
Stochastic Processes and Brownian Motion
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Of all the intellectual hurdles which the human mind

has confronted and has overcome in the last

fifteen hundred years, the one which seems to me

to have been the most amazing in character and

the most stupendous in the scope of its

consequences is the one relating to

the problem of motion.

— Herbert Butterfield (1900–1979)
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Stochastic Processes

• A stochastic process

X = {X(t) }
is a time series of random variables.

• X(t) (or Xt) is a random variable for each time t and

is usually called the state of the process at time t.

• A realization of X is called a sample path.

c©2023 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 544



Stochastic Processes (concluded)

• If the times t form a countable set, X is called a

discrete-time stochastic process or a time series.

• In this case, subscripts rather than parentheses are

usually employed, as in

X = {Xn }.

• If the times form a continuum, X is called a

continuous-time stochastic process.
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Random Walks

• The binomial model is a random walk in disguise.

• Consider a particle on the integer line, 0,±1,±2, . . . .

• In each time step, it can make one move to the right

with probability p or one move to the left with

probability 1− p.

– This random walk is symmetric when p = 1/2.

• Connection with the BOPM: The particle’s position

denotes the number of up moves minus that of down

moves up to that time.
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Random Walk with Drift

Xn = μ+Xn−1 + ξn.

• ξn are independent and identically distributed with zero

mean.

• Drift μ is the expected change per period.

• Note that this process is continuous in space.
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Martingalesa

• {X(t), t ≥ 0 } is a martingale if E[ |X(t) | ] < ∞ for

t ≥ 0 and

E[X(t) |X(u), 0 ≤ u ≤ s ] = X(s), s ≤ t. (72)

• In the discrete-time setting, a martingale means

E[Xn+1 |X1, X2, . . . , Xn ] = Xn. (73)

• Xn can be interpreted as a gambler’s fortune after the

nth gamble.

• Identity (73) then says the expected fortune after the

(n+1)st gamble equals the fortune after the nth gamble

regardless of what may have occurred before.
aThe origin of the name is somewhat obscure.
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Martingales (concluded)

• A martingale is therefore a notion of fair games.

• Apply the law of iterated conditional expectations to

both sides of Eq. (73) on p. 549 to yield

E[Xn ] = E[X1 ] (74)

for all n.

• Similarly,

E[X(t) ] = E[X(0) ]

in the continuous-time case.
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Still a Martingale?

• Suppose we replace Eq. (73) on p. 549 with

E[Xn+1 |Xn ] = Xn.

• It also says past history cannot affect the future.

• But is it equivalent to the original definition (73) on

p. 549?a

aContributed by Mr. Hsieh, Chicheng (M9007304) on April 13, 2005.

c©2023 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 551



Still a Martingale? (continued)

• Well, no.a

• Consider this random walk with drift:

Xi =

⎧⎨⎩ Xi−1 + ξi, if i is even,

Xi−2, otherwise.

• Above, ξn are random variables with zero mean.

aContributed by Mr. Zhang, Ann-Sheng (B89201033) on April 13,

2005.
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Still a Martingale? (concluded)

• It is not hard to see that

E[Xi |Xi−1 ] =

⎧⎨⎩ Xi−1, if i is even,

Xi−1, otherwise.

– It is a martingale by the “new” definition.

• But

E[Xi | . . . , Xi−2, Xi−1 ] =

⎧⎨⎩ Xi−1, if i is even,

Xi−2, otherwise.

– It is not a martingale by the original definition.
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Example

• Consider the stochastic process{
Zn

Δ
=

n∑
i=1

Xi, n ≥ 1

}
,

where Xi are independent random variables with zero

mean.

• This process is a martingale because

E[Zn+1 |Z1, Z2, . . . , Zn ]

= E[Zn +Xn+1 |Z1, Z2, . . . , Zn ]

= E[Zn |Z1, Z2, . . . , Zn ] + E[Xn+1 |Z1, Z2, . . . , Zn ]

= Zn + E[Xn+1 ] = Zn.
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Probability Measure

• A probability measure assigns probabilities to states of

the world.a

• A martingale is defined with respect to a probability

measure, under which the expectation is taken.

• Second, a martingale is defined with respect to an

information set.

– In the characterizations (72)–(73) on p. 549, the

information set contains the current and past values

of X by default.

– But it need not be so.
aOnly certain sets such as the Borel sets receive probabilities (Feller,

1972).
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Probability Measure (continued)

• A stochastic process {X(t), t ≥ 0 } is a martingale with

respect to information sets { It } if, for all t ≥ 0,

E[ |X(t) | ] < ∞ and

E[X(u) | It ] = X(t)

for all u > t.

• The discrete-time version: For all n > 0,

E[Xn+1 | In ] = Xn,

given the information sets { In }.
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Probability Measure (concluded)

• The above implies

E[Xn+m | In ] = Xn

for any m > 0 by Eq. (26) on p. 170.

– A typical In is the price information up to time n.

– Then the above identity says the FVs of X will not

deviate systematically from today’s value given the

price history.
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Example

• Consider the stochastic process {Zn − nμ, n ≥ 1 }.
– Zn

Δ
=

∑n
i=1Xi.

– X1, X2, . . . are independent random variables with

mean μ.

• Now,

E[Zn+1 − (n+ 1)μ |X1, X2, . . . , Xn ]

= E[Zn+1 |X1, X2, . . . , Xn ]− (n+ 1)μ

= E[Zn +Xn+1 |X1, X2, . . . , Xn ]− (n+ 1)μ

= Zn + μ− (n+ 1)μ

= Zn − nμ.
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Example (concluded)

• Define

In
Δ
= {X1, X2, . . . , Xn }.

• Then

{Zn − nμ, n ≥ 1 }
is a martingale with respect to { In }.
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Martingale Pricing

• Stock prices and zero-coupon bond prices are expected

to rise, while call prices are expected to fall.

• They are not martingales.

• Why is then martingale useful?

• Recall a martingale is defined with respect to some

information set and some probability measure.

• By modifying the probability measure, we can convert a

price process into a martingale.
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Martingale Pricing (continued)

• The price of a European option is the expected

discounted payoff in a risk-neutral economy.a

• This principle can be generalized using the concept of

martingale.

• Recall the recursive valuation of European option via

C = [ pCu + (1− p)Cd ]/R.

– p is the risk-neutral probability.

– $1 grows to $R in a period.

aRecall Eq. (37) on p. 270.
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Martingale Pricing (continued)

• Let C(i) denote the value of the option at time i.

• Consider the discount process{
C(i)

Ri
, i = 0, 1, . . . , n

}
.

• Then,

E

[
C(i+ 1)

Ri+1

∣∣∣∣ S(i) ] =
E[C(i+ 1) |S(i) ]

Ri+1

=
pCu + (1− p)Cd

Ri+1

=
C(i)

Ri
.
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Martingale Pricing (continued)

• It is easy to show that

E

[
C(k)

Rk

∣∣∣∣ S(i) ] =
C(i)

Ri
, i ≤ k.

• This simplified formulation assumes:a

1. The model is Markovian: The distribution of the

future is determined by the present (time i) and not

the past.

2. The payoff depends only on the terminal price of the

underlying assetb (Asian options do not qualify).
aContributed by Mr. Wang, Liang-Kai (Ph.D. student, ECE, Univer-

sity of Wisconsin-Madison) and Mr. Hsiao, Huan-Wen (B90902081) on

May 3, 2006.
bRecall they are called simple claims.
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Martingale Pricing (continued)

• In general, the discount process is a martingale in thata

Eπ
i

[
C(k)

Rk

]
=

C(i)

Ri
, i ≤ k. (75)

– Eπ
i is taken under the risk-neutral probability

conditional on the price information up to time i.

• This risk-neutral probability is also called the EMM, or

the equivalentb martingale (probability) measure.

aIn this general formulation, Asian options do qualify.
bTwo probability measures are said to be equivalent if they assign

nonzero probabilities to the same set of states.
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Martingale Pricing (continued)

• Equation (75) holds for all assets, not just options.

• When interest rates are stochastic, the equation becomes

C(i)

M(i)
= Eπ

i

[
C(k)

M(k)

]
, i ≤ k. (76)

– M(j) is the balance in the money market account at

time j using the rollover strategy with an initial

investment of $1.

– It is called the bank account process.

• It says the discount process is a martingale under π.
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Martingale Pricing (continued)

• If interest rates are stochastic, then M(j) is a random

variable.

– M(0) = 1.

– M(j) is known at time j − 1.a

• Identity (76) on p. 565 is the general formulation of

risk-neutral valuation.

aBecause the interest rate for the next period has been revealed then.
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Martingale Pricing (concluded)

Theorem 17 A discrete-time model is arbitrage-free if and

only if there exists an equivalent probability measurea such

that the discount process is a martingale.

aCalled the risk-neutral probability measure.
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Futures Price under the BOPM

• Futures prices form a martingale under the risk-neutral

probability pf.
a

– The expected futures price in the next period is

pfFu+ (1− pf)Fd = F

(
1− d

u− d
u+

u− 1

u− d
d

)
= F.

• Can be generalized to

Fi = Eπ
i [Fk ], i ≤ k,

where Fi is the futures price at time i.

• This equation holds under stochastic interest rates, too.b

aRecall Eq. (70) on p. 524.
bSee Exercise 13.2.11 of the textbook.
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Futures Price under the BOPM (concluded)

• Futures prices do not form a martingale under the

risk-neutral probability p = (R − d)/(u− d).a

– The expected futures price in the next period equals

Fu
R − d

u− d
+ Fd

u−R

u− d

= F
uR− ud

u− d
+ F

ud−Rd

u− d
= FR.

aRecall Eq. (34) on p. 256.
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Martingale Pricing and Numerairea

• The martingale pricing formula (76) on p. 565 uses the

money market account as numeraire.

– It expresses the price of any asset relative to the

money market account.b

• The money market account is not the only choice for

numeraire.

• Suppose asset S’s value is positive at all time.

aJohn Law (1671–1729), “Money to be qualified for exchaning goods

and for payments need not be certain in its value.”
bLeon Walras (1834–1910).
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Martingale Pricing and Numeraire (concluded)

• Choose S as numeraire.

• Martingale pricing says there exists a risk-neutral

probability π under which the relative price of any asset

C is a martingale:

C(i)

S(i)
= Eπ

i

[
C(k)

S(k)

]
, i ≤ k.

– S(j) denotes the price of S at time j.

• So the discount process remains a martingale.a

aThis result is related to Girsanov’s theorem (1960).
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Example

• Take the binomial model with two assets.

• In a period, asset one’s price can go from S to S1 or

S2.

• In a period, asset two’s price can go from P to P1 or

P2.

• Both assets must move up or down at the same time.

• Assume

S1

P1
<

S

P
<

S2

P2
(77)

to rule out arbitrage opportunities.
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Example (continued)

• For any derivative security, let C1 be its price at time

one if asset one’s price moves to S1.

• Let C2 be its price at time one if asset one’s price

moves to S2.

• Replicate the derivative by solving

αS1 + βP1 = C1,

αS2 + βP2 = C2,

using α units of asset one and β units of asset two.
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Example (continued)

• By inequalities (77) on p. 572, α and β have unique

solutions.

• In fact,

α =
P2C1 − P1C2

P2S1 − P1S2
and β =

S2C1 − S1C2

S2P1 − S1P2
.

• The derivative costs

C = αS + βP

=
P2S − PS2

P2S1 − P1S2
C1 +

PS1 − P1S

P2S1 − P1S2
C2.
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Example (continued)

• It is easy to verify that

C

P
= p

C1

P1
+ (1− p)

C2

P2

with

p
Δ
=

(S/P )− (S2/P2)

(S1/P1)− (S2/P2)
.

• By inequalities (77) on p. 572, 0 < p < 1.

• C’s price using asset two as numeraire (i.e., C/P ) is a

martingale under the risk-neutral probability p.

• The expected returns of the two assets are irrelevant.
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Example (concluded)

• In the BOPM, S is the stock and P is the bond.

• Furthermore, p assumes the bond is the numeraire.

• In the binomial option pricing formula (39) on p. 276,

S
∑

b(j;n, pu/R) uses stock as the numeraire.

– Its probability measure pu/R differs from p.

• SN(x) for the call and SN(−x) for the put in the

Black-Scholes formulas (p. 306) use stock as the

numeraire as well.a

aSee Exercise 13.2.12 of the textbook.
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Brownian Motiona

• Brownian motion is a stochastic process {X(t), t ≥ 0 }
with the following properties.

1. X(0) = 0, unless stated otherwise.

2. for any 0 ≤ t0 < t1 < · · · < tn, the random variables

X(tk)−X(tk−1)

for 1 ≤ k ≤ n are independent.b

3. for 0 ≤ s < t, X(t)−X(s) is normally distributed

with mean μ(t− s) and variance σ2(t− s), where μ

and σ �= 0 are real numbers.

aRobert Brown (1773–1858).
bSo X(t)−X(s) is independent of X(r) for r ≤ s < t.
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Brownian Motion (concluded)

• The existence and uniqueness of such a process is

guaranteed by Wiener’s theorem.a

• This process will be called a (μ, σ) Brownian motion

with drift μ and variance σ2.

• Although Brownian motion is a continuous function of t

with probability one, it is almost nowhere differentiable.

• The (0, 1) Brownian motion is called the Wiener process.

• If condition 3 is replaced by “X(t)−X(s) depends only

on t− s,” we have the more general Levy process.b

aNorbert Wiener (1894–1964). He received his Ph.D. from Harvard

in 1912.
bPaul Levy (1886–1971).
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Example

• If {X(t), t ≥ 0 } is the Wiener process, then

X(t)−X(s) ∼ N(0, t− s).

• A (μ, σ) Brownian motion Y = {Y (t), t ≥ 0 } can be

expressed in terms of the Wiener process:

Y (t) = μt+ σX(t). (78)

• Note that

Y (t+ s)− Y (t) ∼ N(μs, σ2s).
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Brownian Motion as Limit of Random Walk

Claim 1 A (μ, σ) Brownian motion is the limiting case of

random walk.

• A particle moves Δx to the right with probability p

after Δt time.

• It moves Δx to the left with probability 1− p.

• Define

Xi
Δ
=

⎧⎨⎩ +1 if the ith move is to the right,

−1 if the ith move is to the left.

– Xi are independent with

Prob[Xi = 1 ] = p = 1− Prob[Xi = −1 ].
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Brownian Motion as Limit of Random Walk (continued)

• Recall

E[Xi ] = 2p− 1,

Var[Xi ] = 1− (2p− 1)2.

• Assume n
Δ
= t/Δt is an integer.

• Its position at time t is

Y (t)
Δ
= Δx (X1 +X2 + · · ·+Xn) .
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Brownian Motion as Limit of Random Walk (continued)

• Therefore,

E[Y (t) ] = n(Δx)(2p− 1),

Var[Y (t) ] = n(Δx)2
[
1− (2p− 1)2

]
.

• With Δx
Δ
= σ

√
Δt and p

Δ
= [ 1 + (μ/σ)

√
Δt ]/2,a

E[Y (t) ] = nσ
√
Δt (μ/σ)

√
Δt = μt,

Var[Y (t) ] = nσ2Δt
[
1− (μ/σ)2Δt

] → σ2t,

as Δt → 0.

aIdentical to Eq. (42) on p. 299!
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Brownian Motion as Limit of Random Walk (concluded)

• Thus, {Y (t), t ≥ 0 } converges to a (μ, σ) Brownian

motion by the central limit theorem.

• Brownian motion with zero drift is the limiting case of

symmetric random walk by choosing μ = 0.

• Similarity to the the BOPM: The p is identical to the

probability in Eq. (42) on p. 299 and Δx = lnu.

• Note that

Var[Y (t+Δt)− Y (t) ]

=Var[ΔxXn+1 ] = (Δx)2 ×Var[Xn+1 ] → σ2Δt.
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Geometric Brownian Motion

• Let X
Δ
= {X(t), t ≥ 0 } be a Brownian motion process.

• The process

{Y (t)
Δ
= eX(t), t ≥ 0 },

is called geometric Brownian motion.

• Suppose further that X is a (μ, σ) Brownian motion.

• By assumption, Y (0) = e0 = 1.
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Geometric Brownian Motion (concluded)

• X(t) ∼ N(μt, σ2t) with moment generating function

E
[
esX(t)

]
= E [Y (t)s ] = eμts+(σ2ts2/2)

from Eq. (27) on p 172.

• In particular,a

E[Y (t) ] = eμt+(σ2t/2),

Var[Y (t) ] = E
[
Y (t)2

]− E[Y (t) ]2

= e2μt+σ2t
(
eσ

2t − 1
)
.

aRecall Eqs. (29) on p. 181.
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An Argument for Long-Term Investmenta

• Suppose the stock follows the geometric Brownian

motion

S(t) = S(0) eN(μt,σ2t) = S(0) etN(μ,σ2/t ), t ≥ 0,

where μ > 0.

• The annual rate of return has a normal distribution:

N

(
μ,

σ2

t

)
.

• The larger the t, the likelier the return is positive.

• The smaller the t, the likelier the return is negative.
aContributed by Dr. King, Gow-Hsing on April 9, 2015. See

http://www.cb.idv.tw/phpbb3/viewtopic.php?f=7&t=1025
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Continuous-Time Financial Mathematics
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A proof is that which convinces a reasonable man;

a rigorous proof is that which convinces an

unreasonable man.

— Mark Kac (1914–1984)

The pursuit of mathematics is a

divine madness of the human spirit.

— Alfred North Whitehead (1861–1947),

Science and the Modern World

c©2023 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 589



Stochastic Integrals

• Use W
Δ
= {W (t), t ≥ 0 } to denote the Wiener process.

• The goal is to develop integrals of X from a class of

stochastic processes,a

It(X)
Δ
=

∫ t

0

X dW, t ≥ 0.

• It(X) is a random variable called the stochastic integral

of X with respect to W .

• The stochastic process { It(X), t ≥ 0 } will be denoted

by
∫
X dW .

aKiyoshi Ito (1915–2008).
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Stochastic Integrals (concluded)

• Typical requirements for X in financial applications are:

– Prob[
∫ t

0
X2(s) ds < ∞ ] = 1 for all t ≥ 0 or the

stronger
∫ t

0
E[X2(s) ] ds < ∞.

– The information set at time t includes the history of

X and W up to that point in time.

– But it contains nothing about the evolution of X or

W after t (nonanticipating, so to speak).

– The future cannot influence the present.
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Ito Integral

• A theory of stochastic integration.

• As with calculus, it starts with step functions.

• A stochastic process {X(t) } is simple if there exist

0 = t0 < t1 < · · ·
such that

X(t) = X(tk−1) for t ∈ [ tk−1, tk), k = 1, 2, . . .

for any realization (see figure on next page).a

aIt is right-continuous.
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Ito Integral (continued)

• The Ito integral of a simple process is defined as

It(X)
Δ
=

n−1∑
k=0

X(tk)[W (tk+1)−W (tk) ], (79)

where tn = t.

– The integrand X is evaluated at tk, not tk+1.

• Define the Ito integral of more general processes as a

limiting random variable of the Ito integral of simple

stochastic processes.
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Ito Integral (continued)

• Let X = {X(t), t ≥ 0 } be a general stochastic process.

• There exists a random variable It(X), unique almost

certainly, such that It(Xn) converges in probability to

It(X) for each sequence of simple stochastic processes

X1, X2, . . . that Xn converge in probability to X .

• If X is continuous with probability one, then It(Xn)

converges in probability to It(X) as

δn
Δ
= max

1≤k≤n
(tk − tk−1)

goes to zero.
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Ito Integral (concluded)

• It is a fundamental fact that
∫
X dW is continuous

almost surely.

• The Ito integral is a martingale.a

Theorem 18 The Ito integral
∫
X dW is a martingale.

• A corollary is the mean value formula

E

[∫ b

a

X dW

]
= 0.

aExercise 14.1.1 covers simple stochastic processes.
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Discrete Approximation and Nonanticipation

• Recall Eq. (79) on p. 594.

• The following simple stochastic process { X̂(t) } can be

used in place of X to approximate
∫ t

0
X dW ,

X̂(s)
Δ
= X(tk−1) for s ∈ [ tk−1, tk), k = 1, 2, . . . , n.

• Note the nonanticipating feature of X̂.

– The information up to time s,

{ X̂(t),W (t), 0 ≤ t ≤ s },

cannot determine the future evolution of X or W .
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Discrete Approximation and Nonanticipation
(concluded)

• Suppose, unlike Eq. (79) on p. 594, we defined the

stochastic integral from

n−1∑
k=0

X(tk+1)[W (tk+1)−W (tk) ].

• Then we would be using the following different simple

stochastic process in the approximation,

Ŷ (s)
Δ
= X(tk) for s ∈ [ tk−1, tk), k = 1, 2, . . . , n.

• This clearly anticipates the future evolution of X .a

aSee Exercise 14.1.2 for an example where it matters.
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Ito Process

• The stochastic process X = {Xt, t ≥ 0 } that solves

Xt = X0 +

∫ t

0

a(Xs, s) ds+

∫ t

0

b(Xs, s) dWs, t ≥ 0

is called an Ito process.

– X0 is a scalar starting point.

– { a(Xt, t) : t ≥ 0 } and { b(Xt, t) : t ≥ 0 } are

stochastic processes satisfying certain regularity

conditions.

– a(Xt, t) is the drift.

– b(Xt, t) is the diffusion.
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Ito Process (continued)

• Typical regularity conditions are:a

– For all T > 0, x ∈ R
n, and 0 ≤ t ≤ T ,

| a(x, t) |+ | b(x, t) | ≤ C(1 + |x |)
for some constant C.b

– (Lipschitz continuity) For all T > 0, x ∈ R
n, and

0 ≤ t ≤ T ,

| a(x, t)− a(y, t) |+ | b(x, t)− b(y, t) | ≤ D |x− y |
for some constant D.

aØksendal (2007).
bThis condition is not needed in time-homogeneous cases, where a

and b do not depend on t.
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Ito Process (continued)

• A shorthanda is the following stochastic differential

equationb (SDE) for the Ito differential dXt,

dXt = a(Xt, t) dt+ b(Xt, t) dWt. (80)

– Or simply

dXt = at dt+ bt dWt.

– This is Brownian motion with an instantaneous drift

at and an instantaneous variance b2t .

• X is a martingale if at = 0.c

aPaul Langevin (1872–1946) in 1904.
bLike any equation, an SDE contains an unknown, the process Xt.
cRecall Theorem 18 (p. 596).
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Ito Process (concluded)

• From calculus, we would expect
∫ t

0
W dW = W (t)2/2.

• But W (t)2/2 is not a martingale, hence wrong!

• The correct answer is [W (t)2 − t ]/2.

• A popular representation of Eq. (80) is

dXt = at dt+ bt
√
dt ξ, (81)

where ξ ∼ N(0, 1).
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Euler Approximation

• Define tn
Δ
= nΔt.

• The following approximation follows from Eq. (81),

X̂(tn+1)

=X̂(tn) + a(X̂(tn), tn)Δt+ b(X̂(tn), tn)ΔW (tn). (82)

• It is called the Euler or Euler-Maruyama method.

• Recall that ΔW (tn) should be interpreted as

W (tn+1)−W (tn),

not W (tn)−W (tn−1)!
a

aRecall Eq. (79) on p. 594.
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Euler Approximation (concluded)

• With the Euler method, one can obtain a sample path

X̂(t1), X̂(t2), X̂(t3), . . .

from a sample path

W (t0),W (t1),W (t2), . . . .

• Under mild conditions, X̂(tn) converges to X(tn).
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More Discrete Approximations

• Under fairly loose regularity conditions, Eq. (82) on

p. 604 can be replaced by

X̂(tn+1)

=X̂(tn) + a(X̂(tn), tn)Δt+ b(X̂(tn), tn)
√
Δt Y (tn).

– Y (t0), Y (t1), . . . are independent and identically

distributed with zero mean and unit variance.
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More Discrete Approximations (concluded)

• An even simpler discrete approximation scheme:

X̂(tn+1)

=X̂(tn) + a(X̂(tn), tn)Δt+ b(X̂(tn), tn)
√
Δt ξ.

– Prob[ ξ = 1 ] = Prob[ ξ = −1 ] = 1/2.

– Note that E[ ξ ] = 0 and Var[ ξ ] = 1.

• This is a binomial model.

• As Δt goes to zero, X̂ converges to X .a

aHe (1990).
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Trading and the Ito Integral

• Consider an Ito process

dSt = μt dt+ σt dWt.

– St is the vector of security prices at time t.

• Let φt be a trading strategy denoting the quantity of

each type of security held at time t.

– Hence the stochastic process φtSt is the value of the

portfolio φt at time t.

• φt dSt
Δ
= φt(μt dt+ σt dWt) is the change in the

portfolio value from the changes in security prices at

time t.
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Trading and the Ito Integral (concluded)

• The equivalent Ito integral,

GT (φ)
Δ
=

∫ T

0

φt dSt =

∫ T

0

φtμt dt+

∫ T

0

φtσt dWt,

measures the gains realized by the trading strategy over

the period [ 0, T ].
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Ito’s Lemmaa

A smooth function of an Ito process is itself an Ito process.

Theorem 19 Suppose f : R → R is twice continuously

differentiable and dX = at dt+ bt dW . Then f(X) is the

Ito process,

f(Xt)

= f(X0) +

∫ t

0

f ′(Xs) as ds+

∫ t

0

f ′(Xs) bs dW

+
1

2

∫ t

0

f ′′(Xs) b
2
s ds

for t ≥ 0.

aIto (1944).
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Ito’s Lemma (continued)

• In differential form, Ito’s lemma becomes

df(X)

= f ′(X) a dt+ f ′(X) b dW +
1

2
f ′′(X) b2 dt (83)

=
[
f ′(X) a+ 1

2 f
′′(X) b2

]
dt+ f ′(X) b dW.

• Compared with calculus, the extra term is boxed.

• A convenient formulation of Ito’s lemma is

df(X) = f ′(X) dX +
1

2
f ′′(X)(dX)2. (84)
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Ito’s Lemma (continued)

• We are supposed to multiply out

(dX)2 = (a dt+ b dW )2 symbolically according to

× dW dt

dW dt 0

dt 0 0

– The (dW )2 = dt entry is justified by a known result.

• Hence (dX)2 = (a dt+ b dW )2 = b2 dt in Eq. (84).

• This form is easy to remember because of its similarity

to the Taylor expansion.
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Ito’s Lemma (continued)

Theorem 20 (Higher-Dimensional Ito’s Lemma) Let

W1,W2, . . . ,Wn be independent Wiener processes and

X
Δ
= (X1, X2, . . . , Xm) be a vector process. Suppose

f : Rm → R is twice continuously differentiable and Xi is

an Ito process with dXi = ai dt+
∑n

j=1 bij dWj. Then

df(X) is an Ito process with the differential,

df(X) =
m∑
i=1

fi(X) dXi +
1

2

m∑
i=1

m∑
k=1

fik(X) dXi dXk,

where fi
Δ
= ∂f/∂Xi and fik

Δ
= ∂2f/∂Xi∂Xk.
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Ito’s Lemma (continued)

• The multiplication table for Theorem 20 is

× dWi dt

dWk δik dt 0

dt 0 0

in which

δik =

⎧⎨⎩ 1, if i = k,

0, otherwise.
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Ito’s Lemma (continued)

• In applying the higher-dimensional Ito’s lemma, usually

one of the variables, say X1, is time t and dX1 = dt.

• In this case, b1j = 0 for all j and a1 = 1.

• As an example, let

dXt = at dt+ bt dWt.

• Consider the process f(Xt, t).
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Ito’s Lemma (continued)

• Then

df

=
∂f

∂Xt
dXt +

∂f

∂t
dt+

1

2

∂2f

∂X2
t

(dXt)
2

=
∂f

∂Xt
(at dt+ bt dWt) +

∂f

∂t
dt

+
1

2

∂2f

∂X2
t

(at dt+ bt dWt)
2

=

(
∂f

∂Xt
at +

∂f

∂t
+

1

2

∂2f

∂X2
t

b2t

)
dt+

∂f

∂Xt
bt dWt. (85)
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Ito’s Lemma (continued)

Theorem 21 (Alternative Ito’s Lemma) Let

W1,W2, . . . ,Wm be Wiener processes and

X
Δ
= (X1, X2, . . . , Xm) be a vector process. Suppose

f : Rm → R is twice continuously differentiable and Xi is

an Ito process with dXi = ai dt+ bi dWi. Then df(X) is the

following Ito process,

df(X) =
m∑
i=1

fi(X) dXi +
1

2

m∑
i=1

m∑
k=1

fik(X) dXi dXk.
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Ito’s Lemma (concluded)

• The multiplication table for Theorem 21 is

× dWi dt

dWk ρik dt 0

dt 0 0

• Above, ρik denotes the correlation between dWi and

dWk.
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Geometric Brownian Motion

• Consider geometric Brownian motion

Y (t)
Δ
= eX(t).

– X(t) is a (μ, σ) Brownian motion.

– By Eq. (78) on p. 579,

dX = μ dt+ σ dW.

• Note that

∂Y

∂X
= Y,

∂2Y

∂X2
= Y.
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Geometric Brownian Motion (continued)

• Ito’s formula (83) on p. 611 implies

dY = Y dX + (1/2)Y (dX)2

= Y (μ dt+ σ dW ) + (1/2)Y (μ dt+ σ dW )2

= Y (μ dt+ σ dW ) + (1/2)Y σ2 dt.

• Hence

dY

Y
=

(
μ+ σ2/2

)
dt+ σ dW. (86)

• The annualized instantaneous rate of return is μ+ σ2/2

(not μ).a

aConsistent with Lemma 10 (p. 304).
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Geometric Brownian Motion (continued)

• Alternatively, from Eq. (78) on p. 579,

Xt = X0 + μt+ σWt,

admits an explicit (strong) solution.

• Hence

Yt = Y0 e
μt+σWt , (87)

a strong solution to the SDE (86) where Y0 = eX0 .
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Geometric Brownian Motion (concluded)

• On the other hand, suppose

dY

Y
= μ dt+ σ dW.

• Then X(t)
Δ
= lnY (t) follows

dX =
(
μ− σ2/2

)
dt+ σ dW.
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Exponential Martingale

• The Ito process

dXt = btXt dWt

is a martingale.a

• It is called an exponential martingale.

• By Ito’s formula (83) on p. 611,

X(t) = X(0) exp

[
−1

2

∫ t

0

b2s ds+

∫ t

0

bs dWs

]
.

aRecall Theorem 18 (p. 596).
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Product of Geometric Brownian Motion Processes

• Let

dY

Y
= a dt+ b dWY ,

dZ

Z
= f dt+ g dWZ .

• Assume dWY and dWZ have correlation ρ.

• Consider the Ito process

U
Δ
= Y Z.
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Product of Geometric Brownian Motion Processes
(continued)

• Apply Ito’s lemma (Theorem 21 on p. 617):

dU = Z dY + Y dZ + dY dZ

= ZY (a dt+ b dWY ) + Y Z(f dt+ g dWZ)

+Y Z(a dt+ b dWY )(f dt+ g dWZ)

= U(a+ f + bgρ) dt+ Ub dWY + Ug dWZ .

• The product of correlated geometric Brownian motion

processes thus remains geometric Brownian motion.

c©2023 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 625



Product of Geometric Brownian Motion Processes
(continued)

• Note that

Y = exp
[(
a− b2/2

)
dt+ b dWY

]
,

Z = exp
[(
f − g2/2

)
dt+ g dWZ

]
,

U = exp
[ (

a+ f − (
b2 + g2

)
/2
)
dt+ b dWY + g dWZ

]
.

• They are the strong solutions.
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Product of Geometric Brownian Motion Processes
(concluded)

• lnU is Brownian motion with a mean equal to the sum

of the means of lnY and lnZ.

• This holds even if Y and Z are correlated.

• Finally, lnY and lnZ have correlation ρ.

c©2023 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 627



Quotients of Geometric Brownian Motion Processes

• Suppose Y and Z are drawn from p. 624.

• Let

U
Δ
= Y/Z.

• We now show thata

dU

U
= (a− f + g2 − bgρ) dt+ b dWY − g dWZ .

(88)

• Keep in mind that dWY and dWZ have correlation ρ.

aExercise 14.3.6 of the textbook is erroneous.
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Quotients of Geometric Brownian Motion Processes
(concluded)

• The multidimensional Ito’s lemma (Theorem 21 on

p. 617) can be employed to show that

dU

= (1/Z) dY − (Y/Z2) dZ − (1/Z2) dY dZ + (Y/Z3) (dZ)2

= (1/Z)(aY dt+ bY dWY )− (Y/Z2)(fZ dt+ gZ dWZ)

−(1/Z2)(bgY Zρ dt) + (Y/Z3)(g2Z2 dt)

= U(a dt+ b dWY )− U(f dt+ g dWZ)

−U(bgρ dt) + U(g2 dt)

= U(a− f + g2 − bgρ) dt+ Ub dWY − Ug dWZ .
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Forward Price

• Suppose S follows

dS

S
= μ dt+ σ dW.

• Consider functional F (S, t)
Δ
= Sey(T−t) for constants y

and T .

• As F is a function of two variables, we need the various

partial derivatives of F (S, t) with respect to S and t.a

aIn partial differentiation with respect to one variable, other variables

are held constant. Contributed by Mr. Sun, Ao (R05922147) on April 26,

2017.
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Forward Prices (continued)

• Now,

∂F

∂S
= ey(T−t),

∂2F

∂S2
= 0,

∂F

∂t
= −ySey(T−t).

• Thena

dF = ey(T−t) dS − ySey(T−t) dt

= Sey(T−t) (μ dt+ σ dW )− ySey(T−t) dt

= F (μ− y) dt+ Fσ dW.

aOne can also prove it by Eq. (85) on p. 616.
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Forward Prices (concluded)

• Thus F follows

dF

F
= (μ− y) dt+ σ dW.

• This result has applications in forward and futures

contracts.

• In Eq. (60) on p. 492, μ = r = y.

• So
dF

F
= σ dW,

a martingale.a

aIt is consistent with p. 568. Furthermore, it explains why Black’s

formulas (68)–(69) on p. 520 use the volatility σ of the stock.
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Ornstein-Uhlenbeck (OU) Process

• The OU process:

dX = −κX dt+ σ dW,

where κ, σ ≥ 0.

• For t0 ≤ s ≤ t and X(t0) = x0, it is known that

E[X(t) ] = e−κ(t−t0) E[x0 ],

Var[X(t) ] =
σ2

2κ

[
1− e−2κ(t−t0)

]
+ e−2κ(t−t0) Var[x0 ],

Cov[X(s), X(t) ] =
σ2

2κ
e−κ(t−s)

[
1− e−2κ(s−t0)

]

+e−κ(t+s−2t0) Var[x0 ].

c©2023 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 633



Ornstein-Uhlenbeck Process (continued)

• X(t) is normally distributed if x0 is a constant or

normally distributed.

– E[x0 ] = x0 and Var[x0 ] = 0 if x0 is a constant.

• X is said to be a normal process.

• The OU process has the following mean-reverting

property if κ > 0.

– When X > 0, X is pulled toward zero.

– When X < 0, it is pulled toward zero again.

c©2023 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 634



Ornstein-Uhlenbeck Process (continued)

• A generalized version:

dX = κ(μ−X) dt+ σ dW,

where κ, σ ≥ 0.

• Given X(t0) = x0, a constant, it is known that

E[X(t) ] = μ+ (x0 − μ) e−κ(t−t0), (89)

Var[X(t) ] =
σ2

2κ

[
1− e−2κ(t−t0)

]
,

for t0 ≤ t.
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Ornstein-Uhlenbeck Process (concluded)

• The mean and standard deviation are roughly μ and

σ/
√
2κ , respectively.

• For large t, the probability of X < 0 is extremely

unlikely in any finite time interval when μ > 0 is large

relative to σ/
√
2κ .

• The process is mean-reverting.

– X tends to move toward μ.

– Useful for modeling term structure, stock price

volatility, and stock price return.a

aSee Knutson, Wimmer, Kuhnen, & Winkielman (2008) for the bio-

logical basis for mean reversion in financial decision making.
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Square-Root Process

• Suppose X is an OU process.

• Consider

V
Δ
= X2.

• Ito’s lemma says V has the differential,

dV = 2X dX + (dX)2

= 2
√
V (−κ

√
V dt+ σ dW ) + σ2 dt

=
(−2κV + σ2

)
dt+ 2σ

√
V dW,

a square-root process.
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Square-Root Process (continued)

• In general, the square-root process has the SDE,

dX = κ(μ−X) dt+ σ
√
X dW,

where κ, σ > 0, μ ≥ 0, and X(0) ≥ 0 is a constant.

• Like the OU process, it possesses mean reversion: X

tends to move toward μ, but the volatility is

proportional to
√
X instead of a constant.
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Square-Root Process (continued)

• When X hits zero and μ ≥ 0, the probability is one

that it will not move below zero.

– Zero is a reflecting boundary.

• Hence, the square-root process is a good candidate for

modeling interest rates.a

• The OU process, in contrast, allows negative interest

rates.b

• The two processes are related.c

aCox, Ingersoll, & Ross (1985).
bBut some rates did go negative in Europe in 2015.
cRecall p. 637.
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Square-Root Process (concluded)

• The random variable 2cX(t) follows the noncentral

chi-square distribution,a

χ

(
4κμ

σ2
, 2cX(0) e−κt

)
,

where c
Δ
= (2κ/σ2)(1− e−κt)−1 and μ > 0.

• Given X(0) = x0, a constant,

E[X(t) ] = x0e
−κt + μ

(
1− e−κt

)
,

Var[X(t) ] = x0
σ2

κ

(
e−κt − e−2κt

)
+ μ

σ2

2κ

(
1− e−κt

)2
,

for t ≥ 0.
aWilliam Feller (1906–1970) in 1951.
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