101 104.1475 113.2516 115.0994
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A Numerical Example (continued)

• We use the basis functions 1, x, x2.

– Other basis functions are possible.a

• The plot next page shows the final estimated optimal

exercise strategy given by LSM.

• We now proceed to tackle our problem.

• The idea is to calculate the cash flow along each path,

using information from all in-the-money paths.

aLaguerre polynomials, Hermite polynomials, Legendre polynomials,

Chebyshev polynomials, Gedenbauer polynomials, or Jacobi polynomi-

als.
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A Numerical Example (continued)

Cash flows at year 3

Path Year 0 Year 1 Year 2 Year 3

1 — — — 0

2 — — — 2.5476

3 — — — 0

4 — — — 0

5 — — — 0.4685

6 — — — 5.6212

7 — — — 4.0775

8 — — — 0
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A Numerical Example (continued)

• The cash flows at year 3 are the put’s payoffs.

• Only 4 paths are in the money: 2, 5, 6, 7.

• Some of the cash flows may not materialize if the put is

exercised earlier, which we will find out later.

• Incidentally, the European counterpart has a value of

0.9512293 × 2.5476 + 0.4685 + 5.6212 + 4.0775

8
= 1.3680.
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A Numerical Example (continued)

• We move on to year 2.

• For each state that is in the money at year 2, we must

decide whether to exercise it.

• There are 6 paths for which the put is in the money: 1,

3, 4, 5, 6, 7.a

• Only in-the-money paths will be used in the regression

because they are where early exercise is possible.

– If there were none, move on to year 1.

aRecall p. 931.
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A Numerical Example (continued)

• Let x denote the stock price at year 2 for each of those 6

paths.

• Let y denote the corresponding discounted future cash

flow (at year 3) if the put is not exercised at year 2.
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A Numerical Example (continued)

Regression at year 2

Path x y

1 92.5815 0× 0.951229

2 — —

3 103.6010 0× 0.951229

4 98.7120 0× 0.951229

5 101.0564 0.4685× 0.951229

6 93.7270 5.6212× 0.951229

7 102.4177 4.0775× 0.951229

8 — —
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A Numerical Example (continued)

• We regress y on 1, x, and x2.

• The result is

f(x) = 22.08− 0.313114× x+ 0.00106918× x2.

• f(x) estimates the continuation value conditional on the

stock price at year 2.

• We next compare the immediate exercise value and the

estimated continuation value.a

aThe f(102.4177) entry on the next page was corrected by Mr. Tu,

Yung-Szu (B79503054, R83503086) on May 25, 2017.
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A Numerical Example (continued)

Optimal early exercise decision at year 2

Path Exercise Continuation

1 12.4185 f(92.5815) = 2.2558

2 — —

3 1.3990 f(103.6010) = 1.1168

4 6.2880 f(98.7120) = 1.5901

5 3.9436 f(101.0564) = 1.3568

6 11.2730 f(93.7270) = 2.1253

7 2.5823 f(102.4177) = 1.2266

8 — —
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A Numerical Example (continued)

• The put should be exercised in all 6 paths: 1, 3, 4, 5, 6,

7.

• Now, any positive cash flow at year 3 vanishes for these

paths as the put has been exercised before it.a

– They are paths 5, 6, 7.

• The cash flows on p. 935 become the ones on next slide.

aRecall p. 931.
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A Numerical Example (continued)

Cash flows at years 2 & 3

Path Year 0 Year 1 Year 2 Year 3

1 — — 12.4185 0

2 — — 0 2.5476

3 — — 1.3990 0

4 — — 6.2880 0

5 — — 3.9436 0

6 — — 11.2730 0

7 — — 2.5823 0

8 — — 0 0

c©2023 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 943



A Numerical Example (continued)

• We move on to year 1.

• For each state that is in the money at year 1, we must

decide whether to exercise it.

• There are 5 paths for which the put is in the money: 1,

2, 4, 6, 8.a

• Only in-the-money paths will be used in the regression

because they are where early exercise is possible.

– If there were none, move on to year 0.

aRecall p. 931.
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A Numerical Example (continued)

• Let x denote the stock price at year 1 for each of those 5

paths.

• Let y denote the corresponding discounted future cash

flow if the put is not exercised at year 1.

• From p. 943, we have the following table.
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A Numerical Example (continued)

Regression at year 1

Path x y

1 97.6424 12.4185× 0.951229

2 101.2103 2.5476× 0.9512292

3 — —

4 96.4411 6.2880× 0.951229

5 — —

6 95.8375 11.2730× 0.951229

7 — —

8 104.1475 0× 0.951229
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A Numerical Example (continued)

• We regress y on 1, x, and x2.

• The result is

f(x) = −420.964 + 9.78113× x− 0.0551567× x2.

• f(x) estimates the continuation value conditional on the

stock price at year 1.

• We next compare the immediate exercise value and the

estimated continuation value.
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A Numerical Example (continued)

Optimal early exercise decision at year 1

Path Exercise Continuation

1 7.3576 f(97.6424) = 8.2230

2 3.7897 f(101.2103) = 3.9882

3 — —

4 8.5589 f(96.4411) = 9.3329

5 — —

6 9.1625 f(95.8375) = 9.83042

7 — —

8 0.8525 f(104.1475) = −0.551885
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A Numerical Example (continued)

• The put should be exercised for 1 path only: 8.

– Note that its f(104.1475) < 0.

• Now, any positive future cash flow vanishes for this path.

– But there is none.

• The cash flows on p. 943 become the ones on next slide.

• They also confirm the plot on p. 934.
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A Numerical Example (continued)

Cash flows at years 1, 2, & 3

Path Year 0 Year 1 Year 2 Year 3

1 — 0 12.4185 0

2 — 0 0 2.5476

3 — 0 1.3990 0

4 — 0 6.2880 0

5 — 0 3.9436 0

6 — 0 11.2730 0

7 — 0 2.5823 0

8 — 0.8525 0 0
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A Numerical Example (continued)

• We move on to year 0.

• The continuation value is, from p 950,

(12.4185× 0.9512292 + 2.5476× 0.9512293

+1.3990× 0.9512292 + 6.2880× 0.9512292

+3.9436× 0.9512292 + 11.2730× 0.9512292

+2.5823× 0.9512292 + 0.8525× 0.951229)/8

= 4.66263.
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A Numerical Example (concluded)

• As this is larger than the immediate exercise value of

105− 101 = 4,

the put should not be exercised at year 0.

• Hence the put’s value is estimated to be 4.66263.

• Compare this with the European put’s value of 1.3680.a

aRecall p. 936.
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Time Series Analysis
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The historian is a prophet in reverse.

— Friedrich von Schlegel (1772–1829)

Even in my tape reading something enters

that is more than mere arithmetic.

— Edwin Lefèvre (1971–1943),

Reminiscences of a Stock Operator (1923)
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GARCH Option Pricing

• Options can be priced when the underlying asset’s

return follows a GARCH (generalized autoregressive

conditional heteroskedastic) process.a

• Let St denote the asset price at date t.

• Let h2
t be the conditional variance of the return over

the period [ t, t+ 1) given the information at date t.

– “One day” is merely a convenient term for any

elapsed time Δt.

aBollerslev (1986) and Taylor (1986). They are the “most popular

models for time-varying volatility” (Alexander, 2001). A Bloomberg

quant said to me on Feb 29, 2008, that GARCH is seldom used in trading.
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GARCH Option Pricing (continued)

• Adopt the following risk-neutral process for price:a

ln
St+1

St
= r − h2

t

2
+ htεt+1, (127)

where

h2
t+1 = β0 + β1h

2
t + β2h

2
t (εt+1 − c)2, (128)

εt+1 ∼ N(0, 1) given information at date t,

r = daily riskless return,

c ≥ 0.

• This is called the nonlinear asymmetric GARCH (or

NGARCH) model.
aDuan (1995).

c©2023 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 956



GARCH Option Pricing (continued)

• The five unknown parameters of the model are c, h0, β0,

β1, and β2.

• It is postulated that β0, β1, β2 ≥ 0 to make the

conditional variance positive.

• There are other inequalities to satisfy such as

β1 + β2 < 1 (see text).

• It can be shown that h2
t ≥ min

[
h2
0, β0/(1− β1)

]
.a

aLyuu & C. Wu (R90723065) (2005).
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GARCH Option Pricing (continued)

• It captures the volatility clustering in asset returns first

noted by Mandelbrot (1963).a

– When c = 0, a large εt+1 results in a large ht+1,

which in turns tends to yield a large ht+2, and so on.

• It also captures the negative correlation between the

asset return and changes in its (conditional) volatility.b

– For c > 0, a positive εt+1 (good news) tends to

decrease ht+1, whereas a negative εt+1 (bad news)

tends to do the opposite.
a“. . . large changes tend to be followed by large changes—of either

sign—and small changes tend to be followed by small changes . . . ”
bNoted by Black (1976): Volatility tends to rise in response to “bad

news” and fall in response to “good news.”
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GARCH Option Pricing (continued)

• This is called the leverage effect.

– A falling stock price raises the fixed costs, relatively

speaking.a

– Thus c is called the leverage effect parameter.

• With yt
Δ
= lnSt denoting the logarithmic price, the

model becomes

yt+1 = yt + r − h2
t

2
+ htεt+1. (129)

• The pair (yt, h
2
t ) completely describes the current state.

aBlack (1992).
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GARCH Option Pricing (concluded)

• The conditional mean and variance of yt+1 are clearly

E[ yt+1 | yt, h2
t ] = yt + r − h2

t

2
, (130)

Var[ yt+1 | yt, h2
t ] = h2

t . (131)

• Finally, given (yt, h
2
t ), the correlation between yt+1 and

ht+1 equals

− 2c√
2 + 4c2

,

which is negative for c > 0.
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GARCH Model: Inferences

• Suppose the parameters c, h0, β0, β1, and β2 are given.

• Then we can recover h1, h2, . . . , hn and ε1, ε2, . . . , εn

from the prices

S0, S1, . . . , Sn

under the GARCH model (127) on p. 956.

• This is useful in statistical inferences.
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The Ritchken-Trevor (RT) Algorithma

• The GARCH model is a continuous-state model.

• To approximate it, we turn to trees with discrete states.

• Path dependence in GARCH makes the tree for asset

prices explode exponentially.b

• We need to mitigate this combinatorial explosion.

aRitchken & Trevor (1999).
bWhy?
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The RT Algorithm (continued)

• Partition a day into n periods.

• Three states follow each state (yt, h
2
t ) after a period.

• As the trinomial model combines, each state at date t is

followed by 2n+ 1 states at date t+ 1.a

• These 2n+ 1 values must approximate the distribution

of (yt+1, h
2
t+1) to guarantee convergence.

• So the conditional moments (130)–(131) at date t+ 1

on p. 960 must be matched by the trinomial model.

aRecall p. 741.
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The RT Algorithm (continued)

• It remains to pick the jump size and the three branching

probabilities.

• The role of σ in the Black-Scholes option pricing model

is played by ht in the GARCH model.

• As a jump size proportional to σ/
√
n is picked in the

BOPM, a comparable magnitude will be chosen here.

• Define γ
Δ
= h0, though other multiples of h0 are

possible.

• Let

γn
Δ
=

γ√
n
.
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The RT Algorithm (continued)

• The jump size will be some integer multiple η of γn.

• We call η the jump parameter (see next page).

• Clearly, the magnitude of η tends to grow with ht.

• The middle branch does not change the underlying

asset’s price.
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(0, 0)
yt

(1, 1)

(1, 0)

(1,−1)

�
�
ηγn

�� 1 day

The seven values on the right approximate the distribution

of logarithmic price yt+1.

c©2023 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 966



The RT Algorithm (continued)

• The probabilities for the up, middle, and down branches

are

pu =
h2
t

2η2γ2
+

r − (h2
t/2)

2ηγ
√
n

, (132)

pm = 1− h2
t

η2γ2
, (133)

pd =
h2
t

2η2γ2
− r − (h2

t/2)

2ηγ
√
n

. (134)
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The RT Algorithm (continued)

• It can be shown that:

– The trinomial model takes on 2n+ 1 values at date

t+ 1 for yt+1 .

– These values match yt+1’s mean.

– These values match yt+1’s variance asymptotically.

• The central limit theorem guarantees convergence to the

continuous-space model as n increases.a

aAssume the probabilities are valid.
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The RT Algorithm (continued)

• We can dispense with the intermediate nodes between

dates to create a (2n+ 1)-nomial tree.a

• The resulting model is multinomial with 2n+ 1

branches from any state (yt, h
2
t ).

• There are two reasons behind this manipulation.

– Interdate nodes are created merely to approximate

the continuous-state model after one day.

– Keeping the interdate nodes results in a tree that is

n times larger.b

aSee p. 970.
bContrast it with the case on p. 412.
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yt

�
�
ηγn

�� 1 day

This heptanomial model is the outcome of the trinomial tree

on p. 966 after the intermediate nodes are removed.
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The RT Algorithm (continued)

• A node with logarithmic price yt + �ηγn at date t+ 1

follows the current node at date t with price yt, where

−n ≤ � ≤ n.

• To reach that price in n periods, the number of up

moves must exceed that of down moves by exactly �.

• The probability this happens is

P (�)
Δ
=

∑
ju,jm,jd

n!

ju! jm! jd!
pjuu pjmm pjdd ,

with ju, jm, jd ≥ 0, n = ju + jm + jd, and � = ju − jd.
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The RT Algorithm (continued)

• A simple way to calculate the P (�)s starts by notinga

(
pux+ pm + pdx

−1
)n

=

n∑
�=−n

P (�)x�.

(135)

– Convince yourself that the “accounting” is done

correctly.

• So we expand (pux+ pm + pdx
−1)n and retrieve the

probabilities by reading off the coefficients.

• It can be computed in O(n2) time, if not less.

aC. Wu (R90723065) (2003); Lyuu & C. Wu (R90723065) (2003, 2005).
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The RT Algorithm (continued)

• The updating rule (128) on p. 956 must be modified to

account for the adoption of the discrete-state model.

• The logarithmic price yt + �ηγn at date t+ 1 following

state (yt, h
2
t ) is associated with this variance:

h2
t+1 = β0 + β1h

2
t + β2h

2
t (ε

′
t+1 − c)2, (136)

– Above, the z-scorea

ε′t+1 =
�ηγn − (r − h2

t /2)

ht
, � = 0,±1,±2, . . . ,±n,

is a discrete random variable with 2n+ 1 values.

aNote that the mean of ε′t+1 is r − (h2
t /2).
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The RT Algorithm (continued)

• Different h2
t may require different η so that the

probabilities (132)–(134) on p. 967 lie between 0 and 1.

• This implies varying jump sizes ηγn.

• The necessary requirement pm ≥ 0 implies η ≥ ht/γ.

• Hence we try

η = �ht/γ �, �ht/γ �+ 1, �ht/γ �+ 2, . . .

until valid probabilities are obtained or until their

nonexistence is confirmed.
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The RT Algorithm (continued)

• The sufficient and necessary condition for valid

probabilities to exist isa

| r − (h2
t /2) |

2ηγ
√
n

≤ h2
t

2η2γ2
≤ min

(
1− | r − (h2

t/2) |
2ηγ

√
n

,
1

2

)
.

• The plot on p. 976 uses n = 1 to illustrate our points

for a 3-day model.

• For example, node (1, 1) of date 1 and node (2, 3) of

date 2 pick η = 2.

aC. Wu (R90723065) (2003); Lyuu & C. Wu (R90723065) (2003, 2005).
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y0

(1, 1)

(2, 3)

(2, 0)

(2,−1)

�
�
γn = γ1

�� 3 days
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The RT Algorithm (continued)

• The topology of the tree is not a standard combining

multinomial tree.

• For example, a few nodes on p. 976 such as nodes (2, 0)

and (2,−1) have multiple jump sizes.

• The reason is path dependency of the model.

– Two paths can reach node (2, 0) from the root node,

each with a different variance h2
t for the node.

– One variance results in η = 1.

– The other results in η = 2.
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The RT Algorithm (concluded)

• The number of possible values of h2
t at a node can be

exponential.

– Because each path may result in a different h2
t .

• To address this problem, we record only the maximum

and minimum h2
t at each node.a

• Therefore, each node on the tree contains only two

states (yt, h
2
max) and (yt, h

2
min).

• Each of (yt, h
2
max) and (yt, h

2
min) carries its own η and

set of 2n+ 1 branching probabilities.

aCakici & Topyan (2000). But see p. 1013 for a potential problem.
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Negative Aspects of the Ritchken-Trevor Algorithma

• A small n may yield inaccurate option prices.

• But the tree will grow exponentially if n is large enough.

– Specifically, n > (1− β1)/β2 when r = c = 0.

• A large n has another serious problem: The tree cannot

grow beyond a certain date.

• Thus the choice of n may be quite limited in practice.

• The RT algorithm can be modified to be free of

shortened maturity and exponential complexity.b

aLyuu & C. Wu (R90723065) (2003, 2005).
bIts size is only O(T 2) if n ≤ (

√
(1− β1)/β2 − c)2, where T is the

number of days to maturity!
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Numerical Examples

• Assume

– S0 = 100, y0 = lnS0 = 4.60517.

– r = 0.

– n = 1.

– h2
0 = 0.0001096, γ = h0 = 0.010469.

– γn = γ/
√
n = 0.010469.

– β0 = 0.000006575, β1 = 0.9, β2 = 0.04, and c = 0.
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Numerical Examples (continued)

• A daily variance of 0.0001096 corresponds to an annual

volatility of

√
365× 0.0001096 ≈ 20%.

• Let h2(i, j) denote the variance at node (i, j).

• Initially, h2(0, 0) = h2
0 = 0.0001096.
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Numerical Examples (continued)

• Let h2
max(i, j) denote the maximum variance at node

(i, j).

• Let h2
min(i, j) denote the minimum variance at node

(i, j).

• Initially, h2
max(0, 0) = h2

min(0, 0) = h2
0.

• The resulting 3-day tree is depicted on p. 983.
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Numerical Examples (continued)

• A top number inside a gray box refers to the minimum

variance h2
min for the node.

• A bottom number inside a gray box refers to the

maximum variance h2
max for the node.

• Variances are multiplied by 100,000 for readability.

• The top number inside a white box refers to the η for

h2
min.

• The bottom number inside a white box refers to the η

for h2
max.
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Numerical Examples (continued)

• Let us see how the numbers are calculated.

• Start with the root node, node (0, 0).

• Try η = 1 in Eqs. (132)–(134) on p. 967 first to obtain

pu = 0.4974,

pm = 0,

pd = 0.5026.

• As they are valid, the three branches from the root node

take single jumps.
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Numerical Examples (continued)

• Move on to node (1, 1).

• It has one predecessor node—node (0, 0)—and it takes

an up move to reach node (1, 1).

• So apply updating rule (136) on p. 973 with � = 1 and

h2
t = h2(0, 0).

• The result is h2(1, 1) = 0.000109645.
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Numerical Examples (continued)

• Because �h(1, 1)/γ � = 2, we try η = 2 in

Eqs. (132)–(134) on p. 967 first to obtain

pu = 0.1237,

pm = 0.7499,

pd = 0.1264.

• As they are valid, the three branches from node (1, 1)

take double jumps.
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Numerical Examples (continued)

• Carry out similar calculations for node (1, 0) with

� = 0 in updating rule (136) on p. 973.

• Carry out similar calculations for node (1,−1) with

� = −1 in updating rule (136).

• Single jump η = 1 works for both nodes.

• The resulting variances are

h2(1, 0) = 0.000105215,

h2(1,−1) = 0.000109553.
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Numerical Examples (continued)

• Node (2, 0) has 2 predecessor nodes, (1, 0) and (1,−1).

• Both have to be considered in deriving the variances.

• Let us start with node (1, 0).

• Because it takes a middle move to reach node (2, 0), we

apply updating rule (136) on p. 973 with � = 0 and

h2
t = h2(1, 0).

• The result is h2
t+1 = 0.000101269.
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Numerical Examples (continued)

• Now move on to the other predecessor node (1,−1).

• Because it takes an up move to reach node (2, 0), apply

updating rule (136) on p. 973 with � = 1 and

h2
t = h2(1,−1).

• The result is h2
t+1 = 0.000109603.

• We hence record

h2
min(2, 0) = 0.000101269,

h2
max(2, 0) = 0.000109603.
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Numerical Examples (continued)

• Consider state h2
max(2, 0) first.

• Because �hmax(2, 0)/γ � = 2, we first try η = 2 in

Eqs. (132)–(134) on p. 967 to obtain

pu = 0.1237,

pm = 0.7500,

pd = 0.1263.

• As they are valid, the three branches from node (2, 0)

with the maximum variance take double jumps.
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Numerical Examples (continued)

• Now consider state h2
min(2, 0).

• Because �hmin(2, 0)/γ � = 1, we first try η = 1 in

Eqs. (132)–(134) on p. 967 to obtain

pu = 0.4596,

pm = 0.0760,

pd = 0.4644.

• As they are valid, the three branches from node (2, 0)

with the minimum variance take single jumps.

c©2023 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 992



Numerical Examples (continued)

• Node (2,−1) has 3 predecessor nodes.

• Start with node (1, 1).

• Because it takes one down move to reach node (2,−1),

we apply updating rule (136) on p. 973 with � = −1

and h2
t = h2(1, 1).a

• The result is h2
t+1 = 0.0001227.

aNote that it is not � = −2. The reason is that h(1, 1) has η = 2 (p.

987).
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Numerical Examples (continued)

• Now move on to predecessor node (1, 0).

• Because it also takes a down move to reach node

(2,−1), we apply updating rule (136) on p. 973 with

� = −1 and h2
t = h2(1, 0).

• The result is h2
t+1 = 0.000105609.

c©2023 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 994



Numerical Examples (continued)

• Finally, consider predecessor node (1,−1).

• Because it takes a middle move to reach node (2,−1),

we apply updating rule (136) on p. 973 with � = 0 and

h2
t = h2(1,−1).

• The result is h2
t+1 = 0.000105173.

• We hence record

h2
min(2,−1) = 0.000105173,

h2
max(2,−1) = 0.0001227.
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Numerical Examples (continued)

• Consider state h2
max(2,−1).

• Because �hmax(2,−1)/γ � = 2, we first try η = 2 in

Eqs. (132)–(134) on p. 967 to obtain

pu = 0.1385,

pm = 0.7201,

pd = 0.1414.

• As they are valid, the three branches from node (2,−1)

with the maximum variance take double jumps.
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Numerical Examples (continued)

• Next, consider state h2
min(2,−1).

• Because �hmin(2,−1)/γ � = 1, we first try η = 1 in

Eqs. (132)–(134) on p. 967 to obtain

pu = 0.4773,

pm = 0.0404,

pd = 0.4823.

• As they are valid , the three branches from node (2,−1)

with the minimum variance take single jumps.
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Numerical Examples (concluded)

• Other nodes at dates 2 and 3 can be handled similarly.

• In general, if a node has k predecessor nodes, then up to

2k variances will be calculated using the updating rule.

– This is because each predecessor node keeps two

variance numbers.

• But only the maximum and minimum variances will be

kept.
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Negative Aspects of the RT Algorithm Revisiteda

• Recall the problems mentioned on p. 979.

• In our case, combinatorial explosion occurs when

n >
1− β1

β2
=

1− 0.9

0.04
= 2.5

(see the next plot).

• Suppose we are willing to accept the exponential

running time and pick n = 100 to seek accuracy.

• But the problem of shortened maturity forces the tree to

stop at date 9!

aLyuu & C. Wu (R90723065) (2003, 2005).
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Backward Induction on the RT Tree

• After the RT tree is constructed, it can be used to price

options by backward induction.

• Recall that each node keeps two variances h2
max and

h2
min.

• We now increase that number to K equally spaced

variances between h2
max and h2

min at each node.

• Besides the minimum and maximum variances, the other

K − 2 variances in between are linearly interpolated.a

aLog-linear interpolation works better in practice (Lyuu & C. Wu

(R90723065), 2005). Log-cubic interpolation works even better (C. Liu

(R92922123), 2005).
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Backward Induction on the RT Tree (continued)

• For example, if K = 3, then a variance of

10.5436× 10−6

will be added between the maximum and minimum

variances at node (2, 0) on p. 983.a

• In general, the kth variance at node (i, j) is

h2
min(i, j)+k

h2
max(i, j)− h2

min(i, j)

K − 1
, k = 0, 1, . . . , K−1.

• Each interpolated variance’s jump parameter and

branching probabilities can be computed as before.

aRepeated on p. 1003.
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Backward Induction on the RT Tree (concluded)

• Suppose a variance falls between two of the K variances

during backward induction.

• Linear interpolation of the option prices corresponding

to the two bracketing variances will be used as the

approximate option price.

• The above idea is reminiscent of the one in dealing with

Asian options.a

aRecall p. 454.
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Numerical Examples

• We next use the tree on p. 1003 to price a European call

option with a strike price of 100 and expiring at date 3.

• Recall that the riskless interest rate is zero.

• Assume K = 2; hence there are no interpolated

variances.

• The pricing tree is shown on p. 1006 with a call price of

0.66346.

– The branching probabilities needed in backward

induction can be found on p. 1007.
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Numerical Examples (continued)

• Let us derive some of the numbers on p. 1006.

• A gray line means the updated variance falls strictly

between h2
max and h2

min.

• The option price for a terminal node at date 3 equals

max(S3 − 100, 0), independent of the variance level.

• Now move on to nodes at date 2.

• The option price at node (2, 3) depends on those at

nodes (3, 5), (3, 3), and (3, 1).

• It therefore equals

0.1387× 5.37392 + 0.7197 × 3.19054 + 0.1416× 1.05240 = 3.19054.
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Numerical Examples (continued)

• Option prices for other nodes at date 2 can be computed

similarly.

• For node (1, 1), the option price for both variances is

0.1237× 3.19054 + 0.7499 × 1.05240 + 0.1264× 0.14573 = 1.20241.

• Node (1, 0) is most interesting.

• We knew that a down move from it gives a variance of

0.000105609.

• This number falls between the minimum variance

0.000105173 and the maximum variance 0.0001227 at

node (2,−1) on p. 1003.
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Numerical Examples (continued)

• The option price corresponding to the minimum

variance is 0 (p. 1006).

• The option price corresponding to the maximum

variance is 0.14573.

• The equation

x× 0.000105173 + (1− x)× 0.0001227 = 0.000105609

is satisfied by x = 0.9751.

• So the option for the down state is approximated by

x× 0 + (1− x)× 0.14573 = 0.00362.
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Numerical Examples (continued)

• The up move leads to the state with option price

1.05240.

• The middle move leads to the state with option price

0.48366.

• The option price at node (1, 0) is finally calculated as

0.4775× 1.05240 + 0.0400 × 0.48366 + 0.4825× 0.00362 = 0.52360.
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Numerical Examples (continued)

• A variance following an interpolated variance may

exceed the maximum variance or be lower than the

minimum variance.

• When this happens, the option price corresponding to

the maximum or minimum variance will be used during

backward induction.a

• This act tends to reduce the dynamic range of the

variance, however.

aCakici & Topyan (2000).
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Numerical Examples (concluded)

• Worse, an interpolated variance may choose a branch

that goes into a node that is not reached in forward

induction.a

• In this case, the algorithm fails.

• The RT algorithm does not have this problem.

– This is because all interpolated variances are involved

in the forward-induction phase.

• It may be hard to calculate the implied β1 and β2 from

option prices.b

aLyuu & C. Wu (R90723065) (2005).
bY. Chang (B89704039, R93922034) (2006).
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Complexities of GARCH Modelsa

• The RT algorithm explodes exponentially even for

moderate n.b

• The mean-tracking tree of Lyuu and Wu (2005)

guarantees explosion not to happen for n not too large.

– That tree is similar to, but earlier than, the

binomial-trinomial tree.c

– In fact, we can use the binomial-trinomial tree here,

and everything goes through.d

aLyuu & C. Wu (R90723065) (2003, 2005).
bRecall p. 979.
cRecall pp. 764ff.
dContributed by Mr. Lu, Zheng-Liang (D00922011) on August 12,

2021.
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Complexities of GARCH Models (continued)

• The next page summarizes the situations for many

GARCH option pricing models other than NGARCH.
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Complexities of GARCH Models (concluded)a

Model Explosion Non-explosion

NGARCH β1 + β2n > 1 β1 + β2(
√
n+ λ+ c)2 ≤ 1

LGARCH β1 + β2n > 1 β1 + β2(
√
n+ λ)2 ≤ 1

AGARCH β1 + β2n > 1 β1 + β2(
√
n+ λ)2 ≤ 1

GJR-GARCH β1 + β2n > 1 β1 + (β2 + β3)(
√
n+ λ)2 ≤ 1

TS-GARCH β1 + β2
√
n > 1 β1 + β2(λ+

√
n) ≤ 1

TGARCH β1 + β2
√
n > 1 β1 + (β2 + β3)(λ+

√
n) ≤ 1

Heston-Nandi β1 + β2(c− 1
2
)2 > 1 β1 + β2c2 ≤ 1

& c ≤ 1
2

VGARCH β1 + (β2/4) > 1 β1 ≤ 1

aY. C. Chen (R95723051) (2008); Y. C. Chen (R95723051), Lyuu, &

Wen (D94922003) (2012).
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Obtaining Profit and Loss of Delta Hedge

• Profit and loss of any hedging strategy should be

calculated under the real-world probability measure.a

• But hedging parameters such as delta should be

computed under the risk-neutral measure.

• Say we want the distribution of profit and loss for the

delta hedge under the GARCH model.

• If a tree is built for each sampled stock price to obtain

the delta, the complexity will be astronomical.b

• How to do it efficiently?c

aRecall p. 713.
bAugustyniak, Badescu, & Guo (2021).
cLu (D00922011), Lyuu, & Yang (D09922005) (2021).
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