
Modeling Stock Prices

• The most popular stochastic model for stock prices has

been the geometric Brownian motion,

dS

S
= μ dt+ σ dW.

• The logarithmic price X
Δ
= lnS follows

dX =

(
μ− σ2

2

)
dt+ σ dW

by Eq. (86) on p. 620.
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Local-Volatility Models

• The deterministic-volatility model for “smile” posits

dS

S
= (rt − qt) dt+ σ(S, t) dW,

where instantaneous volatility σ(S, t) is called the

local-volatility function.a

– “The most popular model after Black-Scholes is a

local volatility model as it is the only completely

consistent volatility model.”

• A (weak) solution exists if Sσ(S, t) is continuous and

grows at most linearly in S and t.b

aDerman & Kani (1994); Dupire (1994).
bSkorokhod (1961); Achdou & Pironneau (2005).
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Local-Volatility Models (continued)

• One needs to recover the local volatility surface σ(S, t)

from the implied volatility surface.a

• Theoretically,b

σ(X,T )2 = 2
∂C
∂T + (rT − qT )X

∂C
∂X + qTC

X2 ∂2C
∂X2

.

(90)

– C is the call price at time t = 0 (today) with strike

price X and time to maturity T .

– σ(X,T ) is the local volatility that will prevail at

future time T and stock price ST = X .

aAlso called the volatility smile surface (Alexander, 2001).
bDupire (1994); Andersen & Brotherton-Ratcliffe (1998).
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Local-Volatility Models (continued)

• For more general models, this equation gives the

expectation as seen from today, under the risk-neural

probability, of the instantaneous variance at time T

given that ST = X .a

• In practice, the σ(S, t)2 derived by Dupire’s formula (90)

may have spikes, vary wildly, or even be negative.

• The term ∂2C/∂X2 in the denominator often results in

numerical instability.

aDerman & Kani (1997); R. W. Lee (2001); Derman & M. B. Miller

(2016).
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Local-Volatility Models (continued)

• Denote the implied volatility surface by Σ(X,T ) and the

local volatility surface by σ(S, t).

• The relation between Σ(X,T ) and σ(X,T ) isa

σ(X,T )2 =
Σ2 + 2Στ

[
∂Σ
∂T

+ (rT − qT )X
∂Σ
∂X

]
(
1− Xy

Σ
∂Σ
∂X

)2
+XΣτ

[
∂Σ
∂X

− XΣτ
4

(
∂Σ
∂X

)2
+X ∂2Σ

∂X2

] ,
τ

Δ
= T − t,

y
Δ
= ln(X/St) +

∫ T

t

(qs − rs) ds.

aAndreasen (1996); Andersen & Brotherton-Ratcliffe (1998);

Gatheral (2003); Wilmott (2006); Kamp (2009).
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Local-Volatility Models (continued)

• Although this version may be more stable than Eq. (90)

on p. 643, it is expected to suffer from the same

problems.

• Small changes to the implied volatility surface may

produce big changes to the local volatility surface.
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Implied and Local Volatility Surfacesa
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aContributed by Mr. Lok, U Hou (D99922028) on April 5, 2014.
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Local-Volatility Models (continued)

• In reality, option prices only exist for a finite set of

maturities and strike prices.

• Hence interpolation and extrapolation may be needed to

construct the volatility surface.a

• But then some implied volatility surfaces generate

option prices that allow arbitrage opportunities.b

aDoing it to the option prices produces worse results (Li, 2000/2001).
bSee Rebonato (2004) for an example.
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Local-Volatility Models (concluded)

• There exist conditions for a set of option prices to be

arbitrage-free.a

• Some adopt parameterized implied volatility surfaces

that guarantee freedom from certain arbitrages.b

• For some vanilla equity options, the Black-Scholes model

seems better than the local-volatility model in predictive

power.c

• The exact opposite is concluded for hedging in equity

index markets!d

aKahalé (2004); Davis & Hobson (2007).
bGatheral & Jacquier (2014).
cDumas, Fleming, & Whaley (1998).
dCrépey (2004); Derman & M. B. Miller (2016).
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Local-Volatility Models: Popularity

• Hirsa and Neftci (2014), “most traders and firms

actively utilize this [local-volatility] model.”

• Bennett (2014), “Of all the four volatility regimes,

[sticky local volatility] is arguably the most realistic and

fairly prices skew.”

• Derman & M. B. Miller (2016), “Right or wrong, local

volatility models have become popular and ubiquitous in

modeling the smile.”
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Implied Trees

• The trees for the local-volatility model are called implied

trees.a

• Their construction requires option prices at all strike

prices and maturities.

– That is, an implied volatility surface.

• The local volatility model does not imply that the

implied tree must combine.

• Exponential-sized implied trees exist.b

aDerman & Kani (1994); Dupire (1994); Rubinstein (1994).
bCharalambousa, Christofidesb, & Martzoukosa (2007); Gong & Xu

(2019).
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Implied Trees (continued)

• How to construct a valid implied tree with efficiency has

been open for a long time.a

– Reasons may include: noise and nonsynchrony in

data, arbitrage opportunities in the smoothed and

interpolated/extrapolated implied volatility surface,

wrong model, wrong algorithms, nonlinearity,

instability, etc.

• Inversion is generally an ill-posed numerical problem.b

aRubinstein (1994); Derman & Kani (1994); Derman, Kani, & Chriss

(1996); Jackwerth & Rubinstein (1996); Jackwerth (1997); Coleman,

Kim, Li, & Verma (2000); Li (2000/2001); Rebonato (2004); Moriggia,

Muzzioli, & Torricelli (2009).
bAyache, Henrotte, Nassar, & X. Wang (2004).
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Implied Trees (continued)

• It is finally solved for separable local volatilities.a

– The local-volatility function σ(S, t) is separableb if

σ(S, t) = σ1(S)σ2(t).

• A solution is available for any range-bounded σ.c

• A combining implied trinomial tree can also be obtained

from double-barrier options.d

aLok (D99922028) & Lyuu (2015, 2016, 2017).
bBrace, Ga̧tarek, & Musiela (1997); Rebonato (2004).
cLok (D99922028) & Lyuu (2016, 2017, 2020, 2021).
dB. C. Chen (R09922147) (2022).
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Implied Treesa (concluded)
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aPlot supplied by Prof. Lok, U Hou (D99922028) on May 4, 2019.
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Delta Hedge under the Local-Volatility Model

• Delta by the implied tree differs from delta by the

Black-Scholes model’s implied volatility.

– The latter is by formula (46) or (47) (p. 347) after

calculating the implied volatility from the same

option price by the implied tree.

• Hence the profits and losses of their delta hedges will

differ.

• The next plot shows the best 100 out of 100,000 random

paths where the implied tree delta outperforms the

Black-Scholes delta.a

aIn terms of profits and losses. Plot supplied by Mr. Chiu, Tzu-Hsuan

(R08723061) on November 20, 2021 when hedging a long call.
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Delta Hedge under the Local-Volatility Model
(concluded)

• The next plot shows the best 100 out of 100,000 random

paths where the Black-Scholes delta outperforms the

implied tree delta.a

aPlot supplied by Mr. Chiu, Tzu-Hsuan (R08723061) on November

20, 2021 when again hedging a long call.
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The Hull-White Model

• Hull and White (1987) postulate the following

stochastic-volatility model,

dS

S
= r dt+

√
V dW1,

dV = μvV dt+ bV dW2.

• Above, V is the instantaneous variance.

• They assume μv depends on V and t (but not S).
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The Barone-Adesi–Rasmussen–Ravanelli Model

• Barone-Adesi, Rasmussen, and Ravanelli (2005)

postulate the following model,

dS

S
= μ dt+

√
V dW1,

dV = κ(θ − V ) dt+ bV dW2.

• Above, W1 and W2 are correlated.
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The Stein-Stein Model

• E. Stein and J. Stein (1991) postulate the following

model,

dS

S
= r dt+ V dW1,

dV = κ(μ− V ) dt+ σ dW.

• Closed-form formulas exist for European calls and puts.a

aSchöbel & Zhu (1999).
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The SABR Model

• Hagan, Kumar, Lesniewski, and Woodward (2002)

postulate the following model,

dS

S
= r dt+ SθV dW1,

dV = bV dW2,

for 0 ≤ θ ≤ 1.

• A nice feature of this model is that the implied volatility

surface has a compact, approximate closed form.

c©2023 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 662



The Blacher Model

• Blacher (2001) postulates the following model,

dS

S
= r dt+ σ

[
1 + α(S − S0) + β(S − S0)

2
]
dW1,

dσ = κ(θ − σ) dt+ εσ dW2.

• The volatility σ follows a mean-reverting process to level

θ.
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The Hilliard-Schwartz Model

• Hilliard and Schwartz (1996) postulate the following

very general model,

dS

S
= r dt+ f(S)V a dW1,

dV = μ(V ) dt+ bV dW2,

for some well-behaved function f(S) and constant a.

• It includes all previously mentioned stochastic-volatility

models as special cases.a

aH. Chiu (R98723059) (2012).
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Heston’s Stochastic-Volatility Model

• Heston (1993) assumes the stock price follows

dS

S
= (μ− q) dt+

√
V dW1, (91)

dV = κ(θ − V ) dt+ σ
√
V dW2. (92)

– V is the instantaneous variance, which follows a

square-root process.

– dW1 and dW2 have correlation ρ.

– The riskless rate r is constant.

• It may be the most popular continuous-time

stochastic-volatility model.a

aChristoffersen, Heston, & Jacobs (2009).
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Heston’s Stochastic-Volatility Model (continued)

• Heston assumes the market price of risk is b2
√
V .

• So μ = r + b2V .

• Define

dW ∗
1 = dW1 + b2

√
V dt,

dW ∗
2 = dW2 + ρb2

√
V dt,

κ∗ = κ+ ρb2σ,

θ∗ =
θκ

κ+ ρb2σ
.

• dW ∗
1 and dW ∗

2 have correlation ρ.
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Heston’s Stochastic-Volatility Model (continued)

• Under the risk-neutral probability measure Q, both W ∗
1

and W ∗
2 are Wiener processes.

• Heston’s model becomes, under probability measure Q,

dS

S
= (r − q) dt+

√
V dW ∗

1 ,

dV = κ∗(θ∗ − V ) dt+ σ
√
V dW ∗

2 .
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Heston’s Stochastic-Volatility Model (continued)

• Define

φ(u, τ) = exp { ıu(lnS + (r − q) τ)

+θ∗κ∗σ−2

[
(κ∗ − ρσuı− d) τ − 2 ln

1− ge−dτ

1− g

]

+
vσ−2(κ∗ − ρσuı− d)

(
1− e−dτ

)
1− ge−dτ

}
,

d =
√

(ρσuı− κ∗)2 − σ2(−ıu− u2) ,

g = (κ∗ − ρσuı− d)/(κ∗ − ρσuı+ d).
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Heston’s Stochastic-Volatility Model (continued)

The formulas for European calls and puts area

C = S

[
1

2
+

1

π

∫ ∞

0
Re

(
X−ıuφ(u− ı, τ)

ıuSerτ

)
du

]

−Xe−rτ

[
1

2
+

1

π

∫ ∞

0
Re

(
X−ıuφ(u, τ)

ıu

)
du

]
,

P = Xe−rτ

[
1

2
− 1

π

∫ ∞

0
Re

(
X−ıuφ(u, τ)

ıu

)
du

]
,

−S

[
1

2
− 1

π

∫ ∞

0
Re

(
X−ıuφ(u− ı, τ)

ıuSerτ

)
du

]
,

where ı =
√−1 and Re(x) denotes the real part of the

complex number x.

aContributed by Mr. Chen, Chun-Ying (D95723006) on August 17,

2008 and Mr. Liou, Yan-Fu (R92723060) on August 26, 2008. See Lord &

Kahl (2009) and Cui, Rollin, & Germano (2017) for alternative formulas.
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Heston’s Stochastic-Volatility Model (concluded)

• For American options, trees are needed.

• They are all O(n3)-sized and do not match all

moments.a

• An O(n2.5)-sized 9-jump tree that matches all means

and variances with valid probabilities is available.b

• The size reduces to O(n2) for knock-out double-barrier

options.c

aNelson & Ramaswamy (1990); Nawalkha & Beliaeva (2007); Leisen

(2010); Beliaeva & Nawalkha (2010); M. Chou (R02723073) (2015); M.

Chou (R02723073) & Lyuu (2016).
bZ. Lu (D00922011) & Lyuu (2018).
cZ. Lu (D00922011) & Lyuu (2018).
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Stochastic-Volatility Models and Further Extensionsa

• How to explain the October 1987 crash?

– The Dow Jones Industrial Average fell 22.61% on

October 19, 1987 (called the Black Monday).

– The CBOE S&P 100 Volatility Index (VXO) shot up

to 150%, the highest VXO ever recorded.b

• Stochastic-volatility models require an implausibly

high-volatility level prior to and after the crash.

– Because the processes are continuous.

• Discontinuous jump models in the asset price can

alleviate the problem somewhat.c

aEraker (2004).
bCaprio (2012).
cMerton (1976).

c©2023 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 671



Stochastic-Volatility Models and Further Extensions
(continued)

• But if the jump intensity is a constant, it cannot explain

the tendency of large movements to cluster over time.

• This assumption also has no impacts on option prices.

• Jump-diffusion models combine both.

– E.g., add a jump process to Eq. (91) on p. 665.

– Closed-form formulas exist for GARCH-jump option

pricing models.a

aLiou (R92723060) (2005).
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Stochastic-Volatility Models and Further Extensions
(concluded)

• But they still do not adequately describe the systematic

variations in option prices.a

• Jumps in volatility are alternatives.b

– E.g., add correlated jump processes to Eqs. (91) and

Eq. (92) on p. 665.

• Such models allow high level of volatility caused by a

jump to volatility.c

aBates (2000); Pan (2002).
bDuffie, Pan, & Singleton (2000).
cEraker, Johnnes, & Polson (2000); Y. Lin (2007); Zhu & Lian (2012).
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Why Are Trees for Stochastic-Volatility Models
Difficult?

• The CRR tree is 2-dimensional.a

• The constant volatility makes the span from any node

fixed.

• But a tree for a stochastic-volatility model must be

3-dimensional.

– Every node is associated with a combination of stock

price and volatility.

aRecall p. 301.
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Why Are Trees for Stochastic-Volatility Models
Difficult (Binomial Case)?
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Why Are Trees for Stochastic-Volatility Models
Difficult (Trinomial Case)?
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Why Are Trees for Stochastic-Volatility Models
Difficult? (concluded)

• Locally, the tree looks fine for one time step.

• But the volatility regulates the spans of the nodes on

the stock-price plane.

• Unfortunately, those spans differ from node to node

because the volatility varies.

• So two time steps from now, the branches will not

combine!

• Smart ideas are thus needed.
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Complexities of Stochastic-Volatility Models

• A few stochastic-volatility models suffer from

subexponential (c
√
n) tree size.

• Examples include the Hull-White (1987),

Hilliard-Schwartz (1996), and SABR (2002) models.a

• Future research may extend this negative result to more

stochastic-volatility models.

– We suspect many GARCH option pricing models

entertain similar problems.b

aH. Chiu (R98723059) (2012).
bY. C. Chen (R95723051) (2008); Y. C. Chen (R95723051), Lyuu, &

Wen (D94922003) (2011).
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Complexities of Stochastic-Volatility Models
(concluded)

• Flexible placement of nodes and removal of

low-probability nodes may make the models

O(n2.5)-sized!a

• Calibration can be computationally hard.

– Few have tried it on exotic options.b

• There are usually several local minima.c

– They will give different prices to options not used in

the calibration.

– But which set capture the smile dynamics?
aZ. Lu (D00922011) & Lyuu (2018).
bAyache, Henrotte, Nassar, & X. Wang (2004).
cAyache (2004).
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Continuous-Time Derivatives Pricing
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I have hardly met a mathematician

who was capable of reasoning.

— Plato (428 B.C.–347 B.C.)

Fischer [Black] is the only real genius

I’ve ever met in finance. Other people,

like Robert Merton or Stephen Ross,

are just very smart and quick,

but they think like me.

Fischer came from someplace else entirely.

— John C. Cox, quoted in Mehrling (2005)
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Toward the Black-Scholes Differential Equation

• The price of any derivative on a non-dividend-paying

stock must satisfy a partial differential equation (PDE).

• The key step is recognizing that the same random

process drives both securities.

– Their prices are perfectly correlated.

• We then figure out the amount of stock such that the

gain from it offsets exactly the loss from the derivative.

• The removal of uncertainty forces the portfolio’s return

to be the riskless rate.

• PDEs allow many numerical methods to be applicable.
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Assumptionsa and Notations

• The stock price follows dS = μS dt+ σS dW .

• There are no dividends.

• Trading is continuous, and short selling is allowed.

• There are no transactions costs or taxes.

• All securities are infinitely divisible.

• The term structure of riskless rates is flat at r.

• There is unlimited riskless borrowing and lending.

• t is the current time, T is the expiration time, and

τ
Δ
= T − t.

aDerman & Taleb (2005) summarizes criticisms on these assumptions

and the replication argument.
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Black-Scholes Differential Equation

• Let C be the price of a simple derivativea on S.

• From Ito’s lemma (p. 613),

dC =

(
μS

∂C

∂S
+

∂C

∂t
+

1

2
σ2S2 ∂2C

∂S2

)
dt+ σS

∂C

∂S
dW.

– The same W drives both C and S.

– Unlike dS/S, the diffusion of dC/C is stochastic!

• Short one derivative and long ∂C/∂S shares of stock

(call it Π).

• By construction,

Π = −C + S(∂C/∂S).

aRecall p. 437.
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Black-Scholes Differential Equation (continued)

• The change in the value of the portfolio at time dt isa

dΠ = −dC +
∂C

∂S
dS. (93)

• Substitute the formulas for dC and dS into the above

to yield

dΠ =

(
−∂C

∂t
− 1

2
σ2S2 ∂2C

∂S2

)
dt.

• As this equation does not involve dW , the portfolio is

riskless during dt time: dΠ = rΠ dt.

aBergman (1982) and Bartels (1995) argue this is not quite right. But

see Macdonald (1997). Mathematically, it is wrong (Bingham & Kiesel,

2004).
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Black-Scholes Differential Equation (continued)

• So (
∂C

∂t
+

1

2
σ2S2 ∂2C

∂S2

)
dt = r

(
C − S

∂C

∂S

)
dt.

• Equate the terms to finally obtaina

∂C

∂t
+ rS

∂C

∂S
+

1

2
σ2S2 ∂2C

∂S2
= rC.

• This is a backward equation, which describes the

dynamics of a derivative’s price forward in physical time.

aKnown as the Feynman-Kac stochastic representation formula.
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Black-Scholes Differential Equation (concluded)

• When there is a dividend yield q,

∂C

∂t
+ (r − q)S

∂C

∂S
+

1

2
σ2S2 ∂2C

∂S2
= rC. (94)

• Dupire’s formulaa (90) for the local-volatility model is

simply its dual:b

∂C

∂T
+ (rT − qT )X

∂C

∂X
− 1

2
σ(X,T )2X2 ∂

2C

∂X2
= −qTC.

• This is a forward equation, which describes the dynamics

of a derivative’s price backward in maturity time.

aRecall p. 643.
bDerman & Kani (1997).
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Rephrase

• The Black-Scholes differential equation can be expressed

in terms of sensitivity numbers,

Θ + rSΔ+
1

2
σ2S2Γ = rC. (95)

• Identity (95) leads to an alternative way of computing

Θ numerically from Δ and Γ.

• When a portfolio is delta-neutral,

Θ +
1

2
σ2S2Γ = rC.

– A definite relation thus exists between Γ and Θ.
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[ Black ] got the equation [ in 1969 ] but then

was unable to solve it. Had he been a better

physicist he would have recognized it as a form

of the familiar heat exchange equation,

and applied the known solution. Had he been

a better mathematician, he could have

solved the equation from first principles.

Certainly Merton would have known exactly

what to do with the equation

had he ever seen it.

— Perry Mehrling (2005)
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Black-Scholes Differential Equation: An Alternative

• Perform the change of variable V
Δ
= lnS.

• The option value becomes U(V, t)
Δ
= C(eV , t).

• Furthermore,

∂C

∂t
=

∂U

∂t
,

∂C

∂S
=

1

S

∂U

∂V
, (96)

∂2C

∂2S
=

1

S2

∂2U

∂V 2
− 1

S2

∂U

∂V
. (97)
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Black-Scholes Differential Equation: An Alternative
(concluded)

• Equations (96) and (97) are alternative ways to

calculate delta and gamma.a

• They are very useful for trees of logarithmic prices.

• The Black-Scholes differential equation (94) on p. 687

becomes

1

2
σ2 ∂2U

∂V 2
+

(
r − q − σ2

2

)
∂U

∂V
− rU +

∂U

∂t
= 0

subject to U(V, T ) being the payoff such as

max(X − eV , 0).

aRecall Eqs. (52) on p. 367 and (53) on p. 369.
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PDEs for Asian Options

• Add the new variable A(t)
Δ
=

∫ t

0
S(u) du.

• Then the value V of the Asian option satisfies this

two-dimensional PDE:a

∂V

∂t
+ rS

∂V

∂S
+

1

2
σ2S2 ∂2V

∂S2
+ S

∂V

∂A
= rV.

• The terminal conditions are

V (T, S,A) = max

(
A

T
−X, 0

)
for call,

V (T, S,A) = max

(
X − A

T
, 0

)
for put.

aKemna & Vorst (1990).
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PDEs for Asian Options (continued)

• The two-dimensional PDE produces algorithms similar

to that on pp. 449ff.a

• But one-dimensional PDEs are available for Asian

options.b

• For example, Večeř (2001) derives the following PDE for

Asian calls:

∂u

∂t
+ r

(
1− t

T
− z

)
∂u

∂z
+

(
1− t

T − z
)2

σ2

2

∂2u

∂z2
= 0

with the terminal condition u(T, z) = max(z, 0).

aBarraquand & Pudet (1996).
bRogers & Shi (1995); Večeř (2001); Dubois & Lelièvre (2005).
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PDEs for Asian Options (concluded)

• For Asian puts:

∂u

∂t
+ r

(
t

T
− 1− z

)
∂u

∂z
+

(
t
T − 1− z

)2
σ2

2

∂2u

∂z2
= 0

with the same terminal condition.

• One-dimensional PDEs yield highly efficient numerical

algorithms.
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Hedging
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When Professors Scholes and Merton and I

invested in warrants,

Professor Merton lost the most money.

And I lost the least.

— Fischer Black (1938–1995)
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Delta Hedge

• Recall the delta (hedge ratio) of a derivative f :

Δ
Δ
=

∂f

∂S
.

• Thus

Δf ≈ Δ×ΔS

for relatively small changes in the stock price, ΔS.

• A delta-neutral portfolio is hedged as it is immunized

against small changes in the stock price.
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Delta Hedge (concluded)

• A trading strategy that dynamically maintains a

delta-neutral portfolio is called delta hedge.

– Trading strategies can also be static (or constant).a

• Delta changes with the stock price.

• A delta hedge needs to be rebalanced periodically in

order to maintain delta neutrality.

• In the limit where the portfolio is adjusted continuously,

“perfect” hedge is achieved and the strategy becomes

“self-financing.”

aRecall p. 496 for one in hedging the short forward contract with the

underlying asset and loans.
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Implementing Delta Hedge

• We want to hedge N short derivatives.

• Assume the stock pays no dividends.

• The delta-neutral portfolio maintains N ×Δ shares of

stock plus B borrowed dollars such that

−N × f +N ×Δ× S − B = 0.

• At next rebalancing point when the delta is Δ′, buy
N × (Δ′ −Δ) shares to maintain N ×Δ′ shares.

• Delta hedge is the discrete-time analog of the

continuous-time limit.

• It will rarely be self-financing however small Δt is.
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Example

• A hedger is short 10,000 European calls.

• S = 50, σ = 30%, and r = 6%.

• This call’s expiration is four weeks away, its strike price

is $50, and each call has a current value of f = 1.76791.

• As an option covers 100 shares of stock, N = 1,000,000.

• The trader adjusts the portfolio weekly.

• The calls are replicated well if the cumulative cost of

trading stock is close to the call premium’s FV.a

aThis takes the replication viewpoint: One starts with zero dollar.
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Example (continued)

• As Δ = 0.538560

N ×Δ = 538, 560

shares are purchased for a total cost of

538,560× 50 = 26,928,000

dollars to make the portfolio delta-neutral.

• The trader finances the purchase by borrowing

B = N ×Δ× S −N × f = 25,160,090

dollars net.a
aThis takes the hedging viewpoint: One starts with the option pre-

mium. The two viewpoints are equivalent. See Exercise 16.3.2 of the

text.
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Example (continued)

• At 3 weeks to expiration, the stock price rises to $51.

• The new call value is f ′ = 2.10580.

• So before rebalancing, the portfolio is worth

−N × f ′ + 538,560× 51−Be0.06/52 = 171, 622. (98)

• The delta hedge is not self-financing as $171,622 can be

withdrawn.

– It does not replicate the calls perfectly.
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Example (continued)

• The magnitude of the tracking errora can be mitigated if

adjustments are made more frequently.

• The tracking error over one rebalancing act is positive

about 68% of the time.

• But its expected value is ∼ 0 under the risk-neutral

probability measure.b

– But the stock price should be sampled under the

real-world probability measure.c

aThe variation in the net portfolio value.
bBoyle & Emanuel (1980).
cRecall Eq. (93) on p. 685 or see p. 713.
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Example (continued)

• The tracking error at maturity is proportional to vega.a

• In practice tracking errors will cease to decrease beyond

a certain rebalancing frequency.

• With a higher delta Δ′ = 0.640355, the trader buys

N × (Δ′ −Δ) = 101, 795

shares for $5,191,545.

• The number of shares is increased to N ×Δ′ = 640, 355.

aKamal & Derman (1999).
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Example (continued)

• The cumulative cost isa

26,928,000× e0.06/52 + 5,191,545 = 32,150,634.

• The portfolio is again delta-neutral.

aWe take the replication viewpoint again. Under the BOPM, the

replicating strategy is self-financing and matches the payoff perfectly.
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Option Change in No. shares Cost of Cumulative

value Delta delta bought shares cost

τ S f Δ N×(5) (1)×(6) FV(8’)+(7)

(1) (2) (3) (5) (6) (7) (8)

4 50 1.7679 0.53856 — 538,560 26,928,000 26,928,000

3 51 2.1058 0.64036 0.10180 101,795 5,191,545 32,150,634

2 53 3.3509 0.85578 0.21542 215,425 11,417,525 43,605,277

1 52 2.2427 0.83983 −0.01595 −15,955 −829,660 42,825,960

0 54 4.0000 1.00000 0.16017 160,175 8,649,450 51,524,853

• We take the replication viewpoint.

• The total number of shares is 1,000,000 at expiration

(trading takes place at expiration, too).
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Example (continued)

• At expiration, the trader has 1,000,000 shares.

• They are exercised against by the in-the-money calls for

$50,000,000.

• The trader is left with an obligation of

51,524,853− 50,000,000 = 1,524,853,

which represents the replication cost.

• So if we had started with the PV of $1,524,853, we

would have replicated 10,000 such calls in this scenario.
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Example (concluded)

• The FV of the call premium equals

1,767,910× e0.06×4/52 = 1,776,088.

• That means the net gain in this scenario is

1,776,088− 1,524,853 = 251,235

if we are hedging 10,000 short European calls.
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Tracking Error Revisited

• Define the dollar gamma as S2Γ.

• The change in value of a delta-hedged long option

position after a duration of Δt is proportional to the

dollar gamma.

• It is about

(1/2)S2Γ[ (ΔS/S)2 − σ2Δt ].

– (ΔS/S)2 is called the daily realized variance.
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Tracking Error Revisited (continued)

• In our particular case,

S = 50,Γ = 0.0957074,ΔS = 1, σ = 0.3,Δt = 1/52.

• The estimated tracking error is

−(1/2)×502×0.0957074×[
(1/50)2 − (0.09/52)

]
= 159, 205.

• It is very close to our earlier number of 171,622.a

• Delta hedge is also called gamma scalping.b

aRecall Eq. (98) on p. 702.
bBennett (2014).
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Tracking Error Revisited (continued)

• Let the rebalancing times be t1, t2, . . . , tn.

• Let ΔSi = Si+1 − Si.

• The total tracking error at expiration is about

n−1∑
i=0

er(T−ti)
S2
i Γi

2

[(
ΔSi

Si

)2

− σ2Δt

]
.

• The tracking error is clearly path dependent.

• Mathematically,a

n−1∑
i=0

(
ΔSi

Si

)2

→ σ2T.

aProtter (2005).
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Tracking Error Revisited (concluded)a

• The tracking errorb εn over n rebalancing acts has

about the same probability of being positive as being

negative.

• Subject to certain regularity conditions, the

root-mean-square tracking error
√
E[ ε2n ] is O(1/

√
n ).c

• The root-mean-square tracking error increases with σ at

first and then decreases.

aBertsimas, Kogan, & Lo (2000).
bSuch as 251,235 on p. 708.
cGrannan & Swindle (1996).
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Which Probability Measure?a

• The profit and loss (i.e., tracking error) of a hedging

strategy should be calculated under the real-world

probability measure.

• But the deltas and option prices should be calculated

under the risk-neutral probability measure.

• If whenever we sample the next stock price, backward

induction is performed for the delta, it will take a long

time to obtain the distribution of the profit and loss.

• How to do it efficiently?b

aContributed by Mr. Chiu, Tzu-Hsuan (R08723061) on April 9, 2021.
bContributed by Mr. Lu, Zheng-Liang (D00922011) in August, 2021.
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Delta-Gamma Hedge

• Delta hedge is based on the first-order approximation to

changes in the derivative price, Δf , due to changes in

the stock price, ΔS.

• When ΔS is not small, the second-order term, gamma

Γ
Δ
= ∂2f/∂S2, helps.

• A delta-gamma hedge is a delta hedge that maintains

zero portfolio gamma; it is gamma neutral.

• To meet this extra condition, one more security needs to

be brought in.
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Delta-Gamma Hedge (concluded)

• Suppose we want to hedge short calls as before.

• A hedging call f2 is brought in.

• To set up a delta-gamma hedge, we solve

−N × f + n1 × S + n2 × f2 − B = 0 (self-financing),

−N ×Δ+ n1 + n2 ×Δ2 − 0 = 0 (delta neutrality),

−N × Γ + 0 + n2 × Γ2 − 0 = 0 (gamma neutrality),

for n1, n2, and B.

– The gammas of the stock and bond are 0.

• See the numerical example on pp. 231–232 of the text.
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Other Hedges

• If volatility changes, delta-gamma hedge may not work

well.

• An enhancement is the delta-gamma-vega hedge, which

also maintains vega zero portfolio vega.

• To accomplish this, still one more security has to be

brought into the process.

• In practice, delta-vega hedge, which may not maintain

gamma neutrality, performs better than delta hedge.
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Trees
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I love a tree more than a man.

— Ludwig van Beethoven (1770–1827)

All those holes and pebbles.

Who could count them?

— James Joyce, Ulysses (1922)

And though the holes were rather small,

they had to count them all.

— The Beatles, A Day in the Life (1967)
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The Combinatorial Method

• The combinatorial method can often cut the running

time by an order of magnitude.

• The basic paradigm is to count the number of admissible

paths that lead from the root to any terminal node.

• We first used this method in the linear-time algorithm

for standard European option pricing.a

• We will now apply it to price barrier options.

aRecall p. 289.
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The Reflection Principlea

• Imagine a particle at position (0,−a) on the integral

lattice that is to reach (n,−b).

• Without loss of generality, assume a > 0 and b ≥ 0.

• This particle’s movement:

(i, j)
�(i+ 1, j + 1) up move S → Su

�(i+ 1, j − 1) down move S → Sd

• How many paths touch the x axis?

aAndré (1887).
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The Reflection Principle (continued)

• For a path from (0,−a) to (n,−b) that touches the x

axis, let J denote the first point this happens.

• Reflect the portion of the path from (0,−a) to J .

• A path from (0,a) to (n,−b) is constructed.

• It also hits the x axis at J for the first time.

• The one-to-one mapping shows the number of paths

from (0,−a) to (n,−b) that touch the x axis equals

the number of paths from (0,a) to (n,−b).
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The Reflection Principle (concluded)

• A path of this kind has (n+ b+ a)/2 down moves and

(n− b− a)/2 up moves.a

• Hence there are (
n

n+a+b
2

)
=

(
n

n−a−b
2

)
(99)

such paths for even n+ a+ b.

– Convention:
(
n
k

)
= 0 for k < 0 or k > n.

aVerify it!
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Pricing Barrier Options (Lyuu, 1998)

• Focus on the down-and-in call with barrier H < X .

• So H < S.

• Define

a
Δ
=

⌈
ln (X/ (Sdn))

ln(u/d)

⌉
=

⌈
ln(X/S)

2σ
√
Δt

+
n

2

⌉
,

h
Δ
=

⌊
ln (H/ (Sdn))

ln(u/d)

⌋
=

⌊
ln(H/S)

2σ
√
Δt

+
n

2

⌋
.

– a is such that X̃
Δ
= Suadn−a is the terminal price

that is closest to X from above.

– h is such that H̃
Δ
= Suhdn−h is the terminal price

that is closest to H from below.a

aSo we underestimate the option price.
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Pricing Barrier Options (continued)

• The true barrier is replaced by the effective barrier H̃

in the binomial model.

• A process with n moves hence ends up in the money if

and only if the number of up moves is at least a.

• The price Sukdn−k is at a distance of 2k from the

lowest possible price Sdn on the binomial tree because

Sukdn−k = Sd−kdn−k = Sdn−2k. (100)
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Pricing Barrier Options (continued)

• A path from S to the terminal price Sujdn−j has

probability pj(1− p)n−j of being taken.

• With reference to p. 726, the reflection principle (p. 721)

can be applied with

a = n− 2h,

b = 2j − 2h,

in Eq. (99) on p. 723 by treating the H̃ line as the x

axis.
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Pricing Barrier Options (continued)

• Therefore,(
n

n+(n−2h)+(2j−2h)
2

)
=

(
n

n− 2h+ j

)

paths hit H̃ in the process for h ≤ n/2.

• The terminal price Sujdn−j is reached by a path that

hits the effective barrier with probability(
n

n− 2h+ j

)
pj(1− p)n−j , j ≤ 2h.
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Pricing Barrier Options (concluded)

• The option value equals∑2h
j=a

(
n

n−2h+j

)
pj(1− p)n−j

(
Sujdn−j −X

)
Rn

.

(101)

– R
Δ
= erτ/n is the riskless return per period.

• It yields a linear-time algorithm.a

aLyuu (1998).

c©2023 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 729



Convergence of BOPM

• Equation (101) results in the same sawtooth-like

convergence shown on p. 410 (repeated on next page).

• The reasons are not hard to see.

• The effective barrier H̃ rarely equals the true barrier H.
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Convergence of BOPM (continued)
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Convergence of BOPM (continued)

• Convergence is actually good if we limit n to certain

values—191, for example.

• These values make the true barrier coincide with or just

above one of the stock price levels, that is,

H ≈ Sdj = Se−jσ
√

τ/n

for some integer j.

• The preferred n’s are thus

n =

⌊
τ

(ln(S/H)/(jσ))2

⌋
, j = 1, 2, 3, . . .
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Convergence of BOPM (continued)

• There is only one minor technicality left.

• We picked the effective barrier to be one of the n+ 1

possible terminal stock prices.

• However, the effective barrier above, Sdj , corresponds to

a terminal stock price only when n− j is even.a

• To close this gap, we decrement n by one, if necessary,

to make n− j an even number.

aThis is because j = n − 2k for some k by Eq. (100) on p. 725. Of

course we could have adopted the more general form Sdj (−n ≤ j ≤ n)

for the effective barrier. It makes a good exercise.

c©2023 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 733



Convergence of BOPM (concluded)

• The preferred n’s are now

n =

⎧⎨
⎩ �, if �− j is even,

�− 1, otherwise,
(102)

j = 1, 2, 3, . . . , where

�
Δ
=

⌊
τ

(ln(S/H)/(jσ))
2

⌋
.

• Evaluate pricing formula (101) on p. 729 only with the

n above.
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Practical Implicationsa

• This binomial model is O(1/
√
n) convergent in general

but O(1/n) convergent when the barrier is matched.b

• Now that barrier options can be efficiently priced, we

can afford to pick very large n (see next page).

• This has profound consequences.c

aLyuu (1998).
bJ. Lin (R95221010) (2008); ; J. Lin (R95221010) & Palmer (2013).
cSee pp. 751ff.
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n Combinatorial method

Value Time (milliseconds)

21 5.507548 0.30

84 5.597597 0.90

191 5.635415 2.00

342 5.655812 3.60

533 5.652253 5.60

768 5.654609 8.00

1047 5.658622 11.10

1368 5.659711 15.00

1731 5.659416 19.40

2138 5.660511 24.70

2587 5.660592 30.20

3078 5.660099 36.70

3613 5.660498 43.70

4190 5.660388 44.10

4809 5.659955 51.60

5472 5.660122 68.70

6177 5.659981 76.70

6926 5.660263 86.90

7717 5.660272 97.20
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Practical Implications (concluded)

• Pricing is prohibitively time consuming when S ≈ H

because

n ∼ 1/ ln2(S/H)

by formula (102) on 734.

– This is called the barrier-too-close problem.

• This observation is indeed true of standard

quadratic-time binomial tree algorithms.

• But it no longer applies to linear-time algorithms (see

next page).
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Barrier at 95.0 Barrier at 99.5 Barrier at 99.9

n Value Time n Value Time n Value Time

.

.

. 795 7.47761 8 19979 8.11304 253

2743 2.56095 31.1 3184 7.47626 38 79920 8.11297 1013

3040 2.56065 35.5 7163 7.47682 88 179819 8.11300 2200

3351 2.56098 40.1 12736 7.47661 166 319680 8.11299 4100

3678 2.56055 43.8 19899 7.47676 253 499499 8.11299 6300

4021 2.56152 48.1 28656 7.47667 368 719280 8.11299 8500

True 2.5615 7.4767 8.1130

(All times in milliseconds.)
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