Problems; the Smile^a

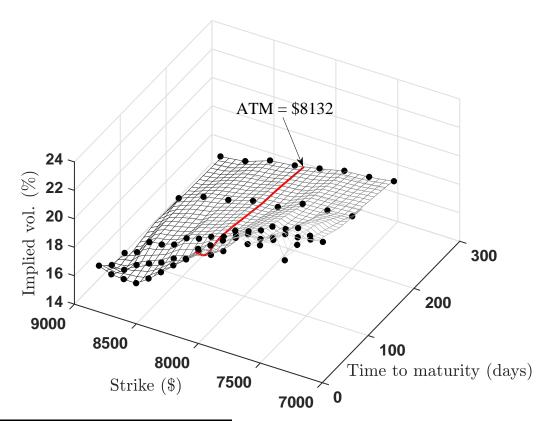
- Options written on the same underlying asset usually do not produce the same implied volatility.
- A typical pattern is a "smile" in relation to the strike price.
 - The implied volatility is lowest for at-the-money options.
 - It becomes higher the further the option is in- or out-of-the-money.
- This is common for foreign exchange options.

^aAlexander (2001).

Problems; the Smile (concluded)

- Other patterns have also been observed.
- For stock options, low-strike options tend to have higher implied volatilities.
- One explanation is the high demand for insurance provided by out-of-the-money puts.
- Another reason is volatility rises when stock falls,^a making in-the-money calls more likely to become in the money again.

^aThis is called the leverage effect (Black, 1992).



^aThe underlying Taiwan Stock Exchange Capitalization Weighted Stock Index (TAIEX) closed at 8132. Plot supplied by Mr. Lok, U Hou (D99922028) on December 6, 2017.

Tackling the Smile

- To address this issue, volatilities are often combined to produce a composite implied volatility.
- This practice is not sound theoretically.
- The existence of different implied volatilities for options on the same underlying asset shows the Black-Scholes model cannot be literally true.

Binomial Tree Algorithms for American Puts

- Early exercise has to be considered.
- The binomial tree algorithm starts with the terminal payoffs

$$\max(0, X - Su^j d^{n-j})$$

and applies backward induction.

- At each intermediate node, compare the payoff if exercised and the *continuation value*.
- Keep the larger one.

Bermudan Options

- Some American options can be exercised only at discrete time points instead of continuously.
- They are called Bermudan options.
- Their pricing algorithm is identical to that for American options.
- But early exercise is considered for only those nodes when early exercise is permitted.

Time-Dependent Volatility^a

- Suppose the (instantaneous) volatility can change over time but otherwise predictable: $\sigma(t)$ instead of σ .
- In the limit, the variance of $\ln(S_{\tau}/S)$ is

$$\int_0^\tau \sigma^2(t) \, dt$$

rather than $\sigma^2 \tau$.

• The annualized volatility to be used in the Black-Scholes formula should now be

$$\sqrt{\frac{\int_0^\tau \sigma^2(t) \, dt}{\tau}}$$

^aMerton (1973).

Time-Dependent Instantaneous Volatility (concluded)

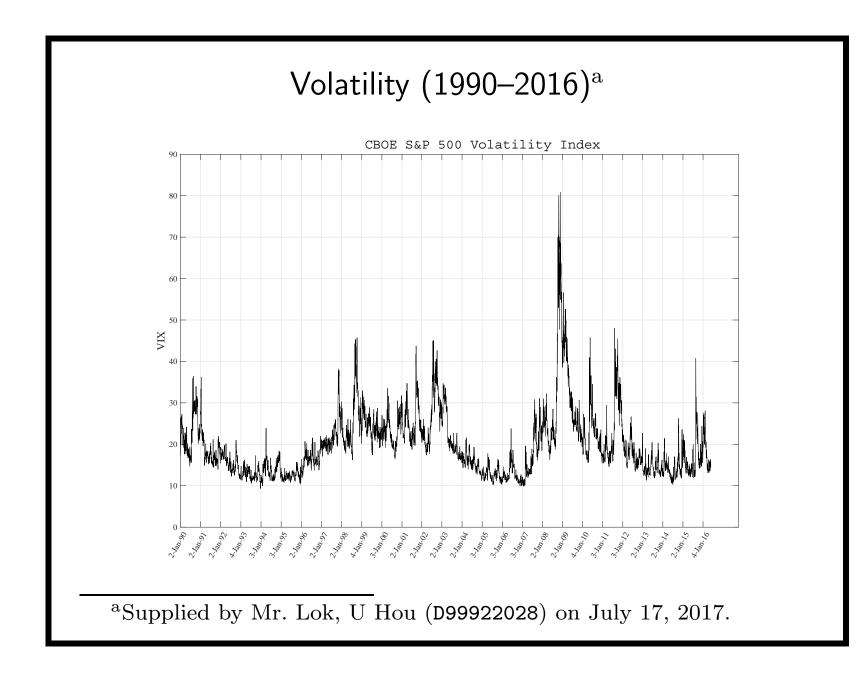
 \bullet For the binomial model, u and d depend on time:

$$u = e^{\sigma(t)\sqrt{\tau/n}},$$

$$d = e^{-\sigma(t)\sqrt{\tau/n}}.$$

• But how to make the binomial tree combine?^a

^aAmin (1991); C. I. Chen (R98922127) (2011).



Time-Dependent Short Rates

- Suppose the short rate (i.e., the one-period spot rate or forward rate) changes over time but predictable.
- The annual riskless rate r in the Black-Scholes formula should be the spot rate with a time to maturity equal to τ .
- In other words,

$$r = \frac{\sum_{i=0}^{n-1} r_i}{\tau},$$

where r_i is the continuously compounded short rate measured in periods for period i.^a

• Will the binomial tree fail to combine?

^aThat is, one-period forward rate.

Trading Days and Calendar Days

- Interest accrues based on the calendar day.
- But σ is usually calculated based on trading days only.
 - Stock price seems to have lower volatilities when the exchange is closed.^a
- How to harmonize these two different times into the Black-Scholes formula and binomial tree algorithms?^b

^aFama (1965); K. French (1980); K. French & Roll (1986).

^bRecall p. 163 about dating issues.

Trading Days and Calendar Days (continued)

- Think of σ as measuring the annualized volatility of stock price one year from now.
- Suppose a year has m (say 253) trading days.
- We can replace σ in the Black-Scholes formula with^a

$$\sigma \sqrt{\frac{365}{m}} \times \frac{\text{number of trading days to expiration}}{\text{number of calendar days to expiration}}$$

^aD. French (1984).

Trading Days and Calendar Days (concluded)

- This works only for European options.
- How about binomial tree algorithms?^a

^aContributed by Mr. Lu, Zheng-Liang (D00922011) in 2015.

Options on a Stock That Pays Dividends

- Early exercise must be considered.
- Proportional dividend payout model is tractable (see text).
 - The dividend amount is a constant proportion of the *prevailing* stock price.
- In general, the corporate dividend policy is a complex issue.

Known Dividends

- Constant dividends introduce complications.
- Use D to denote the amount of the dividend.
- Suppose an ex-dividend date falls in the first period.
- At the end of that period, the possible stock prices are Su D and Sd D.
- Follow the stock price one more period.
- The number of possible stock prices is not three but four: (Su D) u, (Su D) d, (Sd D) u, (Sd D) d.
 - The binomial tree no longer combines.

$$(Su - D) u$$

$$Su - D$$

$$(Su - D) d$$

$$S$$

$$(Sd - D) u$$

$$Sd - D$$

$$(Sd - D) d$$

An Ad-Hoc Approximation

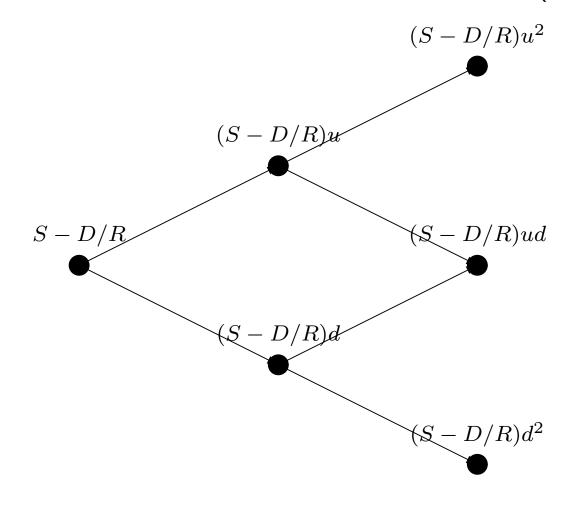
- Use the Black-Scholes formula with the stock price reduced by the PV of the dividends.^a
- This essentially decomposes the stock price into a riskless one paying known dividends and a risky one.
- The riskless component at any time is the PV of future dividends during the life of the option.
 - Then, σ is the volatility of the process followed by the *risky* component.
- The stock price, between two adjacent ex-dividend dates, follows the same lognormal distribution.

^aRoll (1977); Heath & Jarrow (1988).

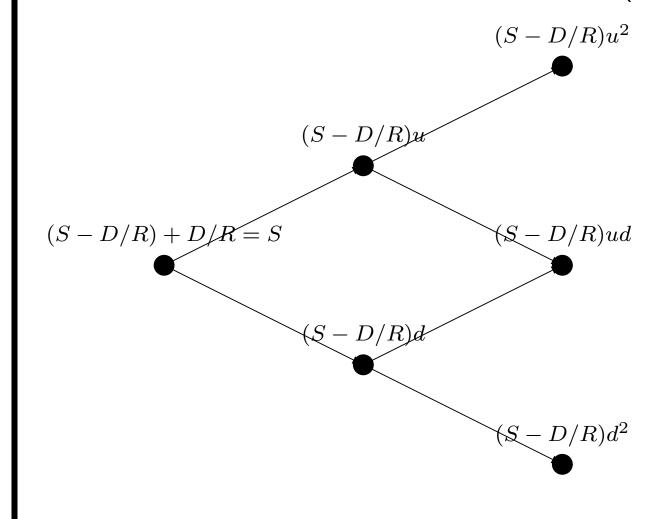
An Ad-Hoc Approximation (concluded)

- Start with the current stock price minus the PV of future dividends before expiration.
- Develop the binomial tree for the new stock price as if there were no dividends.
- Then add to each stock price on the tree the PV of all future dividends before expiration.
- American option prices can be computed as before on this tree of stock prices.

The Ad-Hoc Approximation vs. P. 326 (Step 1)



The Ad-Hoc Approximation vs. P. 326 (Step 2)



The Ad-Hoc Approximation vs. P. 326^a

- The trees are different.
- The stock prices at maturity are also different.

$$- (Su - D) u, (Su - D) d, (Sd - D) u, (Sd - D) d$$
(p. 326).

$$-(S-D/R)u^{2}, (S-D/R)ud, (S-D/R)d^{2}$$
 (ad hoc).

• Note that, as d < R < u,

$$(Su - D) u > (S - D/R)u^2,$$

$$(Sd - D) d < (S - D/R)d^2,$$

^aContributed by Mr. Yang, Jui-Chung (D97723002) on March 18, 2009.

The Ad-Hoc Approximation vs. P. 326 (concluded)

- So the ad hoc approximation has a smaller dynamic range.
- This explains why in practice the volatility is usually increased when using the ad hoc approximation.

A General Approach^a

- A new tree structure.
- No approximation assumptions are made.
- A mathematical proof that the tree can always be constructed.
- The actual performance is quadratic except in pathological cases (see pp. 791ff).
- Other approaches include adjusting σ and approximating the known dividend with a dividend yield.^b

^aDai (B82506025, R86526008, D8852600) & Lyuu (2004). Also Arealy & Rodrigues (2013).

^bGeske & Shastri (1985). It works well for American options but not European ones (Dai, 2009).

Continuous Dividend Yields

- Dividends are paid continuously.
 - Approximates a broad-based stock market portfolio.
- The payment of a continuous dividend yield at rate q reduces the growth rate of the stock price by q.
 - A stock that grows from S to S_{τ} with a continuous dividend yield of q would have grown from S to $S_{\tau}e^{q\tau}$ without the dividends.
- A European option has the same value as one on a stock with price $Se^{-q\tau}$ that pays no dividends.^a

^aIn pricing European options, only the distribution of S_{τ} matters.

Continuous Dividend Yields (continued)

• So the Black-Scholes formulas hold with S replaced by $Se^{-q\tau}$:

$$C = Se^{-q\tau}N(x) - Xe^{-r\tau}N(x - \sigma\sqrt{\tau}), \tag{44}$$

$$P = Xe^{-r\tau}N(-x + \sigma\sqrt{\tau}) - Se^{-q\tau}N(-x),$$
(44')

where

$$x \stackrel{\triangle}{=} \frac{\ln(S/X) + (r - q + \sigma^2/2) \tau}{\sigma \sqrt{\tau}}.$$

• Formulas (44) and (44') remain valid as long as the dividend yield is predictable.

^aMerton (1973).

Continuous Dividend Yields (continued)

- To run binomial tree algorithms, replace u with $ue^{-q\Delta t}$ and d with $de^{-q\Delta t}$, where $\Delta t \stackrel{\Delta}{=} \tau/n$.
 - The reason: The stock price grows at an expected rate of r-q in a risk-neutral economy.
- Other than the changes, binomial tree algorithms stay the same.
 - In particular, p should use the original u and $d!^{a}$

^aContributed by Ms. Wang, Chuan-Ju (F95922018) on May 2, 2007.

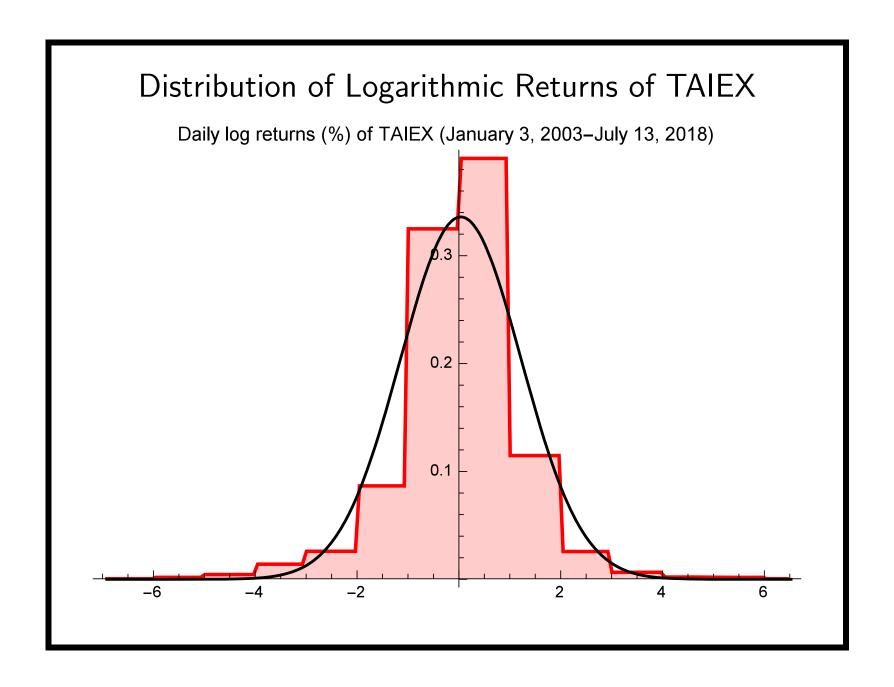
Continuous Dividend Yields (concluded)

• Alternatively, pick the risk-neutral probability as

$$\frac{e^{(r-q)\Delta t} - d}{u - d},\tag{45}$$

where $\Delta t \stackrel{\Delta}{=} \tau/n$.

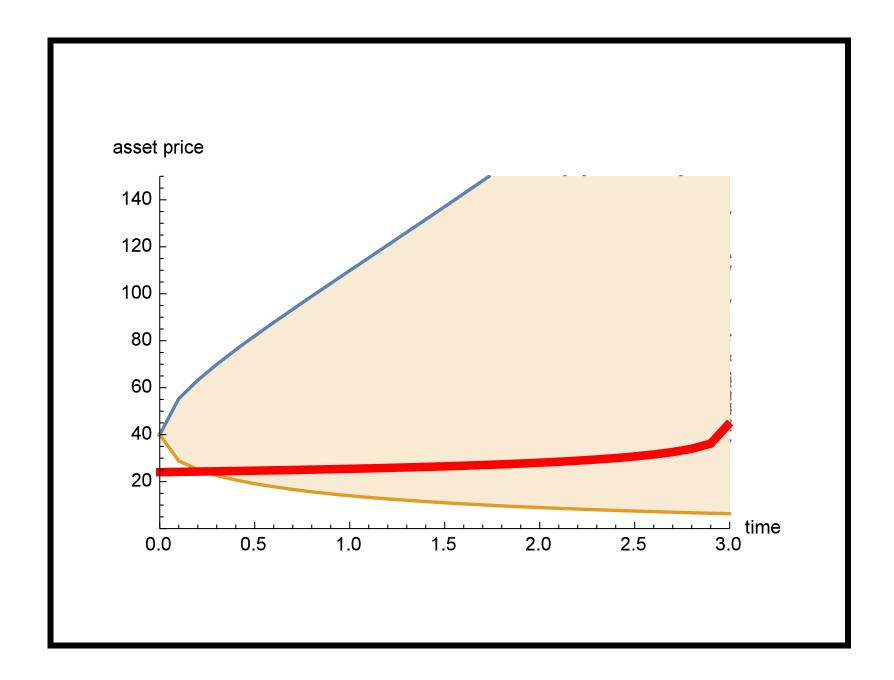
- The reason: The stock price grows at an expected rate of r-q in a risk-neutral economy.
- The u and d remain unchanged.
- Except the change in Eq. (45), binomial tree algorithms stay the same as if there were no dividends.

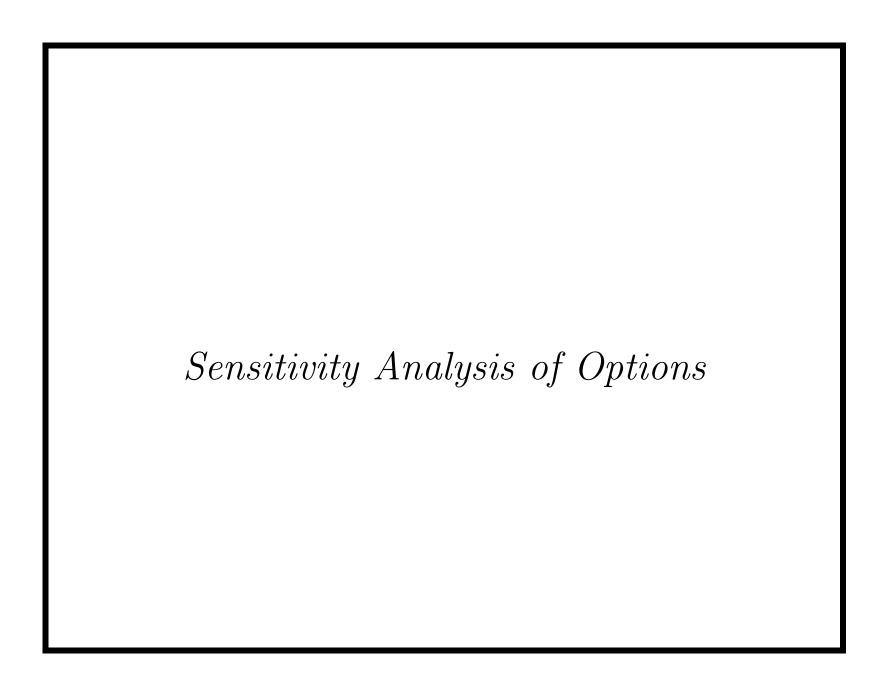


Exercise Boundaries of American Options (in the Continuous-Time Model)^a

- The exercise boundary is a nondecreasing function of t for American puts (see the plot next page).
- The exercise boundary is a nonincreasing function of t for American calls.

^aSee Section 9.7 of the textbook for the tree analog.





Cleopatra's nose, had it been shorter, the whole face of the world would have been changed. — Blaise Pascal (1623–1662)	

Sensitivity Measures ("The Greeks")

- How the value of a security changes relative to changes in a given parameter is key to hedging.
 - Duration, for instance.
- Let $x \stackrel{\Delta}{=} \frac{\ln(S/X) + (r + \sigma^2/2) \tau}{\sigma \sqrt{\tau}}$ (recall p. 304).
- Recall that

$$N'(y) = \frac{e^{-y^2/2}}{\sqrt{2\pi}} > 0,$$

the density function of standard normal distribution.

Delta

• Defined as

$$\Delta \stackrel{\Delta}{=} \frac{\partial f}{\partial S}.$$

- -f is the price of the derivative.
- -S is the price of the underlying asset.
- The delta of a portfolio of derivatives on the same underlying asset is the sum of their individual deltas.^a
- The delta used in the BOPM (p. 250) is the discrete analog.
- The delta of a long stock is 1.

^aElementary calculus.

Delta (continued)

• The delta of a European call on a non-dividend-paying stock equals

$$\frac{\partial C}{\partial S} = N(x) > 0. \tag{46}$$

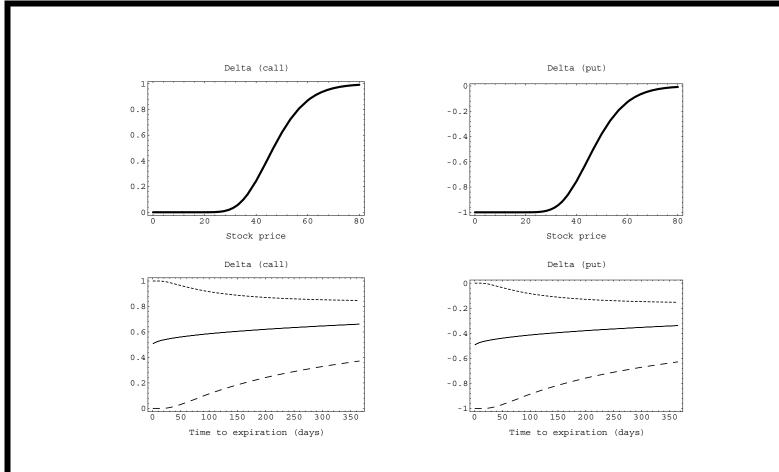
• The delta of a European put equals

$$\frac{\partial P}{\partial S} = N(x) - 1 = -N(-x) < 0. \tag{47}$$

• So the deltas of a call and an otherwise identical put cancel each other when N(x) = 1/2, i.e., when^a

$$X = Se^{(r+\sigma^2/2)\tau}. (48)$$

^aThe straddle (p. 214) C + P then has zero delta!



Dotted curve: in-the-money call or out-of-the-money put.

Solid curves: at-the-money options (X = 50).

Dashed curves: out-of-the-money calls or in-the-money puts.

Delta (continued)

- Suppose the stock pays a continuous dividend yield of q.
- Let

$$x \stackrel{\Delta}{=} \frac{\ln(S/X) + (r - q + \sigma^2/2) \tau}{\sigma \sqrt{\tau}} \tag{49}$$

(recall p. 335).

• Then

$$\frac{\partial C}{\partial S} = e^{-q\tau} N(x) > 0,$$

$$\frac{\partial P}{\partial S} = -e^{-q\tau} N(-x) < 0$$

Delta (continued)

- Consider an X_1 -strike call and an X_2 -strike put, $X_1 \geq X_2$.
- They are otherwise identical.
- Let

$$x_i \stackrel{\Delta}{=} \frac{\ln(S/X_i) + (r - q + \sigma^2/2)\tau}{\sigma\sqrt{\tau}}.$$
 (50)

- Then their deltas sum to zero when $x_1 = -x_2$.
- That implies

$$\frac{S}{X_1} = \frac{X_2}{S} e^{-(2r - 2q + \sigma^2)\tau}.$$
 (51)

^aThe strangle (p. 216) C + P then has zero delta!

Delta (concluded)

- Suppose we demand $X_1 = X_2 = X$ and have a straddle.
- Then

$$X = Se^{(r-q+\sigma^2/2)\,\tau}$$

leads to a straddle with zero delta.

- This generalizes Eq. (48) on p. 345.
- When $C(X_1)$'s delta and $P(X_2)$'s delta sum to zero, does the portfolio $C(X_1) P(X_2)$ have zero value?
- In general, no.

Delta Neutrality

- A position with a total delta equal to 0 is delta-neutral.
 - A delta-neutral portfolio is immune to *small* price changes in the underlying asset.
- Creating one serves for hedging purposes.
 - A portfolio consisting of a call and $-\Delta$ shares of stock is delta-neutral.
 - Short Δ shares of stock to hedge a long call.
 - Long Δ shares of stock to hedge a short call.
- In general, hedge a position in a security with delta Δ_1 by shorting Δ_1/Δ_2 units of a security with delta Δ_2 .

Theta (Time Decay)

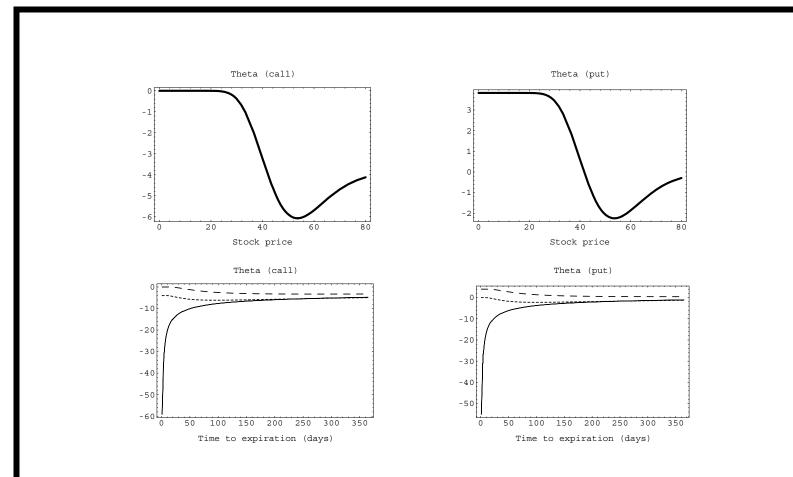
- Defined as the rate of change of a security's value with respect to time, or $\Theta \stackrel{\triangle}{=} -\partial f/\partial \tau = \partial f/\partial t$.
- For a European call on a non-dividend-paying stock,

$$\Theta = -\frac{SN'(x)\,\sigma}{2\sqrt{\tau}} - rXe^{-r\tau}N(x - \sigma\sqrt{\tau}) < 0.$$

- The call loses value with the passage of time.
- For a European put,

$$\Theta = -\frac{SN'(x)\,\sigma}{2\sqrt{\tau}} + rXe^{-r\tau}N(-x + \sigma\sqrt{\tau}).$$

- Can be negative or positive.
- Both are consistent with the plots on p. 196.



Dotted curve: in-the-money call or out-of-the-money put.

Solid curves: at-the-money options.

Dashed curve: out-of-the-money call or in-the-money put.

Theta (concluded)

- Suppose the stock pays a continuous dividend yield of q.
- Define x as in Eq. (49) on p. 347.
- For a European call, add an extra term to the earlier formula for the theta:

$$\Theta = -\frac{SN'(x)\sigma}{2\sqrt{\tau}} - rXe^{-r\tau}N(x - \sigma\sqrt{\tau}) + qSe^{-q\tau}N(x).$$

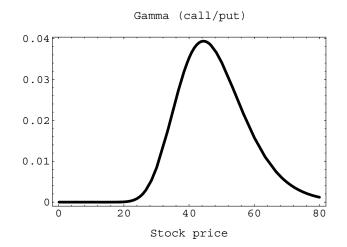
• For a European put, add an extra term to the earlier formula for the theta:

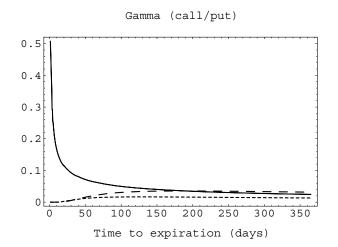
$$\Theta = -\frac{SN'(x)\sigma}{2\sqrt{\tau}} + rXe^{-r\tau}N(-x + \sigma\sqrt{\tau}) - qSe^{-q\tau}N(-x).$$

Gamma

- Defined as the rate of change of its delta with respect to the price of the underlying asset, or $\Gamma \stackrel{\triangle}{=} \partial^2 \Pi / \partial S^2$.
- Measures how sensitive delta is to changes in the price of the underlying asset.
- In practice, a portfolio with a high gamma needs be rebalanced more often to maintain delta neutrality.
- Roughly, delta \sim duration, and gamma \sim convexity.
- The gamma of a European call or put on a non-dividend-paying stock is

$$N'(x)/(S\sigma\sqrt{\tau}) > 0.$$





Dotted lines: in-the-money call or out-of-the-money put.

Solid lines: at-the-money option.

Dashed lines: out-of-the-money call or in-the-money put.

Gamma (concluded)

• Gamma is maximized when the option is nearly at the money, i.e.,

$$S = Xe^{-(r+3\sigma^2/2)\tau}.$$

- As the at-the-money option approaches expiration, its gamma tends to rise.
- The gammas of other options, however, tend to zero.

Vega^a (Lambda, Kappa, Sigma, Zeta)

• Defined as the rate of change of a security's value with respect to the volatility of the underlying asset

$$\Lambda \stackrel{\Delta}{=} \frac{\partial f}{\partial \sigma}.$$

- Volatility often changes over time.
- A security with a high vega is very sensitive to changes to or estimation error in volatility.
- The vega of a European call or put on a non-dividend-paying stock is $S\sqrt{\tau} N'(x) > 0$.
 - So higher volatility raises the option value.

^aVega is not Greek. Alexander (2001), "This is a term that was invented by Americans, and intended to sound like a Greek letter."

Vega (continued)

• Note that^a

$$\Lambda = \tau \sigma S^2 \Gamma.$$

• If the stock pays a continuous dividend yield of q, then

$$\Lambda = Se^{-q\tau} \sqrt{\tau} \, N'(x),$$

where x is defined in Eq. (49) on p. 347.

• Vega is maximized when x = 0, i.e., when

$$S = Xe^{-(r-q+\sigma^2/2)\tau}.$$

 \bullet Vega declines very fast as S moves away from that peak.

^aReiss & Wystup (2001).

Vega (continued)

- Now consider a portfolio consisting of an X_1 -strike call C and a short X_2 -strike put $P, X_1 \geq X_2$.
- The options' vegas cancel out when

$$x_1 = -x_2,$$

where x_i are defined in Eq. (50) on p. 348.

- This also leads to Eq. (51) on p. 348.
 - Recall the same condition led to zero delta for the strangle C + P (p. 348).

Vega (concluded)

• Note that $\tau \to 0$ implies

$$\Lambda \to 0$$

(which answers the question on p. 309).

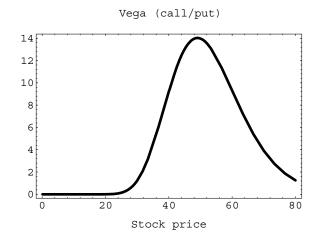
• The Black-Scholes formula (p. 304) implies

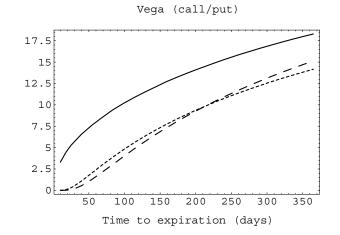
$$C \rightarrow S,$$
 $P \rightarrow Xe^{-r\tau},$

as
$$\sigma \to \infty$$
.

• These boundary conditions are handy for some numerical methods.

aRecall that $C \ge \max(S - Xe^{-r\tau}, 0)$ by Exercise 8.3.2 of the text and $P \ge \max(Xe^{-r\tau} - S, 0)$ by Lemma 4 (p. 234).





Dotted curve: in-the-money call or out-of-the-money put.

Solid curves: at-the-money option.

Dashed curve: out-of-the-money call or in-the-money put.

Rho

• Defined as the rate of change in its value with respect to interest rates

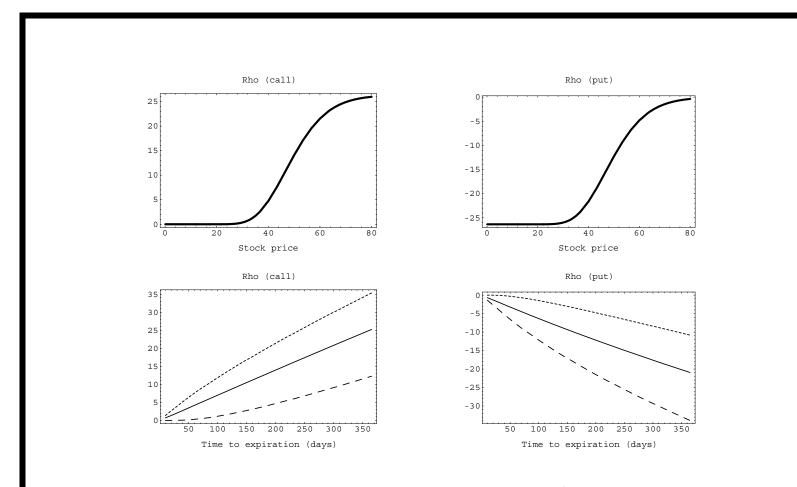
$$\rho \stackrel{\Delta}{=} \frac{\partial f}{\partial r}.$$

• The rho of a European call on a non-dividend-paying stock is

$$X\tau e^{-r\tau}N(x-\sigma\sqrt{\tau})>0.$$

• The rho of a European put on a non-dividend-paying stock is

$$-X\tau e^{-r\tau}N(-x+\sigma\sqrt{\tau})<0.$$



Dotted curves: in-the-money call or out-of-the-money put.

Solid curves: at-the-money option.

Dashed curves: out-of-the-money call or in-the-money put.

Numerical Greeks

- Needed when closed-form formulas do not exist.
- Take delta as an example.
- A standard method computes the finite difference,

$$\frac{f(S+\Delta S)-f(S-\Delta S)}{2\Delta S}.$$

• The computation time roughly doubles that for evaluating the derivative security itself.

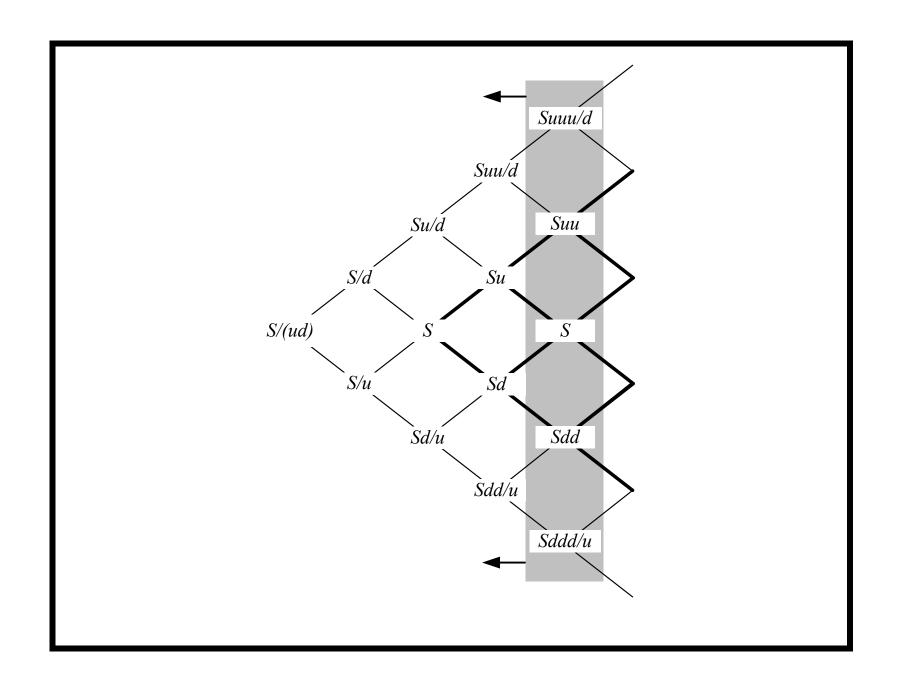
An Alternative Numerical Delta^a

- Use intermediate results of the binomial tree algorithm.
- When the algorithm reaches the end of the first period, f_u and f_d are computed.
- These values correspond to derivative values at stock prices Su and Sd, respectively.
- Delta is approximated by

$$\frac{f_u - f_d}{Su - Sd}. (52)$$

• Essentially zero extra cost.

^aPelsser & Vorst (1994).



Numerical Gamma

- At the stock price (Suu + Sud)/2, delta is approximately $(f_{uu} f_{ud})/(Suu Sud)$.
- At the stock price (Sud + Sdd)/2, delta is approximately $(f_{ud} f_{dd})/(Sud Sdd)$.
- Gamma is the rate of change in deltas between (Suu + Sud)/2 and (Sud + Sdd)/2, that is,

$$\frac{\frac{f_{uu} - f_{ud}}{Suu - Sud} - \frac{f_{ud} - f_{dd}}{Sud - Sdd}}{(Suu - Sdd)/2}.$$
 (53)

Alternative Numerical Delta and Gamma^a

- Let $\epsilon \equiv \ln u$.
- Think in terms of $\ln S$.
- Then

$$\left(\frac{f_u - f_d}{2\epsilon}\right) \frac{1}{S}$$

approximates the numerical delta.

• And

$$\left(\frac{f_{uu} - 2f_{ud} + f_{dd}}{\epsilon^2} - \frac{f_{uu} - f_{dd}}{2\epsilon}\right) \frac{1}{S^2}$$

approximates the numerical gamma.

^aSee p. 690.

Finite Difference Fails for Numerical Gamma

• Numerical differentiation gives

$$\frac{f(S+\Delta S)-2f(S)+f(S-\Delta S)}{(\Delta S)^2}.$$

- It does not work (see text for the reason).
- In general, calculating gamma is a hard problem numerically.^a
- But why did the binomial tree version work?

^aRecall p. 116.

Other Numerical Greeks

• The theta can be computed as

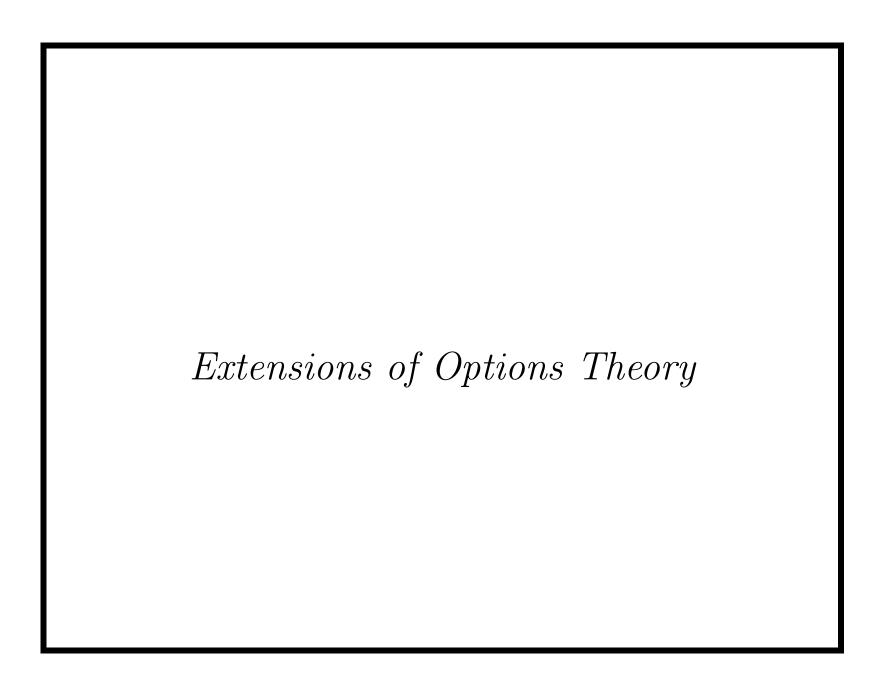
$$\frac{f_{ud} - f}{2(\tau/n)}.$$

- In fact, the theta of a European option can be derived from delta and gamma.^a
- The vega of a European option can be derived from gamma.^b
- For rho, there seems no alternative but to run the binomial tree algorithm twice.^c

^aSee p. 689.

^bRecall p. 358.

^cBut see p. 877 and pp. 1072ff.



As I never learnt mathematics, so I have had to think. — Joan Robinson (1903–1983)

Pricing Corporate Securities^a

- Interpret the underlying asset as the firm's total value.^b
- The option pricing methodology can be applied to price corporate securities.
- The result is called the structural model.
- Assumptions:
 - A firm can finance payouts by the sale of assets.
 - If a promised payment to an obligation other than stock is missed, the claim holders take ownership of the firm and the stockholders get nothing.

^aBlack & Scholes (1973); Merton (1974).

^bMore realistic models posit firm value = asset value + tax benefits – bankruptcy costs (Leland & Toft, 1996).

Risky Zero-Coupon Bonds and Stock

- Consider XYZ.com.
- Capital structure:
 - -n shares of its own common stock, S.
 - Zero-coupon bonds with an aggregate par value of X.
- What is the value of the bonds, B?
- What is the value of the XYZ.com stock, S?

- On the bonds' maturity date, suppose the total value of the firm V^* is less than the bondholders' claim X.
- Then the firm declares bankruptcy, and the stock becomes worthless.
- If $V^* > X$, then the bondholders obtain X and the stockholders $V^* X$.

	$V^* \le X$	$V^* > X$
Bonds	V^*	X
Stock	0	$V^* - X$

- The stock has the same payoff as a call!
- It is a call on the total value of the firm with a strike price of X and an expiration date equal to the bonds'.
 - This call provides the limited liability for the stockholders.
- The bonds are a covered call^a on the total value of the firm.
- Let V stand for the total value of the firm.
- Let C stand for a call on V.

^aRecall p. 203.

• Thus

$$nS = C \text{ (market capitalization of XYZ.com)},$$

 $B = V - C.$

- \bullet Knowing C amounts to knowing how the value of the firm is divided between stockholders and bondholders.
- Whatever the value of C, the total value of the stock and bonds at maturity remains V^* .
- The relative size of debt and equity is irrelevant to the firm's current value V.

• From Theorem 11 (p. 304) and the put-call parity,^a

$$nS = VN(x) - Xe^{-r\tau}N(x - \sigma\sqrt{\tau}), \qquad (54)$$

$$B = VN(-x) + Xe^{-r\tau}N(x - \sigma\sqrt{\tau}).$$
 (55)

- Above,

$$x \stackrel{\Delta}{=} \frac{\ln(V/X) + (r + \sigma^2/2)\tau}{\sigma\sqrt{\tau}}.$$

• The continuously compounded yield to maturity of the firm's bond is

$$\frac{\ln(X/B)}{\tau}$$
.

^aThis is sometimes called Merton's (1974) structural model.

• Define the credit spread or default premium as the yield difference between risky and riskless bonds,

$$\frac{\ln(X/B)}{\tau} - r$$

$$= -\frac{1}{\tau} \ln \left[N(-z) + \frac{1}{\omega} N(z - \sigma \sqrt{\tau}) \right].$$

$$-\omega \stackrel{\Delta}{=} X e^{-r\tau}/V.$$

$$-z \stackrel{\Delta}{=} \ln \omega / (\sigma \sqrt{\tau}) + (1/2) \sigma \sqrt{\tau} = -x + \sigma \sqrt{\tau}.$$

- Note that ω is the debt-to-total-value ratio.

- In general, suppose the firm has a dividend yield at rate q and the bankruptcy costs are a constant proportion α of the remaining firm value.
- Then Eqs. (54)–(55) on p. 381 become, respectively,

$$nS = Ve^{-q\tau}N(x) - Xe^{-r\tau}N(x - \sigma\sqrt{\tau}),$$

$$B = (1 - \alpha)Ve^{-q\tau}N(-x) + Xe^{-r\tau}N(x - \sigma\sqrt{\tau}).$$

- Above,

$$x \stackrel{\triangle}{=} \frac{\ln(V/X) + (r - q + \sigma^2/2)\tau}{\sigma\sqrt{\tau}}.$$

A Numerical Example

- XYZ.com's assets consist of 1,000 shares of Merck as of March 20, 1995.
 - Merck's market value per share is \$44.5.
- It issues 1,000 shares of XYZ.com common stock and 30 zero-coupon bonds maturing on July 21, 1995.
- Each bond promises to pay \$1,000 at maturity.
- $n = 1,000, V = 44.5 \times n = 44,500, \text{ and}$ $X = 30 \times 1,000 = 30,000.$
- As Merck calls are being traded, we do not need formulas to price them.

			— С	Call—	<u> —</u> Р	ut—
Option	Strike	Exp.	Vol.	Last	Vol.	Last
Merck	30	Jul	328	151/4		
441/2	35	Jul	150	91/2	10	1/16
441/2	40	Apr	887	43/4	136	1/16
441/2	40	Jul	220	51/2	297	1/4
441/2	40	Oct	58	6	10	1/2
441/2	45	Apr	3050	7/8	100	11/8
441/2	45	May	462	13/8	50	13/8
441/2	45	Jul	883	115/16	147	13/4
441/2	45	Oct	367	23/4	188	21/16

- The Merck option relevant for pricing is the July call with a strike price of X/n = 30 dollars.
- Such a call is selling for \$15.25.
- So XYZ.com's stock is worth $15.25 \times n = 15,250$ dollars.
- The entire bond issue is worth

$$B = 44,500 - 15,250 = 29,250$$

dollars.

- Or \$975 per bond.

- The XYZ.com bonds are equivalent to a default-free zero-coupon bond with \$X par value plus n written European puts on Merck at a strike price of \$30.
 - By the put-call parity.^a
- The difference between B and the price of the default-free bond is the value of these puts.
- The next table shows the total market values of the XYZ.com stock and bonds under various debt amounts X.

^aRecall p. 229.

Promised payment	Current market	Current market	Current total
to bondholders	value of bonds	value of stock	value of firm
X	B	nS	V
30,000	$29,\!250.0$	15,250.0	44,500
35,000	$35,\!000.0$	$9,\!500.0$	$44,\!500$
$40,\!000$	39,000.0	$5,\!500.0$	$44,\!500$
45,000	$42,\!562.5$	1,937.5	$44,\!500$

- Suppose the promised payment to bondholders is \$45,000.
- Then the relevant option is the July call with a strike price of 45,000/n = 45 dollars.
- Since that option is selling for \$115/16, the market value of the XYZ.com stock is $(1+15/16) \times n = 1,937.5$ dollars.
- The market value of the stock decreases as the debt-to-equity ratio increases.

- There are conflicts between stockholders and bondholders.
- An option's terms cannot be changed after issuance.
- But a firm can change its capital structure.
- There lies one key difference between options and corporate securities.
 - Parameters such volatility,^a dividend, and strike price are under partial control of the stockholders or boards.

^aThis is called the asset substitution problem (Myers, 1977).

- Suppose XYZ.com issues 15 more bonds with the same terms to buy back stock.
- The total debt is now $X = 45{,}000$ dollars.
- The table on p. 388 says the total market value of the bonds should be \$42,562.5.
- The *new* bondholders pay

$$42,562.5 \times (15/45) = 14,187.5$$

dollars.

• The remaining stock is worth \$1,937.5.

• The stockholders therefore gain

$$14,187.5+1,937.5-15,250=875$$

dollars.

• The *original* bondholders lose an equal amount,

$$29,250 - \frac{30}{45} \times 42,562.5 = 875.$$

- This is called claim dilution.^a

^aFama & M. H. Miller (1972).

- Suppose the stockholders sell $(1/3) \times n$ Merck shares to fund a \$14,833.3 cash dividend.
- The stockholders now have \$14,833.3 in cash plus a call on $(2/3) \times n$ Merck shares.
- The strike price remains X = 30,000.
- This is equivalent to owning 2/3 of a call on n Merck shares with a strike price of \$45,000.
- n such calls are worth \$1,937.5 (p. 388).
- So the total market value of the XYZ.com stock is $(2/3) \times 1,937.5 = 1,291.67$ dollars.

• The market value of the XYZ.com bonds is hence

$$(2/3) \times n \times 44.5 - 1,291.67 = 28,375$$

dollars.

• Hence the stockholders gain

$$14,833.3+1,291.67-15,250 \approx 875$$

dollars.

• The bondholders watch their value drop from \$29,250 to \$28,375, a loss of \$875.

Further Topics

- Other examples:^a
 - Stock as compound call when company issues coupon bonds.
 - Subordinated debts as bull call spreads.
 - Warrants as calls.
 - Callable bonds as American calls with 2 strike prices.
 - Convertible bonds.
 - Bonds with safety covenants as barrier options.

^aCox & Rubinstein (1985); Geske (1977).

Further Topics (concluded)

• Securities issued by firms with a complex capital structure must be solved by trees.^a

 $^{\rm a}{\rm Dai}$ (B82506025, R86526008, D8852600), Lyuu, & C. Wang (F95922018) (2010).