Numerical Methods

All science is dominated by the idea of approximation. — Bertrand Russell

Finite-Difference Methods

- Place a grid of points on the space over which the desired function takes value.
- Then approximate the function value at each of these points (p. 836).
- Solve the equation numerically by introducing difference equations in place of derivatives.

Example: Poisson's Equation

- It is $\partial^2 \theta / \partial x^2 + \partial^2 \theta / \partial y^2 = -\rho(x, y)$, which describes the electrostatic field.
- Replace second derivatives with finite differences through central difference.
- Introduce evenly spaced grid points with distance of Δx along the x axis and Δy along the y axis.
- The finite-difference form is

$$-\rho(x_i, y_j) = \frac{\theta(x_{i+1}, y_j) - 2\theta(x_i, y_j) + \theta(x_{i-1}, y_j)}{(\Delta x)^2} + \frac{\theta(x_i, y_{j+1}) - 2\theta(x_i, y_j) + \theta(x_i, y_{j-1})}{(\Delta y)^2}.$$

Example: Poisson's Equation (concluded)

- In the above, $\Delta x \stackrel{\Delta}{=} x_i x_{i-1}$ and $\Delta y \stackrel{\Delta}{=} y_j y_{j-1}$ for $i, j = 1, 2, \dots$
- When the grid points are evenly spaced in both axes so that $\Delta x = \Delta y = h$, the difference equation becomes

$$-h^{2}\rho(x_{i}, y_{j}) = \theta(x_{i+1}, y_{j}) + \theta(x_{i-1}, y_{j}) + \theta(x_{i}, y_{j+1}) + \theta(x_{i}, y_{j-1}) - 4\theta(x_{i}, y_{j}).$$

- Given boundary values, we can solve for the x_i s and the y_j s within the square $[\pm L, \pm L]$.
- From now on, $\theta_{i,j}$ will denote the finite-difference approximation to the exact $\theta(x_i, y_j)$.

Explicit Methods

- Consider the diffusion equation^a $D(\partial^2 \theta / \partial x^2) - (\partial \theta / \partial t) = 0, D > 0.$
- Use evenly spaced grid points (x_i, t_j) with distances Δx and Δt , where $\Delta x \stackrel{\Delta}{=} x_{i+1} x_i$ and $\Delta t \stackrel{\Delta}{=} t_{j+1} t_j$.
- Employ central difference for the second derivative and forward difference for the time derivative to obtain

$$\frac{\partial \theta(x,t)}{\partial t}\Big|_{t=t_j} = \frac{\theta(x, \overline{t_{j+1}}) - \theta(x, \overline{t_j})}{\Delta t} + \cdots, \qquad (119)$$

$$\frac{\partial^2 \theta(x,t)}{\partial x^2}\Big|_{x=x_i} = \frac{\theta(x_{i+1},t) - 2\theta(x_i,t) + \theta(x_{i-1},t)}{(\Delta x)^2} + \cdot (120)$$

^aIt is a parabolic partial differential equation.

Explicit Methods (continued)

- Next, assemble Eqs. (119) and (120) into a single equation at (x_i, t_j) .
- But we need to decide how to evaluate x in the first equation and t in the second.
- Since central difference around x_i is used in Eq. (120), we might as well use x_i for x in Eq. (119).
- Two choices are possible for t in Eq. (120).
- The first choice uses $t = t_j$ to yield the following finite-difference equation,

$$\frac{\theta_{i,j+1} - \theta_{i,j}}{\Delta t} = D \frac{\theta_{i+1,j} - 2\theta_{i,j} + \theta_{i-1,j}}{(\Delta x)^2}.$$
(121)

Explicit Methods (continued)

- The stencil of grid points involves four values, $\theta_{i,j+1}$, $\theta_{i,j}$, $\theta_{i+1,j}$, and $\theta_{i-1,j}$.
- Rearrange Eq. (121) on p. 840 as

$$\theta_{i,j+1} = \frac{D\Delta t}{(\Delta x)^2} \,\theta_{i+1,j} + \left(1 - \frac{2D\Delta t}{(\Delta x)^2}\right) \theta_{i,j} + \frac{D\Delta t}{(\Delta x)^2} \,\theta_{i-1,j}. \tag{122}$$

• We can calculate $\theta_{i,j+1}$ from $\theta_{i,j}, \theta_{i+1,j}, \theta_{i-1,j}$, at the previous time t_j (see exhibit (a) on next page).

Explicit Methods (concluded)

• Starting from the initial conditions at t_0 , that is, $\theta_{i,0} = \theta(x_i, t_0), i = 1, 2, \dots$, we calculate

$$\theta_{i,1}, \quad i=1,2,\ldots$$

• And then

$$\theta_{i,2}, \quad i=1,2,\ldots$$

• And so on.

Stability

• The explicit method is numerically unstable unless

 $\Delta t \le (\Delta x)^2 / (2D).$

- A numerical method is unstable if the solution is highly sensitive to changes in initial conditions.
- The stability condition may lead to high running times and memory requirements.
- For instance, halving Δx would imply quadrupling $(\Delta t)^{-1}$, resulting in a running time 8 times as much.

Explicit Method and Trinomial Tree

• Recall Eq. (122) on p. 841:

$$\theta_{i,j+1} = \frac{D\Delta t}{(\Delta x)^2} \,\theta_{i+1,j} + \left(1 - \frac{2D\Delta t}{(\Delta x)^2}\right) \theta_{i,j} + \frac{D\Delta t}{(\Delta x)^2} \,\theta_{i-1,j}.$$

- When the stability condition is satisfied, the three coefficients for $\theta_{i+1,j}$, $\theta_{i,j}$, and $\theta_{i-1,j}$ all lie between zero and one and sum to one.
- They can be interpreted as probabilities.
- So the finite-difference equation becomes identical to backward induction on trinomial trees!

Explicit Method and Trinomial Tree (concluded)

- The freedom in choosing Δx corresponds to similar freedom in the construction of trinomial trees.
- The explicit finite-difference equation is also identical to backward induction on a binomial tree.^a
 - Let the binomial tree take 2 steps each of length $\Delta t/2.$
 - It is now a trinomial tree.

^aHilliard (2014).

Implicit Methods

- Suppose we use $t = t_{j+1}$ in Eq. (120) on p. 839 instead.
- The finite-difference equation becomes

$$\frac{\theta_{i,j+1} - \theta_{i,j}}{\Delta t} = D \, \frac{\theta_{i+1,j+1} - 2\theta_{i,j+1} + \theta_{i-1,j+1}}{(\Delta x)^2}.$$
(123)

- The stencil involves $\theta_{i,j}$, $\theta_{i,j+1}$, $\theta_{i+1,j+1}$, and $\theta_{i-1,j+1}$.
- This method is now implicit:
 - The value of any one of the three quantities at t_{j+1} cannot be calculated unless the other two are known.
 - See exhibit (b) on p. 842.

Implicit Methods (continued)

• Equation (123) can be rearranged as

$$\theta_{i-1,j+1} - (2+\gamma) \theta_{i,j+1} + \theta_{i+1,j+1} = -\gamma \theta_{i,j},$$

where $\gamma \stackrel{\Delta}{=} (\Delta x)^2 / (D\Delta t)$.

- This equation is unconditionally stable.
- Suppose the boundary conditions are given at $x = x_0$ and $x = x_{N+1}$.
- After $\theta_{i,j}$ has been calculated for i = 1, 2, ..., N, the values of $\theta_{i,j+1}$ at time t_{j+1} can be computed as the solution to the following tridiagonal linear system,

Implicit Methods (concluded)

• Tridiagonal systems can be solved in O(N) time and O(N) space.

- Never invert a matrix to solve a tridiagonal system.

- The matrix above is nonsingular when $\gamma \geq 0$.
 - A square matrix is nonsingular if its inverse exists.

Crank-Nicolson Method

• Take the average of explicit method (121) on p. 840 and implicit method (123) on p. 847:

$$= \frac{\frac{\theta_{i,j+1} - \theta_{i,j}}{\Delta t}}{\left(D \frac{\theta_{i+1,j} - 2\theta_{i,j} + \theta_{i-1,j}}{(\Delta x)^2} + D \frac{\theta_{i+1,j+1} - 2\theta_{i,j+1} + \theta_{i-1,j+1}}{(\Delta x)^2}\right)$$

• After rearrangement,

$$\gamma \theta_{i,j+1} - \frac{\theta_{i+1,j+1} - 2\theta_{i,j+1} + \theta_{i-1,j+1}}{2} = \gamma \theta_{i,j} + \frac{\theta_{i+1,j} - 2\theta_{i,j} + \theta_{i-1,j}}{2}.$$

• This is an unconditionally stable implicit method with excellent rates of convergence.

Numerically Solving the Black-Scholes PDE (94) on p. 687

- See text.
- Brennan and Schwartz (1978) analyze the stability of the implicit method.

Monte Carlo Simulation $^{\rm a}$

- Monte Carlo simulation is a sampling scheme.
- In many important applications within finance and without, Monte Carlo is one of the few feasible tools.
- When the time evolution of a stochastic process is not easy to describe analytically, Monte Carlo may very well be the only strategy that succeeds consistently.

^aA top 10 algorithm (Dongarra & Sullivan, 2000).

The Big Idea

- Assume X_1, X_2, \ldots, X_n have a joint distribution.
- $\theta \stackrel{\Delta}{=} E[g(X_1, X_2, \dots, X_n)]$ for some function g is desired.
- We generate

$$\left(x_1^{(i)}, x_2^{(i)}, \dots, x_n^{(i)}\right), \quad 1 \le i \le N$$

independently with the same joint distribution as (X_1, X_2, \ldots, X_n) .

• Output $\overline{Y} \stackrel{\Delta}{=} (1/N) \sum_{i=1}^{N} Y_i$, where $Y_i \stackrel{\Delta}{=} g\left(x_1^{(i)}, x_2^{(i)}, \dots, x_n^{(i)}\right)$.

The Big Idea (concluded)

- Y_1, Y_2, \ldots, Y_N are independent and identically distributed random variables.
- Each Y_i has the same distribution as

$$Y \stackrel{\Delta}{=} g(X_1, X_2, \dots, X_n).$$

- Since the average of these N random variables, \overline{Y} , satisfies $E[\overline{Y}] = \theta$, it can be used to estimate θ .
- The strong law of large numbers says that this procedure converges almost surely.
- The number of replications (or independent trials), N, is called the sample size.

Accuracy

- The Monte Carlo estimate and true value may differ owing to two reasons:
 - 1. Sampling variation.
 - 2. The discreteness of the sample paths.^a
- The first can be controlled by the number of replications.
- The second can be controlled by the number of observations along the sample path.

^aThis may not be an issue if the financial derivative only requires discrete sampling along time, such as the *discrete* barrier option.

Accuracy and Number of Replications

- The statistical error of the sample mean \overline{Y} of the random variable Y grows as $1/\sqrt{N}$.
 - Because $\operatorname{Var}[\overline{Y}] = \operatorname{Var}[Y]/N$.
- In fact, this convergence rate is asymptotically optimal.^a
- So the variance of the estimator \overline{Y} can be reduced by a factor of 1/N by doing N times as much work.
- This is amazing because the same order of convergence holds independently of the dimension n.

^aThe Berry-Esseen theorem.

Accuracy and Number of Replications (concluded)

- In contrast, classic numerical integration schemes have an error bound of $O(N^{-c/n})$ for some constant c > 0.
- The required number of evaluations thus grows exponentially in n to achieve a given level of accuracy.
 The curse of dimensionality.
- The Monte Carlo method is more efficient than alternative procedures for multivariate derivatives for *n* large.

Monte Carlo Option Pricing

- For the pricing of European options on a dividend-paying stock, we may proceed as follows.
- Assume

$$\frac{dS}{S} = \mu \, dt + \sigma \, dW.$$

• Stock prices S_1, S_2, S_3, \ldots at times $\Delta t, 2\Delta t, 3\Delta t, \ldots$ can be generated via

$$S_{i+1} = S_i e^{(\mu - \sigma^2/2) \Delta t + \sigma \sqrt{\Delta t} \xi}, \quad \xi \sim N(0, 1), \quad (124)$$

by Eq. (87) on p. 621.

Monte Carlo Option Pricing (continued)

• If we discretize $dS/S = \mu dt + \sigma dW$ directly, we will obtain

$$S_{i+1} = S_i + S_i \mu \,\Delta t + S_i \sigma \sqrt{\Delta t} \,\xi.$$

- But this is locally normally distributed, not lognormally, hence biased.^a
- Negative stock prices are also possible.^b
- In practice, this is not expected to be a major problem as long as Δt is sufficiently small.

 ^aContributed by Mr. Tai, Hui-Chin (R97723028) on April 22, 2009. ^bContributed by Mr. Chen, Yu-Hsing (B06901048, R11922045) on May 5, 2023.

Monte Carlo Option Pricing (continued)

Non-dividend-paying stock prices in a risk-neutral economy can be generated by setting $\mu = r$ and $\Delta t = T$.^a

1: C := 0; {Accumulated terminal option value.} 2: for i = 1, 2, 3, ..., N do 3: $P := S \times e^{(r - \sigma^2/2)T + \sigma\sqrt{T} \xi}, \xi \sim N(0, 1);$ 4: $C := C + \max(P - X, 0);$ 5: end for 6: return $Ce^{-rT}/N;$

^aIt is sometimes called a one-shot simulation (Brigo & Mercurio, 2006).

Monte Carlo Option Pricing (concluded)

Pricing Asian options is also easy.

1:
$$C := 0;$$

2: for $i = 1, 2, 3, ..., N$ do
3: $P := S; M := S;$
4: for $j = 1, 2, 3, ..., n$ do
5: $P := P \times e^{(r - \sigma^2/2)(T/n) + \sigma \sqrt{T/n} \xi};$
6: $M := M + P;$
7: end for
8: $C := C + \max(M/(n+1) - X, 0);$
9: end for
10: return $Ce^{-rT}/N;$

How about American Options?

- Standard Monte Carlo simulation is inappropriate for American options because of early exercise.
 - Given a sample path S_0, S_1, \ldots, S_n , how to decide which S_i is an early-exercise point?
 - What is the option price at each S_i if the option is not exercised?
- It is difficult to determine the early-exercise point based on one single path.^a
- But Monte Carlo simulation can be modified to price American options with small biases.^b

^aUnless, of course, the exercise boundary is given (recall pp. 403ff). Contributed by Mr. Chen, Tung-Li (D09922014) on May 5, 2023. ^bLongstaff & Schwartz (2001). See pp. 927ff.

Obtaining Profit and Loss of Delta $\mathsf{Hedge}^{\mathrm{a}}$

- Profit and loss of delta hedge should be calculated under the real-world probability measure.^b
- So stock prices should be sampled from

$$\frac{dS}{S} = \mu \, dt + \sigma \, dW.$$

• Suppose backward induction on a tree under the risk-neutral measure is performed for the delta.^c

^aContributed by Mr. Lu, Zheng-Liang (D00922011) on August 12, 2021.

^bRecall p. 713.

^cBecause, say, no closed-form formulas are available for the delta.

Obtaining Profit and Loss of Delta Hedge (concluded)

- Note that one needs a delta per stock price.
- So Nn trees are needed for the distribution of the profit and loss from N paths with n + 1 stock prices per path.
- These are a lot of trees!
- How to do it efficiently to generate plots like that on p. 656?

Delta and Common Random Numbers

• In estimating delta, it is natural to start with the finite-difference estimate

$$e^{-r\tau} \frac{E[P(S+\epsilon)] - E[P(S-\epsilon)]}{2\epsilon}$$

- -P(x) is the terminal payoff of the derivative security when the underlying asset's initial price equals x.
- Use simulation to estimate $E[P(S + \epsilon)]$ first.
- Use another simulation to estimate $E[P(S \epsilon)]$.
- Finally, apply the formula to approximate the delta.
- This is also called the bump-and-revalue method.

Delta and Common Random Numbers (concluded)

- This method is not recommended because of its high variance.
- A much better approach is to use common random numbers to lower the variance:

$$e^{-r\tau} E\left[\frac{P(S+\epsilon) - P(S-\epsilon)}{2\epsilon}\right]$$

- Here, the same random numbers are used for $P(S + \epsilon)$ and $P(S - \epsilon)$.
- This holds for gamma and cross gamma.^a

^aFor multivariate derivatives.

Problems with the Bump-and-Revalue Method (concluded)

• The price of the binary option equals

$$e^{-r\tau}N(x-\sigma\sqrt{\tau}).$$

- It equals minus the derivative of the European call with respect to X.
- It also equals $X\tau$ times the rho of a European call (p. 364).
- Its delta is

$$\frac{N'\left(x-\sigma\sqrt{\tau}\right)}{S\sigma\sqrt{\tau}}.$$

Gamma

• The finite-difference formula for gamma is

$$e^{-r\tau} E\left[\frac{P(S+\epsilon) - 2 \times P(S) + P(S-\epsilon)}{\epsilon^2}\right]$$

• For a correlation option with multiple underlying assets, the finite-difference formula for the cross gamma $\partial^2 P(S_1, S_2, \dots)/(\partial S_1 \partial S_2)$ is:

$$e^{-r\tau} E\left[\frac{P(S_1+\epsilon_1, S_2+\epsilon_2) - P(S_1-\epsilon_1, S_2+\epsilon_2)}{4\epsilon_1\epsilon_2} - P(S_1+\epsilon_1, S_2-\epsilon_2) + P(S_1-\epsilon_1, S_2-\epsilon_2)\right].$$

- Choosing an ϵ of the right magnitude can be challenging.
 - If ϵ is too large, inaccurate Greeks result.
 - If ϵ is too small, unstable Greeks result.
- This phenomenon is sometimes called the curse of differentiation.^a

^aAït-Sahalia & Lo (1998); Bondarenko (2003).

• In general, suppose (in some sense)

$$\frac{\partial^{i}}{\partial\theta^{i}}e^{-r\tau}E[P(S)] = e^{-r\tau}E\left[\frac{\partial^{i}P(S)}{\partial\theta^{i}}\right]$$

holds for all i > 0, where θ is a parameter of interest.^a

– A common requirement is Lipschitz continuity.^b

- Then Greeks become integrals.
- As a result, we avoid ϵ , finite differences, and resimulation.

^aThe $\partial^i P(S)/\partial \theta^i$ within $E[\cdot]$ may not be partial differentiation in the classic sense.

^bBroadie & Glasserman (1996).

- This is indeed possible for a broad class of payoff functions.^a
 - Roughly speaking, any payoff function that is equal to a sum of products of differentiable functions and indicator functions with the right kind of support.
 - For example, the payoff of a call is

 $\max(S(T) - X, 0) = (S(T) - X)I_{\{S(T) - X \ge 0\}}.$

The results are too technical to cover here (see next page).

^aTeng (**R91723054**) (2004); Lyuu & Teng (**R91723054**) (2011).

- Suppose $h(\theta, x) \in \mathcal{H}$ with pdf f(x) for x and $g_j(\theta, x) \in \mathcal{G}$ for $j \in \mathcal{B}$, a finite set of natural numbers.
- Then

$$\begin{split} & \frac{\partial}{\partial \theta} \int_{\Re} h(\theta, x) \prod_{j \in \mathcal{B}} \mathbf{1}_{\{g_{j}(\theta, x) > 0\}}(x) f(x) dx \\ = & \int_{\Re} h_{\theta}(\theta, x) \prod_{j \in \mathcal{B}} \mathbf{1}_{\{g_{j}(\theta, x) > 0\}}(x) f(x) dx \\ & + \sum_{l \in \mathcal{B}} \left[h(\theta, x) J_{l}(\theta, x) \prod_{j \in \mathcal{B} \setminus l} \mathbf{1}_{\{g_{j}(\theta, x) > 0\}}(x) f(x) \right]_{x = \chi_{l}(\theta)}, \end{split}$$

where

$$J_l(\theta, x) = \operatorname{sign}\left(\frac{\partial g_l(\theta, x)}{\partial x_k}\right) \frac{\partial g_l(\theta, x) / \partial \theta}{\partial g_l(\theta, x) / \partial x} \text{ for } l \in \mathcal{B}.$$

Gamma (concluded)

- Similar results have been derived for Levy processes.^a
- Formulas are also available for credit derivatives.^b
- In queueing networks, this is called infinitesimal perturbation analysis (IPA).^c

^aLyuu, Teng (**R91723054**), & S. Wang (2013). ^bLyuu, Teng (**R91723054**), Tseng, & S. Wang (2014, 2019). ^cCao (1985); Y. C. Ho & Cao (1985).

Biases in Pricing Continuously Monitored Options with Monte Carlo

- We are asked to price a continuously monitored up-and-out call with barrier *H*.
- The Monte Carlo method samples the stock price at n discrete time points t_1, t_2, \ldots, t_n .
- A sample path

$$S(t_0), S(t_1), \ldots, S(t_n)$$

is produced.

- Here, $t_0 = 0$ is the current time, and $t_n = T$ is the expiration time of the option.

Biases in Pricing Continuously Monitored Options with Monte Carlo (continued)

- If all of the sampled prices are below the barrier, this sample path pays $\max(S(t_n) X, 0)$.
- Repeat these steps and average the payoffs for a Monte Carlo estimate.

1:
$$C := 0;$$

2: for $i = 1, 2, 3, ..., N$ do
3: $P := S;$ hit $:= 0;$
4: for $j = 1, 2, 3, ..., n$ do
5: $P := P \times e^{(r - \sigma^2/2) (T/n) + \sigma \sqrt{(T/n)} \xi};$ {By Eq. (124) on p.
860.}
6: if $P \ge H$ then
7: hit $:= 1;$
8: break;
9: end if
10: end for
11: if hit = 0 then
12: $C := C + \max(P - X, 0);$
13: end if
14: end for
15: return $Ce^{-rT}/N;$

Biases in Pricing Continuously Monitored Options with Monte Carlo (continued)

- This estimate is biased.^a
 - Suppose none of the sampled prices on a sample path equals or exceeds the barrier H.
 - It remains possible for the continuous sample path that passes through them to hit the barrier *between* sampled time points (see plot on next page).
 - Hence the knock-out probability is underestimated.

^aShevchenko (2003).

Biases in Pricing Continuously Monitored Options with Monte Carlo (concluded)

- The bias can be lowered by increasing the number of observations along the sample path.
 - For trees, the knock-out probability may *decrease* as the number of time steps is increased.
- However, even daily sampling may not suffice.
- The computational cost also rises as a result.

Brownian Bridge Approach to Pricing Barrier Options

- We desire an unbiased estimate which can be calculated efficiently.
- The above-mentioned payoff should be multiplied by the probability *p* that a *continuous* sample path does *not* hit the barrier conditional on the sampled prices.

- Formally,

 $p \stackrel{\Delta}{=} \operatorname{Prob}[S(t) < H, 0 \le t \le T \mid S(t_0), S(t_1), \dots, S(t_n)].$

• This methodology is called the Brownian bridge approach.

• As a barrier is not hit over a time interval if and only if the maximum stock price over that period is at most H,

$$p = \operatorname{Prob}\left[\max_{0 \le t \le T} S(t) < H \,|\, S(t_0), S(t_1), \dots, S(t_n)\right].$$

• Luckily, the conditional distribution of the maximum over a time interval given the beginning and ending stock prices is known.

Lemma 22 Assume S follows $dS/S = \mu dt + \sigma dW$ and define^a $\zeta(x) \stackrel{\Delta}{=} \exp\left[-\frac{2\ln(x/S(t))\ln(x/S(t+\Delta t)))}{\sigma^2 \Delta t}\right].$ (1) If $H > \max(S(t), S(t + \Delta t))$, then $\operatorname{Prob}\left[\max_{t < u < t + \Delta t} S(u) < H \mid S(t), S(t + \Delta t)\right] = 1 - \zeta(H).$ (2) If $h < \min(S(t), S(t + \Delta t))$, then $\operatorname{Prob}\left[\min_{t < u < t + \Delta t} S(u) > h \mid S(t), S(t + \Delta t)\right] = 1 - \zeta(h).$ ^aHere, Δt is an arbitrary positive real number.

- Lemma 22 gives the probability that the barrier is not hit in a time interval, given the starting and ending stock prices.
- For our up-and-out^a call, choose n = 1.
- As a result,

$$p = \begin{cases} 1 - \exp\left[-\frac{2\ln(H/S(0))\ln(H/S(T))}{\sigma^2 T}\right], & \text{if } H > \max(S(0), S(T)), \\ 0, & \text{otherwise.} \end{cases}$$

^aSo S(0) < H by definition.

The following algorithm works for up-and-out *and* down-and-out calls.

1:
$$C := 0;$$

2: for $i = 1, 2, 3, ..., N$ do
3: $P := S \times e^{(r-q-\sigma^2/2)T+\sigma\sqrt{T}\xi()};$
4: if $(S < H \text{ and } P < H)$ or $(S > H \text{ and } P > H)$ then
5: $C := C + \max(P - X, 0) \times \left\{1 - \exp\left[-\frac{2\ln(H/S) \times \ln(H/P)}{\sigma^2 T}\right]\right\};$
6: end if
7: end for
8: return $Ce^{-rT}/N;$

- The idea can be generalized.
- For example, we can handle more complex barrier options.
- Consider an up-and-out call with barrier H_i for the time interval $(t_i, t_{i+1}], 0 \le i < m$.
- This option contains m barriers.
- Multiply the probabilities for the *m* time intervals to obtain the desired probability adjustment term.

Pricing Barrier Options without Brownian Bridge

- Let T_h denote the amount of time for a process X_t to hit
 h for the *first* time.
- It is called the first passage time or the first hitting time.
- Suppose X_t is a (μ, σ) Brownian motion:

$$dX_t = \mu \, dt + \sigma \, dW_t, \quad t \ge 0.$$

Pricing Barrier Options without Brownian Bridge (continued)

• The first passage time T_h follows the inverse Gaussian (IG) distribution with probability density function:^a

$$\frac{|h - X(0)|}{\sigma t^{3/2}\sqrt{2\pi}} e^{-(h - X(0) - \mu x)^2/(2\sigma^2 x)}.$$

• For pricing a barrier option with barrier H by simulation, the density function becomes

$$\frac{|\ln(H/S(0))|}{\sigma t^{3/2}\sqrt{2\pi}} e^{-\left[\ln(H/S(0)) - (r - \sigma^2/2)x\right]^2/(2\sigma^2 x)}$$

^aA. N. Borodin & Salminen (1996), with Laplace transform $E[e^{-\lambda T_h}] = e^{-|h-X(0)|\sqrt{2\lambda}}, \lambda > 0.$

Pricing Barrier Options without Brownian Bridge (concluded)

- Draw an x from this distribution.^a
- If x > T, a knock-in option fails to knock in, whereas a knock-out option does not knock out.
- If $x \leq T$, the opposite is true.
- If the barrier option survives at maturity T, then draw an S(T) to calculate its payoff.
- Repeat the above process and average the discounted payoff.

 $^{^{\}rm a}{\rm The}$ IG distribution can be very efficiently sampled (Michael, Schucany, & Haas, 1976).

Brownian Bridge Approach to Pricing Lookback $$\operatorname{\mathsf{Options}^a}$$

• By Lemma 22(1) (p. 885),

$$F_{\max}(y) \stackrel{\Delta}{=} \operatorname{Prob}\left[\max_{0 \le t \le T} S(t) < y \,|\, S(0), S(T)\right]$$
$$= 1 - \exp\left[-\frac{2\ln(y/S(0))\ln(y/S(T))}{\sigma^2 T}\right]$$

• So F_{max} is the conditional distribution function of the maximum stock price.

^aEl Babsiri & Noel (1998).

Brownian Bridge Approach to Pricing Lookback Options (continued)

- A random variable with that distribution can be generated by $F_{\max}^{-1}(x)$, where x is uniformly distributed over (0, 1).^a
- Note that

$$x = 1 - \exp\left[-\frac{2\ln(y/S(0))\ln(y/S(T))}{\sigma^2 T}\right]$$

^aThis is called the inverse-transform technique (see p. 259 of the textbook).

Brownian Bridge Approach to Pricing Lookback Options (continued)

• Equivalently,

$$\ln(1-x) = -\frac{2\ln(y/S(0))\ln(y/S(T))}{\sigma^2 T}$$

$$= -\frac{2}{\sigma^2 T} \{ \left[\ln(y) - \ln S(0) \right] \left[\ln(y) - \ln S(T) \right] \}.$$

Brownian Bridge Approach to Pricing Lookback Options (continued)

- There are two solutions for $\ln y$.
- But only one is consistent with $y \ge \max(S(0), S(T))$:

$$= \frac{\ln y}{\ln(S(0) S(T)) + \sqrt{\left(\ln \frac{S(T)}{S(0)}\right)^2 - 2\sigma^2 T \ln(1-x)}}{2}$$

Brownian Bridge Approach to Pricing Lookback Options (concluded)

The following algorithm works for the lookback put on the maximum.

1:
$$C := 0;$$

2: for $i = 1, 2, 3, ..., N$ do
3: $P := S \times e^{(r-q-\sigma^2/2)T+\sigma\sqrt{T} \xi()}; \{By Eq. (124) \text{ on p. 860.}\}$
4: $Y := \exp\left[\frac{\ln(SP) + \sqrt{(\ln \frac{P}{S})^2 - 2\sigma^2 T \ln[1-U(0,1)]}}{2}\right];$
5: $C := C + (Y - P);$
6: end for
7: return $Ce^{-rT}/N;$

Variance Reduction

- The *statistical* efficiency of Monte Carlo simulation can be measured by the variance of its output.
- If this variance can be lowered without changing the expected value, fewer replications are needed.
- Methods that work in this manner are called variance-reduction techniques.
- Such techniques become practical when the added costs are outweighed by the reduction in sampling.

Variance Reduction: Antithetic Variates

- We want to estimate $E[g(X_1, X_2, \ldots, X_n)].$
- Let Y_1 and Y_2 be random variables with the same distribution as $g(X_1, X_2, \ldots, X_n)$.
- Then

$$\operatorname{Var}\left[\frac{Y_1 + Y_2}{2}\right] = \frac{\operatorname{Var}[Y_1]}{2} + \frac{\operatorname{Cov}[Y_1, Y_2]}{2}$$

- $\operatorname{Var}[Y_1]/2$ is the variance of the Monte Carlo method with two *independent* replications.

• The variance $\operatorname{Var}[(Y_1 + Y_2)/2]$ is smaller than $\operatorname{Var}[Y_1]/2$ when Y_1 and Y_2 are *negatively* correlated.

Variance Reduction: Antithetic Variates (continued)

- For each simulated sample path X, a second one is obtained by *reusing* the first path's random numbers.
- This yields a second sample path Y.
- Two estimates are then obtained: One based on X and the other on Y.
- If N independent sample paths are generated, the antithetic-variates estimator averages over 2N estimates.

Variance Reduction: Antithetic Variates (continued)

- Consider process $dX = a_t dt + b_t \sqrt{dt} \xi$.
- Let g be a function of n samples X_1, X_2, \ldots, X_n on the sample path.
- Suppose one simulation run has realizations
 ξ₁, ξ₂,..., ξ_n for the normally distributed fluctuation term ξ.
- This generates samples x_1, x_2, \ldots, x_n .
- The first estimate is then $g(\boldsymbol{x})$, where $\boldsymbol{x} \stackrel{\Delta}{=} (x_1, x_2 \dots, x_n).$

Variance Reduction: Antithetic Variates (concluded)

- The antithetic-variates method does not sample n more numbers from ξ for the second estimate $g(\mathbf{x}')$.
- Instead, generate the sample path $\mathbf{x}' \stackrel{\Delta}{=} (x'_1, x'_2 \dots, x'_n)$ from $-\xi_1, -\xi_2, \dots, -\xi_n$.
- Compute $g(\boldsymbol{x}')$.
- Output (g(x) + g(x'))/2.
- Repeat the above steps.

Variance Reduction: Conditioning

- We are interested in estimating E[X].
- Suppose here is a random variable Z such that E[X | Z = z] can be efficiently and precisely computed.
- E[X] = E[E[X | Z]] by the law of iterated conditional expectations.
- Hence the random variable E[X | Z] is also an unbiased estimator of E[X].

Variance Reduction: Conditioning (concluded)

• As

$\operatorname{Var}[E[X | Z]] \leq \operatorname{Var}[X],$

 $E[X \mid Z]$ has a smaller variance than observing X directly.

- First, obtain a random observation z on Z.
- Then calculate E[X | Z = z] as our estimate.
 - There is no need to resort to simulation in computing E[X | Z = z].
- The procedure is repeated to reduce the variance.

Control Variates

- Use the analytic solution of a "similar" yet "simpler" problem to improve the solution.
- Suppose we want to estimate E[X] and there exists a random variable Y with a known mean $\mu \stackrel{\Delta}{=} E[Y]$.
- Then $W \stackrel{\Delta}{=} X + \beta(Y \mu)$ can serve as a "controlled" estimator of E[X] for any constant β .
 - However β is chosen, W remains an unbiased estimator of E[X] as

$$E[W] = E[X] + \beta E[Y - \mu] = E[X].$$
Control Variates (continued)

• Note that

$$\operatorname{Var}[W] = \operatorname{Var}[X] + \beta^{2} \operatorname{Var}[Y] + 2\beta \operatorname{Cov}[X, Y],$$
(125)

• Hence W is less variable than X if and only if $\beta^2 \operatorname{Var}[Y] + 2\beta \operatorname{Cov}[X, Y] < 0. \quad (126)$

Control Variates (concluded)

- The success of the scheme clearly depends on both β and the choice of Y.
 - For pricing American options, choose Y to be the otherwise identical European option and μ the Black-Scholes formula.^a
 - For pricing Arithmetic Asian options, choose Y to be the otherwise identical geometric Asian option, μ the formula (58) on p. 447, and $\beta = -1$.
- This approach is often much more effective than the antithetic-variates method.^b

^aHull & White (1988). ^bBoyle, Broadie, & Glasserman (1997).

Choice of Y

- In general, the choice of Y is ad hoc,^a and experiments must be performed to assess the choice.
- Try to match calls with calls and puts with puts.^b
- On many occasions, Y is a discretized version of the derivative that gives μ.
 - Discretely monitored geometric Asian option vs. the continuously monitored version.^c
- The discrepancy can be large (e.g., lookback options).^d

^aBut see Dai (B82506025, R86526008, D8852600), C. Chiu (B90201037, R94922072), & Lyuu (2015, 2018).

^bContributed by Ms. Teng, Huei-Wen (R91723054) on May 25, 2004. ^cPriced by formulas (58) on p. 447.

^dContributed by Mr. Tsai, Hwai (R92723049) on May 12, 2004.

Optimal Choice of β

• Equation (125) on p. 905 is minimized when

$$\beta = -\operatorname{Cov}[X, Y] / \operatorname{Var}[Y].$$

– It is called beta.

• For this specific β ,

$$\operatorname{Var}[W] = \operatorname{Var}[X] - \frac{\operatorname{Cov}[X,Y]^2}{\operatorname{Var}[Y]} = \left(1 - \rho_{X,Y}^2\right) \operatorname{Var}[X],$$

where $\rho_{X,Y}$ is the correlation between X and Y.

Optimal Choice of β (continued)

- The variance can never increase with the optimal choice.
- The stronger X and Y are correlated, the greater the reduction in variance.
- For example, if this correlation is nearly perfect (± 1) , we could control X almost exactly.

Optimal Choice of β (continued)

- Typically, neither $\operatorname{Var}[Y]$ nor $\operatorname{Cov}[X, Y]$ is known.
- So we cannot hope to obtain the maximum reduction in variance.
- We can guess a β and hope that the resulting W does indeed have a smaller variance than X.
- A second possibility is to use the simulated data to estimate Var[Y] and Cov[X,Y].
 - How to do it efficiently in terms of time and space?

Optimal Choice of β (concluded)

- Observe that $-\beta$ has the same sign as the correlation between X and Y.
- Hence, if X and Y are positively correlated, $\beta < 0$, then X is adjusted downward whenever $Y > \mu$ and upward otherwise.
- The opposite is true when X and Y are negatively correlated, in which case $\beta > 0$.
- Suppose a suboptimal $\beta + \epsilon$ is used instead.
- The variance increases by only $\epsilon^2 \operatorname{Var}[Y]$.^a

^aHan & Y. Lai (2010).

A Pitfall

- A potential pitfall is to sample X and Y independently.
- In this case, $\operatorname{Cov}[X, Y] = 0$.
- Equation (125) on p. 905 becomes

 $\operatorname{Var}[W] = \operatorname{Var}[X] + \beta^2 \operatorname{Var}[Y].$

- So whatever Y is, the variance is *increased*!
- Lesson: X and Y must be correlated.

Problems with the Monte Carlo Method

- The error bound is only probabilistic.
- The probabilistic error bound of $O(1/\sqrt{N})$ does not benefit from regularity of the integrand function.
- The requirement that the points be independent random samples are wasteful because of clustering.
- In reality, pseudorandom numbers generated by completely deterministic means are used.
- Monte Carlo simulation exhibits a great sensitivity on the seed of the pseudorandom-number generator.

Matrix Computation

To set up a philosophy against physics is rash; philosophers who have done so have always ended in disaster. — Bertrand Russell

Definitions and Basic Results

- Let $A \stackrel{\Delta}{=} [a_{ij}]_{1 \leq i \leq m, 1 \leq j \leq n}$, or simply $A \in \mathbb{R}^{m \times n}$, denote an $m \times n$ matrix.
- It can also be represented as $[a_1, a_2, \ldots, a_n]$ where $a_i \in \mathbb{R}^m$ are vectors.

- Vectors are column vectors unless stated otherwise.

- A is a square matrix when m = n.
- The rank of a matrix is the largest number of linearly independent columns.

Definitions and Basic Results (continued)

- A square matrix A is said to be symmetric if $A^{T} = A$.
- A real $n \times n$ matrix

$$A \stackrel{\Delta}{=} [a_{ij}]_{i,j}$$

is diagonally dominant if $|a_{ii}| > \sum_{j \neq i} |a_{ij}|$ for $1 \le i \le n$.

- Such matrices are nonsingular.

• The identity matrix is the square matrix

 $I \stackrel{\Delta}{=} \operatorname{diag}[1, 1, \dots, 1].$

Definitions and Basic Results (concluded)

- A matrix has full column rank if its columns are linearly independent.
- A real symmetric matrix A is positive definite if

$$x^{\mathrm{T}}Ax = \sum_{i,j} a_{ij} x_i x_j > 0$$

for any nonzero vector x.

 A matrix A is positive definite if and only if there exists a matrix W such that A = W^TW and W has full column rank.

Cholesky Decomposition

• Positive definite matrices can be factored as

$$A = LL^{\mathrm{T}},$$

called the Cholesky decomposition or Cholesky factorization.

- Above, L is a lower triangular matrix.
- It can be computed by Crout's algorithm in quadratic time.^a

^aGolub and Van Loan (1989).

Generation of Multivariate Distribution

• Let $\boldsymbol{x} \stackrel{\Delta}{=} [x_1, x_2, \dots, x_n]^{\mathrm{T}}$ be a vector random variable with a positive-definite covariance matrix C.

• As usual, assume $E[\boldsymbol{x}] = \boldsymbol{0}$.

- This covariance structure can be matched by Py. $- y \stackrel{\Delta}{=} [y_1, y_2, \dots, y_n]^{\mathrm{T}}$ is a vector random variable
 - with a covariance matrix equal to the identity matrix.

 $-C = PP^{T}$ is the Cholesky decomposition of $C.^{a}$

^aWhat if C is not positive definite? See Y. Y. Lai (R93942114) & Lyuu (2007).

• For example, suppose

$$C = \left[\begin{array}{cc} 1 & \rho \\ \rho & 1 \end{array} \right]$$

• Then
$$PP^{\mathrm{T}} = C$$
, where^a

$$P = \left[\begin{array}{cc} 1 & 0\\ \rho & \sqrt{1 - \rho^2} \end{array} \right]$$

^aRecall Eq. (28) on p. 180.

Generation of Multivariate Normal Distribution

- Suppose we want to generate the multivariate normal distribution with a covariance matrix $C = PP^{T}$.
 - First, generate independent standard normal distributions y_1, y_2, \ldots, y_n .
 - Then

$$P[y_1, y_2, \ldots, y_n]^{\mathrm{T}}$$

has the desired distribution.

Multivariate Derivatives Pricing

- Generating the multivariate normal distribution is essential for the Monte Carlo pricing of multivariate derivatives.^a
- For example, the rainbow option on k assets has payoff $\max(\max(S_1, S_2, \dots, S_k) - X, 0)$

at maturity.

• The closed-form formula is a multi-dimensional integral.^b

^aRecall pp. 822ff. ^bJohnson (1987); C. Y. Chen (D95723006) & Lyuu (2009).

Multivariate Derivatives Pricing (concluded)

- Suppose $dS_j/S_j = r dt + \sigma_j dW_j$, $1 \le j \le k$, where C is the correlation matrix for dW_1, dW_2, \ldots, dW_k .
- Let $C = PP^{\mathrm{T}}$.
- Let ξ consist of k independent random variables from N(0, 1).
- Let $\xi' = P\xi$.
- Similar to Eq. (124) on p. 860, for each asset $1 \le j \le k$,

$$S_{i+1} = S_i e^{(r - \sigma_j^2/2)\Delta t + \sigma_j \sqrt{\Delta t} \xi_j'}$$

by Eq. (124) on p. 860.

Least-Squares Problems

• The least-squares (LS) problem is concerned with

$$\min_{x \in R^n} \parallel Ax - b \parallel,$$

where $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, and $m \ge n$.

- The LS problem is called regression analysis in statistics and is equivalent to minimizing the mean-square error.
- Often abbreviated as

$$Ax = b.$$

Polynomial Regression

- In polynomial regression, $x_0 + x_1x + \cdots + x_nx^n$ is used to fit the data $\{(a_1, b_1), (a_2, b_2), \dots, (a_m, b_m)\}.$
- This leads to the LS problem,

$$\begin{bmatrix} 1 & a_1 & a_1^2 & \cdots & a_1^n \\ 1 & a_2 & a_2^2 & \cdots & a_2^n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & a_m & a_m^2 & \cdots & a_m^n \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$

• Consult p. 273 of the textbook for solutions.